

Int. Journal of Math. Analysis, Vol. 4, 2010, no. 50, 2473 - 2479

Coloring Programs in Graph Theory

1Akhlak Mansuri, 2Vijay Gupta and 3R. S. Chandel

1Department of Applied Science
Kailash Chandra Bansal College of Technology

Bhopal, (M.P.) India
mansuri_akhlaak@yahoo.com

2 Department of Applied Mathematics, UIT, RGPV, Bhopal (M.P.) India
vkgupta_12873@rediffmail.com

3Department of Mathematics, Govt. Geetanjali Girls College, Bhopal (M.P.) India

rs_chandel2009@yahoo.co.in

Abstract. Purpose of this paper to introduce the two new heuristic graph coloring
programs which are based on known heuristic algorithms, have already been
introduced. First one is adaptation of the Largest Degree Ordering algorithm, and
second one is a adaptation of the Saturation Degree Ordering algorithm. These two
new programs planned in this paper, is compared practically with a few of the
known heuristic graph coloring algorithms such as; Largest Degree Ordering, First
Fit, Saturated Degree Ordering and Incident Degree Ordering. In this comparison,
for the number of used colors, the result is found that the proposed programs are
better than the original results.

Keywords: Graph coloring algorithms, degree based ordering, first-fit algorithm.

INTRODUCTION:

 A graph G = (V, E) consists two sets where one is the set of vertices and another
is the set of edges such that each edges is associated with an un ordered pair of
vertices and graph coloring is one of the most useful models in graph theory. Graph
coloring is the way of coloring the vertices of a graph with the minimum number of
colors such that no two adjacent vertices share the same color. For example binary
search tree needs two colors. There is a wide application of graph coloring such as;
registration allocation, pattern matching, time tabling and scheduling, frequency
assignment, numerical computation, and estimation of sparse Jacobins.

2474 A. Mansuri, V. Gupta and R. S. Chandel

The coloring of a graph G = (V, E) is a mapping c: v→f, where “f” is a finite set of
colors, such that if v1, v2 ε E then c (v1) ≠ c (v2). In other words, adjacent vertices
are not assigned the same color. A coloring using at most k-colors is called a
(proper) k-coloring. The smallest number of colors needed to color a graph G is
called a chromatic number, χ (G). A graph can be assigned a (proper) k-coloring is
k-colorable i.e. χ (G)≤ k , and it is a k-chromatic if its chromatic number is exactly k
i.e.. χ (G)= k.

In this paper the two new heuristic graph coloring programs which is based on
known heuristic algorithms, have already been introduced. First one is an
adaptation of the Largest Degree Ordering algorithm, and second one is an
adaptation of the Saturation Degree Ordering algorithm. These two new programs
planned in this paper, is compared practically with a few of the known heuristic
graph coloring algorithms such as; Largest Degree Ordering, First Fit, Saturated
Degree Ordering and Incident Degree Ordering. In this comparison, for the number
of used colors, the result is found that the proposed algorithms are better than the
original results.

Graph Coloring Algorithms: There are many heuristic sequential techniques for
coloring a graph. One of them is the Greedy Graph Coloring. Greedy coloring
heuristics build a coloring by repeatedly extending a partial coloring of the graph. A
graph is said to be partially colored if a subset of its vertices is validly colored.
Greedy coloring heuristics concentrate on carefully picking the next vertex to color
and the color for that vertex. In these heuristics, once a vertex is colored, its color
never changes. For graphs arising from a number of applications, it has been
demonstrated that these heuristics are often able to find colorings that are within
small additive constants of the optimal coloring [2, 5]. Below, we explain the first
fit and degree based ordering techniques.
First Fit: The First Fit coloring algorithm is fed the set of vertices in some arbitrary
order. The algorithm sequentially assigns each vertex the lowest legal color. First
Fit has the advantage of being very simple and very fast. In other words, First Fit is
an O(n)-time algorithm.
Degree based ordering: A better strategy than simply picking the next vertex from
an arbitrary order is to use a certain selection criterion for choosing the vertex to be
colored among the currently uncolored vertices. Such a strategy, depending on the
nature of the selection criterion, has a potential for providing a better coloring than
First Fit. In the following paragraphs we discuss some of the well-known, effective
selection strategies.
Largest Degree Ordering: Ordering the vertices by decreasing degree, proposed
by C. Avanthay, A. Hertz, N. Zufferey [1], was one of the earliest ordering
strategies. This ordering works as follows. Suppose the vertices v1, v2,…,vi-1 have
been chosen and colored. Vertex vi is chosen to be the vertex with the maximum
degree among the set of uncolored vertices. Intuitively, Largest Degree Ordering
provides a better coloring than First Fit since during each iteration it chooses a

Coloring programs in graph theory 2475

vertex with the highest number of neighbors which potentially produces the highest
color. Note that this heuristic can be implemented to run in O(n2).

Saturation Degree Ordering: Saturated degree ordering was proposed by E.
Falkenauer [4] and is defined as follows. Suppose that vertices v1, v2,…,vi-1 have
been chosen and colored. Then at step i, vertex vi with the maximum Saturation
degree is selected. The saturation degree of a vertex is defined as the number of
differently colored vertices the vertex is adjacent to. For example, if a vertex v has
degree equal to 4 where one of its neighbors is uncolored, two of them are colored
with color equal to 1, while the last one is colored with color equal to 3, then v has
saturation degree equal to 2. While choosing a vertex of maximum saturation
degree, ties are broken in favor of the vertex with the largest degree. Intuitively, this
heuristic provides a better coloring than Largest Degree Ordering since it first
colors vertices most constrained by previous color choices. The heuristic can be
implemented to run in O(n2) E. Falkenauer [4] .
Incident Degree Ordering: A adaptation of the Saturated Degree Ordering
heuristic is the Incident Degree Ordering introduced by E.K. Burke, B. McCollum,
A. Meisels, S. Petrovic, R. [5] This ordering is defined as follows. Suppose that
vertices v1, v2,…,vi-1 have been chosen and colored. Vertex vi is chosen to be a
vertex whose degree is a maximum in the subgraph of G induced by the vertex set {
v1, v2,….vi-1 }U{vi}. In other words, a vertex vi with the maximum Incident degree is
chosen at step i. The Incident degree of a vertex is defined as the number of its
adjacent colored vertices. Note that it is the number of adjacent colored vertices and
not the number of colors used by the vertices that is counted. The vertex v in the
example of the above subsection has Incident degree equal to 3.Tie-breaking in
Incident Degree Ordering is as in the case of Saturated Degree Ordering. The
Incident Degree Ordering vertex ordering has the advantage that its running time is
a linear function of the number of edges [8]. In other words, Incident Degree
Ordering is an O(n)-time algorithm.

Proposed Programs: In this study, two new heuristic graph coloring Programs
have been introduced based on known algorithms. These two proposed new
programs are described in the following sections.
Proposed Program 1: In this program, we modified the Largest Degree Ordering
algorithm by combining it with the Incident Degree Ordering. The program works
as Largest Degree Ordering but when we found that there are two nodes having the
same degree, the Incident Degree Ordering was used to choose between them.
There are two criteria for chosen the vertex to be colored:
• The number of vertices connected to the vertex Largest Degree Ordering.
• The number of colored vertices connected to the vertex Incident Degree
 Ordering.

include <iostream.h>
#include <conio.h>
void main ()

2476 A. Mansuri, V. Gupta and R. S. Chandel

{
Int n, i, I, d, large, count, No. of colored Vertices=0, colored[500], a[500], ID[500];
cout<< “Enter the number of Vertices”;
cin>> n;
cout<< “Enter the degree of each Vertex”;

for(i=1; i<=n; i++)
{
cin>>a[i];
}

While(No. of colored Vertices<n)

{
large=-1;
for(I=1; I<=n; I++)
{
If (!colored[I])
{
d=a[I];
if(d>large)
{
large=d;
count =I;
}
if(d=large)
if(ID[I]>ID[count])
count =I;

color(count);
No. of colored Vertices++;
}
cout<<”The No. of Colored Vertices”;
cout<<No. of colred Vertices;
}

}
This heuristic can be implemented to run in O(n2) as Largest Degre Ordering.
Proposed Program 2: In this program, we combine both the Saturated Degree
Ordering, and The Largest Degree Ordering .The program works as the Saturated
Degree Ordering, but when
there are two nodes having the same degree, we use the Largest Degree Ordering to
choose between them. So there are two criteria to choose the next node to be
colored:
• The number of colors surrounding the vertex, Saturated Degree Ordering.

Coloring programs in graph theory 2477

• The number of vertices surrounding the vertex, Largest Degree Ordering.

include <iostream.h>
#include <conio.h>
void main ()

{
Int n, i, I, d, large, count, No. of colored Vertices=0, colored[500], SD[500],
degree[500];
cout<< “Enter the number of Vertices”;
cin>> n;
cout<< “Enter the degree of each Vertex”;

for(i=1; i<=n; i++)
{
cin>>SD[i];
}

While(No. of colored Vertices<n)

{
large=-1;
for(I=1; I<=n; I++)
{
If (!colored[I])
{
d=SD[I];
if(d>large)
{
large=d;
count =I;
}
if(d=large)
if(degree[I]>degree[count])
count =I;
}
color(count);
No. of colored Vertices++;
}
cout<<”The No. of Colored Vertices are”;
cout<<No. of colored Vertices;
}

}
This heuristic can be implemented to run in O(n3) as Saturated Degree Ordering.

2478 A. Mansuri, V. Gupta and R. S. Chandel

RESULTS:

We implemented four heuristic graph coloring First Fit, Largest Degree Ordering,
Incident Degree Ordering, Saturated Degree Ordering in addition to the two
proposed programs. We also used random graphs that have different number of
vertices and densities. The results show the First Fit algorithm is the worst
algorithm with respect to the number of colors used. Largest Degree Ordering uses
smaller number of colors than Incident Degree Ordering and Saturated Degree
Ordering uses smaller number of colors than Incident Degree Ordering and Largest
Degree Ordering. The proposed Program 1 (adaptation of Largest Degree
Ordering) is better than Largest Degree Ordering in the number of colors used. The
proposed Program 2 (adaptation of Saturated Degree Ordering) is better than
Saturated Degree Ordering in the number of colors used. The proposed Program 2
uses the least number of colors for coloring a graph.

CONCLUSION:

In this paper, we introduced two new heuristic graph coloring programs based on
modifying and improving known pervious ones. One of them is an improved
modification on Largest Degree Ordering by combining it with the Incident Degree
Ordering, and the other one is an improved modification of Saturated Degree
Ordering by combining it with the Largest Degree
Ordering. It has been empirically shown that the number of colors used in the
proposed program is better than the original.

ACKNOWLEDGEMENT:
I am highly thankful to Dr. Vijay Gupta Reader, Deptt. of Mathematics UIT,
RGPV (INDIA) & Dr. R. S. Chandel, Asst. Professor, Department of
Mathematics, GGGC, Bhopal (INDIA) for his kind guidance and support in writing
this paper. I am also thankful to Dr. H. B. Khurasia Sir, Director KCBCT, Bhopal
(INDIA) for his support in the institute.

REFERENCES

[1] C. Avanthay, A. Hertz, N. Zufferey, A variable neighborhood search for
graph coloring, European Journal of Operational Research 151 (2) (2003) 379–388.

Coloring programs in graph theory 2479

[2] D. Brélaz, New methods to color the vertices of a graph, Communications
of the ACM 22 (4)(1979) 251–256.

[3] D. de Werra, C. Eisenbeis, S. Lelait, B. Marmol, On a graph-theoretical
model for cyclic register allocation, Discrete Applied Mathematics 93 (2–3) (1999)
191–203

[4] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing,
Journal of Heuristics 2 (1) (1996) 5–30.

[5] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based
hyper heuristic for timetabling problems, European Journal of Operational Research
176 (2007) 177–192.

[6] I. Blöchliger, N. Zufferey, A graph coloring heuristic using partial
solutions and a reactive tabu scheme, Computers and Operations Research 35 (3)
(2008) 960–975.

[7] M. Chams, A. Hertz, D. de Werra, Some experiments with simulated
annealing for coloring graphs, European Journal of Operational Research 32 (1987)
260–266.

[8] M. Chiarandini, T. Stützle, An application of iterated local search to
graph coloring, in: D.S. Johnson, A. Mehrotra, M. Trick (Eds.), Proceedings of the
Computational Symposium on Graph Coloring and its Generalizations, Ithaca,
New York, USA, 2002, pp. 112–125.

[9] R. Dorne, J.K. Hao, A new genetic local search algorithm for graph
coloring, Lecture Notes in Computer Science 1498 (1998) 745–754.

[10] R. Dorne, J.K. Hao, Tabu search for graph coloring, T-colorings and set
Tcolorings, Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization (1998) 77–92.

Received: June, 2010

