Task 7. Approximation χ^2

e-mail: andrzej.kedziorski@fizyka.umk.pl

phone: 56611-3274

office: 485B

http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Task 7

Write a program that approximates the function y(x) by means of linear least squares method (generally χ^2) via construction and solving of normal equations. Program takes as an input the 'measurement points' (x_i, y_i, σ_i) , where σ_i estimate the errors of y_i , i = 1, 2, ..., N. Calculate the variance-covariance matrix.

Linear least squares - general formulation

- ▶ Input data (x_i, y_i, σ_i) , i = 1, ..., N, where σ_i estimates error of y_i ; we assume that the error of x_i is negligible
- In general we do not know the actual relation y(x)
- \triangleright Our goal is to fit to the input data the model function (linear in a_k parameters)

$$y(x) \approx \sum_{k=1}^{M} a_k F_k(x),$$

where $F_k(x)$ are known 'basis' functions, a_k - parameters of our model, $N \geqslant M$

 \triangleright Values of parameters a_k we derive from the following condition

$$\chi^2 \equiv \sum_{i=1}^N \left(\frac{y_i - \sum_{k=1}^M a_k F_k(x_i)}{\sigma_i} \right)^2 = \min,$$

which leads to the system of M linear equations (so-called normal equations)

$$\frac{\partial(\chi^2)}{\partial a_\ell} = 0, \quad \ell = 1, ..., M,$$

where a_k parameters are the solution of normal equations.

Derivation of normal equations

$$\chi^{2} \equiv \sum_{i=1}^{N} \left(\frac{y_{i} - \sum_{k=1}^{M} a_{k} F_{k}(x_{i})}{\sigma_{i}} \right)^{2}$$

$$\frac{\partial(\chi^{2})}{\partial a_{\ell}} = 2 \sum_{i=1}^{N} \left(\frac{y_{i} - \sum_{k=1}^{M} a_{k} F_{k}(x_{i})}{\sigma_{i}} \right) \left(\frac{-F_{\ell}(x_{i})}{\sigma_{i}} \right), \quad \ell = 1, 2, ..., M$$

$$\frac{\partial(\chi^{2})}{\partial a_{\ell}} = 0 \quad \Rightarrow \quad \sum_{k=1}^{M} \left[\sum_{i=1}^{N} \frac{F_{\ell}(x_{i})}{\sigma_{i}} \frac{F_{k}(x_{i})}{\sigma_{i}} \right] a_{k} = \sum_{i=1}^{N} \frac{F_{\ell}(x_{i})}{\sigma_{i}} \frac{y_{i}}{\sigma_{i}}$$

Introducing $A_{ik} = \frac{F_k(x_i)}{\sigma_i}$ and $b_i = \frac{y_i}{\sigma_i}$ we obtain the system of linear equations

$$\sum_{k=1}^M \left(\sum_{i=1}^N A_{i\ell}A_{ik}
ight)$$
 a_k $=\sum_{i=1}^N A_{i\ell}b_i, \quad \ell=1,2,...,M$

By denoting $\alpha_{\ell k} = \sum_{i=1}^N A_{i\ell} A_{ik}$ and $\beta_\ell = \sum_{i=1}^N A_{i\ell} b_i$ we obtain the final form of normal equations

$$\sum_{k=1}^{M} \alpha_{\ell k} a_k = \beta_{\ell}, \quad \ell = 1, 2, ..., M$$

Normal equations

System of M linear equations on a_k , k = 1, ..., M parameters

$$\alpha a = \beta$$
,

where $\alpha = A^{Tr}A$, $\beta = A^{Tr}b$ and

$$\mathbf{A} = \begin{pmatrix} \frac{F_1(\mathbf{x}_1)}{\sigma_1} & \frac{F_2(\mathbf{x}_1)}{\sigma_1} & \dots & \frac{F_M(\mathbf{x}_1)}{\sigma_1} \\ \frac{F_1(\mathbf{x}_2)}{\sigma_2} & \frac{F_2(\mathbf{x}_2)}{\sigma_2} & \dots & \frac{F_M(\mathbf{x}_2)}{\sigma_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{F_1(\mathbf{x}_N)}{\sigma_N} & \frac{F_2(\mathbf{x}_N)}{\sigma_N} & \dots & \frac{F_M(\mathbf{x}_N)}{\sigma_N} \end{pmatrix} \quad \mathbf{a} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_M \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} \frac{y_1}{\sigma_1} \\ \frac{y_2}{\sigma_2} \\ \vdots \\ \frac{y_N}{\sigma_N} \end{pmatrix}$$

Sizes of the matrices and vectors (columns)

$$\mathbf{A}_{N\times M}, \ \mathbf{a}_{M\times 1}, \ \mathbf{b}_{N}, \ \alpha_{M\times M}, \ \boldsymbol{\beta}_{M\times 1}$$

Overdetermined system of linear equations (we assume $y_i \approx \sum_{k=1}^{M} a_k F_k(x_i)$)

$$Aa \approx b$$

leads to another method of determination of the parameters a_k (to be continued...)

Accuracy of the fit, parameters, parameter dependency, condition

- ▶ Good estimate when $\chi^2 \sim N M$, where $N \ge M$
- \blacktriangleright What happens for N=M?
- ightharpoonup Variance-covariance matrix α^{-1}
 - \triangleright Variance of a_k

$$\sigma^2(a_k) = (\boldsymbol{\alpha}^{-1})_{kk}$$

▶ Covariance of a_i and a_k , where $i \neq k$

$$Cov(a_i, a_k) = (\alpha^{-1})_{ik}$$

ightharpoonup Condition number of α

$$cond(\alpha) = cond(\mathbf{A}^{Tr}\mathbf{A}) = cond(\mathbf{A})^2$$

If **A** is ill-conditioned, then α is even worse...

To do

- 1. Generate *noisy* data for known relation y(x); assume that $F_k(x) = x^{k-1}$, where k = 1, ..., M
- 2. Construct matrices and vectors **A**, **b**, α , β
- 3. Calculate a_k parameters by solving normal equations
- 4. Assess the numerical accuracy of a_k
 - 4.1 Calculate the condition number of α
 - 4.2 Perform test calculations of non-noisy data
- 5. Assess the quality of the fit
 - 5.1 Calculate χ^2
 - 5.2 Calculate the variance-covariance matrix

Notes on generation of the input data

- Non-noisy data
 - 1. Generate x_i , where $N \sim 20$
 - 2. Generate y_i according to $y(x) = 4 + 3x + 2x^2 + x^3$
 - 3. All $\sigma_i = 1$
- Noisy data
 - 1. Generate x_i , where $N \sim 20$
 - 2. Generate $y_i = y(x_i) + \Delta_i$, where $y(x) = 4 + 3x + 2x^2 + x^3$ and Δ_i are relatively small random numbers ¹
 - 3. All $\sigma_i = |\Delta_i|$

¹Preferably normally distributed random numbers, see e.g. randn() of Matlab and/or http://fizyka.umk.pl/~tecumseh/EDU/MNII∳randn.txt ♠ ▶ ♠ ♦ ♦ ♦ ♦