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1 Wstep

Uczenie maszynowe (ang. Machine Learning) coraz czesciej stanowi integralna czesé nowo-
czesnych aplikacji biznesowych. Klasyfikacja tekstu, w szczegdlnosci rozpoznawanie wia-
domosci typu spam, jest jednym z najbardziej klasycznych i praktycznych problemoéow w
tej dziedzinie.

W ekosystemie platformy .NET dostepne sa rézne podejscia do rozwiazywania pro-
blemoéw opartych o sztuczng inteligencje. Z jednej strony istnieja gotowe, hostowane roz-
wiazania chmurowe, takie jak Azure AI Services, ktore oferuja pretrenowane modele
dostepne poprzez API. Z drugiej strony, biblioteka ML.NET umozliwia trenowanie i wy-
korzystywanie wtasnych modeli uczenia maszynowego bez opuszczania srodowiska .NET
oraz bez koniecznosci uzywania zewnetrznych jezykéw programowania, takich jak Python.

Celem niniejszego projektu jest zaprojektowanie oraz implementacja prostego sys-
temu klasyfikacji wiadomosci tekstowych (e-mail oraz SMS) z wykorzystaniem biblioteki
ML.NET, z zachowaniem dobrej architektury aplikacji, testow jednostkowych oraz sepa-
racji odpowiedzialnosci.

2 ML.NET — krétkie wprowadzenie

ML.NET jest biblioteka open-source rozwijang przez firme Microsoft, przeznaczona do im-
plementacji algorytméw uczenia maszynowego w aplikacjach .NET. Umozliwia ona miedzy
innymi:

e trenowanie modeli klasyfikacji, regresji i klasteryzacji,
e przetwarzanie danych tekstowych (NLP - Natural Language Processing),
e ewaluacje jakosci modeli,

e wykorzystanie wytrenowanych modeli w aplikacjach desktopowych, webowych i in-
nych

Wazna cecha ML.NET jest mozliwos¢ budowania tzw. pipeline’ow, czyli sekwencji
transformacji danych oraz algorytmoéow uczacych, ktére wspoélnie tworza kompletny model
predykcyjny.

3 Architektura rozwigzania

Projekt zostal zaprojektowany jako Solution skladajaca sie z trzech niezaleznych pro-
jektow:

e SpamClassifier.Core — biblioteka zawierajaca calg logike biznesowa oraz modele
ML,

e SpamClassifier.ConsoleApp — aplikacja konsolowa pelnigca role prezentujaca
(runner),

e SpamClassifier.Tests — projekt z testami jednostkowymi.



Takie podejécie umozliwia ponowne wykorzystanie logiki klasyfikacji w innych typach
aplikacji, np. ASP.NET MVC, Blazor czy WPF.
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Rysunek 1: Struktura Solution w Visual Studio



4 Uruchomienie projektu

Projekt zostal przygotowany w taki sposéb, aby mozliwe byto jego pelne uruchomienie
oraz odtworzenie wynikéw na komputerze z zainstalowanym srodowiskiem .NET. Ponizej
przedstawiono kolejne kroki niezbedne do uruchomienia aplikacji oraz testow jednostko-
wych.

4.1 Wymagania

Do poprawnego uruchomienia projektu wymagane sa:

e NET SDK w wersji 8.0 lub nowszej,

e system kontroli wersji Git.

4.2 Pobranie repozytorium

Kod zrédtowy projektu zostal udostepniony w publicznym repozytorium GitHub. Repo-
zytorium mozna pobraé¢ za pomoca nastepujacych polecen:

git clone https://github.com/mike-314/SpamClassifier.git

cd SpamClassifier

4.3 Przywrocenie zaleznosci

Po pobraniu repozytorium nalezy przywroci¢ wszystkie zaleznosci NuGet:

dotnet restore

4.4 Uruchomienie aplikacji
Aplikacje konsolowa mozna uruchomié poleceniem:
dotnet run --project SpamClassifier.ConsoleApp
Po uruchomieniu programu uzytkownik proszony jest o wybor typu klasyfikatora:

1 - Email
2 - SMS

Po zakoriczeniu trenowania modelu mozliwe jest interaktywne wprowadzanie wiado-
mosci tekstowych, ktore zostana sklasyfikowane jako spam lub wiadomosci poprawne.
Wprowadzenie pustej linii koriczy dziatanie programu.

4.5 Uruchamianie testow jednostkowych

Projekt zawiera testy jednostkowe weryfikujace poprawnosé¢ dziatania klasyfikatorow. Te-
sty mozna uruchomié poleceniem:

dotnet test

Testy obejmuja zaréwno przypadki wiadomosci spam, jak i wiadomosci poprawnych
dla klasyfikatora e-mail oraz SMS.



5 Modele danych

Do reprezentacji danych wejéciowych oraz wynikow predykcji wykorzystano nastepujace
klasy.

5.1 Model danych tekstowych
Dla wiadomos$ci e-mail wykorzystywany jest model:
e Text — tres¢ wiadomosci,
e Label — wartos¢ logiczna okreslajaca, czy wiadomosé jest spamem.

Dla wiadomosci SMS zastosowano osobny model, w ktérym etykieta zapisana jest jako
tekst ("ham" lub "spam") i mapowana na warto$¢ logiczng podczas trenowania modelu.

5.2 Model predykcji

Wymnik predykcji reprezentowany jest przez klase zawierajaca:
e PredictedLabel — przewidywana klasa,

e Probability — estymowane prawdopodobienistwo przynaleznosci do klasy spam.

Wartos¢ Probability miesci si¢ w przedziale od 0 do 1 i wynika bezposrednio z zasto-
sowanego algorytmu regresji (wykorzystano BinaryClassification. Trainers.SdcalogisticRegression).

6 Interfejs klasyfikatora

Wspélny kontrakt dla wszystkich klasyfikatorow zostal zdefiniowany za pomocs interfejsu:
e Train(string dataPath) — trenowanie modelu na podstawie danych z pliku,
e Predict(string text) — klasyfikacja pojedynczej wiadomosci.

Dzieki temu mozliwe jest tatwe przetaczanie sie¢ pomiedzy réznymi implementacjami
klasyfikatorow (e-mail, SMS).

7 Proces trenowania modelu

Proces trenowania modelu w ML.NET sktada si¢ z nastepujacych etapow:
1. Wezytanie danych z pliku CSV do struktury IDataView,
2. Podzial danych na zbior treningowy i testowy,

Przeksztalcenie tekstu na wektory cech (FeaturizeText),

Trenowanie modelu klasyfikacji binarnej,

AR

Ewaluacja jakosci modelu.

Zastosowanym algorytmem jest SDCA Logistic Regression, ktory dobrze sprawdza
sie w problemach klasyfikacji.



8 Aplikacja konsolowa
Aplikacja konsolowa umozliwia uzytkownikowi:

e wybor typu klasyfikatora (e-mail lub SMS),
e trenowanie odpowiedniego modelu,
e interaktywne wprowadzanie wiadomosci,

e uzyskanie wyniku klasyfikacji wraz z prawdopodobienstwem.

Program dziatla w petli, umozliwiajac klasyfikacje wielu wiadomosci bez ponownego
trenowania modelu.

=== SpamClassifier ===

Choose classifier type:

1 - Email

2 — SMS

Your choice: 1

Email spam classifier selected.

Training model...
=== Model evaluation ===
Accuracy: 98.39%
F1 Score: 94.62%

Model ready.
Enter text to classify (empty line = exit).

Message> You have WON free money! Claim your prize now!
IsSpam: True
Probability: ©.999

Message> |

Rysunek 2: Przyktadowe uruchomienie aplikacji konsolowej

9 Testy jednostkowe

Projekt zawiera podstawowe testy jednostkowe napisane z wykorzystaniem frameworka
xUnit. Testy te sprawdzaja poprawno$é dziatania klasyfikatorow zaréwno dla wiadomosci
spam, jak i wiadomosci poprawnych.

Testy:

e nie sprawdzajg doktadnej warto$ci prawdopodobienistwa,

e weryfikuja jedynie poprawnosé klasyfikacji logicznej.
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Rysunek 3: Przyktadowe uruchomienie wszystkich testow

10 Mozliwe rozszerzenia

Projekt moze zosta¢ w przysztosci rozszerzony o:
e zapis 1 odczyt wytrenowanych modeli z plikow,
e zmiane¢ progu decyzyjnego klasyfikacji,
e integracje z aplikacja webowa (ASP.NET),

e wykorzystanie bardziej zaawansowanych algorytméw NLP.

11 Podsumowanie

W ramach projektu zaimplementowano system klasyfikacji wiadomosci tekstowych z wy-
korzystaniem biblioteki ML.NET. Przedstawione rozwigzanie pokazuje, ze mozliwe jest
tworzenie wtasnych modeli uczenia maszynowego w $rodowisku .NET bez koniecznosci
korzystania z zewnetrznych narzedzi czy jezykéw programowania.
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