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1 Wstęp
Uczenie maszynowe (ang. Machine Learning) coraz częściej stanowi integralną część nowo-
czesnych aplikacji biznesowych. Klasyfikacja tekstu, w szczególności rozpoznawanie wia-
domości typu spam, jest jednym z najbardziej klasycznych i praktycznych problemów w
tej dziedzinie.

W ekosystemie platformy .NET dostępne są różne podejścia do rozwiązywania pro-
blemów opartych o sztuczną inteligencję. Z jednej strony istnieją gotowe, hostowane roz-
wiązania chmurowe, takie jak Azure AI Services, które oferują pretrenowane modele
dostępne poprzez API. Z drugiej strony, biblioteka ML.NET umożliwia trenowanie i wy-
korzystywanie własnych modeli uczenia maszynowego bez opuszczania środowiska .NET
oraz bez konieczności używania zewnętrznych języków programowania, takich jak Python.

Celem niniejszego projektu jest zaprojektowanie oraz implementacja prostego sys-
temu klasyfikacji wiadomości tekstowych (e-mail oraz SMS) z wykorzystaniem biblioteki
ML.NET, z zachowaniem dobrej architektury aplikacji, testów jednostkowych oraz sepa-
racji odpowiedzialności.

2 ML.NET – krótkie wprowadzenie
ML.NET jest biblioteką open-source rozwijaną przez firmę Microsoft, przeznaczoną do im-
plementacji algorytmów uczenia maszynowego w aplikacjach .NET. Umożliwia ona między
innymi:

• trenowanie modeli klasyfikacji, regresji i klasteryzacji,

• przetwarzanie danych tekstowych (NLP - Natural Language Processing),

• ewaluację jakości modeli,

• wykorzystanie wytrenowanych modeli w aplikacjach desktopowych, webowych i in-
nych

Ważną cechą ML.NET jest możliwość budowania tzw. pipeline’ów, czyli sekwencji
transformacji danych oraz algorytmów uczących, które wspólnie tworzą kompletny model
predykcyjny.

3 Architektura rozwiązania
Projekt został zaprojektowany jako Solution składająca się z trzech niezależnych pro-
jektów:

• SpamClassifier.Core – biblioteka zawierająca całą logikę biznesową oraz modele
ML,

• SpamClassifier.ConsoleApp – aplikacja konsolowa pełniąca rolę prezentującą
(runner),

• SpamClassifier.Tests – projekt z testami jednostkowymi.
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Takie podejście umożliwia ponowne wykorzystanie logiki klasyfikacji w innych typach
aplikacji, np. ASP.NET MVC, Blazor czy WPF.

Rysunek 1: Struktura Solution w Visual Studio
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4 Uruchomienie projektu
Projekt został przygotowany w taki sposób, aby możliwe było jego pełne uruchomienie
oraz odtworzenie wyników na komputerze z zainstalowanym środowiskiem .NET. Poniżej
przedstawiono kolejne kroki niezbędne do uruchomienia aplikacji oraz testów jednostko-
wych.

4.1 Wymagania

Do poprawnego uruchomienia projektu wymagane są:

• .NET SDK w wersji 8.0 lub nowszej,

• system kontroli wersji Git.

4.2 Pobranie repozytorium

Kod źródłowy projektu został udostępniony w publicznym repozytorium GitHub. Repo-
zytorium można pobrać za pomocą następujących poleceń:

git clone https://github.com/mike-314/SpamClassifier.git
cd SpamClassifier

4.3 Przywrócenie zależności

Po pobraniu repozytorium należy przywrócić wszystkie zależności NuGet:

dotnet restore

4.4 Uruchomienie aplikacji

Aplikację konsolową można uruchomić poleceniem:

dotnet run --project SpamClassifier.ConsoleApp

Po uruchomieniu programu użytkownik proszony jest o wybór typu klasyfikatora:

1 - Email
2 - SMS

Po zakończeniu trenowania modelu możliwe jest interaktywne wprowadzanie wiado-
mości tekstowych, które zostaną sklasyfikowane jako spam lub wiadomości poprawne.
Wprowadzenie pustej linii kończy działanie programu.

4.5 Uruchamianie testów jednostkowych

Projekt zawiera testy jednostkowe weryfikujące poprawność działania klasyfikatorów. Te-
sty można uruchomić poleceniem:

dotnet test

Testy obejmują zarówno przypadki wiadomości spam, jak i wiadomości poprawnych
dla klasyfikatora e-mail oraz SMS.
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5 Modele danych
Do reprezentacji danych wejściowych oraz wyników predykcji wykorzystano następujące
klasy.

5.1 Model danych tekstowych

Dla wiadomości e-mail wykorzystywany jest model:

• Text – treść wiadomości,

• Label – wartość logiczna określająca, czy wiadomość jest spamem.

Dla wiadomości SMS zastosowano osobny model, w którym etykieta zapisana jest jako
tekst ("ham" lub "spam") i mapowana na wartość logiczną podczas trenowania modelu.

5.2 Model predykcji

Wynik predykcji reprezentowany jest przez klasę zawierającą:

• PredictedLabel – przewidywana klasa,

• Probability – estymowane prawdopodobieństwo przynależności do klasy spam.

Wartość Probability mieści się w przedziale od 0 do 1 i wynika bezpośrednio z zasto-
sowanego algorytmu regresji (wykorzystano BinaryClassification.Trainers.SdcaLogisticRegression).

6 Interfejs klasyfikatora
Wspólny kontrakt dla wszystkich klasyfikatorów został zdefiniowany za pomocą interfejsu:

• Train(string dataPath) – trenowanie modelu na podstawie danych z pliku,

• Predict(string text) – klasyfikacja pojedynczej wiadomości.

Dzięki temu możliwe jest łatwe przełączanie się pomiędzy różnymi implementacjami
klasyfikatorów (e-mail, SMS).

7 Proces trenowania modelu
Proces trenowania modelu w ML.NET składa się z następujących etapów:

1. Wczytanie danych z pliku CSV do struktury IDataView,

2. Podział danych na zbiór treningowy i testowy,

3. Przekształcenie tekstu na wektory cech (FeaturizeText),

4. Trenowanie modelu klasyfikacji binarnej,

5. Ewaluacja jakości modelu.

Zastosowanym algorytmem jest SDCA Logistic Regression, który dobrze sprawdza
się w problemach klasyfikacji.
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8 Aplikacja konsolowa
Aplikacja konsolowa umożliwia użytkownikowi:

• wybór typu klasyfikatora (e-mail lub SMS),

• trenowanie odpowiedniego modelu,

• interaktywne wprowadzanie wiadomości,

• uzyskanie wyniku klasyfikacji wraz z prawdopodobieństwem.

Program działa w pętli, umożliwiając klasyfikację wielu wiadomości bez ponownego
trenowania modelu.

Rysunek 2: Przykładowe uruchomienie aplikacji konsolowej

9 Testy jednostkowe
Projekt zawiera podstawowe testy jednostkowe napisane z wykorzystaniem frameworka
xUnit. Testy te sprawdzają poprawność działania klasyfikatorów zarówno dla wiadomości
spam, jak i wiadomości poprawnych.

Testy:

• nie sprawdzają dokładnej wartości prawdopodobieństwa,

• weryfikują jedynie poprawność klasyfikacji logicznej.
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Rysunek 3: Przykładowe uruchomienie wszystkich testów

10 Możliwe rozszerzenia
Projekt może zostać w przyszłości rozszerzony o:

• zapis i odczyt wytrenowanych modeli z plików,

• zmianę progu decyzyjnego klasyfikacji,

• integrację z aplikacją webową (ASP.NET),

• wykorzystanie bardziej zaawansowanych algorytmów NLP.

11 Podsumowanie
W ramach projektu zaimplementowano system klasyfikacji wiadomości tekstowych z wy-
korzystaniem biblioteki ML.NET. Przedstawione rozwiązanie pokazuje, że możliwe jest
tworzenie własnych modeli uczenia maszynowego w środowisku .NET bez konieczności
korzystania z zewnętrznych narzędzi czy języków programowania.
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