Task 9. Calculation of the matrix eigenvector for the given eigenvalue

e-mail: andrzej.kedziorski@fizyka.umk.pl
phone.: 56611-3274 office: 485B
http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Task 9

Write a program that calculates eigenvector of the matrix \mathbf{A} for the given eigenvalue.

Eigenvalue problem

- Eigenvalue equation for the square matrix $n \times n$

$$
\boldsymbol{A} \boldsymbol{x}_{k}=\lambda_{k} \boldsymbol{x}_{k} \quad \Leftrightarrow \quad\left(\boldsymbol{A}-\lambda_{k} 1_{n}\right) \boldsymbol{x}_{k}=0 \quad k=1,2, \ldots, n
$$

where \boldsymbol{x}_{i} is the eigenvector $(n \times 1)$ of \mathbf{A} matrix belonging to λ_{i} eigenvalue being the number, in general, the complex number; 1_{n} is the $n \times n$ unit matrix
\rightarrow Definition: $\boldsymbol{X}=\left[\boldsymbol{x}_{1} \ldots \boldsymbol{x}_{n}\right]$ is the matrix $n \times n$, where \boldsymbol{x}_{k} its columns $n \times 1$ are the eigenvectors of the matrix A corresponding to consecutive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. It is noted that $\operatorname{det} \boldsymbol{X} \neq 0$, because eigenvectors \mathbf{x}_{k} are linearly independent

- Spectral decomposition of the matrix \mathbf{A}

$$
\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}
$$

where \mathbf{D} is the diagonal matrix $(\mathbf{D})_{i j}=\lambda_{i} \delta_{i j}$ and $\delta_{i j}$ is the Kronecker delta

- Spectral decomposition of the inverse matrix \mathbf{A}^{-1}

$$
\boldsymbol{A}^{-1}=\boldsymbol{X} \boldsymbol{D}^{-1} \boldsymbol{X}^{-1}
$$

where \mathbf{D}^{-1} is the diagonal matrix and $\left(\mathbf{D}^{-1}\right)_{i j}=\lambda_{i}^{-1} \delta_{i j}$

(In the context of) shifted inverse iteration method

- Eigenvalue equation of the shifted matrix $\boldsymbol{A}_{s}=\boldsymbol{A}-s 1_{n}$, where $s \in \mathbb{R}$ and $\boldsymbol{A} \boldsymbol{x}_{k}=\lambda_{k} \boldsymbol{x}_{k}$

$$
\boldsymbol{A}_{s} \boldsymbol{x}_{k}=\boldsymbol{A} \boldsymbol{x}_{k}-\boldsymbol{s} 1_{n} \boldsymbol{x}_{k}=\lambda_{k} \boldsymbol{x}_{k}-\boldsymbol{s} \boldsymbol{x}_{k}=\left(\lambda_{k}-s\right) \boldsymbol{x}_{k}
$$

Shifted matrix \boldsymbol{A}_{s} possesses the same eigenvectors as the matrix \mathbf{A}, and the eigenvalues of \boldsymbol{A}_{s} are "shifted" by s, i.e. $\lambda_{s}=\lambda_{k}-\boldsymbol{s}$

- Spectral decomposition of \mathbf{A}_{s} and \mathbf{A}_{s}^{-1} matrices

$$
\begin{array}{cc}
\boldsymbol{A}_{s}=\boldsymbol{X} \boldsymbol{D}_{s} \boldsymbol{X}^{-1} & \left(\boldsymbol{D}_{s}\right)_{i j}=\left(\lambda_{i}-s\right) \delta_{i j} \\
\boldsymbol{A}_{s}^{-1}=\boldsymbol{X} \boldsymbol{D}_{s}^{-1} \boldsymbol{X}^{-1} & \left(\boldsymbol{D}_{s}^{-1}\right)_{i j}=\frac{\delta_{i j}}{\lambda_{i}-s}
\end{array}
$$

- Consider sample vector $\boldsymbol{x}^{(0)}=\sum_{k=1}^{n} c_{k} \boldsymbol{x}_{k}\left({ }^{1}\right)$, then

$$
\boldsymbol{A}_{s}^{-1} \boldsymbol{x}_{k}=\frac{1}{\lambda_{k}-s} \boldsymbol{x}_{k} \quad \Rightarrow \quad \boldsymbol{A}_{s}^{-1} \boldsymbol{x}^{(0)}=\sum_{k=1}^{n} \frac{c_{k}}{\lambda_{k}-s} \boldsymbol{x}_{k}
$$

${ }^{1}$ Eigenvectors x_{k} are linearly independent, thus any vector can be expressed as their linear combination.

(In the context of) shifted inverse iteration method - cont.

- If matrix \mathbf{A} possesses different eigenvalues, i.e. $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$, then for $s \approx \lambda_{i}$ we have

$$
\begin{gathered}
\left|\frac{1}{\lambda_{i}-s}\right| \gg\left|\frac{1}{\lambda_{k}-s}\right| \quad k \neq i \\
\boldsymbol{A}_{s}^{-1} \boldsymbol{x}^{(0)}=\sum_{k=1}^{n} \frac{c_{k}}{\lambda_{k}-s} \boldsymbol{x}_{k} \approx \frac{c_{i}}{\lambda_{i}-s} \boldsymbol{x}_{i} \equiv \frac{c_{i}}{\epsilon} \boldsymbol{x}_{i},
\end{gathered}
$$

where $\lambda_{i}-s \equiv \epsilon$; it is crucial that $c_{i} \neq 0$

- If $\left|c_{i}\right| \sim 1,|\epsilon| \ll 1$ and $\left\|\boldsymbol{x}^{(0)}\right\| \sim 1$, then for $s \rightarrow \lambda_{i}$, i.e. $\epsilon \rightarrow 0$, we have

$$
\boldsymbol{A}_{s} \boldsymbol{x}_{i}=\frac{\epsilon}{c_{i}} \boldsymbol{x}^{(0)} \longrightarrow 0_{n \times 1},
$$

because this limit leads to $\boldsymbol{A}_{s} \rightarrow \boldsymbol{A}_{\lambda_{i}}$ and, as a consequence,

$$
\boldsymbol{A}_{\lambda_{i}} \boldsymbol{x}_{i}=\left(\boldsymbol{A}-\lambda_{i} 1_{n}\right) \boldsymbol{x}_{i}=0_{n \times 1}
$$

Algorithm

1. Calculate $\boldsymbol{A}_{s}=\boldsymbol{A}-s 1_{n}$, where $s=\lambda_{i}-\epsilon$ and $\epsilon \sim 0$
2. Perform decomposition $\boldsymbol{A}_{s}=\boldsymbol{L} \boldsymbol{U P}$ (Doolittle's method)
3. For the sample vector $\boldsymbol{x}^{(0)}$, where $\left\|\boldsymbol{x}^{(0)}\right\|=1$ solve the equation

$$
\boldsymbol{A}_{\boldsymbol{s}} \boldsymbol{y}^{(1)}=\boldsymbol{x}^{(0)}
$$

(apply LUP decomposition)
4. Normalize $\boldsymbol{y}^{(1)}$, i.e. $\boldsymbol{x}^{(1)}=\frac{\boldsymbol{y}^{(1)}}{\left\|\boldsymbol{y}^{(1)}\right\|}$, then $\left\|\boldsymbol{x}^{(1)}\right\|=1$; $\boldsymbol{x}^{(1)}$ is the eigenvector \boldsymbol{x}_{i} (or its subsequent approximation)
5. In general, points 3 and 4 should be repeated

Remarks

- Matrix \mathbf{A}_{s} is almost singular for $\epsilon \sim 0$
$-\operatorname{det} \boldsymbol{A}_{s} \sim 0$, thus in Doolittle's method $\operatorname{det} \boldsymbol{L}=1$ and $\operatorname{det} \boldsymbol{U} \sim 0$
- Minimal value of $\epsilon \sim \lambda_{i} \epsilon_{\text {mach }} \neq 0$, because we want to avoid $\operatorname{det} \boldsymbol{U}=0$; on the other hand we want to have single-step method, which is possible for $\epsilon \sim 0$
- $\|\boldsymbol{y}\| \sim \frac{1}{|\epsilon|} \gg 1$, e.g. in double precision $\|\boldsymbol{y}\| \sim 10^{15}$, then
$\left\|\boldsymbol{A}_{s} \boldsymbol{x}^{(1)}\right\|=\frac{\left\|\boldsymbol{x}^{(0)}\right\|}{\left\|\boldsymbol{y}^{(1)}\right\|} \sim 10^{-15}$
- Sample input vector has to be such that $\boldsymbol{x}^{(0)}{ }^{\operatorname{Tr}} \boldsymbol{x}_{i} \neq 0$

Other approach

- Assume that \mathbf{A} possesses different eigenvalues
- $\boldsymbol{A}_{\lambda_{i}} \boldsymbol{x}_{i}=0_{n \times 1}$
- $\boldsymbol{A}_{\lambda_{i}}$ is singular, i.e. $\operatorname{det} \boldsymbol{A}_{\lambda_{i}}=0$
- Doolittle's LUP decomposition with partial pivoting

$$
\boldsymbol{A}_{\lambda_{i}}=\boldsymbol{L} \boldsymbol{U P}
$$

where $\operatorname{det} \boldsymbol{L}=1$, $\operatorname{det} \boldsymbol{U}=0$, the last row in \boldsymbol{U} is filled with zeros

- System of linear equations for \boldsymbol{x}_{i}, i.e. $\boldsymbol{A}_{\lambda_{i}} \boldsymbol{x}_{i}=0_{n \times 1}$, possesses infinite number of solutions and (at least) one arbitrary parameter
- Denote $\boldsymbol{P} \boldsymbol{x}_{i}=\boldsymbol{x}_{i}^{\prime}, \boldsymbol{U x} \boldsymbol{x}_{i}^{\prime}=\boldsymbol{y}_{i}$, then

$$
\boldsymbol{A}_{\lambda_{i}} \boldsymbol{x}_{i}=\boldsymbol{L} \boldsymbol{y}_{i}=0_{n \times 1} \Rightarrow \boldsymbol{U} \boldsymbol{x}_{i}^{\prime}=0_{n \times 1}
$$

(this is because \boldsymbol{L} is not singular and, as a consequence, $\boldsymbol{y}_{i}=0_{n \times 1}$)

Algorithm "2"

1. Calculate $\boldsymbol{A}_{\lambda_{i}}=\boldsymbol{A}-\lambda_{i} 1_{n}$
2. Decompose $\boldsymbol{A}_{\lambda_{i}}=\boldsymbol{L} \boldsymbol{U P}$ by means of Doolittle's method with partial pivoting
3. Solve the system of linear equations

$$
\boldsymbol{U} \boldsymbol{x}_{i}^{\prime}=0_{n \times 1}
$$

by setting $\left(\boldsymbol{x}_{i}^{\prime}\right)_{n}=1$ the remaining elements $\left(\boldsymbol{x}_{i}^{\prime}\right)_{k}, k=1, \ldots, n-1$ may by calculated with backward substitution method
4. Eigenvector $\boldsymbol{x}_{i}=\boldsymbol{P}^{\operatorname{Tr}} \boldsymbol{x}_{\boldsymbol{i}}^{\prime}$
5. We can normalize the eigenvector, i.e. $\boldsymbol{x}_{i} \rightarrow \frac{\boldsymbol{x}_{i}}{\left\|\boldsymbol{x}_{i}\right\|}$

TO DO

1. Read the real matrix $\mathbf{A}_{n \times n}$ and its eigenvalues
2. Calculate eigenvectors $\boldsymbol{x}_{\boldsymbol{i}}$ of \mathbf{A} matrix for the corresponding eigenvalues λ_{i}
3. Check $\boldsymbol{A} \boldsymbol{x}_{i}=\lambda_{i} \boldsymbol{x}_{i}$
4. Calculate eigenvectors for symmetric and non-symmetric matrices
5. Check the performance of the method for the matrix that possesses to the same eigenvalues

Examples

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -2 & 2 \\
3 & 3 & -3
\end{array}\right) \\
& \lambda=2.76300328661375,-1.72368589498208,-5.03931739163167 \\
& \mathrm{~A}=\left(\begin{array}{cccc}
3 & 0 & 2 & -2 \\
2 & 0 & -2 & 2 \\
0.475 & -0.65 & 4.5 & -1.625 \\
1.1 & -1.4 & 0 & 2.5
\end{array}\right) \\
& \lambda=1,2,3,4 \\
& \mathrm{~A}=\left(\begin{array}{cccc}
1 & 2 & 3 & 5 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
5 & 5 & 6 & 8
\end{array}\right)
\end{aligned}
$$

$\lambda=-1.7292612617663754,-0.0437773119849116,0.7322067668156992$,
18.0408318069355893

$$
A=\left(\begin{array}{cccc}
2 & 13 & -14 & 3 \\
-2 & 25 & -22 & 4 \\
-3 & 31 & -27 & 5 \\
-2 & 34 & -32 & 7
\end{array}\right)
$$

$$
\lambda=1,1,2,3
$$

