Task 4. LU decomposition of square matrix with partial pivoting

e-mail: andrzej.kedziorski@fizyka.umk.pl tel.: 56611-3274 pokój: 485B http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Write a program that performs LU decomposition of a square matrix \mathbf{A} using Doolittle or Crout method. The program gets the dimension of the matrix \mathbf{A} and its elements from the input. Modify the LU decomposition program using the Doolittle (or Crout) method to include partial pivoting.

LU decomposition

- A non-singular square real matrix $n \times n$
- det $\mathbf{A}_k \neq 0$, where \mathbf{A}_k is $k \times k$ submatrix constructed from first k rows and columns of \mathbf{A} matrix
- A = LU decomposition/factorization, where L is Lower triangular matrix of $n \times n$ size, U is Upper triangular matrix of $n \times n$ size, i.e.

$$(\mathbf{L})_{ij} = \begin{cases} 0 & i < j \\ \ell_{ij} & i \geqslant j \end{cases} \qquad (\mathbf{U})_{ij} = \begin{cases} u_{ij} & i \leqslant j \\ 0 & i > j \end{cases}$$

• We have n^2 equations for the elements of **A**

$$a_{ij} = \sum_{k=1}^{n} (\mathbf{L})_{ik} (\mathbf{U})_{kj} = \sum_{k=1}^{r} \ell_{ik} u_{kj},$$

where $r = \min(i, j)$ and $n^2 + n$ elements of L and U matrices

▶ However, if $\ell_{ii} = 1$ or $u_{ii} = 1$ for i = 1, ..., n, then we have in total exactly n^2 elements of L and U matrices to calculate.

Doolittle method

► Assume that l_{ii} = 1 for i = 1, ..., n

We have to perform k = 1, ..., n steps; within k-th step

1. Calculate k-th row of **U** matrix $(j \ge k)$

$$a_{kj} = \sum_{p=1}^{k} \ell_{kp} u_{pj} \quad \Rightarrow \quad u_{kj} = a_{kj} - \sum_{p=1}^{k-1} \ell_{kp} u_{pj} \quad j = k, k+1, \dots, n$$

2. Calculate k-th column of L matrix (i > k)

$$a_{ik} = \sum_{p=1}^{k} \ell_{ip} u_{pk} \quad \Rightarrow \quad \ell_{ik} = \left(a_{ik} - \sum_{p=1}^{k-1} \ell_{ip} u_{pk}\right) / u_{kk} \quad i = k+1, \dots, n$$

- In first step we in fact rewrite the first row of A matrix to first row of U matrix and, subsequently, we have all required data to evaluate first column of L matrix
- ▶ Within k-th step we have ℓ_{kk} = 1, and k − 1 first rows of U matrix and k − 1 first columns of L matrix, which allows to calculate k-th row of U and, subsequently, we can calculate k-th column of L

Crouta method

Assume that $u_{ii} = 1$ for i = 1, ..., n

• We have to perform k = 1, ..., n steps; within k-th step

1. Calculate k-th column of **L** matrix $(i \ge k)$

$$a_{ik} = \sum_{p=1}^{k} \ell_{ip} u_{pk} \quad \Rightarrow \quad \ell_{ik} = a_{ik} - \sum_{p=1}^{k-1} \ell_{ip} u_{pk} \quad i = k, k+1, ..., n$$

2. Calculate k-th row of **U** matrix (j > k)

$$a_{kj} = \sum_{p=1}^{k} \ell_{kp} u_{pj} \quad \Rightarrow \quad u_{kj} = \left(a_{kj} - \sum_{p=1}^{k-1} \ell_{kp} u_{pj}\right) / \ell_{kk} \quad j = k+1, \dots, n$$

- In first step we in fact rewrite the first column of A matrix to first column of L matrix and, subsequently, we have all required data to evaluate first row of U matrix
- ▶ Within k-th step we have u_{kk} = 1, k − 1 first columns of L matrix and k − 1 first rows of U matrix, which allows to calculate k-th column of L and, subsequently, we can calculate k-th row of U

TO DO

- 1. From the input¹ read size n and the elements of **A** matrix
- 2. Perform LU decomposition of **A** matrix using Doolittle or Crout method
- 3. Print on the output the triangular matrices $\boldsymbol{\mathsf{L}}$ and $\boldsymbol{\mathsf{U}}$
- 4. Check $\mathbf{A} = \mathbf{LU}$
- 5. Compare the results using existing functions (e.g. "lu" in Matlab)

Partial pivoting - motivations

Perform LU decomposition of matrix

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & -2 & 2 \\ 3 & 3 & -3 \end{array} \right)$$

Interchange rows in A matrix

$$\mathbf{A}' = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 3 & 3 & -3 \\ 2 & -2 & 2 \end{array}\right)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and perform LU decomposition of matrix A'

Is it possible to perform LU decomposition in both cases?

Partial pivoting in Doolittle method

k-th step of Doolittle method

1. Calculate k-th row of **U** matrix $(j \ge k)$

$$u_{kj} = a_{kj} - \sum_{p=1}^{k-1} \ell_{kp} u_{pj}$$
 $j = k, k + 1, ..., n$

2. Calculate k-th column of L matrix (i > k)

$$\ell_{ik} = \left(a_{ik} - \sum_{p=1}^{k-1} \ell_{ip} u_{pk}\right) / u_{kk} \quad i = k+1, ..., n$$

- ▶ Problems: $u_{kk} = 0$ or $|u_{kk}| \sim 0$ (e.g. "numerical trash")
- Partial pivoting:
 - 1 calculate k-th row of **U** matrix
 - 1a before the calculation of k-th column of L matrix we look in k-th row of U matrix for the element of maximum absolute value, i.e.

$$\max_{j=k,\ldots,n} |u_{kj}| \Rightarrow u_{kj_{\max}}$$

- 1b interchange columns k and j_{max} of **U** matrix (also in **A**)
- 2 calculate k-th column of L matrix

Doolittle method with partial pivoting

- We obtain A' = LU decomposition, in which A' is the A matrix, in which we have interchanged columns
- A' matrix can be represented as $A' = AP^{Tr}$, where P is the permutation matrix; P is orthogonal, i.e. $P^{Tr} = P^{-1}$
- Decomposition of A takes the following form

$$\mathbf{A}' = \mathbf{A}\mathbf{P}^{Tr} = \mathbf{L}\mathbf{U} \quad |\cdot\mathbf{P}|$$
$$\mathbf{A} = \mathbf{L}\mathbf{U}\mathbf{P}$$

- Single interchange of the columns *i* and *j* of U (as well as A) matrix can be represented by the following matrix product UP^{ij} (as well as AP^{ij}), where P^{ij} is the unit matrix *n* × *n*, in which we have interchanged columns *i* and *j*
- ► In each step k = 1,..., n 1 of Doolittle method we perform (up to) single interchange of the columns of U and A matrices, thus the final result may be written in the following way

$$\mathsf{LUP} = \mathsf{LUP}_{n-1}\mathsf{P}_{n-2}...\mathsf{P}_k...\mathsf{P}_2\mathsf{P}_1,$$

where \mathbf{P}_k is the matrix representing single interchange of the columns performed in *k*-th step of Doolittle method ²

²In practice, the permutation matrix **P** can be obtained starting from unit matrix by the successive interchanges of the appropriate pairs of rows $\langle \cdot \rangle = \langle \cdot \rangle$

Parial pivoting in Crout method

- k-th step of Crout method
 - 1. Calculate k-th column of L matrix (i > k)

$$\ell_{ik} = a_{ik} - \sum_{p=1}^{k-1} \ell_{ip} u_{pk}$$
 $i = k + 1, ..., n$

2. Calculate k-th ro of U matrix $(j \ge k)$

$$u_{kj} = \left(a_{kj} - \sum_{p=1}^{k-1} \ell_{kp} u_{pj}\right) / \ell_{kk} \quad j = k, \, k+1, \, \dots, \, n$$

- Problems: $\ell_{kk} = 0$ or $|\ell_{kk}| \sim 0$ (e.g. "numerical trash")
- Partial pivoting:
 - 1 calculate k-th column of L matrix
 - 1a before the calculation of k-th row of U matrix we look in k-th column of L matrix for the element of the maximum absolute value, i.e.

$$\max_{i=k,\ldots,n} |\ell_{ik}| \Rightarrow \ell_{i_{\max}k}$$

- 1b interchange rows k and i_{max} in L matrix (also in A)
- 2 calculate k-th row of **U** matrix

Partial pivoting in Crout method

- We obtain A' = LU, where A' is the A matrix with permuted rows
- A' matrix can be represented as $\mathbf{A}' = \mathbf{P}^{Tr} \mathbf{A}$, where **P** is the premutation matrix; **P** is orthogonal, i.e. $\mathbf{P}^{Tr} = \mathbf{P}^{-1}$
- Decomposition of A matrix takes the form

$$P \cdot | P^{Tr} A = LU$$
$$A = PLU$$

- Single interchange of the columns *i* and *j* in matrix L (and A) can be represented by the matrix product P^{ij}L (and P^{ij}A), where P^{ij} is the unit matrix *n* × *n* with interchanged rows *i* and *j*
- ▶ In each step k = 1, ..., n -1 of Crout method we perform (up to) single interchange of rows in **L** (and **A**) matrix, thus the final result may be written in the following way

$$\mathsf{PLU} = \mathsf{P}_1 \mathsf{P}_2 \dots \mathsf{P}_k \dots \mathsf{P}_{n-2} \mathsf{P}_{n-1} \mathsf{LU},$$

where \mathbf{P}_k is the matrix representing single interchange of rows in k-th step of Crout method 3

³In practice, the permutation matrix **P** can be obtained starting from unit matrix by the successive interchanges of the appropriate pairs of columns \sim

TO DO - inclusion of partial pivoting into the program performing LU decomposition

- 1. From the input⁴ read size n and the elements of **A** matrix
- 2. Perform LU decomposition of **A** matrix using Doolittle or Crout method with partial pivoting
- 3. Print on the output the triangular matrices $\boldsymbol{\mathsf{L}},\,\boldsymbol{\mathsf{U}}$ and permutaion matrix $\boldsymbol{\mathsf{P}}$
- 4. Check $\mathbf{A} = \mathbf{LUP}$ (or $\mathbf{A} = \mathbf{PLU}$)
- 5. Compare the results using existing functions (e.g. "lu" in Matlab)