Task 4. LU decomposition of square matrix with partial pivoting

e-mail: andrzej.kedziorski@fizyka.umk.pl
tel.: 56611-3274
pokój: 485B
http://www.fizyka.umk.pl/~tecumseh/EDU/MNII/

Task 4

Write a program that performs LU decomposition of a square matrix A using Doolittle or Crout method. The program gets the dimension of the matrix \mathbf{A} and its elements from the input. Modify the LU decomposition program using the Doolittle (or Crout) method to include partial pivoting.

LU decomposition

- A - non-singular square real matrix $n \times n$
- $\operatorname{det} \mathbf{A}_{k} \neq 0$, where \mathbf{A}_{k} is $k \times k$ submatrix constructed from first k rows and columns of \mathbf{A} matrix
- $\mathbf{A}=\mathbf{L U}$ decomposition/factorization, where \mathbf{L} is Lower triangular matrix of $n \times n$ size, \mathbf{U} is Upper triangular matrix of $n \times n$ size, i.e.

$$
(\mathbf{L})_{i j}=\left\{\begin{array}{cc}
0 & i<j \\
\ell_{i j} & i \geqslant j
\end{array} \quad(\mathbf{U})_{i j}=\left\{\begin{array}{cc}
u_{i j} & i \leqslant j \\
0 & i>j
\end{array}\right.\right.
$$

- We have n^{2} equations for the elements of \mathbf{A}

$$
a_{i j}=\sum_{k=1}^{n}(\mathbf{L})_{i k}(\mathbf{U})_{k j}=\sum_{k=1}^{r} \ell_{i k} u_{k j}
$$

where $r=\min (i, j)$ and $n^{2}+n$ elements of \mathbf{L} and \mathbf{U} matrices

- However, if $\ell_{i i}=1$ or $u_{i i}=1$ for $i=1, \ldots, n$, then we have in total exactly n^{2} elements of \mathbf{L} and \mathbf{U} matrices to calculate.

Doolittle method

- Assume that $\ell_{i i}=1$ for $i=1, \ldots, n$
- We have to perform $k=1, \ldots, n$ steps; within k-th step

1. Calculate k-th row of \mathbf{U} matrix $(j \geqslant k)$

$$
a_{k j}=\sum_{p=1}^{k} \ell_{k p} u_{p j} \Rightarrow u_{k j}=a_{k j}-\sum_{p=1}^{k-1} \ell_{k p} u_{p j} \quad j=k, k+1, \ldots, n
$$

2. Calculate k-th column of \mathbf{L} matrix $(i>k)$

$$
a_{i k}=\sum_{p=1}^{k} \ell_{i p} u_{p k} \Rightarrow \ell_{i k}=\left(a_{i k}-\sum_{p=1}^{k-1} \ell_{i p} u_{p k}\right) / u_{k k} \quad i=k+1, \ldots, n
$$

- In first step we in fact rewrite the first row of \mathbf{A} matrix to first row of \mathbf{U} matrix and, subsequently, we have all required data to evaluate first column of \mathbf{L} matrix
- Within k-th step we have $\ell_{k k}=1$, and $k-1$ first rows of \mathbf{U} matrix and $k-1$ first columns of \mathbf{L} matrix, which allows to calculate k-th row of \mathbf{U} and, subsequently, we can calculate k-th column of \mathbf{L}

Crouta method

- Assume that $u_{i j}=1$ for $i=1, \ldots, n$
- We have to perform $k=1, \ldots, n$ steps; within k-th step

1. Calculate k-th column of \mathbf{L} matrix $(i \geqslant k)$

$$
a_{i k}=\sum_{p=1}^{k} \ell_{i p} u_{p k} \quad \Rightarrow \quad \ell_{i k}=a_{i k}-\sum_{p=1}^{k-1} \ell_{i p} u_{p k} \quad i=k, k+1, \ldots, n
$$

2. Calculate k-th row of \mathbf{U} matrix $(j>k)$

$$
a_{k j}=\sum_{p=1}^{k} \ell_{k p} u_{p j} \Rightarrow u_{k j}=\left(a_{k j}-\sum_{p=1}^{k-1} \ell_{k p} u_{p j}\right) / \ell_{k k} \quad j=k+1, \ldots, n
$$

- In first step we in fact rewrite the first column of \mathbf{A} matrix to first column of \mathbf{L} matrix and, subsequently, we have all required data to evaluate first row of \mathbf{U} matrix
- Within k-th step we have $u_{k k}=1, k-1$ first columns of \mathbf{L} matrix and $k-1$ first rows of \mathbf{U} matrix, which allows to calculate k-th column of \mathbf{L} and, subsequently, we can calculate k-th row of \mathbf{U}

TO DO

1. From the input ${ }^{1}$ read size n and the elements of \mathbf{A} matrix
2. Perform LU decomposition of \mathbf{A} matrix using Doolittle or Crout method
3. Print on the output the triangular matrices \mathbf{L} and \mathbf{U}
4. Check $\mathbf{A}=\mathbf{L U}$
5. Compare the results using existing functions (e.g. "lu" in Matlab)

Partial pivoting - motivations

- Perform LU decomposition of matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -2 & 2 \\
3 & 3 & -3
\end{array}\right)
$$

- Interchange rows in A matrix

$$
\mathbf{A}^{\prime}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
3 & 3 & -3 \\
2 & -2 & 2
\end{array}\right)
$$

and perform LU decomposition of matrix \mathbf{A}^{\prime}

- Is it possible to perform LU decomposition in both cases?

Partial pivoting in Doolittle method

- k-th step of Doolittle method

1. Calculate k-th row of \mathbf{U} matrix $(j \geqslant k)$

$$
u_{k j}=a_{k j}-\sum_{p=1}^{k-1} \ell_{k p} u_{p j} \quad j=k, k+1, \ldots, n
$$

2. Calculate k-th column of \mathbf{L} matrix $(i>k)$

$$
\ell_{i k}=\left(a_{i k}-\sum_{p=1}^{k-1} \ell_{i p} u_{p k}\right) / u_{k k} \quad i=k+1, \ldots, n
$$

- Problems: $u_{k k}=0$ or $\left|u_{k k}\right| \sim 0$ (e.g. "numerical trash")
- Partial pivoting:

1 calculate k-th row of \mathbf{U} matrix
1a before the calculation of k-th column of L matrix we look in k-th row of \mathbf{U} matrix for the element of maximum absolute value, i.e.

$$
\max _{j=k, \ldots, n}\left|u_{k j}\right| \Rightarrow u_{k j_{\max }}
$$

1b interchange columns k and $j_{\text {max }}$ of \mathbf{U} matrix (also in \mathbf{A})
2 calculate k-th column of \mathbf{L} matrix

Doolittle method with partial pivoting

- We obtain $\mathbf{A}^{\prime}=\mathbf{L U}$ decomposition, in which \mathbf{A}^{\prime} is the \mathbf{A} matrix, in which we have interchanged columns
- \mathbf{A}^{\prime} matrix can be represented as $\mathbf{A}^{\prime}=\mathbf{A} \mathbf{P}^{T r}$, where \mathbf{P} is the permutation matrix; \mathbf{P} is orthogonal, i.e. $\mathbf{P}^{T r}=\mathbf{P}^{-1}$
- Decomposition of \mathbf{A} takes the following form

$$
\begin{aligned}
& \mathbf{A}^{\prime}=\mathbf{A} \mathbf{P}^{T r}=\mathbf{L U} \quad \mid \cdot \mathbf{P} \\
& \mathbf{A}=\mathbf{L U P}
\end{aligned}
$$

- Single interchange of the columns i and j of \mathbf{U} (as well as \mathbf{A}) matrix can be represented by the following matrix product $\mathbf{U} \mathbf{P}^{i j}$ (as well as $\mathbf{A} \mathbf{P}^{i j}$), where $\mathbf{P}^{i j}$ is the unit matrix $n \times n$, in which we have interchanged columns i and j
- In each step $k=1, \ldots, n-1$ of Doolittle method we perform (up to) single interchange of the columns of \mathbf{U} and \mathbf{A} matrices, thus the final result may be written in the following way

$$
\mathbf{L U P}=\mathbf{L U} \mathbf{P}_{n-1} \mathbf{P}_{n-2} \ldots \mathbf{P}_{k} \ldots \mathbf{P}_{2} \mathbf{P}_{1}
$$

where \mathbf{P}_{k} is the matrix representing single interchange of the columns performed in k-th step of Doolittle method ${ }^{2}$
${ }^{2}$ In practice, the permutation matrix \mathbf{P} can be obtained starting from unit matrix by the successive interchanges of the appropriate pairs of rows

Parial pivoting in Crout method

- k-th step of Crout method

1. Calculate k-th column of \mathbf{L} matrix $(i>k)$

$$
\ell_{i k}=a_{i k}-\sum_{p=1}^{k-1} \ell_{i p} u_{p k} \quad i=k+1, \ldots, n
$$

2. Calculate k-th ro of \mathbf{U} matrix $(j \geqslant k)$

$$
u_{k j}=\left(a_{k j}-\sum_{p=1}^{k-1} \ell_{k p} u_{p j}\right) / \ell_{k k} \quad j=k, k+1, \ldots, n
$$

- Problems: $\ell_{k k}=0$ or $\left|\ell_{k k}\right| \sim 0$ (e.g. "numerical trash")
- Partial pivoting:

1 calculate k-th column of \mathbf{L} matrix
1a before the calculation of k-th row of \mathbf{U} matrix we look in k-th column of \mathbf{L} matrix for the element of the maximum absolute value, i.e.

$$
\max _{i=k, \ldots, n}\left|\ell_{i k}\right| \Rightarrow \ell_{i_{\max } k}
$$

1 b interchange rows k and $i_{\text {max }}$ in \mathbf{L} matrix (also in \mathbf{A})
2 calculate k-th row of \mathbf{U} matrix

Partial pivoting in Crout method

- We obtain $\mathbf{A}^{\prime}=\mathbf{L U}$, where \mathbf{A}^{\prime} is the \mathbf{A} matrix with permuted rows
- \mathbf{A}^{\prime} matrix can be represented as $\mathbf{A}^{\prime}=\mathbf{P}^{T r} \mathbf{A}$, where \mathbf{P} is the premutation matrix; \mathbf{P} is orthogonal, i.e. $\mathbf{P}^{\operatorname{Tr}}=\mathbf{P}^{-1}$
- Decomposition of \mathbf{A} matrix takes the form

$$
\begin{aligned}
\mathbf{P} \cdot \mid & \mathbf{P}^{T r} \mathbf{A}=\mathbf{L U} \\
& \mathbf{A}=\text { PLU }
\end{aligned}
$$

- Single interchange of the columns i and j in matrix \mathbf{L} (and \mathbf{A}) can be represented by the matrix product $\mathbf{P}^{i j} \mathbf{L}$ (and $\mathbf{P}^{i j} \mathbf{A}$), where $\mathbf{P}^{i j}$ is the unit matrix $n \times n$ with interchanged rows i and j
- In each step $k=1, \ldots, n--1$ of Crout method we perform (up to) single interchange of rows in \mathbf{L} (and A) matrix, thus the final result may be written in the following way

$$
\mathbf{P L U}=\mathbf{P}_{1} \mathbf{P}_{2} \ldots \mathbf{P}_{k} \ldots \mathbf{P}_{n-2} \mathbf{P}_{n-1} \mathbf{L U}
$$

where \mathbf{P}_{k} is the matrix representing single interchange of rows in k-th step of Crout method ${ }^{3}$

[^0]
TO DO - inclusion of partial pivoting into the program performing LU decomposition

1. From the input ${ }^{4}$ read size n and the elements of \mathbf{A} matrix
2. Perform LU decomposition of \mathbf{A} matrix using Doolittle or Crout method with partial pivoting
3. Print on the output the triangular matrices \mathbf{L}, \mathbf{U} and permutaion matrix \mathbf{P}
4. Check $\mathbf{A}=\mathbf{L U P}$ (or $\mathbf{A}=\mathbf{P L U}$)
5. Compare the results using existing functions (e.g. "lu" in Matlab)

[^0]: ${ }^{3}$ In practice, the permutation matrix \mathbf{P} can be obtained starting from unit matrix by the successive interchanges of the appropriate pairs of columns

