Task 9. Calculation of the matrix eigenvector for the given eigenvalue

e-mail: andrzej.kedziorski@fizyka.umk.pl phone.: 56611-3274 office: 485B http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Write a program that calculates eigenvector of the matrix ${\boldsymbol{\mathsf{A}}}$ for the given eigenvalue.

(ロ)、(型)、(E)、(E)、 E) の(()

Eigenvalue problem

• Eigenvalue equation for the square matrix $n \times n$

$$\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k \quad \Leftrightarrow \quad (\mathbf{A} - \lambda_k \mathbf{1}_n)\mathbf{x}_k = \mathbf{0} \quad k = 1, 2, ..., n$$

where \mathbf{x}_i is the eigenvector $(n \times 1)$ of **A** matrix belonging to λ_i eigenvalue being the number, in general, the complex number; $\mathbf{1}_n$ is the $n \times n$ unit matrix

Definition: X = [x₁ ... x_n] is the matrix n × n, where x_k its columns n × 1 are the eigenvectors of the matrix A corresponding to consecutive eigenvalues λ₁,...,λ_n. It is noted that det X ≠ 0, because eigenvectors x_k are linearly independent

Spectral decomposition of the matrix A

$$\boldsymbol{A} = \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1},$$

where **D** is the diagonal matrix $(\mathbf{D})_{ij} = \lambda_i \delta_{ij}$ and δ_{ij} is the Kronecker delta

Spectral decomposition of the inverse matrix A⁻¹

$$\boldsymbol{A}^{-1} = \boldsymbol{X} \boldsymbol{D}^{-1} \boldsymbol{X}^{-1},$$

where \mathbf{D}^{-1} is the diagonal matrix and $(\mathbf{D}^{-1})_{ij} = \lambda_{ij}^{-1} \delta_{ij}$

(In the context of) shifted inverse iteration method

• Eigenvalue equation of the shifted matrix $\mathbf{A}_s = \mathbf{A} - s\mathbf{1}_n$, where $s \in \mathbb{R}$ and $\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k$

$$\mathbf{A}_{s}\mathbf{x}_{k} = \mathbf{A}\mathbf{x}_{k} - s\mathbf{1}_{n}\mathbf{x}_{k} = \lambda_{k}\mathbf{x}_{k} - s\mathbf{x}_{k} = (\lambda_{k} - s)\mathbf{x}_{k}$$

Shifted matrix \mathbf{A}_s possesses the same eigenvectors as the matrix \mathbf{A}_s and the eigenvalues of \mathbf{A}_s are "shifted" by s, i.e. $\lambda_s = \lambda_k - s$

Spectral decomposition of A_s and A_s⁻¹ matrices

$$\mathbf{A}_{s} = \mathbf{X} \mathbf{D}_{s} \mathbf{X}^{-1} \qquad (\mathbf{D}_{s})_{ij} = (\lambda_{i} - s) \,\delta_{ij}$$
$$\mathbf{A}_{s}^{-1} = \mathbf{X} \mathbf{D}_{s}^{-1} \mathbf{X}^{-1} \qquad (\mathbf{D}_{s}^{-1})_{ij} = \frac{\delta_{ij}}{\lambda_{i} - s}$$

• Consider sample vector $\mathbf{x}^{(0)} = \sum_{k=1}^{n} c_k \mathbf{x}_k$ (1), then

$$\boldsymbol{A}_{s}^{-1}\boldsymbol{x}_{k}=rac{1}{\lambda_{k}-s}\boldsymbol{x}_{k} \quad \Rightarrow \quad \boldsymbol{A}_{s}^{-1}\boldsymbol{x}^{(0)}=\sum_{k=1}^{n}rac{c_{k}}{\lambda_{k}-s}\boldsymbol{x}_{k}$$

¹Eigenvectors x_k are linearly independent, thus any vector can be expressed as their linear combination.

(In the context of) shifted inverse iteration method - cont.

▶ If matrix **A** possesses different eigenvalues, i.e. $\lambda_1 > \lambda_2 > ... > \lambda_n$, then for $s \approx \lambda_i$ we have

$$\left|\frac{1}{\lambda_i - s}\right| \gg \left|\frac{1}{\lambda_k - s}\right| \quad k \neq i$$

$$\boldsymbol{A}_{\boldsymbol{s}}^{-1}\boldsymbol{x}^{(0)} = \sum_{k=1}^{n} \frac{c_{k}}{\lambda_{k}-\boldsymbol{s}} \boldsymbol{x}_{k} \approx \frac{c_{i}}{\lambda_{i}-\boldsymbol{s}} \boldsymbol{x}_{i} \equiv \frac{c_{i}}{\epsilon} \boldsymbol{x}_{i},$$

where $\lambda_i - s \equiv \epsilon$; it is crucial that $c_i \neq 0$

▶ If $|c_i| \sim 1$, $|\epsilon| \ll 1$ and $||\mathbf{x}^{(0)}|| \sim 1$, then for $s \to \lambda_i$, i.e. $\epsilon \to 0$, we have

$$\boldsymbol{A}_{\boldsymbol{s}}\boldsymbol{x}_{i}=\frac{\epsilon}{c_{i}}\boldsymbol{x}^{(0)} \longrightarrow \boldsymbol{0}_{n\times 1},$$

because this limit leads to $\boldsymbol{A}_s \rightarrow \boldsymbol{A}_{\lambda_i}$ and, as a consequence,

$$\boldsymbol{A}_{\lambda_i}\boldsymbol{x}_i = (\boldsymbol{A} - \lambda_i \boldsymbol{1}_n)\boldsymbol{x}_i = \boldsymbol{0}_{n \times 1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algorithm

- 1. Calculate $\mathbf{A}_s = \mathbf{A} s\mathbf{1}_n$, where $s = \lambda_i \epsilon$ and $\epsilon \sim 0$
- 2. Perform decomposition $A_s = LUP$ (Doolittle's method)
- 3. For the sample vector $\mathbf{x}^{(0)}$, where $\|\mathbf{x}^{(0)}\| = 1$ solve the equation

$$A_s y^{(1)} = x^{(0)}$$

(apply LUP decomposition)

- 4. Normalize $\mathbf{y}^{(1)}$, i.e. $\mathbf{x}^{(1)} = \frac{\mathbf{y}^{(1)}}{\|\mathbf{y}^{(1)}\|}$, then $\|\mathbf{x}^{(1)}\| = 1$; $\mathbf{x}^{(1)}$ is the eigenvector \mathbf{x}_i (or its subsequent approximation)
- 5. In general, points 3 and 4 should be repeated

Remarks

- Matrix \mathbf{A}_s is almost singular for $\epsilon \sim 0$
- det $m{A}_s \sim 0$, thus in Doolittle's method det $m{L}=1$ and det $m{U}\sim 0$
- ▶ Minimal value of $\epsilon \sim \lambda_i \epsilon_{mach} \neq 0$, because we want to avoid det U = 0; on the other hand we want to have single-step method, which is possible for $\epsilon \sim 0$

(日)

$$\begin{aligned} \| \mathbf{y} \| &\sim \frac{1}{|\epsilon|} \gg 1, \text{ e.g. in double precision } \| \mathbf{y} \| \sim 10^{15}, \text{ then} \\ \| \mathbf{A}_s \mathbf{x}^{(1)} \| &= \frac{\| \mathbf{x}^{(0)} \|}{\| \mathbf{y}^{(1)} \|} \sim 10^{-15} \end{aligned}$$

Sample input vector has to be such that $\mathbf{x}^{(0)} \mathbf{x}_i \neq \mathbf{0}$

Other approach

Assume that A possesses different eigenvalues

$$\mathbf{A}_{\lambda_i} \mathbf{x}_i = \mathbf{0}_{n \times 1}$$

- A_{λ_i} is singular, i.e. det $A_{\lambda_i} = 0$
- Doolittle's LUP decomposition with partial pivoting

$$A_{\lambda_i} = LUP,$$

where det L = 1, det U = 0, the last row in U is filled with zeros

- System of linear equations for x_i, i.e. A_{λi}x_i = 0_{n×1}, possesses infinite number of solutions and (at least) one arbitrary parameter
- Denote $Px_i = x'_i$, $Ux'_i = y_i$, then

$$A_{\lambda_i} \mathbf{x}_i = L \mathbf{y}_i = \mathbf{0}_{n \times 1} \Rightarrow U \mathbf{x}'_i = \mathbf{0}_{n \times 1}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

(this is because **L** is not singular and, as a consequence, $\mathbf{y}_i = \mathbf{0}_{n \times 1}$)

Algorithm "2"

- 1. Calculate $\boldsymbol{A}_{\lambda_i} = \boldsymbol{A} \lambda_i \mathbf{1}_n$
- 2. Decompose $A_{\lambda_i} = LUP$ by means of Doolittle's method with partial pivoting
- 3. Solve the system of linear equations

$$\boldsymbol{U}\boldsymbol{x}_i'=\boldsymbol{0}_{n\times 1}$$

by setting $(\mathbf{x}'_i)_n = 1$ the remaining elements $(\mathbf{x}'_i)_k$, k = 1, ..., n-1 may by calculated with backward substitution method

- 4. Eigenvector $\boldsymbol{x}_i = \boldsymbol{P}^{Tr} \boldsymbol{x}'_i$
- 5. We can normalize the eigenvector, i.e. $\mathbf{x}_i \rightarrow \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|}$

TO DO

- 1. Read the real matrix $\mathbf{A}_{n \times n}$ and its eigenvalues
- 2. Calculate eigenvectors \mathbf{x}_i of \mathbf{A} matrix for the corresponding eigenvalues λ_i
- 3. Check $Ax_i = \lambda_i x_i$
- 4. Calculate eigenvectors for symmetric and non-symmetric matrices
- 5. Check the performance of the method for the matrix that possesses to the same eigenvalues

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

$$\mathsf{A} = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & -3 \end{array} \right)$$

 $\lambda = 2.76300328661375, -1.72368589498208, -5.03931739163167$

$$A = \begin{pmatrix} 3 & 0 & 2 & -2 \\ 2 & 0 & -2 & 2 \\ 0.475 & -0.65 & 4.5 & -1.625 \\ 1.1 & -1.4 & 0 & 2.5 \end{pmatrix}$$
$$\lambda = 1, 2, 3, 4$$
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 5 & 5 & 6 & 8 \end{pmatrix}$$

 $\lambda = -1.7292612617663754, -0.0437773119849116, 0.7322067668156992,$

18.0408318069355893

 $\lambda=1,\ 1,\ 2,\ 3$ ($\square > < \square > < \square > < \square > < = >$