Klasyfikacja wiadomogsci tekstowych z
wykorzystaniem ML.NET w drodowisku .NET

Michal Kopczynski
Styczen 2026

Spis tresci

Wsten

2 ML.NET — krotkie wprowadzenie|

[3 Architektura rozwigzanial

[4 Uruchomienie projektu
4.1 Wymaganial
[4.2 Pobranie repozytorium|
4.3 Przywrocenie zaleznoscllo o000
[4.4 Uruchomienie aplikacyil 0000
[4.5 Uruchamianie testow jednostkowych|.

[> Modele danych|
[>.1 Model danych tekstowych| o000
5.2 Model predykey|

[6 Interfejs klasyfikatoral

[7__Proces trenowania modelul

[8 Aplikacja konsolowal

[9 Testy jednostkowe)|

0 Mozl =l
(11 Podsumowaniel

1 Wstep

Uczenie maszynowe (ang. Machine Learning) coraz czesciej stanowi integralna czesé nowo-
czesnych aplikacji biznesowych. Klasyfikacja tekstu, w szczegdlnosci rozpoznawanie wia-
domosci typu spam, jest jednym z najbardziej klasycznych i praktycznych problemoéow w
tej dziedzinie.

W ekosystemie platformy .NET dostepne sa rézne podejscia do rozwiazywania pro-
blemoéw opartych o sztuczng inteligencje. Z jednej strony istnieja gotowe, hostowane roz-
wiazania chmurowe, takie jak Azure AI Services, ktore oferuja pretrenowane modele
dostepne poprzez API. Z drugiej strony, biblioteka ML.NET umozliwia trenowanie i wy-
korzystywanie wtasnych modeli uczenia maszynowego bez opuszczania srodowiska .NET
oraz bez koniecznosci uzywania zewnetrznych jezykéw programowania, takich jak Python.

Celem niniejszego projektu jest zaprojektowanie oraz implementacja prostego sys-
temu klasyfikacji wiadomosci tekstowych (e-mail oraz SMS) z wykorzystaniem biblioteki
ML.NET, z zachowaniem dobrej architektury aplikacji, testow jednostkowych oraz sepa-
racji odpowiedzialnosci.

2 ML.NET — krétkie wprowadzenie

ML.NET jest biblioteka open-source rozwijang przez firme Microsoft, przeznaczona do im-
plementacji algorytméw uczenia maszynowego w aplikacjach .NET. Umozliwia ona miedzy
innymi:

e trenowanie modeli klasyfikacji, regresji i klasteryzacji,
e przetwarzanie danych tekstowych (NLP - Natural Language Processing),
e ewaluacje jakosci modeli,

e wykorzystanie wytrenowanych modeli w aplikacjach desktopowych, webowych i in-
nych

Wazna cecha ML.NET jest mozliwos¢ budowania tzw. pipeline’ow, czyli sekwencji
transformacji danych oraz algorytmoéow uczacych, ktére wspoélnie tworza kompletny model
predykcyjny.

3 Architektura rozwigzania

Projekt zostal zaprojektowany jako Solution skladajaca sie z trzech niezaleznych pro-
jektow:

e SpamClassifier.Core — biblioteka zawierajaca calg logike biznesowa oraz modele
ML,

e SpamClassifier.ConsoleApp — aplikacja konsolowa pelnigca role prezentujaca
(runner),

e SpamClassifier.Tests — projekt z testami jednostkowymi.

Takie podejécie umozliwia ponowne wykorzystanie logiki klasyfikacji w innych typach
aplikacji, np. ASP.NET MVC, Blazor czy WPF.

& [Seolution 'SpamClassifier' (3 of 3 projects)
4 & [c#] SpamClassifier.ConsoleApp
&4 Dependencies
4 & [0 Data
& EE spam_or_not_spam.csv
& @ spam_or_not_spam_sms.csv
I &8 C# Program.cs
P SpamClassifier.Core
b &4 Dependencies
4 & Bl Abstractions
I+ &8 C# |SpamClassifier.cs
4 & B Models
[+ & C# SmsMessageData.cs
[+ & C# TextMessageData.cs
I+ & C# TextMessagePrediction.cs
4 & Bl Services
I & C# MailSpamClassifierservice.cs
[+ &8 C# SmsSpamClassifierservice.cs
4 & T SpamClassifier. Tests
P &4 Dependencies
4 & @ Data

& B spam_or_not_spam.csv

& EE spam_or_not_spam_sms.csv
[& C# MailSpamClassifierTests.cs

[+ & C# SmsSpamClassifierTests.cs

Rysunek 1: Struktura Solution w Visual Studio

4 Uruchomienie projektu

Projekt zostal przygotowany w taki sposéb, aby mozliwe byto jego pelne uruchomienie
oraz odtworzenie wynikéw na komputerze z zainstalowanym srodowiskiem .NET. Ponizej
przedstawiono kolejne kroki niezbedne do uruchomienia aplikacji oraz testow jednostko-
wych.

4.1 Wymagania

Do poprawnego uruchomienia projektu wymagane sa:

e NET SDK w wersji 8.0 lub nowszej,

e system kontroli wersji Git.

4.2 Pobranie repozytorium

Kod zrédtowy projektu zostal udostepniony w publicznym repozytorium GitHub. Repo-
zytorium mozna pobraé¢ za pomoca nastepujacych polecen:

git clone https://github.com/mike-314/SpamClassifier.git

cd SpamClassifier

4.3 Przywrocenie zaleznosci

Po pobraniu repozytorium nalezy przywroci¢ wszystkie zaleznosci NuGet:

dotnet restore

4.4 Uruchomienie aplikacji
Aplikacje konsolowa mozna uruchomié poleceniem:
dotnet run --project SpamClassifier.ConsoleApp
Po uruchomieniu programu uzytkownik proszony jest o wybor typu klasyfikatora:

1 - Email
2 - SMS

Po zakoriczeniu trenowania modelu mozliwe jest interaktywne wprowadzanie wiado-
mosci tekstowych, ktore zostana sklasyfikowane jako spam lub wiadomosci poprawne.
Wprowadzenie pustej linii koriczy dziatanie programu.

4.5 Uruchamianie testow jednostkowych

Projekt zawiera testy jednostkowe weryfikujace poprawnosé¢ dziatania klasyfikatorow. Te-
sty mozna uruchomié poleceniem:

dotnet test

Testy obejmuja zaréwno przypadki wiadomosci spam, jak i wiadomosci poprawnych
dla klasyfikatora e-mail oraz SMS.

5 Modele danych

Do reprezentacji danych wejéciowych oraz wynikow predykcji wykorzystano nastepujace
klasy.

5.1 Model danych tekstowych
Dla wiadomos$ci e-mail wykorzystywany jest model:
e Text — tres¢ wiadomosci,
e Label — wartos¢ logiczna okreslajaca, czy wiadomosé jest spamem.

Dla wiadomosci SMS zastosowano osobny model, w ktérym etykieta zapisana jest jako
tekst ("ham" lub "spam") i mapowana na warto$¢ logiczng podczas trenowania modelu.

5.2 Model predykcji

Wymnik predykcji reprezentowany jest przez klase zawierajaca:
e PredictedLabel — przewidywana klasa,

e Probability — estymowane prawdopodobienistwo przynaleznosci do klasy spam.

Wartos¢ Probability miesci si¢ w przedziale od 0 do 1 i wynika bezposrednio z zasto-
sowanego algorytmu regresji (wykorzystano BinaryClassification. Trainers.SdcalogisticRegression).

6 Interfejs klasyfikatora

Wspélny kontrakt dla wszystkich klasyfikatorow zostal zdefiniowany za pomocs interfejsu:
e Train(string dataPath) — trenowanie modelu na podstawie danych z pliku,
e Predict(string text) — klasyfikacja pojedynczej wiadomosci.

Dzieki temu mozliwe jest tatwe przetaczanie sie¢ pomiedzy réznymi implementacjami
klasyfikatorow (e-mail, SMS).

7 Proces trenowania modelu

Proces trenowania modelu w ML.NET sktada si¢ z nastepujacych etapow:
1. Wezytanie danych z pliku CSV do struktury IDataView,
2. Podzial danych na zbior treningowy i testowy,

Przeksztalcenie tekstu na wektory cech (FeaturizeText),

Trenowanie modelu klasyfikacji binarnej,

AR

Ewaluacja jakosci modelu.

Zastosowanym algorytmem jest SDCA Logistic Regression, ktory dobrze sprawdza
sie w problemach klasyfikacji.

8 Aplikacja konsolowa
Aplikacja konsolowa umozliwia uzytkownikowi:

e wybor typu klasyfikatora (e-mail lub SMS),
e trenowanie odpowiedniego modelu,
e interaktywne wprowadzanie wiadomosci,

e uzyskanie wyniku klasyfikacji wraz z prawdopodobienstwem.

Program dziatla w petli, umozliwiajac klasyfikacje wielu wiadomosci bez ponownego
trenowania modelu.

=== SpamClassifier ===

Choose classifier type:

1 - Email

2 — SMS

Your choice: 1

Email spam classifier selected.

Training model...
=== Model evaluation ===
Accuracy: 98.39%
F1 Score: 94.62%

Model ready.
Enter text to classify (empty line = exit).

Message> You have WON free money! Claim your prize now!
IsSpam: True
Probability: ©.999

Message> |

Rysunek 2: Przyktadowe uruchomienie aplikacji konsolowej

9 Testy jednostkowe

Projekt zawiera podstawowe testy jednostkowe napisane z wykorzystaniem frameworka
xUnit. Testy te sprawdzaja poprawno$é dziatania klasyfikatorow zaréwno dla wiadomosci
spam, jak i wiadomosci poprawnych.

Testy:

e nie sprawdzajg doktadnej warto$ci prawdopodobienistwa,

e weryfikuja jedynie poprawnosé klasyfikacji logicznej.

=
Search (Ctrl+[) P~

d: 4 Tests (4 Passed, O Failed, 0 Skipped) run in 10 A 0Wamings € 0 Errors

Duration Traits Error Message » Run |'§| ebug

Group Summary
SpamClassifier. Tests
Tests in
| Duration: 14.8 sec
Outcomes
@ 4Passed

Rysunek 3: Przyktadowe uruchomienie wszystkich testow

10 Mozliwe rozszerzenia

Projekt moze zosta¢ w przysztosci rozszerzony o:
e zapis 1 odczyt wytrenowanych modeli z plikow,
e zmiane¢ progu decyzyjnego klasyfikacji,
e integracje z aplikacja webowa (ASP.NET),

e wykorzystanie bardziej zaawansowanych algorytméw NLP.

11 Podsumowanie

W ramach projektu zaimplementowano system klasyfikacji wiadomosci tekstowych z wy-
korzystaniem biblioteki ML.NET. Przedstawione rozwigzanie pokazuje, ze mozliwe jest
tworzenie wtasnych modeli uczenia maszynowego w $rodowisku .NET bez koniecznosci
korzystania z zewnetrznych narzedzi czy jezykéw programowania.

	Wstęp
	ML.NET – krótkie wprowadzenie
	Architektura rozwiązania
	Uruchomienie projektu
	Wymagania
	Pobranie repozytorium
	Przywrócenie zależności
	Uruchomienie aplikacji
	Uruchamianie testów jednostkowych

	Modele danych
	Model danych tekstowych
	Model predykcji

	Interfejs klasyfikatora
	Proces trenowania modelu
	Aplikacja konsolowa
	Testy jednostkowe
	Możliwe rozszerzenia
	Podsumowanie

