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Abstract. Purpose of this paper to introduce the two new heuristic graph coloring 
programs which are based on known heuristic algorithms, have already been 
introduced. First one is adaptation of the Largest Degree Ordering algorithm, and 
second one is a adaptation of the Saturation Degree Ordering algorithm. These two 
new programs planned in this paper, is compared practically with a few of the 
known heuristic graph coloring algorithms such as; Largest Degree Ordering, First 
Fit, Saturated Degree Ordering and Incident Degree Ordering. In this comparison, 
for the number of used colors, the result is found that the proposed programs are 
better than the original results. 
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INTRODUCTION: 
 
 A  graph G = (V, E) consists two sets where one is the set of  vertices and another 
is the set of edges such that each edges is associated with an un ordered pair of 
vertices and graph coloring is one of the most useful models in graph theory. Graph 
coloring is the way of coloring the vertices of a graph with the minimum number of 
colors such that no two adjacent vertices share the same color. For example binary 
search tree needs two colors. There is a wide application of graph coloring such as; 
registration allocation, pattern matching, time tabling and scheduling, frequency 
assignment, numerical computation, and estimation of sparse Jacobins. 
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The coloring of a graph G = (V, E) is a mapping c: v→f, where “f” is a finite set of 
colors, such that if v1, v2 ε E then c (v1) ≠ c (v2). In other words, adjacent vertices 
are not assigned the same color. A coloring using at most k-colors is called a 
(proper) k-coloring. The smallest number of colors needed to color a graph G is 
called a chromatic number, χ (G). A graph can be assigned a (proper) k-coloring is 
k-colorable i.e. χ (G)≤ k , and it is a k-chromatic if its chromatic number is exactly k 
i.e.. χ (G)= k. 
 
In this paper the two new heuristic graph coloring programs which is based on 
known heuristic algorithms, have already been introduced. First one is an 
adaptation of the Largest Degree Ordering algorithm, and second one is an 
adaptation of the Saturation Degree Ordering algorithm. These two new programs 
planned in this paper, is compared practically with a few of the known heuristic 
graph coloring algorithms such as; Largest Degree Ordering, First Fit, Saturated 
Degree Ordering and Incident Degree Ordering. In this comparison, for the number 
of used colors, the result is found that the proposed algorithms are better than the 
original results. 
 
Graph Coloring Algorithms: There are many heuristic sequential techniques for 
coloring a graph. One of them is the Greedy Graph Coloring. Greedy coloring 
heuristics build a coloring by repeatedly extending a partial coloring of the graph. A 
graph is said to be partially colored if a subset of its vertices is validly colored. 
Greedy coloring heuristics concentrate on carefully picking the next vertex to color 
and the color for that vertex. In these heuristics, once a vertex is colored, its color 
never changes. For graphs arising from a number of applications, it has been 
demonstrated that these heuristics are often able to find colorings that are within 
small additive constants of the optimal coloring [2, 5]. Below, we explain the first 
fit and degree based ordering techniques. 
First Fit: The First Fit coloring algorithm is fed the set of vertices in some arbitrary 
order. The algorithm sequentially assigns each vertex the lowest legal color. First 
Fit has the advantage of being very simple and very fast. In other words, First Fit is 
an O(n)-time algorithm. 
Degree based ordering: A better strategy than simply picking the next vertex from 
an arbitrary order is to use a certain selection criterion for choosing the vertex to be 
colored among the currently uncolored vertices. Such a strategy, depending on the 
nature of the selection criterion, has a potential for providing a better coloring than 
First Fit. In the following paragraphs we discuss some of the well-known, effective 
selection strategies. 
Largest Degree Ordering:  Ordering the vertices by decreasing degree, proposed 
by C. Avanthay, A. Hertz, N. Zufferey [1], was one of the earliest ordering 
strategies. This ordering works as follows. Suppose the vertices     v1, v2,…,vi-1 have 
been chosen and colored. Vertex vi is chosen to be the vertex with the maximum 
degree among the set of uncolored vertices. Intuitively, Largest Degree Ordering 
provides a better coloring than First Fit since during each iteration it chooses a  
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vertex with the highest number of neighbors which potentially produces the highest 
color. Note that this heuristic can be implemented to run in O(n2). 
 
Saturation Degree Ordering: Saturated degree ordering was proposed by E. 
Falkenauer [4] and is defined as follows. Suppose that vertices v1, v2,…,vi-1 have 
been chosen and colored. Then at step i, vertex vi with the maximum Saturation 
degree is selected. The saturation degree of a vertex is defined as the number of 
differently colored vertices the vertex is adjacent to. For example, if a vertex v has 
degree equal to 4 where one of its neighbors is uncolored, two of them are colored 
with color equal to 1, while the last one is colored with color equal to 3, then v has 
saturation degree equal to 2. While choosing a vertex of maximum saturation 
degree, ties are broken in favor of the vertex with the largest degree. Intuitively, this 
heuristic provides a better coloring than Largest Degree Ordering since it first 
colors vertices most constrained by previous color choices. The heuristic can be 
implemented to run in O(n2) E. Falkenauer [4]  . 
Incident Degree Ordering:  A adaptation of the Saturated Degree Ordering  
heuristic is the Incident Degree Ordering introduced by E.K. Burke, B. McCollum, 
A. Meisels, S. Petrovic, R. [5]  This ordering is defined as follows. Suppose that 
vertices v1, v2,…,vi-1  have been chosen and colored. Vertex vi is chosen to be a 
vertex whose degree is a maximum in the subgraph of G induced by the vertex set { 
v1, v2,….vi-1 }U{vi}. In other words, a vertex vi with the maximum Incident degree is 
chosen at step i. The Incident degree of a vertex is defined as the number of its 
adjacent colored vertices. Note that it is the number of adjacent colored vertices and 
not the number of colors used by the vertices that is counted. The vertex v in the 
example of the above subsection has Incident degree equal to 3.Tie-breaking in 
Incident Degree Ordering is as in the case of Saturated Degree Ordering. The 
Incident Degree Ordering vertex ordering has the advantage that its running time is 
a linear function of the number of edges [8]. In other words, Incident Degree 
Ordering is an O(n)-time algorithm. 
 
Proposed Programs: In this study, two new heuristic graph coloring Programs 
have been introduced based on known algorithms. These two proposed new 
programs are described in the following sections. 
Proposed Program 1: In this program, we modified the Largest Degree Ordering 
algorithm by combining it with the Incident Degree Ordering. The program works 
as Largest Degree Ordering but when we found that there are two nodes having the 
same degree, the Incident Degree Ordering was used to choose between them. 
There are two criteria for chosen the vertex to be colored: 
• The number of vertices connected to the vertex Largest Degree Ordering. 
• The number of colored vertices connected to the vertex Incident Degree     
      Ordering. 
 
# include <iostream.h> 
#include <conio.h> 
void main ( ) 
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{ 
Int n, i, I, d, large, count,  No. of colored Vertices=0, colored[500], a[500], ID[500]; 
cout<< “Enter the number of Vertices”; 
cin>> n; 
cout<< “Enter the degree of each Vertex”; 
 
for(i=1; i<=n; i++ ) 
{ 
cin>>a[i]; 
} 
 
While( No. of colored Vertices<n) 
 
{ 
large=-1; 
for( I=1; I<=n; I++) 
{ 
If (!colored[I]) 
{ 
d=a[I]; 
if(d>large) 
{ 
large=d; 
count =I; 
} 
if(d=large) 
if(ID[I]>ID[count]) 
count =I; 
 
color(count); 
No. of colored Vertices++; 
} 
cout<<”The No. of Colored Vertices”; 
cout<<No. of colred Vertices; 
} 
 
}  
This heuristic can be implemented to run in O(n2) as Largest Degre Ordering. 
Proposed Program 2: In this program, we combine both the Saturated Degree 
Ordering, and The Largest Degree Ordering .The program works as the Saturated 
Degree Ordering, but when  
there are two nodes having the same degree, we use the Largest Degree Ordering to 
choose between them. So there are two criteria to choose the next node to be 
colored: 
• The number of colors surrounding the vertex, Saturated Degree Ordering. 
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• The number of vertices surrounding the vertex, Largest Degree Ordering. 
 
# include <iostream.h> 
#include <conio.h> 
void main ( ) 
 
{ 
Int n, i, I, d, large, count,  No. of colored Vertices=0, colored[500], SD[500], 
degree[500]; 
cout<< “Enter the number of Vertices”; 
cin>> n; 
cout<< “Enter the degree of each Vertex”; 
 
for(i=1; i<=n; i++ ) 
{ 
cin>>SD[i]; 
} 
 
While( No. of colored Vertices<n) 
 
{ 
large=-1; 
for( I=1; I<=n; I++) 
{ 
If (!colored[I]) 
{ 
d=SD[I]; 
if(d>large) 
{ 
large=d; 
count =I; 
} 
if(d=large) 
if(degree[I]>degree[count]) 
count =I; 
} 
color(count); 
No. of colored Vertices++; 
} 
cout<<”The No. of Colored Vertices are”; 
cout<<No. of colored Vertices; 
} 
 
} 
This heuristic can be implemented to run in O(n3) as Saturated  Degree Ordering. 
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RESULTS: 
 
We implemented four heuristic graph coloring First Fit, Largest Degree Ordering, 
Incident Degree Ordering, Saturated Degree Ordering in addition to the two 
proposed programs. We also used random graphs that have different number of 
vertices and densities. The results show the First Fit algorithm is the worst 
algorithm with respect to the number of colors used. Largest Degree Ordering uses 
smaller number of colors than Incident Degree Ordering and Saturated Degree 
Ordering uses smaller number of colors than Incident Degree Ordering and Largest 
Degree Ordering. The proposed Program 1 (adaptation of Largest   Degree 
Ordering) is better than Largest Degree Ordering in the number of colors used. The 
proposed Program 2 (adaptation of Saturated Degree Ordering) is better than 
Saturated Degree Ordering in the number of colors used. The proposed Program 2 
uses the least number of colors for coloring a graph. 
 
 
 
CONCLUSION: 
 
In this paper, we introduced two new heuristic graph coloring programs based on 
modifying and improving known pervious ones. One of them is an improved 
modification on Largest Degree Ordering by combining it with the Incident Degree 
Ordering, and the other one is an improved modification of Saturated Degree 
Ordering by combining it with the Largest Degree  
Ordering. It has been empirically shown that the number of colors used in the 
proposed program is better than the original. 
 
 
ACKNOWLEDGEMENT: 
I am highly thankful to Dr. Vijay Gupta  Reader, Deptt. of Mathematics UIT, 
RGPV (INDIA) & Dr. R. S. Chandel, Asst. Professor, Department of 
Mathematics, GGGC, Bhopal (INDIA) for his kind guidance and support in writing 
this paper. I am also thankful to Dr. H. B. Khurasia Sir, Director KCBCT, Bhopal 
(INDIA) for his support in the institute. 
 
 
REFERENCES 
 
[1] C. Avanthay, A. Hertz, N. Zufferey, A variable neighborhood search for 
graph coloring, European  Journal of Operational Research 151 (2) (2003) 379–388. 
 
 
 



Coloring programs in graph theory                                                                    2479 
 
 
 
[2]  D. Brélaz, New methods to color the vertices of a graph, Communications 
of the ACM 22 (4)(1979) 251–256. 
 
[3] D. de Werra, C. Eisenbeis, S. Lelait, B. Marmol, On a graph-theoretical 
model for cyclic register  allocation, Discrete Applied Mathematics 93 (2–3) (1999) 
191–203 
 
[4]  E. Falkenauer, A hybrid grouping genetic algorithm for bin packing, 
Journal  of Heuristics 2 (1)  (1996) 5–30.  
 
[5] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, A graph-based 
hyper heuristic for timetabling problems, European Journal of Operational Research 
176 (2007) 177–192. 
 
[6] I. Blöchliger, N. Zufferey, A graph coloring heuristic using partial 
solutions and a reactive tabu scheme, Computers and Operations Research 35 (3) 
(2008) 960–975. 
 
[7]     M. Chams, A. Hertz, D. de Werra, Some experiments with simulated    
annealing for coloring graphs, European Journal of Operational Research 32 (1987) 
260–266. 
 
[8]  M. Chiarandini, T. Stützle, An application of iterated local search to 
graph coloring, in: D.S. Johnson, A. Mehrotra, M. Trick (Eds.), Proceedings of the 
Computational Symposium on Graph  Coloring and its Generalizations, Ithaca, 
New York, USA, 2002, pp. 112–125. 
 
[9]  R. Dorne, J.K. Hao, A new genetic local search algorithm for graph 
coloring, Lecture Notes in  Computer Science 1498 (1998) 745–754. 
 
[10]    R. Dorne, J.K. Hao, Tabu search for graph coloring, T-colorings and set 
Tcolorings, Meta-Heuristics: Advances and Trends in Local Search Paradigms for 
Optimization (1998) 77–92. 
 
 
Received: June, 2010 


