Reduction

Let us observe that a Hamiltonian cycle (cycle of length n) will contain exactly one
element from each row of cost matrix (or weight matrix) W and exactly one element
from each column of W. If a constant g is subtracted from any row or from any
column of W, the cost of all Hamiltonian cycles (TS tours) is reduced by g.
Therefore, the relative costs of different cycles remain the same. Thus the optimal
tour remains optimal. If such a subtraction is done from rows and columns, such
that each row and each column contains at least one zero while keeping remaining
w,,’s nonnegative, the total amount subtracted will be a lower bound on the cost of
any solution. This process of subtracting constants from rows and columns is called
reduction.

1 2 3 4 5 6

1 =~ 3 93 13 33 9]
2 4 s 77 42 21 16
3 5 17 = 36 16 28
4 |39 90 8 o 56 7
5 |28 46 838 33 oo 25
6 | 88 I8 46 92 o

Let us now consider an example which is adapted from Reingold et al. [1977].
The cost matrix given above can be reduced by subtracting 3. 4, 16, 7, 25, and 3
from rows | through 6, respectively, and then subtracting 15 and 8 from columns 3
and 4, respectively, leaving the reduced matrix. Since a total of 81 was subtracted. 81
is a lower bound on the cost of all solutions for this problem.

1 2 3 4 5 6
1 [ 0 75 2 30 6
2 0 = 58 30 17 12
3029 1 = 12 0 12
4 |32 83 58 w 49 0
5 3 21 48 0 oo 0
6 L0 8 0 35 89 |

Lower bound
=81

All
solutions

Lower bound Srolutions Solutions Lower bound
=81 with (6, 3) without (6, 3) =129

1 2 4 5 6 1 2 3 4 5
1 [ 0 2 30 6 1 [ 0o 2 2 30
2 0 = 30 17 12 2 0 %0 10 30 17
3 29 1 12 0 0 3 29 1 oo 12 0
4 32 83 o0 49 0 4 32 83 10 o0 49
5 3 21 0 o 0 5 3 21 0 0 %o
6 _0 85 %0 35 89

Figure 3-40  Splitting of solutions.
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Lower bound
= 81

Solutions
with (6, 3)

Solutions with
(6, 3) and without

Lower bound Solutions with Lower bound

=81 (6, 3) and (4, 6) =113
1 2 4 5 1 2 4 5 6
1 oo 0 2 30 1 o 0 2 30
2 0 oo 30 17 2 0 %0 30 17 12
3 |29 1 o0 0 3 |29 1 12 0 =0
5 3 21 0 oo 4 0 51 el 17 %0
5 3 21 0 o0 0
Figure 3-41

no longer usable. This is enforced by setting entry (3, 4) to co. In general, then, if the
edge added to the partial tour is from i, to j, and the partial tour contains paths
(1565, i,)and (/1 ja..... ji), the edge whose use is to be prevented is ( J,. ;).

For splitting the leftmost node further, edge (2, 1) is the best; for when the zero
in (2, 1) position is replaced with oo, it allows 17 to be subtracted from the second
row and 3 to be subtracted from the first column. This quantity is more than allowed
by any other zero entry.

After splitting on edge (2, 1), the cost matrix on the left side is 3 X 3. Since we
have included edge (2,1) in the leftmost solutions, the edge (1,2) is forbidden by
setting (1, 2) entry to 0. This matrix,

2 4 5
1 o0 2 30
3 | 0

5 21 0 oo

can be reduced by subtracting 1 from column two and 2 from row one. This
produces the cost matrix

2 4 5
1 o0 0 28
5 0 oo 0
5 20 0 o



All
solutions

Lower bound

=81

Solutions
with (6, 3)

Solutions
without (6, 3)

Lower bound

=129

Lower bound
=31

Solutions
without (4, 6)

Solutions
with (4, 6)

Lower bound Lower bound
=81 =113

Solutions Solutions
with (2, 1) without (2, 1)

Lower bound Lower bound
=84 =101

Solutions
without (1, 4)

Solutions
with (1, 4)

Lower bound Lower bound
=84 =112
Solution
(1,4,6,3,52 1)
Cost = 104

Figure 3-42  Brunch-and-bound binary tree.

or form two separate paths. In either case, if the original network is directed (i.e., the
distance matrix is asymmetric), we have no choice left in selection of the two
remaining edges that complete the traveling salesman’s tour. For instance, in the
six-city illustrative problem that we have been solving, after edges (6, 3), (4, 6). (2. 1),
and (1,4) are selected, we have no choice but to add edges (3,5) and (5.2) to
complete the traveling salesman’s route.

Now we have obtained one TS route, namely 1,4.6,3.5,2. 1. which costs 104.
All nodes in the search tree (Fig. 3-42) with lower bound greater than 104 can be
rejected, as they will not lead to a cheaper route. In Fig. 3-42 only one node has
lower bound less than 104, and it must be expanded further. The node with lower
bound of 101 includes edges (6, 3) and (4, 6) but excludes edge (2, 1). The cost matrix
assoclated with this node is

1 2 5
1 o0 0 2 30
2 0 o 13 0
3 26 1 o 0
5 0 21 0 o



Solutions with
(6, 3), (4, 6) and
without (2, 1)

Lower bound

=101
Solutions Solutions
with (5, 1) without (5, 1)
Lower bound Lower bound
=103 =127
2 4 5
1 0 0 oo
2 o 11 0
3 1 oo 0

Solutions
without (1, 4)

Solutions
with (1, 4)

Lower bound Lower bound
=104 =114
Solution
(1,4,6,3,2,5,1)
Cost = 104

Figure 3-43



Algorithm 3-9(a): Reduction of Matrix A

function REDUCE(A);
begin
rvalue — 0; {« reduction value «)
fori— 11to sizedo (= size of A «)
begin
rowred(i) — smallest element in ith row;
it rowred(i) > O then
begin
subtract rowred(i) from every finite element in jth row:
rvalue — rvalue + rowred(/)
end
end;
for j «— 1 to size do
begin
colred(j) « smallest element in jth column;
if colred(y) > O then

begin

subtract colred(j) from every finite element in jth column;
rvalue « rvatue + colred())
end
end;
REDUCE « rvaiue
end

Algorithm 3-9(b): Selecting the Best Edge (r, c)

procedure BESTEDGE(A, size r, ¢, most);
begin
most «— — oo,
for i — 1 to size do {* row «}
for ; — 1 to sizedo (= column =*)
it a; = O then
begin
minr — smallest entry in ith row, other than a,;
minc < smallest entry in jth column, other than a,;
total — minr + minc;
it total > most then
begin
most «— total,
r — i; {* row index of best edge =)
c « j ( =column index of best edge +)
end
end
end
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