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Abstract. The transient-state stability analysis for the trajectories of Tyson’s equations for the
cell-division cycle is given by the so-called KCC-Theory. This is the differential geometric theory
of the variational equations for deviation of whole trajectories to nearby ones. The relationship
between Lyapunov stability of steady-states and limit cycles is throughly examined. We show
that the region of stability (where, in engineering parlance, the system is “hunting”) encloses the
Tyson limit cycle, while outside this region the trajectories exhibit aperiodic behaviour.

1. Some Biology

Living biological systems are very complex but, at the same time, they are highly
ordered in a remarkably efficient way. Such systems store the information and
the means necessary for cellular reproduction, organization, control, etc. in each
generation. This information is stored for any particular species in the genome,
which is the total collection of genetic material in the chromosomes of an organ-
ism. This genetic information is encoded in molecules of DNA, which is a double
helix molecule containing the four bases: adenine (A), guanine (G), cytosine (C)
and thymine (T). It is known that a large number of cell types are capable of
protein production and its self-regulation and control. The regulatory mechanism
in cellular physiology starts with the synthesis of mRNA copied from a gene. This
process is called transcription.

Next, a protein (an enzyme) is generated according to the genetic code carried
by mRNA. This second step is called translation. The enzymes act on definite
compounds called substrates. There are several biochemical reactions in which
the enzymes are involved, but we mention here only association (two proteins
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combine together to form a complex) and disassociation (a substrate splits in two
reaction products: an enzyme and a product).
For example, consider the simple reaction

k1
S+E — SE 2 P+E, (1.1)
k_1

where k1,k_1, ke are constant rate parameters. The double arrow symbol = in-
dicates that the reaction is reversible, while the single arrow — indicates that
the reaction can go only one way. The overall mechanism is the conversion of
the substrate S, via the enzyme catalyst E, into a product P. One molecule of S
combines with one molecule of E to form one of the complex SE, which eventually
produces one molecule of P and one molecule of E, again.

The Law of mass action states that the rate of a reaction is proportional to
the product of the concentrations of the reactants. If we denote by s,e,c,p the
concentrations of the reactants S, E, SE, P, then (1.1) leads to the following system
of differential equations:

% = —kies+k_qc, % = —kjes+ (kfl + k‘g)c,
(1.2)
% = kies — (k—_1 + ko)c, % = koc.

The method of describing biochemical reactions of type (1.1) by means of systems
of differential equations of type (1.2) is called the Michaelis-Menten kinetics. Tyson
used a set of six equations similar to (1.2), but more complex, to model the cell-
cycle [10].

2. Tyson’s Model for the Cell Division Cycle

Somatic cells reproduce by duplicating their contents and then dividing in two.
This cell-division cycle is the fundamental means by which all somatic cell types
are duplicated in an individual. The cell cycle has four phases: interphase, mitosis,
synthesis and some gap phases.

NN (2.1)
. _ o e’
interphase division

During interphase the cell grows continuously; during mitosis (M) it divides
(mitosis is the process of nuclear division). DNA replication takes place in the
part of interphase known as synthesis (S). The G phase is the gap between the
completion of mitosis (M) and the beginning of DNA synthesis. The G5 phase is
the interval between the end of DNA synthesis and the beginning of mitosis. The
standard cell cycle (for adult somatic cells) is generally quite long in mammalians,
its length depending on the type of cell (for brain cells a very long period, and for
the liver a shorter period). Cells in G, if they have not yet committed themselves
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Fig. 1: The cell cycle regulatory pathway.

to DNA replication, can pause in their progress through the cell cycle and enter a
specialized resting state, often called GGy, where they can remain for days, weeks
or even years before resuming proliferation [1]. This is a very important state
because if the G; phase is too short, or G is missing, the cell continues to divide
endlessly. This abnormal behaviour of the cell is usually called cancer.

The shortest (eucaryotic) division cycle is the early embryonic cell cycle that
occurs in many embryos immediately after fertilization, serving to subdivide a
large egg cell into many small cells as quickly as possible. In these cycles no
growth occurs and the G, G2 phases are drastically curtailed [1].

(PR N N LN N (2.2)

The mitotic cycles in both embryonic and somatic cells appear to be controlled
by the action of an enzyme, the maturation promoting factor (MPF), that peaks
abruptly at metaphase (M). The enzyme MPF is a heterodimer composed of two
other proteins: cyclin and a protein kinase (cdc2). The interplay between cyclin
and cdc2 in generating MPF is understood in detail.

Based on the Michaelis-Menten theory, and after considerable simplification of
the chemistry, the cell cycle regulatory pathway can be expressed by the following
system of differential equations of Tyson:

du
dt
dv
dt

= (v —u)(k+ kqu?) — keu,

= kl - k‘gu, (2.3)
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where v and v are the relative concentration of active MPF and total cyclin minus
degraded cyclin relative to total cde2, respectively [10]. The parameter ranges are
as follows:

e k£ =0.018 min—! is the rate constant for the dephosphorylation of cdc2,

e k1 =0.015 min~"' is the rate constant of cyclin synthesis,

ks = 10 — 1000 min ' (adjustable) is the rate constant describing the auto-
catalytic activation of MPF by the dephosphorylation of cdc2,

ks = 0.1 — 10 min~! (adjustable) is the rate constant describing breakdown
of the active cdc2—cyclin complex.

Tyson [10] has shown that, depending on the values of k4 and kg, the cell cycle
regulatory system exhibits three different modes of control. For small values of kg,
the system displays a steady state of high MPF activity, which can be associated
with the metaphase arrest of unfertilized eggs (A). For moderate values of kg,
the system executes autonomous oscillations modelling rapid cell cycling in early
embryos (B). For large values of kg, the system is attracted to an excitable steady
state of low MPF activity, which corresponds to interphase arrest of resting somatic
cells or to growth-controlled bursts of MPF activity in proliferating somatic cells
(C).

In the following, we are going to use the KCC-theory in order to gain informa-
tion on the Jacobi stability of the total cyclin trajectory, denoted by v(t) in the
differential system (2.3). It is known that the level of MPF is the parameter that
leads the cell through the cell cycle. We now briefly remark here on the role of
cyclin.

It is known that the cyclin accumulation and destruction control the activation
and inactivation of MPF. In other words, the cyclin has to build up to a threshold
concentration to activate MPF, and the destruction of cyclin is coupled to inacti-
vation of MPF and exit from mitosis. This is relevant for the cell cycle because if
the destruction of cyclin is delayed, or the level of cyclin does not decrease below
threshold value, the cell stays in mitosis, i.e. divides continuously. This is a model
of cancer dynamics.

3. The KCC Theory

We now study the Tyson model given by the system (2.3) by means of KCC theory
in the formalism of P. L. Antonelli [2, 3].

Let us recall first some basics. Let (z!,...,2") = (z),
(d_ﬂﬂl da” B ()~
at > at e ) T \at) T

and ¢ be 2n+1 coordinates of an open connected subset  of the Euclidean (2n+1)-
dimensional space R” x R” x bBR'. And let us consider a second order differential
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equation (SODE) of the form

d?

W—i—gi(az,i,t) =0, i€{1,2,...,n}, (3.1)

where each function g*(z, &, t) is O in a neighbourhood of some initial conditions
((I)U, (j?)g,to) in Q.

In order to find the basic differential invariants of the system (3.1) under the
non-singular coordinate transformations

ji = fi(xl,...,flfn), i6{1327"'1n}a
Pt (3.2)

we define the KCC-covariant differential of a contravariant vector field ¢(z) on
the open subset €2 by

D¢ ' 1, .
where the semicolon ; indicates partial differentiation with respect to . The idea
of this approach belongs to Kosambi [6] and to E. Cartan [4] (who corrected his
work) and S. S. Chern (for the most general version) [5]. The Einstein’s summation
convention is used throughout.

Using (3.3), the system (3.1) becomes

Dit 1 .. . .
G = g g = (3.4

where €’ defined here is a contravariant vector field on © and is called the first
KCC-invariant. Tt is interpreted as external force [2].
If the trajectories x*(t) of (3.1) are varied into nearby ones according to

T'(t) = 2'(t) + €W, (3.5)

where 7 denotes a parameter with || small and where €(t) are the components of
some contravariant vector field defined along z*. Substituting in (3.1) and taking
the limit n — 0 one obtains the variational equations

d2£i
dt?

e

o +g' " =0, (3.6)

+g'

where the comma, , indicates partial differentiation with respect to z".
Using now the KCC-covariant differential (3.3), one obtains (3.6) in the covari-
ant form

D2£i .
—5 = P, (3.7)
where )
. 1 1. 1 1 dg'.;
Pl =g 590w+ 58 0w+ 7000 +5 5" (3.8)

2 2 4 2 ot
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is called the second KCC-invariant of the system (3.1), or deviation curvature
tensor. Its eigenstructure is an alternative to the classical Floquet theory, with
the eigenvalues of PJZ replacing the Floquet exponents [8]. Thus, the eigenvalues of

P; have negative real parts if and only if the Floquet exponents have negative real
part. Note that (3.7) is the Jacobi field equation when the starting system (3.1)
are geodesic equations in either Finsler or Riemannian geometry. This justifies our
usage of the term Jacobi stability for KCC-Theory.

The third, fourth and fifth invariants are:

: 1

ik = 3 (Pigke = Piyj)
Bj'se = Ry, (3.9)
Dj've = Gjipse-

A basic result of the KCC-theory is the following

THEOREM A Two SODE’s of form (3.1) on Q can be locally transformed, relative
to (3.2), one into other, if and only if their five KCC-invariants e, Pf, Rj, Bjikg,
Djikg are equivalent tensors. In particular, there are local coordinates (Z) for which
g"(Z,z,t) = 0 if and only if all five KCC-tensors vanish.

In order to clarify, within Lyapunov theory, the distinction between the stabil-
ity of a steady-state, as given in the linear analysis, and Jacobi stability of whole
trajectories or transient-states, as considered in KCC-analysis, let us consider the
one-dimensional case

T = vy,
= —g(@y). (3.10)

with a steady-state given by (zg, yo). The variational equation (3.6) in this case
takes the form

£+ (931)05+ (9,11)05 =0, (3.11)

where the coefficients are evaluated at some fized reference trajectory (xo(t), yo(t))
and are functions of the parameter along this curve, ¢t. In case they are evaluated
for the steady-state (z¢,0), and are therefore constants, we get the linear stability
analysis equation, which results from expanding g(z,y) in first order around the
steady-state. As KCC-analysis starts with a reference trajectory, i.e., a fixed solu-
tion of (3.1), which is not a steady-state, it is concerned with Lyapunov stability of
whole trajectories, while linear stability analysis is based on deviation with respect
to a point, namely, the steady-state [8].

Note that, if we evaluate P} at the steady-state (z¢,0), then we will have sim-
ply P! = —9,11 + (9}1)2/4, and, from the linear analysis of (3.11), the roots of the

characteristic polynomial are r = —(g;ll)/2 + /P[. Thus, the sign of the damping
coefficient (9;11)0 determines the stability of the steady-state, but has no influence
on the curvature P}. Tt is also true that replacing ¢ by —t changes the sign of
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the damping coefficient and that, generally, the equation (3.7) is invariant under
time-reversal as long as g’ is independent of ¢. Therefore, there is a Lyapunov sta-
bility analysis for steady-states (so called linear analysis) and there is a Lyapunov
stability analysis for whole trajectories (also known as KCC- or Jacobi stability
analysis), and these are complementary but distinct from one another.

4. KCC Theory for Tyson Model

In order to study Tyson’s model of the cell cycle by means of the KCC theory
presented above, we first eliminate the variable u. The Tyson model (2.3) can be
written as a SODE:

@+ g(z,y,t) =0, (4.1)

where we have put z = v, and y = dz/dt and
g =AyP+(Bx+0)y*+(Dz+E)y+Fr+G. (4.2)

The constants A, B,C, D, E, F,G can be expressed by means of the parameters
k1,ky, ... from (2.3). Applying KCC theory, we investigate the stability of pro-
duction of the total cyclin (relative to the total cdc2).

The SODE (3.1), for n = 1, has deviation curvature

1 1 1
pl = —9,11 3 919;11;1 + 3 yg,lm + 1 9;119;11 (4.3)

or, taking ¢g' = g, as in (4.2),
1 3 2.4 3 3 3 2
P = —ZAy + (—ABzx — AC)y —i—(—EEA—EDAx)y

+(—%D—31%43;—3GA)y+GD?—FB)I2 (4.4)

+(—GB+%DE—FC);E—F—GC+%E2

obtained by means of the computer algebra package FINSLER [9], based on MAPLE
[7].

We consider an one-dimensional SODE of form (4.1) where the function g(z,y, t)
is C* in a neighbourhood of some initial condition (zg,%,ty) € © C R3. In one-
dimensional case, the Jacobi field equation, or variational equation in covariant
form (3.7), D2¢!/dt? = Pl¢!, indicates that the deviation will be periodic, as
for the simple harmonic oscillator, if P} < 0, and aperiodic otherwise, as for the
wave-guide equation (similar to an harmonic oscillator with reverse sign), where
the trajectories diverge. We may therefore state [2]

PROPOSITION 4.1

a. The trajectories of (4.1) are Jacobi stable in Q if and only if P} < 0 everywhere
in Q. This is equivalent to periodic deviation for (3.7).
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b. The trajectories of (4.1) are Jacobi unstable in Q if and only if P} > 0 every-
where in Q. This is equivalent to aperiodic deviation for (3.7).

Let us begin our calculations. Using the above notations, from (2.3) we get

1ok . (whoks — 3k ka)y®
9 k2 kg
3 _ 2 2 2
| (R — 2ukshaky + kK + 3kak)y (4.5)
k
6
N wkgk + akokaki — kik§ — kikkg — kak? (4.6)

9 )
kﬁ

and therefore we have A = ky/k2, B = ka/ke, C = —3k1ks/kE, D = —2ksk1 [k,
E = (k3 + kk2 + 3kak?) /K3, F = kek + (kak?) [kg, G = (—k1k§ — k1kkZ — k4k3) /2.
The final expression for P} thus becomes

k‘2 4 k‘2 k‘2k
pl o= 3k (-2 +350 )y
4 kg kg kg
+<3k§k1x_16k4kg’+6k4kk§+18k2k%)y2
kg 4 kg
+<_1(12k6k§k%+12k4k§k)x
4 kg
o 3 _ 273 _ 2
1 —16ky ki kg — 12k5 Ky 12k4k1kk6>y—k4km2
4 ka
L (Ake kiR —12ka ki ki k)@
4 ki
12Kk + 3K R + 103 ka b — K2 Rd + 6 ka kP B k2 — &S
1 ki '

Let us remark that the curvature tensor P| is a fourth order polynomial in
y whose coeflicients are functions of x, the parameters k4 and kg, as well as the
other k’s.

Let us consider the steady states, say (ug, vg) of the system (2.3). This are the
solutions of the system

(v —u)(k —ku?) —keu = 0,
kl - k‘gu = 0.
In our notation, by eliminating the variable u, we obtain as steady state the point
(an 3/0) = (an (d’l)/dt)g) € TMa where
k1 (k§ + kkZ + kyk?)
(kkZ + kak?)kg

Zo
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In Tyson’s work the parameters k and k; are constant, while k4 and kg vary
within a range, describing three distinct modes of the cell developmental cycle.
Here, we will keep k4 also constant, as it suffices to vary kg to span all the modes.
So, we will take

k = 0.018, k1 = 0.015, ky = 180, (4.8)
leading to specific boundary kg values for regions A, B, C, namely

modeA: [0.1,0.2),
modeB: [0.2,1.5),
mode C: [1.5,10].

With these values, the steady state (4.6) becomes o = zo(ks), yo = 0. We
wish now to determine P in the neighbourhood of (zg, o). By continuity of
P!, it will suffice to compute the curvature coefficients P} (zg, ). The equation
Pl (z0,90) = 0 has two real solutions:

KD = 01924781307, kP = 1.900932822,

and the graph of the function Pl (xo,yo) against kg, divided into the three distinct
regions A, B, C, are as follows.

Next, we will allow the value of the parameter ks to vary along its range,
plotting P{(zo, yo) against the two control parameters k4 and kg. The results of
Jacobi stability analysis are compatible with the classical phase plane analysis (see
last paragraphs in section 3 for detail).

Next, it follows graphs of P} (z,y) for transient states in the regions A, B and C.
We have chosen values of kg within each region such that, for the particular point
(z0, Yo), the steady-state within the (x,%)-range considered, P! (xo, o) assumes
a special value. In the graphs, we have (v, vt) = (z, y) as variables.

For mode A, we took kg such that Pj(zg, yo) = 0, the steady-state around
which trajectories start to converge, as they do all along region B. This point may
be interpreted as the response of the (unfertilized) egg to a chemical change that
will lead to rapid growth in the following stage, such as fertilization.

For mode B, we have two graphs, one for each local minima within this region
of negativity for P! (zg, yo). The first, or deepest, can be associated with Tyson’s
limit cycle, and the second with Tyson’s excitable switch.

For mode C, we again took kg such that P} (zg,yp) = 0, marking the limit of
the (small) kg-range within this region where P} (zg,y0) is negative. This point
indicates the limit in kg-values for which the cell “switch back” into region B,
typical of the excitable state described in Tyson’s work.

We can see with the last four graphs above that none of the characteristics
chosen for P} (xg,y0) (namely, P} (zq,yo) = 0 for graphs 7 and 10, and P (zo, yo)
a local minima for graphs 8 and 9) are preserved as we move away from the steady-
states into transient ones, (z,y). Those characteristics, linked to known results
from Tyson’s model, occur at the steady-states, the dynamics changing when the
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Fig. 2: This graph shows P[(zo,y0) at the steady-states for kg varying within
region A. The deviation vector is aperiodic for most of the range. Note that it
becomes periodic for kg values close to the B range.
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Fig. 3: This graph shows Pl (zg, o) at the steady-states for kg varying within
region B. The deviation vector is periodic for all of the range.
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Fig. 4: This graph shows Pl (zg, yo) at the steady-states for kg varying within
region C. The deviation vector is aperiodic for most of the range.
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Fig. 5: This graph shows P} (z, o) at the steady-states for kg varying within the
beginning of region C. The deviation vector is still periodic for kg values close to
the B range.
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Fig. 6: This graph shows P}(zp, yo) at the steady-states against k4 and kg, for
the whole range of k4 and the range of kg for which negative values of P! (zo, yo)
occur, describing essentially mode B in the model. We can see that, for every value
of k4 there are two points of minimum P! (zg, yo), corresponding to two values of
kg (associated respectively to the limit cycle and excitable switch in the model),
the first always being deepest. These valleys increase in depth with increasing ky4
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(associated with the limit cycle in the model), corresponding to the point (v =
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Fig. 9: This graph shows P/ against = (v in the graph) and y (vt in the graph)
for ky=180 and k¢ = 1.460381230, for which P!(zg, yo) (Fig. 3) has its second
minimum point (associated with the excitable switch in the model), corresponding
to the point (v = zo = 0.4157874576, vt = yo = 0, P} = —0.0540182526) in this
graph.
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Fig. 10: This graph shows Pl against x (vin the graph) and y (vt in the graph)
for k4=180 and kg=1.900932822, the unique kg-value within region C such that
Pl (z0,90) = 0 at the steady-state (z = 0.5214518040,y = 0).

system enters transient states. The perturbations around steady-states must be
rather small in order to preserve expected behaviour from the system.

On the other hand, the transient analysis shows that, for values of kg up to
middle range within region B, the system goes unstable (P} positive) when v (the
total cyclin) is large and decreases (vt = dv/dt < 0). The larger v and |vt| are,
the more unstable the dynamics. Some stability (P] negative) is observed when v
is small and decreases (vt = dv/dt < 0). As for increasing v (vt = dv/dt > 0), the
stability is unaffected, regardless the amount of v (Figs.7 and 8).

From middle range kg values within region B onwards, the dynamics changes
and becomes stable (P} negative) for small values of v and unstable (P positive)
for large ones, unrespective of vt = dv/dt (Fig. 9 and 10).

5. Conclusion

Evaluating the deviation curvature tensor P}, associated with the second-order
ODE obtained from the original equations, at the steady-states of the system
give us information about the behaviour of trajectories, or transient (non-steady)
states, in an open region, or neighbourhood, of these steady-states. In region A,
the unfertilized egg stage, the deviation vector is aperiodic for most of the kg-
range, becoming periodic (Jacobi stable) close to region B. In the B stage, rapid
cell cycling in the early embryo, the deviation vector is periodic for the whole
ke-range, with two distinct local minima, the deepest being associated with the
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Tyson limit cycle and the other, being close to the boundary with region C, is
associated with Tyson’s excitable switch. Region C, near the boundary with B,
has P} (o, o) still negative, but as kg increases this becomes positive and ever
more so. Thus, in most of region C, the deviation vector is aperiodic and the
process is Jacobi unstable. But, close to the B-boundary, the cell exhibits bursts
of growth-controlled (ky, k¢) MPF-activity. Allowing k4, kg to change (the above
has k4 = 180) we still have the two minima in the negative P} (zg,yo) region for
most of the k4-range (see Fig. 6).

Comparing the two analytical methods, we have that, in the work of Tyson,
several steady-states are investigated using the standard linear analysis, determin-
ing the three distinct regions along the range of the parameter kg (we have kept ky
constant, which suffices to span all cases). This analysis involves linearizations via
the Jacobian of the non-linear system, which is two dimensional for his model. If
the steady-state is a stable one, then small perturbations away from this point will
be damped out, provided they are small enough so as not to escape from the basin
of attraction, which is not specified from the linear analysis. On the other hand,
KCC analysis is one based on the study of Lyapunov stability of whole trajectories
in a region, therefore, in this case, the perturbations represent close-by trajectories
to the reference trajectory. The results of such method, even when derived at a
particular point, yields information about the behaviour of trajectories (solutions
to the non-linear system) in a neighbourhood, or open region surrounding that
point.

If we suppose that the value of Pl at the steady-state is non-zero, it will
consequently be non-zero in an open region around the steady-state. For the
Tyson model, the steady-states in Regions A and C are stable in the linear sense.
This means that the eigenvalues of the Jacobian are both negative if real or have
negative real parts if complex. But calculation of P} (zg,yo) at the steady-states,
with values of kg in the ranges corresponding to those regions, shows positivity
for almost all the ranges, away of their boundaries with region B, which implies
KCC instability in an open region around these points. In fact, P](zg,yo) is
strictly negative within a kg-range strictly containing region B. This implies is
that, selecting a non-steady-state solution as a reference trajectory in the region
around the steady-state, then near-by trajectories, i.e., the perturbed trajectories,
diverge. Furthermore, for the Tyson model, P! is negative in the vicinity of a
steady-state if and only if the eigenvalues of the Jacobian are complex at that
point, which does not imply negativity or positivity of their real parts. Likewise,
we must have real eigenvalues for P} to be positive, which does not imply their
positivity or negativity. Therefore the open region surrounding a steady-state,
either linearly stable or unstable, may be KCC-unstable or -stable, these being
independent stability concepts and analyses.

We may interpret the positivity of P} (zg,yo) for most (linearly stable) steady-
states in region A, apart from those where kg values are close to the region B range,
as telling us that when the unfertilized egg is disturbed enough to leave the basin of
attraction the trajectory moves away from the steady-state. In other words, the egg
stops developing as usual and possibly dies away due to the value of kg being too far
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away from what it should be for proper development. This picture is suggested by
the divergence between trajectories in the region. Likewise, for most of mode C, for
values of kg away from the region B range, the positivity of P} (zg,yo) for linearly
stable steady-states may indicate the same kind of instability as in region A, so
that if the cell is perturbed out the basin of attraction, diverging from the normal
path of development due to, say, abnormal chemical levels, then it dies away. On
the other hand, the negativity of P!(xg,0) in a region strictly containing mode
B, where we have linearly unstable steady-states, indicates simply the convergence
of trajectories in the region, or the existence of the (already known) cycle, with
its typical annular region around each linearly unstable steady-state point. This
picture could not be obtained from classical linear analysis.
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