2. Literature

[davidson-corr]

Davidson, Ernest R.; The World of Quantum Chemistry 17–30, (1974), Configuration interaction description of electron correlation , https://doi.org/10.1007/978-94-010-2156-2_2

[pulay1980]

Convergence acceleration of iterative sequences. The case of scf iteration. Pulay, P., Chem. Phys. Lett. 73, 393–398 (1980), http://dx.doi.org/10.1016/0009-2614(80)80396-4

[pipek1989]

A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions. Pipek, J.; Mezey, P. G., J. Chem. Phys. 90, 4916–4926 (1989), http://dx.doi.org/10.1063/1.456588

[jeziorski1994]

Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Jeziorski, B.; Moszynski, R.; Szalewicz, K., Chem. Rev. 94, 1887–1930 (1994), http://dx.doi.org/10.1021/cr00031a008

[rabuck1999]

Improving self-consistent field convergence by varying occupation numbers. Rabuck, A. D.; Scuseria, G. E., J. Chem. Phys. 110, 695–700 (1999), http://dx.doi.org/10.1063/1.478177

[kudin2002]

A black-box self-consistent field convergence algorithm: One step closer. Kudin, K. N.; Scuseria, G. E.; Cancès, E., J. Chem. Phys. 116, 8255–8261 (2002), http://dx.doi.org/10.1063/1.1470195

[scc-overview]

Szalay, P.; Encyclopedia of Computational Chemistry , (2005), Configuration interaction: Corrections for size-consistency , https://onlinelibrary.wiley.com/doi/abs/10.1002/0470845015.cn0066

[aquilante2011]

Aquilante, F.; Boman, L.; Boström, J.; Koch, H.; Lindh, R.; de Merás, A. S.; Pedersen, T. B.; Linear-Scaling Techniques in Computational Chemistry and Physics 301–343, (2011), Cholesky decomposition techniques in electronic structure theory

[limacher2013]

A new mean-field method suitable for strongly correlated electrons: computationally facile antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., J. Chem. Theory Comput. 9, 1394–1401 (2013), http://dx.doi.org/10.1021/ct300902c

[boguslawski2014a]

Efficient description of strongly correlated electrons with mean-field cost. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., Phys. Rev. B 89, 201106(R) (2014), http://dx.doi.org/10.1103/PhysRevB.89.201106

[boguslawski2014b]

Non-variational orbital optimization rechniques for the AP1roG wave function. Boguslawski, K.; Tecmer, P.; Ayers, P. W.; Bultinck, P.; De Baerdemacker, S.; Van Neck, D., J. Chem. Theory Comput. 10, 4873–4882 (2014), http://dx.doi.org/10.1021/ct500759q

[limacher2014]

Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. Limacher, P. A.; Ayers, P. W.; Johnson, P. A.; De Baerdemacker, S.; Van Neck, D.; Bultinck, P., Phys. Chem. Chem. Phys 16, 5061–5065 (2014), http://dx.doi.org/10.1039/C3CP53301H

[boguslawski2015a]

Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., Int. J. Quantum Chem. 115, 1289–1295 (2015), http://dx.doi.org/10.1002/qua.24832

[boguslawski2015b]

Linearized coupled cluster correction on the antisymmetric product of 1-reference orbital geminals. Boguslawski, K.; Ayers, P. W., J. Chem. Theory Comput. 11, 5252–5261 (2015), http://dx.doi.org/10.1021/acs.jctc.5b00776

[boguslawski2016a]

Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., J. Chem. Phys. 145, 234105 (2016), http://dx.doi.org/10.1063/1.4972053

[boguslawski2016b]

Analysis of two-orbital correlations in wavefunctions restricted to electron-pair states. Boguslawski, K.; Tecmer, P.; Legeza, Ö, Phys. Rev. B 94, 155126 (2016), http://dx.doi.org/10.1103/PhysRevB.94.155126

[meissner-overview]

Erturk. M.; Meissner, L.; Electron correlation in molecules - ab initio beyond Gaussian quantum chemistry 145–160, (2016), Chapter Seven - Size-extensivity corrections in single- and multi-reference configuration interaction calculations , https://www.sciencedirect.com/science/article/pii/S0065327615000362

[boguslawski2017a]

Benchmark of dynamic electron correlation models for seniority-zero wavefunctions and their application to thermochemistry. Boguslawski, K.; Tecmer, P., J. Chem. Theory Comput. 13, 5966–5983 (2017), http://dx.doi.org/10.1021/acs.jctc.6b01134

[boguslawski2017b]

Erratum: Orbital entanglement in quantum chemistry. Boguslawski, K.; Tecmer, P., Int. J. Quantum Chem. 117, e25455 (2017), http://dx.doi.org/10.1002/qua.25455

[boguslawski2017c]

Erratum: Targeting excited states in all-trans polyenes with electron-pair states. Boguslawski, K., J. Chem. Phys. 147, 139901 (2017), http://dx.doi.org/10.1063/1.5006124

[boguslawski2019]

Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations. Boguslawski, Katharina, J. Chem. Theory Comput. 15, 18–24 (2019), http://dx.doi.org/10.1021/acs.jctc.8b01053

[valeev2019]

A library for the evaluation of molecular integrals of many-body operators over Gaussian functions. E. F. Valeev; (2019), http://libint.valeyev.net/

[nowak2020]

Orbital entanglement and correlation from pCCD-tailored Coupled Cluster wave functions. Nowak, A.; Legeza, Ö.; Boguslawski, K., J. Chem. Phys. 154, 084111 (2020), http://dx.doi.org/10.1063/5.0038205

[patkowski2020]

Recent developments in symmetry-adapted perturbation theory. Patkowski, K., WIREs Comput. Mol. Sci. 10, e1452 (2020), http://dx.doi.org/10.1002/wcms.1452

[leszczyk2021]

Assessing the accuracy of tailored coupled cluster methods corrected by electronic wave functions of polynomial cost. Leszczyk, A.; Máté, M.; Legeza, Ö.; Boguslawski, K., J. Chem. Theory Comput (submitted) arXiv, arXiv:2103.12381 (2021), https://arxiv.org/abs/2103.12381