
Klasyfikacja wiadomości tekstowych z
wykorzystaniem ML.NET w środowisku .NET

Michał Kopczyński

Styczeń 2026

Spis treści
1 Wstęp 2

2 ML.NET – krótkie wprowadzenie 2

3 Architektura rozwiązania 2

4 Uruchomienie projektu 4
4.1 Wymagania . 4
4.2 Pobranie repozytorium . 4
4.3 Przywrócenie zależności . 4
4.4 Uruchomienie aplikacji . 4
4.5 Uruchamianie testów jednostkowych . 4

5 Modele danych 5
5.1 Model danych tekstowych . 5
5.2 Model predykcji . 5

6 Interfejs klasyfikatora 5

7 Proces trenowania modelu 5

8 Aplikacja konsolowa 6

9 Testy jednostkowe 6

10 Możliwe rozszerzenia 7

11 Podsumowanie 7

1

1 Wstęp
Uczenie maszynowe (ang. Machine Learning) coraz częściej stanowi integralną część nowo-
czesnych aplikacji biznesowych. Klasyfikacja tekstu, w szczególności rozpoznawanie wia-
domości typu spam, jest jednym z najbardziej klasycznych i praktycznych problemów w
tej dziedzinie.

W ekosystemie platformy .NET dostępne są różne podejścia do rozwiązywania pro-
blemów opartych o sztuczną inteligencję. Z jednej strony istnieją gotowe, hostowane roz-
wiązania chmurowe, takie jak Azure AI Services, które oferują pretrenowane modele
dostępne poprzez API. Z drugiej strony, biblioteka ML.NET umożliwia trenowanie i wy-
korzystywanie własnych modeli uczenia maszynowego bez opuszczania środowiska .NET
oraz bez konieczności używania zewnętrznych języków programowania, takich jak Python.

Celem niniejszego projektu jest zaprojektowanie oraz implementacja prostego sys-
temu klasyfikacji wiadomości tekstowych (e-mail oraz SMS) z wykorzystaniem biblioteki
ML.NET, z zachowaniem dobrej architektury aplikacji, testów jednostkowych oraz sepa-
racji odpowiedzialności.

2 ML.NET – krótkie wprowadzenie
ML.NET jest biblioteką open-source rozwijaną przez firmę Microsoft, przeznaczoną do im-
plementacji algorytmów uczenia maszynowego w aplikacjach .NET. Umożliwia ona między
innymi:

• trenowanie modeli klasyfikacji, regresji i klasteryzacji,

• przetwarzanie danych tekstowych (NLP - Natural Language Processing),

• ewaluację jakości modeli,

• wykorzystanie wytrenowanych modeli w aplikacjach desktopowych, webowych i in-
nych

Ważną cechą ML.NET jest możliwość budowania tzw. pipeline’ów, czyli sekwencji
transformacji danych oraz algorytmów uczących, które wspólnie tworzą kompletny model
predykcyjny.

3 Architektura rozwiązania
Projekt został zaprojektowany jako Solution składająca się z trzech niezależnych pro-
jektów:

• SpamClassifier.Core – biblioteka zawierająca całą logikę biznesową oraz modele
ML,

• SpamClassifier.ConsoleApp – aplikacja konsolowa pełniąca rolę prezentującą
(runner),

• SpamClassifier.Tests – projekt z testami jednostkowymi.

2

Takie podejście umożliwia ponowne wykorzystanie logiki klasyfikacji w innych typach
aplikacji, np. ASP.NET MVC, Blazor czy WPF.

Rysunek 1: Struktura Solution w Visual Studio

3

4 Uruchomienie projektu
Projekt został przygotowany w taki sposób, aby możliwe było jego pełne uruchomienie
oraz odtworzenie wyników na komputerze z zainstalowanym środowiskiem .NET. Poniżej
przedstawiono kolejne kroki niezbędne do uruchomienia aplikacji oraz testów jednostko-
wych.

4.1 Wymagania

Do poprawnego uruchomienia projektu wymagane są:

• .NET SDK w wersji 8.0 lub nowszej,

• system kontroli wersji Git.

4.2 Pobranie repozytorium

Kod źródłowy projektu został udostępniony w publicznym repozytorium GitHub. Repo-
zytorium można pobrać za pomocą następujących poleceń:

git clone https://github.com/mike-314/SpamClassifier.git
cd SpamClassifier

4.3 Przywrócenie zależności

Po pobraniu repozytorium należy przywrócić wszystkie zależności NuGet:

dotnet restore

4.4 Uruchomienie aplikacji

Aplikację konsolową można uruchomić poleceniem:

dotnet run --project SpamClassifier.ConsoleApp

Po uruchomieniu programu użytkownik proszony jest o wybór typu klasyfikatora:

1 - Email
2 - SMS

Po zakończeniu trenowania modelu możliwe jest interaktywne wprowadzanie wiado-
mości tekstowych, które zostaną sklasyfikowane jako spam lub wiadomości poprawne.
Wprowadzenie pustej linii kończy działanie programu.

4.5 Uruchamianie testów jednostkowych

Projekt zawiera testy jednostkowe weryfikujące poprawność działania klasyfikatorów. Te-
sty można uruchomić poleceniem:

dotnet test

Testy obejmują zarówno przypadki wiadomości spam, jak i wiadomości poprawnych
dla klasyfikatora e-mail oraz SMS.

4

5 Modele danych
Do reprezentacji danych wejściowych oraz wyników predykcji wykorzystano następujące
klasy.

5.1 Model danych tekstowych

Dla wiadomości e-mail wykorzystywany jest model:

• Text – treść wiadomości,

• Label – wartość logiczna określająca, czy wiadomość jest spamem.

Dla wiadomości SMS zastosowano osobny model, w którym etykieta zapisana jest jako
tekst ("ham" lub "spam") i mapowana na wartość logiczną podczas trenowania modelu.

5.2 Model predykcji

Wynik predykcji reprezentowany jest przez klasę zawierającą:

• PredictedLabel – przewidywana klasa,

• Probability – estymowane prawdopodobieństwo przynależności do klasy spam.

Wartość Probability mieści się w przedziale od 0 do 1 i wynika bezpośrednio z zasto-
sowanego algorytmu regresji (wykorzystano BinaryClassification.Trainers.SdcaLogisticRegression).

6 Interfejs klasyfikatora
Wspólny kontrakt dla wszystkich klasyfikatorów został zdefiniowany za pomocą interfejsu:

• Train(string dataPath) – trenowanie modelu na podstawie danych z pliku,

• Predict(string text) – klasyfikacja pojedynczej wiadomości.

Dzięki temu możliwe jest łatwe przełączanie się pomiędzy różnymi implementacjami
klasyfikatorów (e-mail, SMS).

7 Proces trenowania modelu
Proces trenowania modelu w ML.NET składa się z następujących etapów:

1. Wczytanie danych z pliku CSV do struktury IDataView,

2. Podział danych na zbiór treningowy i testowy,

3. Przekształcenie tekstu na wektory cech (FeaturizeText),

4. Trenowanie modelu klasyfikacji binarnej,

5. Ewaluacja jakości modelu.

Zastosowanym algorytmem jest SDCA Logistic Regression, który dobrze sprawdza
się w problemach klasyfikacji.

5

8 Aplikacja konsolowa
Aplikacja konsolowa umożliwia użytkownikowi:

• wybór typu klasyfikatora (e-mail lub SMS),

• trenowanie odpowiedniego modelu,

• interaktywne wprowadzanie wiadomości,

• uzyskanie wyniku klasyfikacji wraz z prawdopodobieństwem.

Program działa w pętli, umożliwiając klasyfikację wielu wiadomości bez ponownego
trenowania modelu.

Rysunek 2: Przykładowe uruchomienie aplikacji konsolowej

9 Testy jednostkowe
Projekt zawiera podstawowe testy jednostkowe napisane z wykorzystaniem frameworka
xUnit. Testy te sprawdzają poprawność działania klasyfikatorów zarówno dla wiadomości
spam, jak i wiadomości poprawnych.

Testy:

• nie sprawdzają dokładnej wartości prawdopodobieństwa,

• weryfikują jedynie poprawność klasyfikacji logicznej.

6

Rysunek 3: Przykładowe uruchomienie wszystkich testów

10 Możliwe rozszerzenia
Projekt może zostać w przyszłości rozszerzony o:

• zapis i odczyt wytrenowanych modeli z plików,

• zmianę progu decyzyjnego klasyfikacji,

• integrację z aplikacją webową (ASP.NET),

• wykorzystanie bardziej zaawansowanych algorytmów NLP.

11 Podsumowanie
W ramach projektu zaimplementowano system klasyfikacji wiadomości tekstowych z wy-
korzystaniem biblioteki ML.NET. Przedstawione rozwiązanie pokazuje, że możliwe jest
tworzenie własnych modeli uczenia maszynowego w środowisku .NET bez konieczności
korzystania z zewnętrznych narzędzi czy języków programowania.

7

	Wstęp
	ML.NET – krótkie wprowadzenie
	Architektura rozwiązania
	Uruchomienie projektu
	Wymagania
	Pobranie repozytorium
	Przywrócenie zależności
	Uruchomienie aplikacji
	Uruchamianie testów jednostkowych

	Modele danych
	Model danych tekstowych
	Model predykcji

	Interfejs klasyfikatora
	Proces trenowania modelu
	Aplikacja konsolowa
	Testy jednostkowe
	Możliwe rozszerzenia
	Podsumowanie

