
 PSTI RESEARCH LECTURE SERIES

 "SCIENTIFIC COMPUTING WITH FORTRAN 95"

 DR. VIKTOR K. DECYK

 RESEARCH PHYSICIST, UCLA

Abstract

The Plasma Science and Technology Institute (PSTI) at UCLA will host a
Research Lecture Series during the Spring Quarter of 2002 highlighting the
expertise of one of its distinguished senior researchers, Dr. V.K. Decyk.
The weekly lectures are open to all interested persons. Students who wish
to receive instruction credit can enroll in the course "Physics 290" for
S/U grade.

"Fortran 95" is a powerful, high level language designed for mathematical
modeling. It is a safe language that gives high performance, with many
features attractive to scientists who want to spend a minimum amount of
time programming, such as leak-proof dynamic memory. Although it is not a
fully object-oriented language, it supports enough features that
object-oriented design can be implemented. This is important because
 it allows more complex software to be constructed. These lectures are intended
 to introduce "Fortran 77" programmers to the new features of " Fortran 95".
 Strategies for how to modernize old "Fortran 77" codes incrementally, as
 well as object-oriented design in "Fortran 95" will be discussed.

First meeting: April 3, 2002

Schedule: Every Wednesday, from 3-4:30 p.m.

Location: Kinsey 141

Contacts: Decyk@physics.ucla.edu, http://www.physics.ucla.edu/psti

Course outline:

First third:

 Overview of new features in Fortran90/95.

Second Third:

 Overview of Object-Oriented Concepts

Final Third:

 Strategies for incremental application of OO concepts
to Fortran90 programs, development of frameworks

Recommended books:

T. M. R. Ellis, Ivor R. Philips, and Thomas M. Lahey,
Fortran90 Programming [Addison-Wesley, 1994].

Michael Metcalf and John Reid, Fortran90/95 Explained
[Oxford Univ. Press,1996].

T. M. R. Ellis, Ivor R. Philips, Programming in F [Addison-
Wesley, 1998].

 The first part of the course will be largely based on the F
language. This is a subset of Fortran90, which contains
most of the new good stuff and omits the older
deprecated stuff. It is relatively simple, yet contains
powerful modern constructs. This simplicity comes in part
from requiring only one way to do things, where Fortran90
might allow multiple ways. Because of its simplicity,
compilers are inexpensive and they have better error
reporting. All valid F programs are also valid Fortran90
programs.

Information about F compilers can be found at:

http://www.fortran.com/fortran/imagine1/

There are only minor differences between Fortran95 and
Fortran90

Why Fortran?

• Fortran95 is not your father’s Fortran

• Designed for doing mathematics, not web browsing

• Simple language which gives high performance

• Safe language (less error prone), e.g., leak-proof
dynamic memory

Physicists are part-time programmers, not writing
commerical software, mainly interested in getting new
result with minimum effort

Isn’t Fortran dead?

•Vendors of Fortran report sales are not going down.

 Some general new features about Fortran90

It is 100% backward compatible with Fortran77. Old
programs should work without modification.

The correct spelling is now Fortran, not FORTRAN.

free form is now permitted,

& used as a continuation

exclamations delimit comments, which are allowed at the
end of a line

 a = 1. ! this is a comment

; allows multiple statements on a line:

 a = 1.; b = 2.

underscores can be used in names, my_sub is a valid name

Many new intrinsic functions are standard:

 system_clock(), wall clock time
 random_number(), uniform random number

 Types (F book, chapter 3)

 Five intrinsic types: integer, real, logical, complex,
character. Numbers are stored differently internally when
integer or real.

 Fortran allows default types based on names. All types
are implicitly real unless the name begins with the letters
i,j,k,l,m,n, in which case they are integer (i-n are the first
two letters in the word integer). However, it is a bad idea
not to declare all variables, because it prevents the
compiler from finding some of your mistakes.

 implicit none ! means all variables must be declared
 integer :: i, j
 real :: a

 Type determines what kind of operands are allowed.

 Division “/” means something different with integer,
real, and complex. This is called operator overloading, or
static polymorphism.

 Implicit type conversion between intrinsic types can
occur in expressions, e.g., i = j + 1. will actually convert the
j to a real, add 1., then convert back to an integer. Such
conversions can be expensive, e.g., i = j**2. will use logs to
calculate the result (note the . after the 2), whereas i = j**2
will just multiply.

 You can explicitly convert types using intrinsics such as
real(), int(), or cmplx(), e.g., i = int(a) or a = real(i)

 Double precision

 double precision :: d ! or sometimes, real*8 d

is still supported, but deprecated. Kind parameters are
introduced to discriminate among kinds of reals, etc.

 real(kind_num) :: d ! or real(kind=kind_num) :: d

There are different kind_nums for different precisions, but
the bad thing is that the actual value of kind_num is not
defined, and different compilers can use different values.
To determine what the value should be, you have to use
the selected_real_kind intrinsic, usually in the declaration:

 integer :: kind_num = selected_real_kind(10,60)

This will give the kind_num used by the compiler to give a
real which has at least 10 digits of accuracy and an
exponent of at least 60. This is likely to give you an 8 byte
real. However, it might not. It could give you a 16 byte
real, you have no way of knowing. All you know is that
you get at least this much precision. If the requested
precision is not available, you get a compiler error. All this
is very confusing in my opinion. It is makes it hard to call
other languages. However, in practice, most compilers
use kind numbers which are byte lengths,

 real(8) ! instead of real*8.

The good news is that it is now possible to have different
integer kinds (1 byte, 8 byte, etc.), and other types.

 Character types

 character(len=5) :: c

The only operator for characters is concatenation “//”.

 c = ‘abc’//’de’ ! “abd”//”de” is also allowed.

gives c = ‘abcde’.

Substrings are also allowed:

 c(2:3) ! selects ‘bc’.
 c(4:4) ! selects ‘d’

Assignments of different lengths result in truncation or
padding.

 c = ‘abcdef’ ! gives ‘abcde’
 c = ‘abcd’ ! gives ‘abcd ‘, with a trailing blank

Character kinds are also possible, e.g.,

 character(len=24,kind=kanji) :: japanese

but they may not necessarily be one byte per character

 Since the size of characters is fixed at declaration, the
trim instrinsic is useful to delete trailing blanks.

 If c = ‘abcd ‘, (note trailing blank) then

 trim(c)

gives ‘abcd’ without the trailing blank.

 Adjustl (left justify) is a useful intrinsic for removing for
leading blanks. If c = ‘ abc ‘, (note leading and trailing
blank) then,

 c = trim(adjustl(c))

gives ‘abc’ without leading or trailing blanks.

Program Units (F book, chapter 4)

 subroutine roots(a,b,state)
 implicit none ! declare all variables
! declare arguments being passed in or out
 real, intent(out) :: a ! write only
 real, intent(in) :: b ! read only
 integer, intent(inout) :: state ! read and write possible
! declare local variables
 real :: scratch ! this will disappear on exit
 real, save :: last_state ! this will stay on exit
 real, parameter :: pi = 3.14159 ! cannot be changed
 ... ! contents of procedure go here
 end subroutine roots ! return statement not needed

Local variables generally go on a stack, memory used by
run time system to put subroutine argument addresses
and local variables. When the subroutine returns the
memory in the stack is released. If one subroutine calls
another, the first stack space is kept, and more stack space
is added for the second subroutine. Static variables might
be kept in a heap, a pile of memory which is randomly
used and released, as needed.

 Interface blocks allow Fortran90 to check at compile time
if arguments are valid when a subroutine is called.

 program my_program

 real :: x = 1.0, y = 2.0, z = 3.0
 integer :: s = 1

 interface
 subroutine roots(a,b,state)
 implicit none ! only arguments go here
 real :: a, b
 integer :: state
 end subroutine
 end interface
 ! the arguments will be checked
 call roots(x,y,z) ! compiler will detect that z is wrong

 end program

 This functions like header files (.h files) in C. Interface
refers to a procedure and its argument types

 Interface blocks are primarily useful for calling old legacy
routines or procedures for which you don’t have the
source code. For new functions, the use of modules
makes type checking automatic and interface blocks
unnecessary.

 If you lie in the interface statement, the compiler will
guarantee the procedure is called incorrectly!

 Modules

 A module is a new program unit for grouping together
subroutines, data, etc. We will use this construct to build
classes later.

 module my_module
 real, parameter :: pi = 3.14159 ! data goes here
 contains ! procedures go here
 subroutine roots(a,b,state)
 implicit none
 real, intent(out) :: a
 real, intent(in) :: b
 integer, intent(inout) :: state
 ... ! contents of procedure go here
 ! Something new: pi is available here
 end subroutine roots
 end module my_module

 program my_program
 use my_module ! make information in module available
 ! pi and roots are now known here
 real :: x = 1.0, y = 2.0, z = 3.0
 integer :: s = 1
 ! the arguments will be checked
 call roots(x,y,z) ! interface block no longer needed
 ! z is still the wrong type.
 end program

Modules can be compiled separately. Modules are
extremely useful and powerful.

Functions result variable no longer has to be the name of
the function:

 function cube_root(x) result(root)
 real, intent(in) :: x
 real :: root ! result variable is called root
 ... ! contents of function go here
 end function cube_root ! return statement not needed

Subroutines and functions can call themselves, if the
recursive keyword is used.

 recursive subroutine factorial(n,factorial_n)
 integer, intent(in) :: n
 integer, intent(out) :: factorial_n
 ...
 call factorial(n-1,factorial_n)
 factorial_n = n*factorial_n
 ...
 end subroutine factorial

 Recursive subroutines can be useful for rapid
development of certain algorithms. However, they can
have very high overhead, and their performance is often
poor.

 Flow Control (F book, chapter 5)

 New logical symbols:

 > ! same as .gt.
 < ! same as .lt.
 == ! same as .eq.
 /= ! same as .ne.

If-then-else constructs are evaluated in order. The first
true one is executed.

 logical :: logical1, logical2
 logical1 = (a>b).or.(b<c)

 if (logical1) then
 ...
 else if (logical2) then
 ...
 else
 ...
 endif

 Case construct is similar but more restricted, requires
mutually exclusive choices.

 integer :: i
 select case (i)
 case (1)
 ...
 case (2)
 ...
 case default
 ...
 end case

 The case selector can only be an integer, logical, or
character expression. Because the possible choices are
known at compile time, it is possible for the compiler
produce code to jump to the correct case directly without
any tests. The if-then-else construct is more general, but
slower.

 Ranges are also allowed in case statements, e.g.,

 case(-1:) ! i less than zero
 case(1:3) ! i between 1 and 3.
 case(:4) ! i greater than 3

 Iteration (F book, chapter 6)

 do i = initial, final [, increment]
 a(i) = ...
 enddo

numerical labels no longer required. Loop variable cannot
be modified. If final < initial, loop is not executed.

 Some useful character intrinsics include len(c) to obtain
the length of c, char to convert an integer code to a
character and ichar to convert a character to an integer
code. For example to convert from upper case to lower
case on an ascii machine, one can write:

 do i = 1, len(c)
 c(i:i) = char(ichar(c(i:i) + 32))
 enddo

More flexible loops are possible, with Exit and Cycle
statements:

 do i =1, max
 ...
 if (s>1.) exit ! exit before i = max
 ...
 end do

 do i =1, max
 ...
 if (s>1.) cycle ! go to next iteration
 ... ! this part skipped if cycle executed
 end do

 Infinite loops with an exit are possible

 do
 if (logical1) exit
 ...
 end do

This is equivalent to a do while loop, which is also possible

Loops can be labeled:

do_name: do i= 1, n
 ...
 end do do_name

If-then-else can also be labeled in this way. This is useful
for deeply nested do loops and if-then-else constructs.

Useful new intrinsics:

 epsilon(x), smallest number < 1, but not zero.
 huge(x), largest number possible of this type
 tiny(x), smallest positive number of this type
 digits(x), number of significant digits of real or integer
 precision(x), decimal precision of real or complex

