W7-skat

Rozpraszanie cząstek powolnych (w skrócie) (AD)

Wróćmy do równania (4) (4p1)

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - U(r) + k^2\right] R_l(r) = 0$$

jeśli U(r) = 0 to mówimy o ruchu swobodnym i odpowiednie równanie (4p2)

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} + k^2\right]g_l(r) = 0$$

przy warunkach regularności w zerze $R_l(0)$ i $g_l(0) = 0$; mnożąc (4p1) przez $g_l(r)$ i (4p2) przez $R_l(r)$, odejmując je stronami całkując od 0 do ρ dostaniemy

$$\left[g_l \frac{dR_l}{dr} - R_l \frac{dg_l}{dr}\right]_{r=\rho} = \int_0^\rho U(r) R_l(r) g_l(r) dr$$

ale $g_l(r) = krj_l(kr)$ i dla dużych ρ przyjmuje asymptotyczną postać $\sin\left(kr - \frac{1}{2}l\pi\right)$ (*kr>>l*) a asymptotyczna postać R_l jest $R_l(r) = \sin\left(kr - \frac{1}{2}l\pi + \delta_l\right)$, to asymptotycznie dostaniemy

$$k\sin\delta_l = -\int_0^\rho U(r)\,R_l(r)g_l(r)dr$$

[wzory na sin(a+b)=sin(a)cos(b)+cos(a)sin(b) i cos(a+b)=cos(a)cos(b)-sin(a)sin(b)]

W przybliżeniu możemy R_l zastąpić pod całką g_l i wtedy

$$k\sin\delta_l = -k^2 \int_0^\rho U(r) r^2 j_l^2(kr) dr$$

jeśli d jest zasięgiem potencjału U i kd << 1 - dla powolnych cząstek jeśli posłużyć się asymptotycznym przedstawieniem funkcji Bessla

$$j_l(kr) \approx \frac{(kr)^l}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2l+1)}$$

To dalej można pokazać, że przesunięcia fazowe są nieparzystymi funkcjami k i szybko maleją ze wzrostem l i dla kd << 1, a to oznacza, że w zderzeniach cząstek powolnych udział biorą tylko fale parcjalne l = 0 (fale s); dla takich cząstek rozwiązujemy równanie (4p3)

$$\left[\frac{d^2}{dr^2} - U(r) + k^2\right] R_0(r) = 0$$

Rozpraszanie na prostokątnym potencjale 1D – przypomnienie

a. Przypadek V₀ > 0 - tunelowanie przez barierę

Rozwiązania równania $-\frac{1}{2}\frac{d^2}{dx^2}u(x) = Eu(x)$ w odpowiednich obszarach [x<0, 0<x<d, x>d] mają postać

I. $Ae^{ikx} + Be^{-ikx}$ II. $Fe^{i\kappa x} + Ge^{-i\kappa x}$ III. Ce^{ikx}

gdzie $k=\sqrt{2E}$, $\kappa=\sqrt{2(E-V_0)}$;

[uwaga: dla $E < V_0 \kappa$ staje się urojone i funkcje w obszarze II. są wykładnicze]; żądanie ciągłości funkcji i pochodnych dla x=0 oraz x=d daje cztery równania (na 5 niewiadomych *A*,*B*,*C*,*F*,*G*; po wyeliminowaniu *F* i *G*

współczynnik przejścia (tunelowania) *T* definiuje się jako $T = \left|\frac{c}{A}\right|^2$ i wynosi (10)

$$T = \left[1 + \frac{4E(E - V_0)}{V_0^2 \sin^2 \kappa d}\right]^{-1}$$

dla $E > V_0$ transmisja z prawdopodobieństwem T=1 zachodzi gdy $\kappa d = \pi$, 2π , wtedy, gdy wewnątrz szerokości bariery znajdzie się całkowita liczba połówek długości fali $e^{i\kappa x}$, mówimy o rezonansowym rozpraszaniu;

dla innych *E T* < 1. [wykres]

b. Przypadek V₀ < 0 - rozpraszanie na studni

Rezonansowe rozpraszania z T=1 zachodzą także w tym przypadku; we wzorze (10) V_0 zastępujemy przez $-V_0$.

Wartości E, dla których T=1 nazywamy wirtualnymi poziomami energii (dla obu znaków V₀).

c. Przypadek podwójnej bariery ze studnią

Rozpraszanie z *T*=1 zachodzi dla *E* bliskich stanom związanym w studni, gdyby bariery były nieskończenie szerokie, mówimy wówczas o *tunelowaniu rezonansowym*.

Przykładowy wykres T dla podwójnej bariery (bez studni) dla różnych odległości L₂ między barierami

przy czym maksima odpowiadające rezonansowemu tunelowaniu mają w otoczeniu energii rezonansowej *E*_r Lorentzowski kształt

$$T(E) = \frac{1}{1 - \left(\frac{E - E_r}{2\Gamma}\right)^2}$$

Rozpraszanie na stałym, kulistym potencjale (AD)

Rozważymy tylko powolne cząstki, tzn. $kd \ll 1$, czyli istotny wkład tylko od fal parcjalnych l = 0; zatem asymptotycznie

$$R_0(r) \sim \sin(kr + \delta_0)$$

Wewnątrz studni ($V_0\,$ ujemne) lub bariery ($V_0\,$ dodatnie) równanie na funkcję radialną ma postać

(11)

$$\left(\frac{d^2}{dr^2} + K^2\right) R_{01}(r) = 0$$

gdzie $K^2 = k^2 \pm K_0^2$ gdzie $K_0^2 = 2V_{0,}$ [plus występuje dla studni a minus dla bariery] (równanie (4)), dla r < d i $K^2 > 0$ [tzn. ponad barierą lub ponad studnią], rozwiązanie ma postać

$$R_{01}(r) = C_1 \sin(Kr)$$

gdyż dla r=0 musi zachodzić $R_{01}(0) = 0$; a dla $V_0 > 0$ i $k^2 < 2V_0$ (wewnątrz bariery):

$$R_{01}(r) = C_1 \sinh(Qr)$$

gdzie $Q = \sqrt{2V_0 - k^2}$;

a) $V_0 < 0$

Przyrównanie pochodnych logarytmicznych $R_0(r)$ i $R_{01}(r)$ dla r=d Daje (11a)

$$k \operatorname{ctg}(kd + \delta_0) = K \operatorname{ctg}(Kd)$$

Dla głębokich studni potencjału i małych energii ruchu względnego [$|V_0| >> k^2$], po przekształceniu i uproszczeniu (11a) można pokazać, że

(11b)

$$\sigma_0 \approx 4\pi d^2 \left(1 - \frac{\tan(K_0 d)}{K_0 d}\right)^2$$

a to oznacza, że dla bardzo małych energii i pewnych głębokości studni potencjału, tzn. gdy spełniony jest warunek

(11c)

 $\tan(K_0 d) = K_0 d$

nie ma wcale rozpraszania fali s ($\sigma_0 \approx 0$); to jest tzw. zjawisko Ramsauera-Townsenda obserwowane przy niskoenergetycznym rozpraszaniu elektronów na gazach szlachetnych (dla których potencjał atomowy szybko zanika przez ekranowanie kulombowskie i może być przybliżony potencjałem kuli).

b)
$$V_0 > 0$$

Ponieważ

$$R_0(r) \sim \sin(kr + \delta_0) = \sin(kr) + \tan \delta_0 \, \cos(kr)$$

to przybliżenie dla przypadku $V_0 \sim \infty$, tzn. "nieprzenikalnej kuli", $R_0(d) = 0$, mamy

$$\tan \delta_0 = -\frac{\sin(kd)}{\cos(kd)}, \quad \text{to} \quad \delta_0 = -kd$$

i całkowity przekrój czynny dla k bliskich zero, za równaniem (9), wynosi $\sigma=4\pi d^2$

jest 4 razy większy niż klasyczne przybliżenie....

Uwaga:

Model rozpraszania na kuli – posługujący się jednym parametrem "*d*" zasięgu potencjału jest przydatny w przybliżonym opisie niskoenergetycznego rozpraszania na atomach; potencjał atomu szybko zanika ze względu na ekranowanie potencjału jądra przez elektrony i dla pewnych odległości możemy przyjąć V = 0.

Szczególnie interesujący jest przypadek bardzo małych energii rozpraszanej cząstki, $k \rightarrow 0$, w tym przypadku wyższe fale parcjalne odgrywają zdecydowanie mniejszą rolę niż fala "s" (*l*=0) i asymptotyczne rozwiązanie równania radialnego w obszarze gdzie V = 0 jest w przybliżeniu liniową funkcją *k*, gdyż równanie radialne $\frac{d^2}{dr^2}u_0(r) = 0$ ma ogólną postać rozwiązania $u_0(r) = Ar + B$;

ale jednocześnie w tym obszarze $u_0(\mathbf{r}) = \sin(kr) + \tan \delta_0 \cos(kr)$, co dla $k \to 0$ przyjmuje postać $u_0(\mathbf{r}) = k(r-a)$, przy zdefiniowaniu "*długości rozpraszania"* "*a*" jako $a = -\lim_{k\to 0} \frac{\tan \delta_0}{k}$; innymi słowy: *a* jest miejscem gdzie asymptotyczna postać funkcji, która zaczyna się od miejsca efektywnego zasięgu ($R \sim d$) przecina oś *r*;

"długość rozpraszania" – pozwala nam interpretować niskoenergetyczne rozpraszanie fal "s" i związać tę wielkość z "efektywnym zasięgiem" potencjału rozpraszającego;

dla V < 0 długość rozpraszania może być także ujemna;

Rozpraszanie rezonansowe

Całkowity potencjał w równaniu (4) ma postać $\frac{l(l+1)}{r^2} + U(r)$, przy ujemnym U(r) i dodatnim wyrazie $\frac{l(l+1)}{r^2}$ może wygenerować "górkę" dla pewnych wartości r

i oprócz stanów związanych dla E < 0 ($k^2 < 0$) może mieć dla E>0 tzw. stany rezonansowe -<u>rezonanse kształtu</u> (*shape resonances*), które są nazywane także metatrwałymi stanami autojonizującymi;

zarówno stany związane jak i stany rezonansowe można identyfikować przez bieguny macierzy rozpraszania na zespolonej płaszczyźnie k (stany związane występują dla k urojonego);

stany rezonansowe mają skończony czas życia, rozpadają się z emisją przechwyconej "chwilowo" cząstki;

płaszczyzna zespolona *k* odpowiada w zasadzie zespolonym energiom; biorąc pod uwagę ewolucję układu kwantowego w czasie, która opisana jest zależnością funkcji falowej od czasu

$$e^{(-i\frac{E}{\hbar}t)}$$

żeby móc opisać skończony czas życia układu w stanie rezonansowym (zanik w czasie) można wprowadzić zespoloną energię stanu rezonansowego

$$E_{res} = E_r - i\frac{1}{2}\Gamma$$

zatem

$$e^{\left(-i\frac{E}{\hbar}t\right)} = e^{\left(-i\frac{E_{r}}{\hbar}t\right)}e^{\left(-\frac{\Gamma}{2\hbar}t\right)}$$

drugi czynnik opisuje zanik z *czasem połowicznego rozpadu* $\tau = \frac{\hbar}{\Gamma}$.

Pokrótce zarysujemy dwie metody obliczania $E_{res} = E_r - i \frac{1}{2} \Gamma$

1. Metoda stabilizacji

- cały układ zamykamy w "dużym" pudle o objętości Ω = np. L³ i nieskończonym potencjale na brzegach, dzięki czemu wszystkie stany mają charakter związany (funkcje znikają na brzegach pudła);

- diagonalizujemy macierz hamiltonianu w odpowiedniej i dużej bazie (unormowanej do objętości pudła Ω);

- wykreślamy i śledzimy zależność poziomów energetycznych od wielkości pudła (L), dla energii stanu rezonansowego zachowanie jest takie:

z wykresu odczytujemy położenie E_r i szacunkową szerokość Γ rezonansu.

2. Metoda obrotu zespolonego współrzędnej

Z rzeczywistą współrzędną radialną r przechodzimy na płaszczyznę zespoloną

(R1)

$$r \rightarrow r e^{i\theta}$$

funkcja radialna odpowiadająca stanowi rezonansowemu nie jest kwadratowo całkowalna i daje się zapisać jako

$$u(r) = u_{loc}(r) + u_{asym}(r)$$

przy podstawieniu R1 funkcja

$$u(r) \longrightarrow u(re^{i\theta}) = \tilde{u}(r)$$

staje się kwadratowo całkowalna, daje się więc przedstawić w bazie funkcji kwadratowo całkowalnych $\{\varphi_i(r)\}$

$$\tilde{u}(r) = \sum_{i=1}^{N} c_i \varphi_i(r)$$

transformacja odwrotna współrzędnej r da

$$u(r) = \sum_{i=1}^{N} c_i \varphi_i(re^{i\theta})$$

ale funkcje bazowe pozostają nadal kwadratowo całkowalne; np. funkcje Gaussowskie $e^{-ar^2} \rightarrow e^{-ar^2e^{2i\theta}}$ choć oscylują zanikając dla $r \rightarrow \infty$.

Elementy macierzowe hamiltonianu w takiej bazie są zespolone (macierz jest niehermitowska) i energie własne są zespolone

$$E(\theta) = E_r(\theta) + iE_i(\theta)$$

i w funkcji θ tworzą tzw. θ -trajektorie; reprezentacje widma ciągłego zachowują się regularnie w funkcji θ , tzn. tworzą "łuki"; stany związane są praktycznie stabilne na osi $E_r(\theta)$ i niezależne od θ ,

natomiast stanom rezonansowym odpowiadają punkty stabilizacji na płaszczyźnie E=Er+i Ei

