2. Literature

davidson-corr

Davidson, Ernest R.; The World of Quantum Chemistry 17–30, (1974), Configuration interaction description of electron correlation , https://doi.org/10.1007/978-94-010-2156-2_2

pulay1980

Convergence acceleration of iterative sequences. The case of scf iteration. Pulay, P., Chem. Phys. Lett. 73, 393–398 (1980), http://dx.doi.org/10.1016/0009-2614(80)80396-4

pipek1989

A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions. Pipek, J.; Mezey, P. G., J. Chem. Phys. 90, 4916–4926 (1989), http://dx.doi.org/10.1063/1.456588

dvr-1991

A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. Colbert, D. T.; Miller W. H., J. Chem. Phys. 96, 1982-–1991 (1991), http://dx.doi.org/https://doi.org/10.1063/1.462100

duch1994

Size‐extensivity corrections in configuration interaction methods. Duch, W.; Diercksen, G.H.F., J. Chem. Phys. 101, 3018–3030 (1994), http://dx.doi.org/10.1063/1.467615

jeziorski1994

Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Jeziorski, B.; Moszynski, R.; Szalewicz, K., Chem. Rev. 94, 1887–1930 (1994), http://dx.doi.org/10.1021/cr00031a008

rabuck1999

Improving self-consistent field convergence by varying occupation numbers. Rabuck, A. D.; Scuseria, G. E., J. Chem. Phys. 110, 695–700 (1999), http://dx.doi.org/10.1063/1.478177

kudin2002

A black-box self-consistent field convergence algorithm: One step closer. Kudin, K. N.; Scuseria, G. E.; Cancès, E., J. Chem. Phys. 116, 8255–8261 (2002), http://dx.doi.org/10.1063/1.1470195

scc-overview

Szalay, P.; Encyclopedia of Computational Chemistry , (2005), Configuration interaction: Corrections for size-consistency , https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.cn0066

gomes2008embedding

Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory. Gomes, A.S.; Jacob, C. R.; Visscher L., Phys. Chem. Chem. Phys. 10, 5353–5362 (2008), http://dx.doi.org/10.1039/B805739G

aquilante2011

Aquilante, F.; Boman, L.; Boström, J.; Koch, H.; Lindh, R.; de Merás, A. S.; Pedersen, T. B.; Linear-Scaling Techniques in Computational Chemistry and Physics 301–343, (2011), Cholesky decomposition techniques in electronic structure theory

limacher2013

A new mean-field method suitable for strongly correlated electrons: computationally facile antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., J. Chem. Theory Comput. 9, 1394–1401 (2013), http://dx.doi.org/10.1021/ct300902c

boguslawski2014a

Efficient description of strongly correlated electrons with mean-field cost. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., Phys. Rev. B 89, 201106(R) (2014), http://dx.doi.org/10.1103/PhysRevB.89.201106

boguslawski2014b

Non-variational orbital optimization rechniques for the AP1roG wave function. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., J. Chem. Theory Comput. 10, 4873–4882 (2014), http://dx.doi.org/10.1021/ct500759q

limacher2014

Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., Phys. Chem. Chem. Phys 16, 5061–5065 (2014), http://dx.doi.org/10.1039/C3CP53301H

boguslawski2015a

Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., Int. J. Quantum Chem. 115, 1289–1295 (2015), http://dx.doi.org/10.1002/qua.24832

boguslawski2015b

Linearized coupled cluster correction on the antisymmetric product of 1-reference orbital geminals. Boguslawski, K.; Ayers, P. W., J. Chem. Theory Comput. 11, 5252–5261 (2015), http://dx.doi.org/10.1021/acs.jctc.5b00776

boguslawski2016a

Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., J. Chem. Phys. 145, 234105 (2016), http://dx.doi.org/10.1063/1.4972053

boguslawski2016b

Analysis of two-orbital correlations in wavefunctions restricted to electron-pair states. Boguslawski, K.; Tecmer, P.; Legeza, Ö, Phys. Rev. B 94, 155126 (2016), http://dx.doi.org/10.1103/PhysRevB.94.155126

meissner-overview

Erturk. M.; Meissner, L.; Electron correlation in molecules - ab initio beyond Gaussian quantum chemistry 145–160, (2016), Chapter Seven - Size-extensivity corrections in single- and multi-reference configuration interaction calculations , https://www.sciencedirect.com/science/article/pii/S0065327615000362

boguslawski2017a

Benchmark of dynamic electron correlation models for seniority-zero wavefunctions and their application to thermochemistry. Boguslawski, K.; Tecmer, P., J. Chem. Theory Comput. 13, 5966–5983 (2017), http://dx.doi.org/10.1021/acs.jctc.6b01134

boguslawski2017b

Erratum: Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., Int. J. Quantum Chem. 117, e25455 (2017), http://dx.doi.org/10.1002/qua.25455

boguslawski2017c

Erratum: Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., J. Chem. Phys. 147, 139901 (2017), http://dx.doi.org/10.1063/1.5006124

norman2018

Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Norman, P.; Dreuw, A., Chem. Rev. 118, 7208–7248 (2018), https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00156

boguslawski2019

Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations. Boguslawski, K., J. Chem. Theory Comput. 15, 18–24 (2019), http://dx.doi.org/10.1021/acs.jctc.8b01053

valeev2019

A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. Valeev, E. F.; (2019), http://libint.valeyev.net/

patkowski2020

Recent developments in symmetry-adapted perturbation theory. Patkowski, K., WIREs Comput. Mol. Sci. 10, e1452 (2020), http://dx.doi.org/10.1002/wcms.1452

boguslawski2021

Open-shell extensions to closed-shell pCCD. Boguslawski, K., Chem. Commun. 57, 12277–12280 (2021), http://dx.doi.org/10.1039/D1CC04539C

nowak2021

Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions. Nowak, A.; Legeza, Ö.; Boguslawski, K., J. Chem. Phys. 154, 084111 (2021), http://dx.doi.org/10.1063/5.0038205

leszczyk2022

Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost. Leszczyk, A.; Máté, M.; Legeza, Ö.; Boguslawski, K., J. Chem. Theory Comput. 18, 96–117 (2022), http://dx.doi.org/10.1021/acs.jctc.1c00284

nanobind

nanobind: tiny and efficient C++/Python bindings. Wenzel, J.; (2022)

chakraborty2023

Static Embedding with Pair Coupled Cluster Doubles Based Methods. Chakraborty, R.; Boguslawski, K.; Tecmer, P., Phys. Chem. Chem. Phys. 25, 25377–25388 (2023), http://dx.doi.org/10.1039/D3CP02502K

nowak2023

A configuration interaction correction on top of pair coupled cluster doubles. Nowak, A.; Boguslawski, K., Phys. Chem. Chem. Phys. 25, 7289–7301 (2023), http://dx.doi.org/10.1039/D2CP05171K

ahmadkhani2024

Linear Response pCCD-Based Methods: LR-pCCD and LR-pCCD+S Approaches for the Efficient and Reliable Modeling of Excited State Properties. Ahmadkhani, S.; Boguslawski, K.; Tecmer, P., J. Chem. Theory Comput. 20, 10443–10452 (2024), https://doi.org/10.1021/acs.jctc.4c01017

galynska2024

Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models. Gałyńska, M.; Boguslawski, K., J. Chem. Theory Comput. 20, 4182–4195 (2024), http://dx.doi.org/10.1021/acs.jctc.4c00172

galynska2024b

Exploring Electron Affinities, LUMO Energies, and Band Gaps with Electron-Pair Theories. Gałyńska, M.; Tecmer, P.; Boguslawski, K., J. Phys. Chem. A 128, 11068–11073 (2024), https://doi.org/10.1021/acs.jpca.4c06904

kriebel2024

Accelerating Pythonic Coupled-Cluster Implementations: A Comparison Between CPUs and GPUs. Kriebel, M.H.; Tecmer, P.; Gałyńska, M.; Leszczyk, A.; Boguslawski, K., J. Chem. Theory Comput. 20, 1130–1142 (2024), https://pubs.acs.org/doi/full/10.1021/acs.jctc.3c01110

sujkowski2024

Reversed Spin Flip. Sujkowski, E.; Leszczyk, A.; Krylov, A.; Boguslawski, K., In preparation X, X–X (2024), X

behjou2025

Electron Attachment Energies from Tailored Coupled Cluster Methods. A Comparison between the Ionized and Electron-Attached Variants. Behjou, S.; Ahmadkhani, S.; Tecmer, P.; Boguslawski, K., J. Chem. Theory Comput. X, X–X (2025), X

jahani2025a

Simple and efficient computational strategies for calculating orbital energies and pair-orbital energies from pCCD-based methods. Jahani, S.; Ahmadkhani, S.; Boguslawski, K.; Tecmer, P., J. Chem. Phys. 162, 184110 (2025), https://doi.org/10.1063/5.0262453

jahani2025b

Ionization potentials and electron affinities from the extended Koopmans’ theorem based on pair-Coupled Cluster Doubles. Jahani, S.; Ahmadkhani, S.; Boguslawski, K.; Tecmer, P., J. Chem. Phys. X, X–X (2025), X

karimi2025

Efficient and reliable modeling of large π-electron systems with the Pariser–Parr–Pople Hamiltonian and pCCD-based methods. Karimi, Z.; Ahmadkhani, S.; Boguslawski, K.; Tecmer, P., XX X, X–X (2025), X

pandey2025

Frozen-pair-type pCCD-based methods and their double ionization variants to predict properties of prototypical BN-doped light emitters. Pandey, R. D.; de Moraes, M. M. F.; Boguslawski, K.; Tecmer, P., J. Chem. Theory Comput. 21, 5049–5061 (2025), https://doi.org/10.1021/acs.jctc.5c00057

szczuczko2025

A Cross-Platform Graphical User Interface Using Web Technologies: Simplifying the Setup for PyBEST Calculations. Szczuczko, L.; Boguslawski, K., Int. J. Quantum Chem. X, X–X (2025), X