A Comparison of Methods for Learning of Highly Non-Separable Problems

Marek Grochowski and Wlodzislaw Duch
Department of Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.


Learning in cases that are almost linearly separable is easy, but for highly non-separable problems all standard machine learning methods fail. Many strategies to build adaptive systems are based on the “divide-and-conquer” principle. Constructive neural network architectures with novel training methods allow to overcome some drawbacks of standard backpropagation MLP networks. They are able to handle complex multidimensional problems in reasonable time, creating models with small number of neurons. In this paper a comparison of our new constructive c3sep algorithm based on k-separability idea with several sequential constructive learning methods is reported. Tests have been performed on parity function, 3 artificial Monks problems, and a few benchmark problems. Simple and accurate solutions have been discovered using c3sep algorithm even in highly non-separable cases.

Preprint for comments in PDF, 169 KB.
Reference: M. Grochowski, W. Duch, Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network, Springer Lecture Notes in Computer Science, Vol. 5097, 566-577, 2008.

BACK to the publications of W. Duch.
BACK to the on-line publications of the Department of Informatics, NCU.