In the heart of creativity: divergent thinking and HRV in computerized Alternative Uses Task – an EEG-ECG pilot study

Ratajczak E.¹,², Szczęsny P.³, Wojciechowski J.²,³, Szczypiński J.²,³, Nikadon J.²,³, Meina M.¹,², Bataj B.²,³, Dreszer-Drogorób J.²,³, Duch W.¹²

1 - Department of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Toruń, Poland
2 - Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
3 – Faculty of Humanities, Nicolaus Copernicus University, Toruń, Poland

Introduction

Creativity:
- The elusive concept and ill-defined problem of creativity
- Guilford’s pioneer psychometric approach to creativity studies
- Divergent thinking as a reliable indicator of creative potential
- Novelty/originality as a crucial constituent and metric of creativity measured by statistical originality
- More responses = more novel responses and higher average novelty score

HRV studies:
- Heart rate variability (HRV): beat-to-beat variations in heart rate
- A measure of neurocardiac function that reflects sympathovagal balance, psychological resiliency and behavioral flexibility
- High HRV associated with good physical and psychological health, well-being and improved performance
- HRV RMSSD index inversely associated with idea originality
- However: LF/HF ratio related to psychophysiological balance

EEG signal complexity studies:
- No creativity studies applying complexity analysis up to date

Aim of the Study/Hypotheses

- Reveal neurocardio correlates of divergent thinking
- Expected higher complexity in more creative individuals
- Expected higher HRV in more creative individuals

Methods

Participants:
- N = 31 (F = 19, 61.29%), age 19-36 (M = 23.00, SD = 3.73)

Alternative Uses Task:
- A computerized version of Guilford’s Alternative Uses Task (AUT)
- „List as many alternative uses for the item presented as you can think of in 3 minutes”
- 5 items (umbrella, shoe, soap, pen, brick)

- Idea button to eliminate speech artifacts from EEG recordings
- EEG epochs of -1250 to -250 ms prior to the reported idea

- Responses evaluated on number (NO) and originality (ORI)
- ECG recorded upon the AUT task and a prior resting period

Signal analysis

1. HRV analysis of the ECG signal in time- and frequency-domain (FFT and autoregression [AR] power spectrum standard frequency bands: VLF, LF and HF), as well as applying non-linear methods
2. Higuchi’s fractal dimension (HFD) analysis of the EEG signal measures the complexity of time series, estimating brain function complexity dynamics, due to particular sensitivity to signal fluctuations

Results

1. CREATIVITY ANALYSIS

Fig. 1. Correlation between NO and ORI of ideas (r = 0.622, p < 0.001)

2. HRV ANALYSIS

Fig. 2. Correlation between NO of ideas and LF/HF (AR) at rest (r = 0.425, p = 0.030)

3. HFD COMPLEXITY ANALYSIS

Fig. 3. Difference in signal complexity HFD between more and less creative individuals with respect to number (left) and originality (right) of ideas

Conclusions

- Originality of ideas correlated positively with LF/HF ratio, a measure of psychophysiological balance, determining the quality of bodily functioning. This suggests that HRV training techniques, such as HRV-biofeedback, might have a positive impact on improving creativity levels.
- More creative individuals (both concerning originality and number of ideas) exhibit higher complexity and therefore lower regularity of the EEG signal obtained during divergent thinking task. This possibly depicts higher complexity of neuronal processes involved in creative thinking.
- Influence of HRV-biofeedback training on EEG signal complexity can be expected.

Acknowledgements

I would like to thank dr hab. Jerzy Lukaszewicz, prof. UMK, director of ICNT, UMK for enabling the execution of this project.

Literature

7. T. Higuchi. Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31 (2)