
9

However for larger number of qubits, the state that maximized the n-tangle is apparently not the N-GHZ state. For
instance for L = 6, and 8 we get

|φ6(π)〉 =
1

4
√

2
(000000 + π̂(101000 + 100100− 110000) + 1 ↔ 0) . (35)

|φ8(π)〉 =
1

4
√

2
(00000000 + π̂(00010001− 01100110 + 10101010− 00001111 + 01000100) + 1 ↔ 0) . (36)

There are a total of 32 terms in each state and we have temporarily dispensed with the ket notation.

B. Transverse field

We now turn on an external field in the transverse direction. This model, the kicked transverse Ising model, has
been studied recently as noted above and is also an integrable case [27, 28], and the Jordan - Wigner transformation
can be used to diagonalize it. In this case we have

|ψL(t)〉 = (Uxx(Jx)Ux,z(B, π/2))
t |ψL(0)〉 (37)

where t is an integer time, the number of kicks. We now proceed to diagonalize the operator, indicating the key
steps. It maybe noted that unlike the treatment in [28] we do not assume the thermodynamic limit, and in this sense
the way we solve this problem is also new, though the technique is the same as that for the usual Ising model in a
transverse field.

In the kicked transverse Ising spin chain treated here, the Ising interaction is in x-direction and the magnetic field
is switched on at integer times along the z-direction. The first step is to replace the spin variables by Jordan-Wigner
fermions through a nonlocal transformation [9]:

S+
l = exp

(

i

l−1
∑

n=1

c†ncn

)

c†l , S
z
l = c†l cl −

1

2
. (38)

The operators cl and c†l obey the usual fermion anticommutation rules. The interaction term in Uxx reduces to a
combination of nearest-neighbour fermion hopping, pair-fermion annihilation and creation terms on a lattice,

Uxx = exp

(

− iJx

4

(

L−1
∑

l=1

(c†l − cl)(c
†
l+1 + cl+1) − (−1)NF (c†L − cL)(c†1 + c1)

))

(39)

where NF =
∑L

i=1 c
†
ici is the total number of fermions. The last term is due to the periodic boundary condition.

The magnetic field term in Ux,z(B, π/2) becomes a chemical potential term for the total number of fermions. The
eigenstates of U will have a definite even or odd fermion number, since Nf commutes with U , and we can find the
eigenstates in the two sectors separately.

Now, the second step is to Fourier transform through,

cq =
exp (iπ/4)√

L

L
∑

l=1

exp (−iql) cl, (40)

where the allowed allowed values for q are (taking L to be even)

q = ±π

L
,±3π

L
, . . . ,± (L− 1)π

L
NF even, (41)

q = 0,±2π

L
,±4π

L
, . . . ,± (L− 2)π

L
, π NF odd. (42)

The lattice momentum q labels the momentum creation and annihilation operators that also obey the fermion anti-
commutation rules. The unitary operator U has a direct product structure in terms of these fermion variables:

U = e−i BL
2

∏

q>0 Vq NF even, (43)

= e−i BL
2 V0Vπ

∏

q>0 Vq NF odd (44)
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FIG. 3: The measure Q for the kicked transverse Ising interaction, when the initial state is the vacuum state and L = 10, and
the parameters are Jx = π/2, B = π/3. Shown are the results of the numerical calculations (points) and using the formula
(solid line). Periodic boundary conditions are assumed.

where

Vq = exp

(

−iJx

2

[

cos(q)(c†qcq + c†−qc−q) + sin(q)(cqc−q + c†−qc
†
q)
]

)

exp
(

−iB(c†qcq + c†−qc−q)
)

, (45)

and

V0 = exp

(

−i(B +
Jx

2
)c†0c0

)

, Vπ = exp

(

−i(B − Jx

2
)c†πcπ

)

. (46)

The eigenstates of U are direct products of eigenstates of Vq. The operators V0 and Vπ are diagonal in the number

basis states. For Vq, the four basis states are |0〉, |± q〉 = c†±q|0〉, |− qq >= c†−qc
†
q|0〉. The eigenstates of Vq , for q 6= 0, π

are given by

Vq| ± q〉 = e−i( Jx
2

+B)| ± q〉, Vq|±〉 = e−i( Jx
2

+B)e±iθq |±〉. (47)

Here the eigenstates |±〉 are given by |±〉 ≡ a±(q)|0〉 + b±(q)| − qq〉. Using cos(θq) = cos(B) cos(Jx/2) −
cos(q) sin(B) sin(Jx/2), we have

a±(q)−1 =

√

1 +

(

cos(Jx/2) − cos(θq ±B)

sin q sinB sin(Jx/2)

)2

, (48)

b±(q) = a±(q)
± sin(θq) + cos(Jx/2) sinB − cos q cosB sin(Jx/2)

sin(q) sin(Jx/2)
e−i2B. (49)

This then completely solves the kicked transverse Ising model. Let us consider an initial state with m (even)
fermions |ψ(t = 0)〉 = |l1, l2...lm〉 where li denote the sites occupied by fermions (corresponding to Sz

li
= 1/2 in terms

of the original spin variables). The off-diagonal matrix element of ρl through time evolution with U is

〈S+
l (t)〉 ≡= 〈ψ(t)|eiπ

∑

c†ncnc†l |ψ(t)〉 = 0, (50)

as the time evolution mixes only states with even number of fermions. The diagonal matrix elements of ρl depend on

〈Sz
l 〉 ≡ 〈ψ(t)|c†l cl|ψ(t)〉 − 1/2. This can be calculated from the time-evolved operator,

cq(t) = V †t
q cq V

t
q = ζq cq − sgn(q) ηq c

†
−q, (51)
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FIG. 4: (Color Online) The time averaged Q as a function of system parameters for the kicked transverse Ising model. L = 20
in this case, and the averaging is done over a thousand kicks, by which time the average is stationary.

where the expansion coefficients are given as

ζq = |a+(q)|2e−itθq + |a−(q)|2eitθq , (52)

ηq = a+(q)∗b+(q)e−itθq + a−(q)∗b−(q)eitθq . (53)

The diagonal matrix element can be expressed in terms of the Fourier transforms of the above functions, after some
manipulations, we have

〈Sz
l (t)〉 = −1

2
+

1

L

∑

q

|ηq|2 +

m
∑

i=1

|ζ(l − li)|2 − |η(l − li)|2. (54)

In the above we used two more auxiliary functions defined by

η(l) =
2

L

∑

q>0

ηq cos (ql), (55)

ζ(l) =
2

L

∑

q>0

ζq cos (ql). (56)

In particular for the initial unentangled state |ψL(0)〉 = |0〉⊗L, as a special case we can calculate 〈Sz
l (t)〉 at any site

using the above.

〈Sz
l (t)〉 = 〈ψL(0)|Sz(t)|ψL(0)〉 =

1

L

∑

q

|ηq|2 − 1/2. (57)

Here the q summation extends to both positive and negative allowed values. Hence using translational symmetry the
entanglement measure Q is given in this case by

Q(ψL(t)) = 4 x (1 − x), x =
1

L

∑

q

|ηq|2 =
4

L

∑

q

|a+(q)a−(q) sin(θq t)|2 (58)

As illustrated in the example (Fig. (3)) the oscillations of Q are now much more complicated. The advantage of
having an easily computable formula such as Eq. (58) is that we can study the entanglement measures as a function


