Il restauro dell'Adorazione dei Magi di Leonardo.
La riscoperta di un capolavoro

a cura di Marco Ciatti e Cecilia Frosinini
Foto di copertina:
Leonardo da Vinci, *Adorazione dei Magi*, 1480–1481, 244x240 cm, Firenze, Gallerie degli Uffizi, Galleria delle Statue e delle Pitture, inv. 1890 n. 1594, particolare dopo il restauro

Credits Fotografici

L’Editore rimane a disposizione degli aventi diritto con i quali non è stato possibile comunicare fotocopie per uso personale del lettore possono essere effettuate nei limiti del 15% di ciascun volume/fascicolo di periodico dietro pagamento alla SIAE del compenso previsto dall’art. 68, comma 4, della legge 22 aprile 1941 n. 633 ovvero dall’accordo stipulato tra SIAE, AIE, SNS e CNA, ConfArtigianato, CASA, CLAAI, Con/Commercio, Con/Fesercenti il 18 dicembre 2000. Le riproduzioni per uso differente da quello personale sopracitato potranno avvenire solo a seguito di specifica autorizzazione rilasciata dagli aventi diritto dall’editore. Photocopies for reader’s personal use are limited to 15% of every book/issue of periodical and with payment to SIAE of the compensation foreseen in art. 68, codicil 4, of Law 22 April 1941 no. 633 and by the agreement of December 18, 2000 between SIAE, AIE, SNS and CNA, ConfArtigianato, CASA, CLAAI, Con/Commercio, Con/Fesercenti. Reproductions for purposes different from the previously mentioned one may be made only after specific authorization by those holding copyright the Publisher.
Indice

Presentazioni
FRANCESCO SCOPPOLO, direttore Generale Educazione e Ricerca 7
MARCO CIATTI, soprintendente dell’Opificio delle Pietre Dure e Laboratori di restauro di Firenze 15
EIKE D. SCHMIDT, direttore delle Gallerie degli Uffizi 17
MARIA VITTORIA RIMBOTTI COLOMINA, presidente dell’Associazione Amici degli Uffizi 19

Studi storici
CECILIA FROSININI, L’Adorazione dei Magi e i luoghi di Leonardo 23
ELIANA CARRARA, Spunti per una rilettura delle biografie leonardiane 51
ROBERTO BELLUCCI, L’Adorazione dei Magi e i tempi di Leonardo 63
EMANUELA FERRETTI, L’architettura nell’Adorazione dei Magi di Leonardo da Vinci tra morfologia, fenomenologia e gerarchizzazione dello spazio: alcune considerazioni 109
CARMEN C. BAMBAKH, Leonardo, Michelangelo, and Notions of the Unfinished in Art 123
MARZIA FAETTI, Il divino e la Storia. Due disegni di Leonardo per l’Adorazione dei Magi 139
EMANUELA FERRETTI, Un arcipelago di simboli e memorie: tradizione e innovazione nel fondale architettonico dell’Adorazione dei Magi di Leonardo 151
ROBERTA BARTOLI, L’elefante al tempo dell’Adorazione dei Magi: un dettaglio tra mito, scienza e religione 161

Conservazione e restauro
MARCO CIATTI, Il restauro dell’Adorazione, tra “leggibilità” e metodo 173
GABRIELLA INCERPI, Note d’archivio: vernici, rinfrescature, rischieramento del “Chiaroscuro” di Leonardo 179
CIRO CASTELLI, ANDREA SANTACESARIA, La struttura lignea dell’Adorazione. Vicende conservative e restauro di un supporto costruito “al risparmio” 191
PATRIZIA RITANO, L’Adorazione dei Magi: stato di conservazione e restauro 203
APENDICE. Analisi non invasive e di laboratorio di supporto per la caratterizzazione dei materiali sovramessi a cura di BRUNETTO BRUNETTI, LAURA CARTECHINI, ALESSIA DAVERI, COSTANZA MILANI, FRANCESCA ROSSI 221

Tavole 223

Indagini diagnostiche
CARLO GALLIANO LALLI, GIANCARLO LANTERNA, ISSETA TOGINI, DARYA ANDRASH, MARCO ERETTI, FEDERICA INNOCENTI, Le campagne diagnostiche eseguite dal Laboratorio Scientifico dell’Opificio delle Pietre Dure per lo studio dell’Adorazione dei Magi di Leonardo 261
MARCO BARUCCO, ALICE DAL FOVO, RAFFAELLA FONTANA, ANDREA LA BELLA, ENRICO PAMPALONI, MARCO RAFFAELE, JANA STRIOVA, Indagini ottiche: misure colorimetriche per documentare il processo di pulitura e rilievo 3D ad alta risoluzione per lo studio della deformazione del supporto 275
PAOLO PINIGI, ELIANA SIOTTO, GIAMPAOLO PALMA, ROBERTO SCOPIGNO, Documentazione e analisi delle deformazioni del supporto ligneo e della superficie pittorica mediante rilievo 3D 281

Magdalena IwanciKa, Marcin Sylwestrzak, Anna Szkulmowska, Piotr Targowski, Pre-restoration condition of superficial layers of the Adoration of the Magi by Leonardo da Vinci as seen by optical coherence tomography 287

Massimiliano Pieracconi, Alessandro Spinetti, Il rilievo 3D dell’Adorazione dei Magi di Leonardo 295

Pietro Moioli, Claudio Seccaroni, Indagini di fluorescenza X 299

Lisa Castelli, Caroline Czelusniak, Lorenzo Giuntini, Pier Andrea Mandò, Anna Mazzinghi, Lara Palla, Chiara Ruberto, Francesco Taccetti, Analisi in Fluorescenza X a scansione 307

Antonio Liuzzi, Eugenio Mazza, Gianpaolo Iuliano, Reparto Investigazioni Scientifiche di Roma – Sezione “Impronte” Relazione tecnica dattiloscopica. Adorazione dei Magi 313
Pre-restoration condition of superficial layers of the *Adoration of the Magi* by Leonardo da Vinci as seen by optical coherence tomography

Magdalena Iwanicka, Marcin Sylwestrzak, Anna Szkulmowska, Piotr Targowski *

Introduction

In the case of such a unique artwork as the *Adoration* only non-invasive analytical techniques may be used extensively. Among others, optical coherence tomography (OCT) has proven its usefulness for examination of works of art. The technique originates from medical diagnostics in which it is routinely used mainly in ophthalmology, but also in dermatology, gastroenterology, oncology etc. 1. It is an optical interferometric technique with the specific advantage of being sensitive to changes in refractive index in the media under examination and to the presence of fine scattering centres. An OCT scan is further processed into a cross-sectional image (2D tomogram) of sub-surface structures of objects at least partially transparent to infrared (IR) radiation. The sequence of parallel scans can also be combined into volume data (3D cube). OCT offers high axial resolution: down to 1-2 µm if measured in air. Since the axial resolution increases in the media, the varnish and paint layers were imaged with an axial resolution equal to 2,1 µm. The depth of imaging of this instrument was 1,3 mm and its lateral resolution was about 13 µm. In a single 3D measurement structural information from areas up to 17×17 mm² were acquired. The distance to the object from the most protruding element of the device (the working distance) was 43 mm. The signal from the instrument was converted to images (tomograms) using lab-made software. The most representative OCT results are tomograms (fig. 2b and following). They are usually presented in a false-colour scale: cool colours (from dark blue to green) depict low-scattering areas, while warm colours (from yellow to red) represent high-scattering or reflecting structures. Non-scattering media: air above the object, clear substances like glass and some varnishes, as well as areas not reachable by the probing beam, (i.e. below an opaque layer), are shown in black. In all of the tomograms presented here, the probing light approaches from the top (for the horizontal tomograms) or from the right (in the case of a vertical tomogram, fig. 2b), and thus the first, strongly reflecting and/or scattering layer is the surface of the painting (air-varnish interface). It must be noted that for better readability of the images, the in-depth scale is expanded in comparison to the lateral one as shown by scale bars. As it has been mentioned above, within the media (varnishes and glazes in this case) the axial dimensions of the structures are extended. Thus two axial scales are shown in all tomograms: one for the axial dimensions above the surface and one for axial dimensions within the medium imaged. Since data from *Adoration* was collected in 3D modality (usually 100 tomograms taken over the square area of 12x12 mm²) another way of presenting data was also adopted. It allows mapping of the internal...
structures with different scattering properties lying parallel to the surface of the painting. This method of data analysis, called gate imaging, is described in detail elsewhere. Briefly: from the 3D data cube the slice of voxels of a given thickness (the width of the gate) has been extracted from a given depth (the depth of the gate) under the surface of the target. This way the slice is always parallel to the surface of the painting, independent of its tilt (which is necessary to avoid specular reflections of the probing OCT beam during imaging). The data from the given lateral position in the slice were then averaged and presented in the same false colour scale as OCT tomograms forming 2D maps.

The tomography was performed at the Opificio delle Pietre Dure before the restoration began – between February 27 and March 1, 2012 – in 25 spots (fig. 1) at various locations on the painting for areas from 7x7 mm² up to 17x17 mm², as required.

The imaging sites were chosen to address specific restoration questions. The major issues were the number and thickness of varnish layers, the location of certain discoloured/blanched layers obscuring the painting, and the depth position and range of retouching.

Results
As mentioned above, the OCT technique is limited to the examination of transparent and semi-transparent structures. For paintings, the combination of three factors affects the layers’ transparency in infrared: the thickness, the pigments used, as well as the pigment-to-binder ratio.

Although most pigments are impermeable to near-IR radiation when applied in thick layers, the paint layers in the Adoration have varied thickness which makes some of the veil-like paint layers accessible for OCT imaging. For instance, paint layers of different trans-
A drip of varnish that stopped and dried at the tent-shaped deformation of the paint layer (fig. 3a). As is shown in the image, the bottom edge of the droplet is lighter in visible light and shows stronger UV-induced fluorescence. In the area marked with a yellow square, the OCT data were collected as a series of 100 vertical scans, forming a 3D data cube. One of the tomograms collected over the droplet is presented in fig. 3b. It can clearly be seen that the droplet (thicker varnish layer) dried above the tent-shaped deformation. The two layers of varnish (upper – more scattering, and bottom – more transparent) are evident. The upper one is a thinner layer of the droplet which is formed mostly by the bottom one. Therefore it is justified to conclude that the fluorescence originates from this bottom varnish.

The droplet itself is quite visible in the gated OCT image (see methodology section for explanation). Here the signal was integrated from the thin slice located at a depth between 19 µm and 21 µm (fig. 3c). There is no doubt that the varnish forming the droplet is less scattering. Moreover, OCT enables a precise profilometry of the painting’s surface (fig. 3d). The tent-shaped deformations and the droplet are clearly visible.

A similar varnish sequence is visible over the area of drying cracks (fig. 4). Again, two layers of varnish are discernible. The upper layer scatters more and is thicker than the bottom one. A drying crack (3 in fig. 3a) is visible in the OCT image.
Il restauro dell’Adorazione dei Magi di Leonardo. La riscoperta di un capolavoro.

In contrast to the situation shown in figures 3 and 4 where the layer of highly scattering varnish extends over the whole area of examination, there are also areas where optically altered vertical stripes, obviously not belonging to the composition of the painting, are clearly visible (fig. 5a). Comparison of tomograms in figures 3b and 5b indicates that the scattering varnish layer 2a in figure 5b is of similar thickness as layer 1 in figure 3. In this case, however, it constitutes the bottom layer. The left hand side of the area examined appears significantly darker. A possible explanation could be as follows: on the left side both layers of varnish are transparent (1, 2) and thus it is possible to differentiate them only thanks to the existence of some scattering centres at their interface. On the right side, the scattering bottom varnish (2a) is covered by a thin layer of transparent varnish (1a). In this area, the varnish significantly obscures the visual appreciation of the painting. The scattering centres are distributed homogeneously in the bulk of the varnish (2a), and indicate alteration of its structure, i.e. microcracks. These create a blanching effect on a macroscopic scale, and are usually caused by exposure to excessive moisture. The vertical orientation of these areas suggests streaks of water running down the surface of the painting at some unidentified past time.

One of the issues raised by the restorers was the nature of specific whitish deteriorations running along some horizontal cracks (fig. 6a). UV-excited fluorescence (fig. 6c) imaging did not reveal the presence of any recent secondary layers. The OCT tomograms (fig. 6b, d) show a thin superficial layer of blanched varnish below the crack. It is reasonable
to assume that it was caused by increased water concentration at the crack. It must be noted, however, that there is no trace of delamination of the varnish layer(s) in this area. Such an internal lateral crack, if existing here, would have been exquisitely visible in the OCT examination (compare detail 1a in fig. 4b) due to the rapid change of refractive index at the media/air interface within a delamination 11.

In the area of the standing man’s shoulder, UV excited fluorescence imaging indicated the presence of contemporary retouchings (fig. 7a). In the OCT tomosgram, this area (left side of fig. 7b) was transparent down to 100 μm. Although the secondary paint was
Il restauro dell’Adorazione dei Magi di Leonardo. La riscoperta di un capolavoro

Il restauro dell’Adorazione dei Magi di Leonardo. La riscoperta di un capolavoro

la body of the filling material is transparent, indicating the possible use of wax putty. The filling was applied in two layers and did not even out the painting surface properly.

Another deterioration specific to the Adoration was the presence of dark round deposits of 1-2 mm in diameter. They visually affected many areas of the painting, especially light coloured ones. These features were scanned with OCT in a few different areas (spot 17, see fig. 8, as well as spots 1, 7, 9) yielding the same conclusion. They are highly IR-absorbing protruding deposits (3 in fig. 8c) located under the varnish layers (1).

Conclusions

The Adoration of Magi by Leonardo da Vinci is unique not only from the obvious artistic point of view but also due to its structure – as an unfinished masterpiece. The few, thin layers make it a challenge for structural examination by means of OCT. Nevertheless, the analysis of all tomograms collected leads to the following general conclusions.

The structure of paint layers is seen in this examination to a limited extent due their partial opacity, as is usual with OCT. Nevertheless, in many areas one is able to follow Leonardo’s specific painting technique of building the form with thin, veil-like layers (fig. 2b, fig. 6, fig. 8). Deep shadows and dark brown brush-strokes, on the other hand, strongly absorb the OCT infrared probing beam. In some areas, even the preparatory drawing with carbon black (fig. 2d) can be detected under semi-transparent paint.

In the majority of tested areas there are two layers of varnish. These may be difficult to distinguish in a single cross-section in which they are often visible only locally. However, the analysis of a series of adjacent cross-sections strongly supports this conclusion. It must be also noted that very thin layers (under about 2 µm), if present, might have been overlooked due to the limitation of the axial resolution of OCT. The overall thickness of the varnish in most cases varies from 10 µm to 20 µm.

In addition to general conclusions about the varnish layer structure, several specific issues regarding the state of preservation of the painting were addressed during the imaging. Discolouration (in the form of vertical stripes) in the area of the mantle of the standing man (fig. 5, confirmed also at spots 8, 20 in fig. 1) corresponds to strong scattering in the bulk of the thick varnish layer visible in the OCT tomograms, which indicates the phenomenon of varnish blanching. In the same area of the composition, two
layers of varnish with different properties have been identified (fig. 4). The upper one contains more scattering particles compared to the bottom one. Both layers fill in drying cracks of the paint layer. At the spot shown in Fig. 3, a similar structure of varnish layers is visible in the tomograms. The OCT scanning was performed over the droplet at the end of a drip of varnish (strong UV excited fluorescence). It is evident, that the droplet is formed from the bottom layer of varnish. Whitish matt borders around certain cracks (fig. 6) correspond to blanching of the top layer of varnish, possibly caused by accumulation of condensation water at the crack.

The latest retouchings (black in UV excited fluorescence imaging) are transparent in OCT examination, as well as two thick layers below – possibly a wax putty (fig. 7).

The position of frequently occurring dark round deposits was determined; they are covered with varnish (fig. 8, confirmed also at spots 1, 7, 9 in fig. 1).