Optical & Surface Metrology Applied to the Study of Photographic Surfaces

Patrick Ravines

Photographs

- Various manifestations
- Surfaces & their importance
- Confocal principle
- Examples:
 - daguerreotypes
 - silver gelatin

Jean Baptiste Sabatier-Blot Louis-Jacques-Mandé Daguerre (1844) Daguerreotype (Sixth plate, 6.9 x 9.1 cm)

Southworth & Hawes [Reverend Rollin Heber Neal] (1850-5) Daguerreotype (Whole plate - 16.5 x 21.5 cm)

E.T. Whitney Unidentified girl seated on top of a table, next to a chair (ca. 1855) Ambrotype (quarter plate, 8.2 x 10.7 cm)

Gustave Le Gray Seascape (ca. 1855) Albumen print (30.0 x 37.8 cm)

Julia Margaret Cameron Alvin Langdon Coburn (later photographer/printer) Sir John Herschel (1867)

(Print by A.L. Coburn, ca. 1915, from copy negative of original print)

Pt print, tinted stock, mechanically varnished (25.7 x 19.4 cm)

Henri Le Secq Chartres, portal with wooden supports (ca. 1851) Cyanotype (32.2 x 21.5 cm)

Ansel Adams Moonrise, Hernandez, New Mexico (1941) Ag gelatin print (50.0 x 68.0 cm)

Manuel Alvarez-Bravo Umbral (Threshold) 1947 (print 1977) Ag gelatin print (24.2 x 19.4 cm)

Looking & seeing Perception -> Appearance

- 1. Illumination
- 2. Optical Properties (reflection, refraction, etc)
- 3. Surface geometry

Looking & seeing Perception -> Appearance

- 1. Illumination
- 2. Optical Properties (reflection, refraction, etc)
- 3. Surface geometry

SURFACE GEOMETRY/TOPOGRAPHY: Roughness, Waviness & Form as surface parameters (Whitehouse 2002)

a. Typical surface parameters: roughness, waviness and form.

b. Surface texture constituents: roughness and waviness.

MEASURING SURFACE GEOMETRIES

Confocal Principle: Marvin Minsky 1955

- Focal point of the objective lens (1) forms an image where the pinhole screen is, those two points are known as "conjugate focal points", hence "confocal".
- Unfocused light/background haze is blocked out by pin hole screen.

Confocal Topometry

NanoFocus, AG Oberhausen, Germany

<u>µSurf</u>

Confocal Topometer

10x, 20x, 60x objectives

μSurf Confocal Topometer

NanoFocus µSurf Confocal Topometer

Optic Modules

	1600 S	800 L, S, XS	320 L, S, XS	260 XS
Magnification (Objective power)	(10x)	(20x)	50x	60x
Measuring field (μm)	1600x1600	800x800	320x320	260×260
Numerical aperture	0.3	0.4 / 0.45 / 0.6	0.5 / 0.8 / 0.95	0.9
Working distance (mm)	11.0	12.1 / 3.1 / 0.9	10.6 / 1.0 / 0.3	0.4
Resolution in z-direction (nm)	(20)	6/5/4	4/2/2	(2)
Resolution in x,y-direction (µm)	3.1	1.6	0.7	0.5.

Daguerreotypes

Southworth & Hawes [Unidentified Child] (ca. 1850) Whole plate (16.5 x 21.6 cm)

Cincinnati Waterfront 8 Plate Panorama Daguerreotype Fontayne & Porter (1848) Public Library of Cincinnati and Hamilton County

Cincinnati Waterfront 8 Plate Panorama Daguerreotype, Fontayne & Porter (1848) Public Library of Cincinnati and Hamilton County

Detail from river boat:

Image = Surface

Stereomicroscope raking light

Southworth & Hawes [Unidentified Man] ca 1848-50 Whole plate 16.5 x 21.6 cm

Isometric view

Contour view

EXFOLIATION

Stereomicroscope & raking light

Reflection/Bright Field 20x obj.

Isometric view

32

 $0.961 - 0.715 = 0.246 \ \mu m$

 $0.808 - 0.627 = 0.181 \ \mu m$

Thickness range: 0.165 to 0.246 µm

Ag Gelatin Photographs

Imogen Cunningham Roberta (1959) 24.0 x 18.4 cm

Ilford Glossy paper

- Evaluation of Surface Changes of Ilford Silver Gelatin Prints After of Wetting & Drying.
- Exposed, developed without hardener, dried & treated (humidified, wetted & application of various drying techniques)

Ilford Glossy Silver Gelatin Double Weight Papers

		mora Grossy Sirver Genauli Double Weight Labers
7	Treatment No	Experimental Protocol
	0	Control, not treated.
	1	Humidified 7 hours at room temperature; dried and flattened in a drymount press at 80°C for 1 minute with silicone release paper in contact with silver gelatin emulsion.
	2	Flattened in a dry-mount press at 80°C for 1 minute with silicone release paper in contact with silver gelatin emulsion; no humidification.
	3	Humidified 7 hours at room temperature; dried and flattened at room temperature under weights (5.23 kg) with a polyester non-woven (Hollytex no. 321, 71 μ m thickness) in contact with the silver gelatin emulsion.
	4	Humidified 7 hours at room temperature; dried and flattened at room temperature under weights (5.23kg) with a highly calendered paper in contact with the silver gelatin emulsion.
	5	Water immersion for 20 minutes; lined with Dacron cloth and Japanese paper on a rigid Plexiglas support; allowed to air dry for one week before removal from Plexiglas.
	6	Humidified between wet blotters and Gore-Tex sandwich; lined Japanese style and dried emulsion side 'in' on a Karibari drying board.
	7	Water immersion for 2 hours (fully swells gelatin); dried with blotters to remove excess moisture at 10, 20, 30 and 60 minutes; then dried and flattened under pressure for 1 week.
	8	Humidified 7 hours at room temperature; dried and flattened using 42 lbs/19 kg of weights at room temperature with Gore-Tex in contact with the silver gelatin emulsion.

Ilford Glossy paper

A0: Control

Isometric view

Reflection/Confocal BF

20x objective

Height Parameters: Sa = $0.107 \mu \text{m} \& \text{Sq} = 0.139 \mu \text{m}_{8}$

Ilford Glossy paper

A1: Treated - humidification 7 hours; dried & flattened in a heated (80°C) dry mount press

Reflection/Confocal BF

Isometric view 20x objective

<u>Height Parameters</u>: Sa = $0.0883 \mu m \& Sq = 0.119 \mu m$

Ilford Glossy paper

A7: Treated – immersion in water, dried between blotters image side facing non-woven (Hollytex)

Height Parameters: Sa = $0.141 \mu m \& Sq = 0.237 \mu m$ 40

Ilford Glossy paper – roughness analysis Comparison of height parameters:

Ilford Glossy paper Comparison of <u>roughness</u>, *Sa & Sq*, for all papers:

Ilford Glossy paper Comparison of <u>waviness</u>, *Sa & Sq*, for all papers:

Summary

- Original objects safely examined
 - Non-perturbing: non-contact, non-invasive
 & non-destructive technique
- Quantitative surface information
 - > x, y, z array of data
- **3-D** visualization of all types of photographic (*all art*) surfaces

Summary

Applications in Conservation

- Surface Characterization
 - > All types of photographic surfaces
 - Daguerreotypes
 - > Silver gelatin
 - > Cyanotypes
- > Follow & evaluate treatments
 - > Quality assurance/control
 - > Goal to improve treatments &
 - > Minimize intervention (damage)

Summary

- **Applications in Conservation** (contd.)
 - Monitor condition through time
 - > Photograph/object becomes the sensor
- Complements other imaging and analytical techniques
 - High resolution digital photography
 - **▶** Light microscopy (BF, DF, DIC...)
 - Others...
- **❖** Mine 3D data further...

Surface profilometry Surface roughness Surface geometry Topography Topometry Topology

Acknowledgements

Andrew W. Mellon Foundation

NanoFocus, AG: Hans Hermann Schreier & Christian M. Wichern

GEH: Ralph Wiegandt, Jiuan-jiuan Chen, Joe Strubble, David Wooters & Barbara Galasso

Gustave Le Gray The Great Wave, Sète (ca. 1857) Albumen print (34.8 x 41.5 cm)