Task 7. Approximation χ^{2}

e-mail: andrzej.kedziorski@fizyka.umk.pl phone: 56611-3274
office: 485B
http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Task 7

Write a program that approximates the function $y(x)$ by means of linear least squares method (generally χ^{2}) via construction and solving of normal equations. Program takes as an input the 'measurement points' $\left(x_{i}, y_{i}, \sigma_{i}\right)$, where σ_{i} estimate the errors of $y_{i}, i=1,2, \ldots, N$. Calculate the variance-covariance matrix.

Linear least squares - general formulation

- Input data $\left(x_{i}, y_{i}, \sigma_{i}\right), i=1, \ldots, N$, where σ_{i} estimates error of y_{i}; we assume that the error of x_{i} is negligible
- In general we do not know the actual relation $y(x)$
- Our goal is to fit to the input data the model function (linear in a_{k} parameters)

$$
y(x) \approx \sum_{k=1}^{M} a_{k} F_{k}(x)
$$

where $F_{k}(x)$ are known 'basis' functions, a_{k} - parameters of our model, $N \geqslant M$

- Values of parameters a_{k} we derive from the following condition

$$
\chi^{2} \equiv \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} F_{k}\left(x_{i}\right)}{\sigma_{i}}\right)^{2}=\min
$$

which leads to the system of M linear equations (so-called normal equations)

$$
\frac{\partial\left(\chi^{2}\right)}{\partial a_{\ell}}=0, \quad \ell=1, \ldots, M
$$

where a_{k} parameters are the solution of normal equations.

Derivation of normal equations

$$
\begin{aligned}
& \chi^{2} \equiv \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} F_{k}\left(x_{i}\right)}{\sigma_{i}}\right)^{2} \\
& \frac{\partial\left(\chi^{2}\right)}{\partial a_{\ell}}=2 \sum_{i=1}^{N}\left(\frac{y_{i}-\sum_{k=1}^{M} a_{k} F_{k}\left(x_{i}\right)}{\sigma_{i}}\right)\left(\frac{-F_{\ell}\left(x_{i}\right)}{\sigma_{i}}\right), \quad \ell=1,2, \ldots, M \\
& \frac{\partial\left(\chi^{2}\right)}{\partial a_{\ell}}=0 \Rightarrow \sum_{k=1}^{M}\left[\sum_{i=1}^{N} \frac{F_{\ell}\left(x_{i}\right)}{\sigma_{i}} \frac{F_{k}\left(x_{i}\right)}{\sigma_{i}}\right] a_{k}=\sum_{i=1}^{N} \frac{F_{\ell}\left(x_{i}\right)}{\sigma_{i}} \frac{y_{i}}{\sigma_{i}}
\end{aligned}
$$

Introducing $A_{i k}=\frac{F_{k}\left(x_{i}\right)}{\sigma_{i}}$ and $b_{i}=\frac{y_{i}}{\sigma_{i}}$ we obtain the system of linear equations

$$
\sum_{k=1}^{M}\left(\sum_{i=1}^{N} A_{i \ell} A_{i k}\right) a_{k}=\sum_{i=1}^{N} A_{i \ell} b_{i}, \quad \ell=1,2, \ldots, M
$$

By denoting $\alpha_{\ell k}=\sum_{i=1}^{N} A_{i \ell} A_{i k}$ and $\beta_{\ell}=\sum_{i=1}^{N} A_{i \ell} b_{i}$ we obtain the final form of normal equations

$$
\sum_{k=1}^{M} \alpha_{\ell k} a_{k}=\beta_{\ell}, \quad \ell=1,2, \ldots, M
$$

Normal equations

System of M linear equations on $a_{k}, k=1, \ldots, M$ parameters

$$
\alpha a=\beta,
$$

where $\boldsymbol{\alpha}=\mathrm{A}^{\operatorname{Tr}} \mathrm{A}, \boldsymbol{\beta}=\mathrm{A}^{\operatorname{Tr} \mathrm{b}}$ and

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\frac{F_{1}\left(x_{1}\right)}{\sigma_{1}} & \frac{F_{2}\left(x_{1}\right)}{\sigma_{1}} & \ldots & \frac{F_{M}\left(x_{1}\right)}{\sigma_{1}} \\
\frac{F_{1}\left(x_{2}\right)}{\sigma_{2}} & \frac{F_{2}\left(x_{2}\right)}{\sigma_{2}} & \ldots & \frac{F_{M}\left(x_{2}\right)}{\sigma_{2}} \\
\vdots & \vdots & & \vdots \\
\frac{F_{1}\left(x_{N}\right)}{\sigma_{N}} & \frac{F_{2}\left(x_{N}\right)}{\sigma_{N}} & \ldots & \frac{F_{M}\left(x_{N}\right)}{\sigma_{N}}
\end{array}\right) \quad \boldsymbol{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{M}
\end{array}\right) \quad \boldsymbol{b}=\left(\begin{array}{c}
\frac{y_{1}}{\sigma_{1}} \\
\frac{y_{2}}{\sigma_{2}} \\
\vdots \\
\frac{y_{N}}{\sigma_{N}}
\end{array}\right)
$$

Sizes of the matrices and vectors (columns)

$$
\boldsymbol{A}_{N \times M}, \boldsymbol{a}_{M \times 1}, \boldsymbol{b}_{N}, \boldsymbol{\alpha}_{M \times M}, \boldsymbol{\beta}_{M \times 1}
$$

Overdetermined system of linear equations (we assume $y_{i} \approx \sum_{k=1}^{M} a_{k} F_{k}\left(x_{i}\right)$)

$$
A a \approx b
$$

leads to another method of determination of the parameters a_{k} (to be continued...)

Accuracy of the fit, parameters, parameter dependency, condition

- Good estimate when $\chi^{2} \sim N-M$, where $N \geqslant M$
- What happens for $N=M$?
- Variance-covariance matrix $\boldsymbol{\alpha}^{-1}$
- Variance of a_{k}

$$
\sigma^{2}\left(a_{k}\right)=\left(\alpha^{-1}\right)_{k k}
$$

- Covariance of a_{i} and a_{k}, where $i \neq k$

$$
\operatorname{Cov}\left(a_{i}, a_{k}\right)=\left(\alpha^{-1}\right)_{i k}
$$

- Condition number of α

$$
\operatorname{cond}(\boldsymbol{\alpha})=\operatorname{cond}\left(\boldsymbol{A}^{\operatorname{Tr}} \boldsymbol{A}\right)=\operatorname{cond}(\boldsymbol{A})^{2}
$$

If \mathbf{A} is ill-conditioned, then $\boldsymbol{\alpha}$ is even worse...

To do

1. Generate noisy data for known relation $y(x)$; assume that $F_{k}(x)=x^{k-1}$, where $k=1, \ldots, M$
2. Construct matrices and vectors $\mathbf{A}, \mathbf{b}, \boldsymbol{\alpha}, \boldsymbol{\beta}$
3. Calculate a_{k} parameters by solving normal equations
4. Assess the numerical accuracy of a_{k}
4.1 Calculate the condition number of $\boldsymbol{\alpha}$
4.2 Perform test calculations of non-noisy data
5. Assess the quality of the fit
5.1 Calculate χ^{2}
5.2 Calculate the variance-covariance matrix

Notes on generation of the input data

- Non-noisy data

1. Generate x_{i}, where $N \sim 20$
2. Generate y_{i} according to $y(x)=4+3 x+2 x^{2}+x^{3}$
3. All $\sigma_{i}=1$

- Noisy data

1. Generate x_{i}, where $N \sim 20$
2. Generate $y_{i}=y\left(x_{i}\right)+\Delta_{i}$, where $y(x)=4+3 x+2 x^{2}+x^{3}$ and Δ_{i} are relatively small random numbers ${ }^{1}$
3. All $\sigma_{i}=\left|\Delta_{i}\right|$
${ }^{1}$ Preferably normally distributed random numbers, see e.g. randn() of Matlab and/or http://fizyka.umk.pl/~tecumseh/EDU/MNII/randn.txt $\bar{\equiv}$
