
A finite difference Hartree-Fock program for atoms and

diatomic molecules

Jacek Kobus

Instytut Fizyki, Uniwersytet Miko laja Kopernika, Grudzia̧dzka 5, 87-100 Toruń, Poland

Abstract

The newest version of the two-dimensional finite difference Hartree-Fock
program for atoms and diatomic molecules is presented. This is an updated
and extended version of the program published in this journal in 1996. It
can be used to obtain reference, Hartree-Fock limit values of total energies
and multipole moments for a wide range of diatomic molecules and their
ions in order to calibrate existing and develop new basis sets, calculate (hy-
per)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and
heteronuclear diatomic molecules and their ions via the finite field method,
perform DFT-type calculations using LDA or B88 exchange functionals and
LYP or VWN correlations ones or the self-consistent multiplicative con-
stant method, perform one-particle calculations with (smooth) Coulomb and
Krammers-Henneberger potentials and take account of finite nucleus models.
The program is easy to install and compile (tarball+configure+make) and
can be used to perform calculations within double- or quadruple-precision
arithmetic.

Keywords: Schrödinger equation of one-electron atomic and diatomic
systems, restricted open-shell Hartree-Fock method, atoms, diatomic
molecules, density functional theory potentials, Gauss and Fermi nuclear
charge distributions, finite field method, prolate spheroidal coordinates,
8th-order discretization, (multicolour) successive overrelaxation
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Program Title: 2dhf

Journal Reference:

Catalogue identifier:

Licensing provisions: GPL

Programming language: Fortran 77, C

Computer: any 32- or 64-bit platform

Operating system: Unix/Linux

RAM: case dependent, from few MB to many GB

Number of processors used:

Supplementary material:

Keywords: restricted open-shell Hartreee-Fock method, DFT potentials, prolate

spheroidal coordinates, 8th-order discretization, (multicolour) successive overre-

laxation method,

Classification: 16.1

External routines/libraries:

Subprograms used:

Catalogue identifier of previous version: ADEB v1 0*

Journal reference of previous version: Comput. Phys. Commun. 98(1996)346*

Does the new version supersede the previous version?: yes*

Nature of problem: The program finds virtually exact solutions of the Hartree-

Fock and density functional theory type equations for atoms, diatomic molecules

and their ions. The lowest energy eigenstates of a given irreducible representation

and spin can be obtained. The program can be used to perform one-particle cal-

culations with (smooth) Coulomb and Krammers-Henneberger potentials and also

DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN

correlations ones or the self-consistent multiplicative constant method.

Solution method: Single-particle two-dimensional numerical functions (orbitals)

are used to construct an antisymmetric many-electron wave function of the re-

stricted open-shell Hartree-Fock model. The orbitals are obtained by solving the

Hartree-Fock equations as coupled two-dimensional second-order (elliptic) partial

differential equations (PDEs). The Coulomb and exchange potentials are obtained

as solutions of the corresponding Poisson equations. The PDEs are discretized

by the eighth-order central difference stencil on a two-dimensional single grid and

the resulting large and sparse system of linear equations is solved by the (mul-

ticolour) successive overrelaxation method ((MC)SOR). The self-consistent-field

iterations are interwoven with the (MC)SOR ones and orbital energies and nor-
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malization factors are used to monitor the convergence. The accuracy of solutions

depends mainly on the grid and the system under consideration which means that

within double precision arithmetic one can obtain orbitals and energies having up

to 12 significant figures. If more accurate results are needed the quadruple precison

floating-point arithmetic can be used.

Reasons for the new version: additional features, many modifications and cor-

rections, improved convergence rate, overhauled code and documentation*

Summary of revisions: see ChangeLog found in tgz archive*

Restrictions: The present version of the program is restricted to 60 orbitals. The

maximum grid size is determined at compilation time.

Unusual features: The program uses two C routines for allocating and deallocating

memory. Several BLAS (Basic Linear Algebra System) routines are emulated by

the program. When possible they should be replaced by their library equivalents.

Additional comments: automake and autoconf tools are required to build and com-

pile the program; checked with f77, gfortran and ifort compilers

Running time: Very case dependent – from a few CPU seconds for the H2 de-

fined on a small grid up to several weeks for the Hartree-Fock-limit calculations for

40-50 electron molecules.

1. INTRODUCTION

The modeling of the electronic structure of atoms and molecules has re-
ceived a great deal of effort over the last 50 years. Nowadays a significant part
of CPU power available to the scientific community is used to understand
the physical and chemical behaviour of molecular systems by employing a
range and/or a mixture of ab initio, semi-empirical and molecular mechan-
ics methods (see for example [? ]). In mainstream computational quantum
chemistry molecular orbitals are expressed as linear combinations of (atomic)
basis functions, which allows to treat systems of any composition and geom-
etry. Since in practice basis sets are usually far from being complete, the
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calculated properties suffer from so-called basis set truncation errors that
are difficult to assess and control. In order to tackle the problem a number
of different sequences or families of basis set functions have been developed
to make calculations of various systems and properties feasible and credible.
By and large calibration of basis sets is based on atomic data which can
be obtained by numerical, i.e. basis-set-free methods. That is why nearly
fifty years ago there were already first attempts to solve the Hartree-Fock
(HF) problem for molecules by reducing it to one-center cases for which well-
established numerical methods had already been known [? ? ? ? ? ]. This
idea was revitalized many years later by Becke, who proposed solving the
Hartree-Fock-Slater equations for a general polyatomic molecule via several
separate solutions of the appropriately defined atomic-like problems [? ?
? ]. Recently, Shiozaki and Hirata have extended this approach to the HF
equations [? ].

McCullough was the author of the first not fully algebraic, semi-numerical
and successful attempt to solve the (multi-configuration) HF equations for di-
atomic molecules, the so-called the partial-wave self-consistent-field method
(PWSCF) [? ? ]. In the case of diatomic molecules one can choose a prolate
spheroidal coordinate system whose centres coincide with the nuclei: ξ =
(rA + rB)/RAB, η = (rA − rB)/RAB and the azimuth angles θ (0 ≤ θ ≤ 2π),
where atoms A and B are placed along the z-axis at points (0, 0,−RAB/2)
and (0, 0,+RAB/2), and rA and rB are the distances of a given point from
these atomic centres. The cylindrical symmetry of the diatomic systems al-
lows for factoring out (and later treating analytically) the angular part and
expressing molecular orbitals and the corresponding Coulomb and exchange
potentials in the form f(ξ, η)eimθ where m is an integer. Thus, for diatomic
molecules, the three-dimensional HF equations can be reduced to their two-
dimensional counterparts for the functions f(ξ, η). In the PWSCF method,
these equations are further simplified by requiring that the function f has the
form f(ξ, η) =

∑lmax
l=m Xm(ξ)Pm

l (η), where the associate Legendre functions
Pm
l (η) form a basis set in the η variable (that was the reason why McCul-

lough referred to this method as a semi-numerical one). As a result, Xm(ξ)
functions must satisfy second-order ordinary differential equations which are
solved numerically on a properly chosen grid. In the early 1980s, Becke de-
veloped a numerical approach for solving density functional equations for
diatomic molecules by using polynomial spline interpolation for approximat-
ing the f function on a suitable chosen two-dimensional grid [? ? ? ? ]. The
function values at the grid points were obtained by requiring the minimiza-

4



tion of a certain functional equivalent to the given Fock-Slater equations.
Recently, Artemyev et al. proposed a variant of PWSCF by expanding the
f function in a finite B-splines basis set; as a bonus one gets also virtual
molecular orbitals that can be used to calculate correlation effects by the
second-order perturbation theory [? ]. In the second half of the 1980s Heine-
mann, Fricke and coworkers showed that the two-dimensional Hartree-Fock
equations could be successfully solved by the finite element method [? ? ? ].
Later, a multigrid variant of the method was also developed [? ]. The finite
element approach was also used to solve the one-electron Schrödinger equa-
tion for the linear triatomic molecule H2+

3 [? ] and Dirac and Dirac-Slater
equations [? ? ? ]. Sundholm and Olsen have also developed a finite element
approch for solving the HF equations [? ? ? ]. Recently, Morrison et al.
have been advocating the theory of domain decomposition that could be used
to divide the variable domain of a diatomic molecule into separate regions
in which the HF equations are solved independently by approximating the
f function by high-order spline functions [? ? ]. Due to this decomposition
fast iterative methods can be applied to solve the HF equations in the inte-
rior region (where the operators are self-adjoint) and explicit methods in the
boundary ones. This scheme allows one to use non-uniform multiple grids
and thus solve the HF equations for both bound and continuous eigenstates.

Yet another approach to solving the HF equations for diatomic molecules
was put forward in the early 1980s by Laaksonen, Pyykkö and Sundholm.
They proposed representing the f function through its values on a two-
dimensional mesh. To this end, the second-order partial differential equa-
tions for orbitals and potentials were discretized by means of the sixth-order
cross-like stencil, and the ensuing large and sparse systems of linear equa-
tions were solved by means of the iterative successive overrelaxation (SOR)
method [? ]. This approach will be referred to as the finite difference HF (FD
HF) method. Davstad has also developed a fully numerical finite difference
approach for the solution of Hartree-Fock equations for diatomic molecules
[? ]. The FD and FE methods together with the wavelets method belong
to the so-called real-space mesh techniques used to solve Poisson, Poisson-
Boltzmann and eigenvalue problems, and the reader is referred to review
articles by Beck [? ] and Arias [? ] for further details.

The present author got interested in the FD HF method about 20 years
ago and has been involved in its development and applications ever since [?
? ? ]. An improved version of the FD HF method was announced in 1996
[? ? ]. For many years the method was mainly used to assist the process of
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development and calibration of sequences of universal even-tempered basis
sets that was initiated by Moncrieff and Wilson in the early 1990s [? ? ?
? ? ? ? ? ? ? ? ? ]. In the course of that work the method proved
to be a reliable source of reference values of total energies, multipole mo-
ments, static polarizabilities and hyperpolarizabilities (αzz, βzzz, γzzzz, Az,zz

and Bzz,zz) for atoms, diatomic molecules and their ions [? ? ? ? ? ]. It also
provided HF-limit values for examining the convergence patterns of proper-
ties calculated using correlation-consistent basis sets within the context of
complete basis set models [? ? ? ? ? ] and eventually helped in the devel-
opment of polarization-consistent basis sets [? ? ? ]. The method was also
employed to provide the reference values of spectroscopic constants of sev-
eral diatomic molecules in order to compare the convergence patterns of the
correlation-consistent and polarization-consistent basis sets towards the com-
plete basis set limit [? ]. The FD HF energies accurate to at least 1µHartree
were calculated for 27 diatomic transition-metal-containing species in order
to investigate the convergence of the HF energies upon increasing the sizes
of correlation-consistent basis sets and augmented basis sets developed for
the transition atoms by Balabanov and Peterson [? ? ]. The correlation-
consistent basis sets were not constructed to allow for extrapolation of the
HF total energies but rather to extrapolate the correlation energies to the
complete basis set limit. It was demonstrated that the correlation energies
converge according to the inverse power law while the HF energies exhibit
exponential behaviour both with respect to the total number of the basis
functions of a given type and with respect to the maximum angular mo-
mentum functions included [? ? ]. That was the rationale behind Jensen’s
project to design hierarchies of polarization-consistent basis sets specifically
tailored to facilitate extrapolation of the HF (also density functional theory)
energies, dipole moments and equilibrium distances to their corresponding
complete basis set limits [? ]. Recently, Zhong et al. presented a new family
of basis sets, called n-tuple-ζ augmented polarized (n=2-6) basis sets, that
converge systematically to the complete basis set limits of both the SCF en-
ergy and the correlation energy [? ]. Jensen examined the dependence of
FD HF total energies on the grid size for 42 diatomic species composed of
the first and second row elements and reported their energies to better than
1 µHartree accuracy [? ]. Halkier and Coriani used the FD HF-limit value
of the electric quadrupole moment of hydrogen fluoride to estimate the basis
set truncation errors when performing state-of-the-art calculations to deter-
mine the full configuration interaction basis set limit value of this property
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[? ]. This work is an apparent demonstration that when accurate post-HF
treatment is at stake then the basis set development must guarantee that
the HF values are also accurate. Similarly, Pawlowski et al. used the FD
HF method to obtain the dipole polarizability and the second hyperpolariz-
ability of the Ne atom to estimate basis set errors present in the calculations
using the CCS, CC2, CCSD and CC3 coupled cluster models and Dunning’s
correlation-consistent basis sets cc-pVXZ augmented with diffuse functions
[? ].

A separate problem is the assessment of relativistic basis functions used
for solving the Dirac-Fock equations. Although at present there is no rel-
ativistic version of the FD HF method, it seems that the method can be
used to indirectly assess the quality of the basis sets used for relativistic
calculations. Styszyński studied the influence of the relativistic core-valence
correlation effects on total energies, bond lengths and fundamental frequen-
cies for a series of hydrogen halide molecules (HF, HCl, HBr, HI and HAt).
In order to assess the quality of basis sets and the dependence of spectro-
scopic constants on the basis set truncation errors the results of the algebraic
non-relativistic HF calculations were compared with the corresponding FD
HF ones [? ? ? ].

It seems that the development and calibration of the basis sets for the
calculation of electron momentum densities also benefited from the FD HF
method. It allowed one to find large basis set errors in previous computa-
tions of these quantities by means of self-consistent-field wave functions often
considered to be of near-Hartree-Fock quality [? ]. Calculations of the stop-
ping powers and ranges of energetic ions in matter within the semiempirical
approach developed by Ziegler, Biersack and Littmark require the knowl-
edge of interatomic potentials [? ]. Nordlund et al. [? ] studied repulsive
potentials for C-C, Si-Si, N-Si and H-Si systems and Pruneda and Artacho
[? ] extended the analysis to C-C, O-O, Si-Si, Ca-O and Ca-Ca systems
by calculating the potentials by means of density functional theory and HF
methods (both algebraic and fully numerical). In order to test the quality of
the basis sets used to obtain the potentials for Kr-C, Xe-C, Au-C and Pb-
C diatomics, especially at small interatomic distances, the FD HF method
was also employed [? ? ]. Numerical orbitals obtained from the method
also proved useful in developing a model of high-harmonic generation from
diatomic molecules [? ].

The FD HF approach proved useful in the density functional theory con-
text to construct and test various functionals [? ? ? ? ? ? ? ? ]. Calcula-
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tions for systems with finite-size nuclei employing the Gauss or Fermi nuclear
charge distribution models can also be made [? ]. It is worth noting that
if the method is applied to a one-electron system it can be treated as a fi-
nite difference solver of the Schrödinger equation for the three-dimensional
Coulomb and Krammers-Henneberger potentials (and the like) in the cylin-
drical coordinates [? ].

As mentioned above, the universal sequences of even-tempered Gaussian
basis functions and polarization-consistent basis functions were developed
with the help of numerical results by means of the FD HF approach. This
calibration work was a major stimulus for developing the method, improving
its accuracy, stability and efficiency and thus enlarging its range of appli-
cability. This paper aims at presenting the current version of the program
(version 2.0) so that it can be confidently used and further developed should
the need arise. The present version of the program is the first one with
the version numer explicitly given, as this should help to maintain the code.
This work should be viewed as an update to an earlier paper describing the
method and the previous version of the program [? ]. The current and some
in-between versions of the program are available from the project’s home
page http://www.leiflaaksonen.eu/num2d.html.

The paper is organized as follows. The introduction is followed by a gen-
eral description of the restricted open-shell Hartree-Fock method for diatomic
molecules. In section 3, the discretization of second-order partial differential
equations is presented, and the usage of the SOR method for solving large
and sparse systems of resulting linear equations is described in some detail
as this is the crux of the presented approach. In particular, the SCF/SOR
iteration patterns and the accuracy of the approach are discussed. The x2dhf
program can be used as a solver of one-electron Schrödinger equation in two
variables. Section 4 presents additional one-electron potentials that can be
selected. The final section 5 is devoted to the x2dhf program itself, its call
tree, data structures and workings of the major routines responsible for the
SCF and SOR iterations. In order to help checking, correcting and modifying
the program the appendices contain various relevant formulae of DFT energy
functionals and potentials, finite nucleus models, multipole moments, etc.
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2. GENERAL DESCRIPTION

2.1. The restricted open-shell Hartree-Fock method

For an open-shell, M -electron, diatomic molecular system the Hartree-
Fock equations are a set of M one-particle (integro-differential) equations
(Fock equations)[? ? ]

Faφa =
M∑
a=1

Eabφb, a = 1, . . . ,M (1)

where φa = φa(x, y, z, σ) are spin-orbitals forming the Slater determinant

Φ =
1√
M !

det |φ1(1), φ2(2), . . . , φM(M)|

being the approximation to the solution of the Schrödinger equation that
minimizes the energy functional

〈Φ| −
∑
a

1

2
∇2
a −

ZA
raA
− ZB
raB

+
∑
a<b

1

rab
+
ZAZB
R
|Φ〉

It is assumed that atoms A and B having charges ZA and ZB are placed
along z-axis at points (0, 0,−R/2) and (0, 0,+R/2) and raA and raB are the
distances of a given particle from these atomic centres separated by R.

The Fock equations can be put in the form

−1

2
∇2φa = −

(
−ZA
raA
− ZB
raB

+
∑
b

[
V b
C − V ab

x

]
− Ea

)
φa +

∑
b6=a

Eabφb (2)

where

∇2V a
C = −4πφ∗aφa

∇2V ab
x = −4πφ∗aφb (3)

are Poisson equations determining the electron-electron Coulomb and ex-
change potentials via the single-particle and the pair densities, respectively.
The Fock equations are solved by the self-consistent-field (SCF) iterative
procedure and therefore the right-hand sides of Eq. (??) can be treated dur-
ing each iteration as already known functions since they are determined by
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the orbitals obtained in the previous iteration (and approximate potentials
are obtained via integration of Eq. (??)). Thus, not only the Coulomb and
exchange potentials but also the orbitals can be obtained by solving Poisson-
type equations.

Diatomic molecules can be described in the prolate spheroidal coordinate
system

ξ = (rA + rB)/R

η = (rA − rB)/R

θ azimuth angle

1 ≤ξ <∞
−1 ≤η ≤ 1

0 ≤θ ≤ 2π

(4)

where rA and rB are the distances of a given point from the atomic centres.
The cylindrical symmetry of the diatomic systems allows for factoring out
(and later treating analytically) the angular part and expressing the orbitals
and the potentials in the form

φa

V a
C

V ab
x

 = f(ξ, η)eimθ (5)

where the parameter m is equal to 0, ±1, ±2, . . .. The energy expression for
the restricted open-shell Hartree-Fock (ROHF) method reads

E =
∑
a

〈φa| −
1

2
∇2 + Vn |φa〉 qa +

∑
a,b

〈φa|V b
C |φa〉Uab −

∑
a,b

〈φa|V ab
x |φb〉Wab (6)

where Vn = −ZA/raA−ZB/raB is the nuclear potential energy operator. qa is
the occupation number for orbital a and Uab and Wab are the corresponding
occupation-number-dependent factors for the Coulomb and exchange energy
contributions. In order to allow for a more accurate description of orbitals
and potentials in the vicinity of the nuclei, the prolate spheroidal coordinates
(η, ξ, θ) are transformed into (ν, µ, θ) variables.

µ = cosh−1 ξ 0 ≤ µ ≤ ∞
ν = cos−1 η 0 ≤ ν ≤ π (7)

Because of this transformation, φa is a quadratic function of µ and ν for
points in the vicinity of the z-axis (µ = 0 corresponds to the Cartesian
coordinates (0, 0,−R/2 ≤ z ≤ R/2), ν = 0 to (0, 0, z ≥ R/2) and ν = π to
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(0, 0, z ≤ −R/2)). In the transformed prolate spheroidal coordinates (ν, µ, θ),
the ”radial” part of the Laplacian reads

4

R2(ξ2 − η2)

{
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν
−m2

a

(
1

ξ2 − 1
+

1

1− η2

)}
(8)

In Eq. (??), ma is an integer, and it defines the rotation symmetry of the
orbitals. The orbitals with ma = 0 are called σ orbitals; π orbitals have
ma = ±1, δ orbitals have ma = ±2, and orbitals with ma = ±3 are called
ϕ orbitals, and so on. Orbitals of higher symmetry than ϕ are not relevant
for ordinary diatomic molecules at the Hartree-Fock level. Orbitals with the
same ”radial” part and with m = ±ma belong to the same shell. Since the
m-value for the exchange potentials, V ab, is |ma −mb|, the largest m-value
for the exchange potentials becomes |2 ma,max|, where ma,max is the largest
orbital m-value.

Multiplying the Fock equation by −R2

2
(ξ2 − η2) yields the working equa-

tion for the orbital relaxation in the transformed prolate spheroidal coordi-
nates. {

∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν

−m2
a

(
1

ξ2 − 1
+

1

1− η2

)
+R[ξ(Z1 + Z2) + η(Z2 − Z1)]

−R
ξ

(ξ2 − η2)ṼC +
R2

2
(ξ2 − η2)Ea

}
fa(ν, µ)

+
R

ξ
(ξ2 − η2)

(
Ṽx

a
+
Rξ

2

∑
b 6=a

Eabfb(ν, µ)

)
= 0 (9)

In Eq. (??) the modified Coulomb ṼC and exchange potentials Ṽ a
x have been

introduced.

Ṽ a
C = RξV a

C/2 Ṽ ab
x = RξV ab

x /2 (10)

ṼC =
∑
a

Ṽ a
C Ṽ a

x =
∑
b6=a

Ṽ ab
x fb(ν, µ) (11)

The working equation for the relaxation of the Coulomb and exchange po-
tentials is analogously obtained from the Poisson equation in the transformed
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prolate spheroidal coordinates{
∂2

∂µ2
+

(
1√
ξ2 − 1

− 2
√
ξ2 − 1

ξ

)
∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν

−(ma −mb)
2

(
1

ξ2 − 1
− 1

1− η2

)
− 2

ξ2

}
Ṽ ab

= −πR
3

2
ξ(ξ2 − η2)fa(ν, µ)fb(ν, µ) (12)

For Coulomb potentials a = b and the m-dependent term disappears. The
diagonal and off-diagonal orbital-energy parameters, Ea and Eab, in Eq. (??)
are calculated as

Ea = 〈φa| −
1

2
∇2 + Vn +

2

Rξ
(ṼC − Ṽ a

x ) |φa〉 = 〈φa|ha |φa〉 (13)

Eab =
qb

qb + qa
(〈φb|ha |φa〉+ 〈φa|hb |φb〉) (14)

where qa and qb are the occupation numbers of orbitals a and b.

2.2. General boundary conditions

The Cartesian coordinates in terms of (ν, µ, θ) read

x =
R

2
sinhµ sin ν cos θ

y =
R

2
sinhµ sin ν sin θ (15)

z =
R

2
coshµ cos ν

and the radial distances from the nuclei, r1 and r2, the distance from the
geometrical centre, r, and the Cartesian z coordinate are given by

r1 =
R

2
(coshµ+ cos ν) =

R

2
(ξ + η)

r2 =
R

2
(coshµ− cos ν) =

R

2
(ξ − η) (16)

r =
R

2

√
cosh2 µ+ cos2 ν − 1 =

R

2

√
ξ2 + η2 − 1

cos θ = z/r =
R

2
coshµ cos ν/r = ξη/

√
ξ2 + η2 − 1
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Eqs. (??) reveal an interesting property of the transformation given by Eq. (??).
If the sign of µ or ν is reversed then the point (x, y, z) goes over into
(−x,−y, z). A rotation by π leaves orbitals with even m unchanged but
reverses the sign of orbitals with odd m-values. This means that the orbitals
and potentials of σ, δ, . . . symmetry are even functions of (µ, ν), and the
orbitals and potentials of π, ϕ, . . . symmetry are odd ones. Thus we can
write

f(ν, µ) = (−1)mf(ν,−µ)

f(ν, µ) = (−1)mf(−ν, µ) (17)

f(π + ν, µ) = (−1)mf(π − ν, µ)

These symmetry relations can be readily used to set the values of f to zero
along (ν, 0), (0, µ) and (π, µ) boundary lines for orbitals of π, ϕ, . . . symmetry.
In the case of σ, δ, . . . orbitals these boundary values are obtained by means
of either extrapolation or interpolation if the symmetry of the function is
taken into account (see Sec. ??). For homonuclear molecules the functions
must be additionally either symmetric or antisymmetric with respect to the
reflection at the molecular centre plane (π

2
,µ). As a result we have symmetric

σg, πu, δg, ϕu, . . . and antisymmetric σu, πg, δu, ϕg, . . . functions.

2.3. Boundary conditions for orbitals at infinity

At the practical infinity, the asymptotic limit may be used to estimate
the values of the orbitals in the last few grid points in µ direction. Consider
the second-order differential equation

d2ya
dr2

=

(
Ea −

g1(r)

r
+
g2(r)

r2

)
ya = Fa(r)ya (18)

with y(0) = 0 and y(r) → 0 as r → ∞, and Ea is the orbital energy. The
asymptotic form of ya(r) can be written as [? ]

ya(r) ≈ const Fa(r)
1/4 exp

(
−
∫ r

r0

Fa(r
′)1/2dr′

)
(19)

By discretizing and approximating the integral by a rectangular rule, the
above equation yields the appropriate expression of the boundary condition
for the orbitals at the practical infinity in the form

ya(rm+1) ≈ ya(rm)

(
Fa(rm)

Fa(rm+1)

)1/4

exp
(√
−Fa(rm)(rm+1 − rm)

)
(20)
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2.4. Boundary conditions for potentials at infinity

The boundary conditions for the potentials Ṽ ab at the practical infinity
are obtained from the multipole expansion. In particular, we have

Ṽ a
C =

Rξ

2

kmax∑
k=0

Qaa
k,0r

−k−1 Pk,0(cos θ) (21)

where Qab
k,m = 〈φa|rkPk,m(cos θ)|φb〉 are the multipole moments. Due to the

non-vanishing centrifugal term for exchange potentials, the additional factor
[(k−|∆m|)!/(k+ |∆m|)!] appears. The multipole expansion for the exchange
potentials becomes

Ṽ ab
x =

Rξ

2
ei∆mθ

kmax∑
k=0

(−1)|∆m|
(k − |∆m|)!
(k + |∆m|)!

1

rk+1
Pk|∆m|(cos θ)Qab

k,∆m (22)

where ∆m = mb −ma, and Pk,∆m are the associated Legendre functions.1

2.5. Evaluation of one- and two-particle integrals

The volume element in the (ν, µ, θ) coordinates is

dxdydz =
R3

8
sinhµ sin ν (cosh2 µ− cos2 ν) dνdµdθ (23)

The expression for the kinetic energy can be calculated in the (ν, µ, θ) coor-
dinates as

Ea
T =

∫ ∫ ∫
dxdydz φ∗a

(
−1

2
∇2

)
φa

= −πR
2

∫ ∫ √
(ξ2 − 1)(1− η2)fa(ν, µ)T (ν, µ)fa(ν, µ)dνdµ (24)

where

T (ν, µ) =
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η

1− η2

∂

∂ν
−m2

a

(
1

ξ2 − 1
+

1

1− η2

)
(25)

1In the x2dhf program, the moment expansion for the boundary condition of the po-
tentials is truncated at kmax=8 and ∆m ≤ 4.
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The nuclear potential energy is analogously evaluated as

Ea
n = −πR

2

∫ ∫ √
(ξ2 − 1)(1− η2)R {ξ(Z1 + Z2) + η(Z2 − Z1)} f 2

adνdµ(26)

The two-electron Coulomb- and exchange-energy contributions to the total
energy are obtained as

Eab
C =

∫ ∫ ∫
dxdydz φa

2

Rξ
Ṽ b
Cφa

=
πR2

2

∫ ∫
1

ξ

√
(ξ2 − 1)(1− η2)(ξ2 − η2)fa(ν, µ)Ṽ b

Cfa(ν, µ)dνdµ(27)

Eab
x =

∫ ∫ ∫
dxdydz φa

2

Rξ
Ṽ ab
x φb

=
πR2

2

∫ ∫
1

ξ

√
(ξ2 − 1)(1− η2)(ξ2 − η2)fa(ν, µ)Ṽ ab

x fb(ν, µ)dνdµ(28)

3. METHOD OF SOLUTION

3.1. Solving a Poisson-type equation

We face the problem of solving Eq. (??) and Eq. (??), i.e. a second-order
partial differential equation of the form{
A(ν, µ)

∂2

∂ν2
+B(ν, µ)

∂

∂ν
+ C(ν, µ)

∂2

∂µ2
+D(ν, µ)

∂

∂µ
+ E(ν, µ)

}
u(ν, µ) = F (ν, µ)

(29)
defined on a rectangular domain [0, π] × [0, µ∞] = [−1, 1] × [1, ξ∞], where
ξ∞ = 2r∞/R with the suitably chosen value of r∞ defining the practical
infinity (rA, rB ≤ r∞). This value must be large enough to guarantee that
the boundary conditions derived from the asymptotic form of these equations
can be applied.

Several different methods can be used to solve such a problem. The most
popular one is to represent the solution as a linear combination of suitably
chosen basis functions and treat the problem algebraically by solving the
resulting system of linear equations for expansion coefficients. In the context
of the HF method for diatomic molecules, the following alternative three
approaches have gained some acceptance: the partial-wave self-consistent-
field (PWSCF) method of McCullough [? ? ], the finite element (FE) HF
method of Fricke, Heinemann and Kolb [? ? ? ] and the finite difference
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(FD) HF method of Laaksonen, Sundholm, Pyykkö and the present author [?
? ]. Within the latter, approach one chooses a suitable grid and approximates
the first and second derivatives by finite differences and solves the resulting
system of linear equations by an iterative method [? ]. In (ν, µ) coordinates,
the grid points are distributed uniformly according to

νj+1 = νj + hν , ν1 = 0, hν = π/(Nν − 1), j = 1, 2, ..., Nν

µi+1 = µi + hµ, µ1 = 0, hµ = µ∞/(Nµ − 1), i = 1, 2, ..., Nµ (30)

where Nν and Nµ are the number of mesh points in each variable. This
distribution corresponds to a non-uniform distribution of points in the (z, x)
plane with higher density in the vicinity of the nuclei, as shown on Fig. ??.
Eq. (??) is discretized by the (r + 1)-point numerical stencil based on the
rth-order Stirling interpolation formula [? ] (see also Appendix ??). We
have

∂2

∂ν2
u(νi, µj) =

r/2∑
k=1

d
(νν)
k (u(νi−k, µj) + u(νi+k, µj)) + d

(νν)
r/2+1u(νi, µj)

∂

∂ν
u(νi, µj) =

r/2∑
k=1

d
(ν)
k (u(νi−k, µj)− u(νi+k, µj)) (31)

where coefficients d
(νν)
k and d

(ν)
k can readily be derived. We employ the fol-

lowing 9-point central difference formulae for the first and second derivatives
of a function f(x)

f ′i =
1

840h
(3fi−4 − 32fi−3 + 168fi−2 − 672fi−1

+672fi+1 − 168fi+2 + 32fi+3 − 3fi+4) +O(h8)

f ′′i =
1

5040h2
(−9fi−4 + 128fi−3 − 1008fi−2 + 8064fi−1 − 14350fi.

+8064fi+1 − 1008fi+2 + 128fi+3 − 9fi+4) +O(h8) (32)

where fi = f(x1 + ihx) and x can be either ν or µ variable. In case of
a two-dimensional function Eq. (??) and Eq. (??) yield 17-point cross-like
numerical molecules.
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When the discretization of Eq. (??) is thus performed it is transformed
into a matrix equation

Ru = s (33)

where u and s are vectors of length NνNµ and R is a large and sparse square
matrix (Nν and Nµ are typically in the range 100-400). When a 5-point
stencil is used to discretize an elliptic equation then the resulting system of
linear equations can be readily solved since the relaxation of inner grid points
requires only the solution to be known at the boundary. When a higher-order
discretization is used then additional boundary values are needed and con-
sequently different numerical stencils (dependent on the discretization order
and the distance of the grid points from the boundary) need to be used.
This is a rather unwelcome complication because it results in algorithm com-
plications and in a decrease in its efficiency. Therefore the FD HF method
utilizes the same 17-point cross-like stencil for all grid points at the expense
of additional boundary values that have to be calculated. That is why the
boundary values at u(νi, µNµ+k−1), i = 1, . . . , Nν , k = 1, . . . , 4 are obtained
from the known asymptotic behaviour of orbitals and potentials at the prac-
tical infinity r∞ and Eqs. (??) can be used to provide the additional values
along the remaining sides of the rectangular region [ν1, νNν ] × [µ1, µNµ ]. If
the solution u is an odd function it vanishes along the (0, µ), (π, µ) and (ν, 0)
lines and the corresponding values are set to zero. For an even function the
values are calculated using the Lagrange 9-point interpolation formula for
an equally spaced abscissas [? ]

f(x0 + ph) ≈
∑
k

Ank(p)fk (34)

where Ank is the interpolation constant given for even and od velues of n by
the following formulae

Ank(p) =
(−1)

1
2
n+k(

n−2
2

+ k
)
!
(

1
2
n− k

)
! (p− k)

n∏
t=1

(
p+

1

2
n− t

)
, −1

2
(n− 2) ≤ k ≤ 1

2
n

Ank(p) =
(−1)

1
2

(n−1)+k(
n−1

2
+ k
)
!
(
n−1

2
− k
)
! (p− k)

n−1∏
t=0

(
p+

n− 1

2
− t
)
, −1

2
(n− 1) ≤ k ≤ 1

2
(n− 1)

Assuming that f(−xi) = f(xi) and fk = f(x0 + kh) the rearrangement of
the expression for f5 yields

f0 =
1

126
(210f1 − 120f2 + 45f3 − 10f4 + f5) (35)
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Hence one can treat all the inner mesh points on an equal footing and perform
the discretization of Eq. (??) by means of a single pair of numerical stencils
as defined by Eqs (??).

Since the R matrix is large and sparse, an iterative method must rather
be used to solve the system of linear equations. In the case of the FD HF
method, the orbitals and potentials are solved using the successive overrelax-
ation method (SOR) and its multicolour variant (MCSOR), which is better
suited for vector processors [? ? ? ] (see also sec. ??, p. ?? and sec. ??,
p. ??). The standard discretization of Eq. (??) by the second-order cross-like
stencils and the natural row-wise ordering of grid points (bottom to top, left
to right) leads to a tridiagonal matrix with fringes [? ]. The SOR method
can be used to solve such a system and the method is guaranteed to converge
if the matrix R is symmetric, positive definite and the relaxation factor, ω, is
within the interval 0 < ω < 2 [? ? ]. The (n+ 1)-th iterate of u is obtained
as

Rppu
(n+1)
p = (1−ω)Rppu

(n)
p −ω

(
p−1∑
q=1

Rpqu
(n+1)
q +

NνNµ∑
q=p+1

Rpqu
(n)
q − sp

)
, p = 1, . . . , NνNµ

(36)
Assuming the natural rowwise ordering of grid points let us write Eq. (??)
without explicit reference to matrix R. Applying the idea of the SOR method
to Eq. (??) discretized by formulae of Eq. (??) we have

G(νi, µj)u
(n+1)(νi, µj) = (1− ω)G(νi, µj)u

(n)(νi, µj) + ωF (νi, µj)

−ω
r/2∑
k=1

[
A(νi, µj)d

(νν)
k

(
u(n+1)(νi−k, µj) + u(n)(νi+k, µj)

)
+B(νi, µj)d

(ν)
k (u(n+1)(νi−k, µj) + u(n)(νi+k, µj))

+C(νi, µj)d
(µµ)
k (u(n+1)(νi, µj−k) + u(n)(νi, µj+k))

+D(νi, µj)d
(µ)
k (u(n+1)(νi, µj−k) + u(n)(νi, µj+k))

]
where

G(νi, µj) = A(νi, µj)d
(νν)
r/2+1 + C(νi, µj)d

(µµ)
r/2+1 + E(νi, µj) (37)
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and i = 2, . . . , Nν − 1, j = 2, . . . , Nµ− 1, i.e. only the interior grid points are
relaxed (see also Sec. (??), p. ??).

The convergence of the SOR method depends critically on the value of
the overrelaxation parameter ω as shown in Table ??. For a Poisson equation
discretized by the second-order stencil one can show that the optimum value
of the overrelaxation parameter ωopt is given by the formula [? ]

ωopt(Nν , Nµ) =
2

1 +
√

1− ρ(Nν , Nµ)2
(38)

where ρ(Nν , Nµ) is the spectral radius of the corresponding matrix and is
equal to cos(π/Nν)/2 + cos(π/Nµ)/2. There are no analogous results for
higher-order discretizations and for general elliptical second-order partial dif-
ferential equations like Eq. (??) that must be solved to obtain orbitals and
potentials of the FD HF method. However, it has been shown that the (near)
optimal value of the overrelaxation parameter for orbitals and potentials can
be approximated by the formula

ωopt(Nν , Nµ) =
2A

1 +
√

1− ρ(Nν , Nµ)2
+B (39)

where A and B are determined from numerical experiments [? ]. In order to
reliably determine ωopt for, say, orbitals, the potentials must be kept frozen
and vice versa. The actual optimal values of the overrelaxation parameters
used by the FD HF program are somewhat smaller since usually both orbitals
and potentials are relaxed in every SCF iteration, and as a consequence the
functions E(ν, µ) and F (ν, µ) also change.

3.2. Numerical differentiation and integration

Since the differentiation operator in µ and ν directions are independent,
the differentiation over these variables can be performed separately. The
differential operator in the µ-direction reads

D(µ)f(ν, µ) =

(
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ

)
f(ν, µ) =

(
∂2

∂µ2
+ ξ̃(µ)

∂

∂µ

)
f(ν, µ).

(40)
Let

df

dµ
(νi, µj) =

4∑
k=−4

d
(1µ)
k f(νi, µj+k) (41)
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d2f

dµ2
(νi, µj) =

4∑
k=−4

d
(2µ)
k f(νi, µj+k) (42)

where d
(1µ)
k and d

(2µ)
k are defined by Eq. (??) and Eg. (??), respectively. To

define D(µj)f(νi, µj) we write

D(µj)f(νi, µj) =
4∑

k=−4

[d
(2µ)
k + ξ̃(µj)d

(1µ)
k ]f(νi, µj+k) =

4∑
k=−4

f(νi, µj+k)d̃k
µ
(µj)

= (fµj d̃
µj

)i, µj+k = µj + khµ. (43)

where fµj matrix is (virtually) built from the 9 consecutive columns of f
beginning with the (j − 4)th column and d̃µj is the jth column of the array
d̃µ, i.e. (d̃µ)kj = d̃k

µ
(µj). Thus evaluation ofD(µj)(νi, µj) for all ν values (i =

1, 2, . . . , nν) can be performed via a single matrix times vector multiplication
(cf. routine diffmu).

The differentiation in ν-direction is performed analogously and the dif-
ferential operator in the ν-direction reads

D(ν)f(ν, µ) =

(
∂2

∂ν2
+

η√
1− η2

∂

∂ν

)
f(ν, µ) =

(
∂2

∂ν2
+ η̃(ν)

∂

∂ν

)
f(ν, µ).

(44)
In the finite difference matrix representation it becomes

D(νi)f(νi, µj) =
4∑

k=−4

f(νi+k, µj)d̃k
ν
(νi) = (fνid̃νi)j, νi+k = νi + khν (45)

where fνi matrix is build from the 9 consequitive columns of fT (the trans-
posed f matrix) beginning with the column i− 4 (cf. routine diffnu).

The integrals are evaluated using a two-dimensional generalization of 7-
point one-dimensional integration formulae∫ x7

x1

dxf(x) =
h

140
(41f1 +216f2 +27f3 +272f4 +27f5 +216f6 +41f7)+O(h9)

(46)
The two-dimensional integration weights are obtained as an outer product
of the integration weights listed in Eq. (??). The order of the integration
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formula determines the number of grid points in both directions. In the
case of the 7-point integration formula the number of grid points in ν and µ
direction has to be of the form 6n+ 1.

The discretized orbitals and potentials can be represented as two-dimensional
arrays f such that fij = f(νi, µj), i = 1, . . . , Nν , j = 1, . . . , Nµ, νi = (i− 1)hν
and µj = (j−1)hµ. Employing the two-dimensional integration formula that
can be derived from Eq. (??) one can write

∫ π

0

dν

∫ µ∞

0

dµJ(ν, µ)f(ν, µ) =
Nν∑
i=1

Nµ∑
j=1

cicjf(νi, µj)J(νi, µj) (47)

=
Nν∑
i=1

Nµ∑
j=1

c̃ijfij =

NνNµ∑
k=1

c̃kfk,

k = (j − 1)Nν + i (48)

where c̃ is a one-dimensional array of the integration weights merged with
the Jacobian and f is a two-dimensional array of f(νi, µj) values which is
treated as a one-dimensional array. Thus the integral can be evaluated as a
dot product of the two vectors c̃ and f̃ and the integrals defined by Eqs. (??),
(??), (??), (??) can be dealt with straightforwardly.

3.3. SCF and SOR iteration patterns

The salient feature of the finite difference Hartree-Fock method is the fact
that the self-consistent-field iterative process of the Hartree-Fock method
and the successive overrelaxation iterations needed to solve the equations
are tightly interwoven. A certain number of successive overrelaxation itera-
tions is carried out to update the values of orbitals and potentials between
two successive self-consistent-field iterations when the orbital energies are
recalculated, the orbitals reorthogonalized and the boundary values at µ∞
reevaluated (the remaining boundary values are updated at every SOR it-
eration). Note that, because of the iterative nature of the SOR method,
at no single SCF iteration the set of approximate linear equations is solved
exactly (and it need not be). Accurate solutions (up to roundoff errors) of
the set of the linear equations and thus the Hartree-Fock equations are only
obtained when the SCF/SOR process converges (the convergence depends
on the electronic configuration of a system, the initial estimates of orbitals
and potentials and the parameters used during the SOR iterations).
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When performing calculations for an N -orbital atomic or diatomic system
a single SCF iteration requires the relaxation of N Fock equations to obtain
the orbitals, N Poisson equations for the Coulomb potentials and about N2/2
Poisson equations for the exchange potentials. For example, in the case of the
GaF molecule in each SCF iteration one has to relax 2×15 equations for or-
bitals and Coulomb potentials and 120 equations for the exchange potentials.
It has been observed that 65-90% of the CPU time devoted to a given case
is spent relaxing orbitals and potentials and that the rate of convergence of
the SCF process is mainly determined by the convergence behaviour of these
relaxations. That is why the proper choice of the overrelaxation parameters
ωorb and ωpot is so important for the efficiency of the FD HF approach. It also
effects the patterns of SCF convergence process. Figures (??) and (??) show
the convergence of the individual FH orbitals when some rather suboptimal
overrelaxation parameters are used (ωorb = 1.65 and ωpot = 1.68). Initial es-
timates of the orbitals and potentials are crude and it takes several hundred
iterations for the SCF process to settle (about 250 for the 1 σ orbitals and
twice as much for the 2 σ one). The convergence is exponential and the rate
is nearly constant over the next ten thousand iterations. Only in case of the
2 σ orbital and just after 6000 iterations one can notice a sudden variation
in the rate of convergence which lasts for about 500 iterations. It must be
kept in mind that in each SCF iteration every orbital and potential undergos
by default ten SOR sweeps. It means that at no single SCF iteration we are
seeking an exact (within roundoff errors, of course) solutions of the Poisson
equations for orbitals and potentials. Instead, due to the iterative nature of
the SOR method the solutions are gradually improved.

When a near optimal parameter is used for orbitals and potentials, namely
ωorb = 1.950 and ωpot = 1.989, the smoothing out of the convergence pattern
takes about 750 SCF iterations but the convergence is six times faster; see
Fig. ?? and Fig. ??. Because of this sort of behaviour it is not recommended
to use near optimal values of overrelaxation parameters at the onset of the
SCF process when initial estimates of orbitals and potentials are poor as this
may easily cause the SCF process to go astray. Instead, one should rather use
conservative values for the overrelaxation parameters for a couple of hundred
iterations, save the orbitals and potentials and then restart the program with
these functions as good initial estimates and the near optimal ωorb and ωpot
parameters to speed up the relaxation process. A similar overall convergence
pattern can be seen by plotting the total energy differences calculated every
tenth SCF iteration, as shown in Fig. ??.
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The number of sweeps that are performed for every single function un-
dergoing relaxation is an adjustable parameter, and it can be set within the
range 10-40 without drastically changing the convergence rate. Table ??
shows the dependence of the total number of SOR iterations and the time
required to solve the FD HF equations on the number of SOR iterations
applied to relax the orbitals and potentials in a single SCF iteration. The
problem has not been thoroughly examined but it seems that the optimum
value of this parameter cannot easily be found and the net effect may not be
worth the effort.

3.4. Accuracy of the method

The FD HF method is a truly basis-set-independent approach and if the
mesh and r∞ are chosen adequately the HF orbitals can be obtained to the
required accuracy (within double- or quadruple-precision arithmetic). In
order to see this, let us consider the Fock equation for an orbital φ (a subscript
is omitted for readability) at a given SCF iteration, i.e. we assume that the
Fock operator does not depend on its eigenfunctions

Fφ = Eφ

where

φ =
∞∑
i=1

ciχi

is expanded into a complete set of orthonomal basis functions χi. When a
finite basis set is used an approximate solution is written as

φ̃ =
M<∞∑
i=1

c̃iχi

and the Fock equation is transformed into an approximate one

Fφ̃ = Ẽφ̃

One can write
φ = φ̃+ ∆φ (49)

where the truncation error ∆φ is orthogonal to φ̃ or otherwise ∆φ would

be included in φ̃. However,
〈
φ̃
∣∣∣ ∆φ

〉
= 0 + δroundoff , i.e. the orthogonality
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condition is limited by the degree of the linear dependence within a given
basis set, which is directly related to accuracy of floating-point arithmetic
(δroundoff). Therefore

E = 〈φ|F |φ〉 = Ẽ + 2δroundoffẼ + 〈∆φ|F |∆φ〉
Usually when an algebraic method is employed to solve the Fock equations
the roundoff errors are much smaller than basis set truncation errors. Hence
the orbital energies are calculated to a higher accuracy than the orbitals
themselves, and that is the reason why the calculations of properties are
often regarded as a much more sensitive test of the quality of a given basis
than the total energy alone.

When the finite difference solution of the Fock equation is attempted,
Eq. (??) can still be used but one can no longer assume that φ̃ and ∆φ are
orthogonal since now the orbital error is due to both roundoff and discretiza-
tion errors. When calculations are carried out in double precision arithmetic
the former are (usually) much smaller than the latter. The accuracy of the
energy can be increased by changing the grid size as long as the discretization
errors are larger than the roundoff ones. Thus〈

φ̃
∣∣∣ ∆φ

〉
= 0 + δdiscr + δroundoff , δdiscr � δroundoff

and the orbital φ can only be normalized up to the discretization errors.
Therefore

E = 〈φ|F |φ〉 = Ẽ + 2δdiscrẼ + 〈∆φ|F |∆φ〉
i.e. the orbital energy error depends linearly on the orbital error which, in this
case, is mainly due to the discretization. If the changes of the Fock operator
during the SCF process were taken into account, the error analysis would be
more complicated. However, the linear dependence of the total energy on
discretization errors can still be observed, as the data for the hydrogen and
helium atoms collected in Tables ?? and ?? show.

The approximate character of the 1 σ orbital can be well monitored by
calculating the total electronic dipole moment (along the z-axis) of the sys-
tem. Clearly, the accuracy of the total energy as measured by the error of the
virial ratio closely matches the quality of the orbital. And in this particular
case grids larger than [151× 193/25] cannot improve the solution of the HF
equation.

In order to obtain accurate solutions of the FD HF equations one has
to quarantee that both a single orbital and a single Coulomb or exchange
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potential are calculated to a high and comparable accuracy. Let us examine
solutions of the Fock equations first. Table ?? contains eigenvalues of several
σ, π, δ and ϕ states of the GaF+39 system obtained by solving the Fock
(Schrödinger) equation by means of the FD method together with the corre-
sponding values obtained from Power’s program that generates eigenvalues
for the bare-nuclei one-electron diatomic systems [? ] (Power’s program used
to be available from Quantum Chemistry Program Exchange, Indiana Uni-
versity). The agreement is perfect, and small discrepancies can be attributed
to inevitable roundoff errors.

The overall quality of the FD HF method for diatomics can be exam-
ined by applying it to an atomic system that can be described by a single
Slater determinant (especially a closed-shell one) since the numerical HF re-
sults for atoms are readily available. Table ?? shows the orbital and the
total energies of the calcium atom obtained by means of the modified finite
difference one-dimensional HF program of Froese Fischer [? ? ] and its
two-dimensional counterpart (the internuclear separation between the atom
and its non-existent partner, i.e. a centre with no charge, was set to 2 au,
since such a choice of separation guarantees that similar grids are used when
solving the FD HF equations for the atom and the diatomic molecule). This
comparison demonstrates that the accuracy of the two methods matches very
well. This level of agreement can only be obtained when the one-dimensional
grid is large enough and carefully chosen (one has to adjust the ρ0 and h pa-
rameters which determine the first non-zero value of the radial variable and
the step size, respectively). Both programs can deliver total energies that
have 12-13 significant figures, and it seems that this is the ultimate accuracy
that can be expected from finite difference programs that use double-precision
arithmetics for floating-point operations. Since the FD HF program treats
atomic and diatomic systems on an equal footing, we expect that the same
level of accuracy can be obtained when solving the HF equations for diatomic
molecules. That this is indeed the case can be seen from Table ??, where
the total HF energies of the beryllium atom and for the LiH, BH and N2

molecules calculated by means of the FD method and the multigrid finite
element method are compared. The highly accurate finite element results
correspond to the extrapolated values obtained from a series of calculations
performed on grids of increasing density [? ].
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3.5. Efficiency of the method

The analysis of numerical complexity of the three alternative methods of
solving the HF equations for diatomic molecules, i.e. PWSCF, FD and FE,
show that the FD method is about ten-fold more efficient than the other ap-
proaches [? ]. This is mainly due to the fact that in the FD method the SCF
iterations are interwoven with only a small number of SOR relaxation sweeps.
This means that in a given SCF iteration the Fock and Poisson equations are
not solved exactly by the SOR method but that the solutions are gradually
improved and one gets the correct solution only upon the convergence of both
the SCF and SOR iterations. Various improvements introduced into the FD
HF method in the course of its development have resulted in a considerable
increase in its efficiency, and therefore this method can be applied routinely
to small- and medium-size diatomic molecules. Of course, as a result of the
constant enhancement in computer performance the notion of a medium-
size molecule refers to larger and larger systems: a decade ago to systems
containig about 10-15 electrons, nowadays to 35-45.

The program allocates memory according to the case under consideration,
i.e. the requested number of orbitals and the grid size. This means that the
same binary version of the program can be used for systems of variable sizes,
or calculation for a given system may be performed with an increasing accu-
racy.2 The solutions can be transferred between grids of different densities,
which greatly simplifies performing calculations for a series of grids of in-
creasing density.

In the FD HF method the orbital and the potential functions u(ν, µ) are
discretized on the rectangular region using meshes with Nν and Nµ points in
the respective variables. The partial differential equations of the HF method
in the form of Eq. (??) are discretized using the eighth-order central difference
expressions, given by Eqs. (??) and (??), which yield a 17-point cross-like
stencil. The use of the 17-point numerical stencil instead of its 13-point
counterpart that was employed in the original version of the method [? ] to
discretize the HF equations resulted in the decrease of the truncation errors
by two orders of magnitude (from O(h6) down to O(h8)). Thus the number
of the grid points could be reduced by half without impairing the quality

2There are some hard-coded arrays and their dimensions must be adjusted during
compilation of the program; see INSTALL file of the x2dhf package.
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of the solution.3 The usage of the higher-order discretization stencil has to
be matched with increased accuracy of the numerical integration routines.
Therefore, the 5-point (composite) numerical integration was replaced by its
7-point equivalent. The accuracy of the boundary values for the orbitals and
potentials at the practical infinity, r∞, were also increased, which allowed
one to decrease this value and reduce the grid size while retaining the overall
accuracy. The program was to be used on Cray and Convex computers
utilizing vector processors. To make use of this important feature all parts
of the program essential for its efficiency were cast in vector-vector, matrix-
vector and matrix-matrix form and performed by means of the BLAS library
routines. This approach is also advantageous when the program is used
on modern superscalar architectures with BLAS library routine support [? ].
Upon the introduction of these changes it has turned out that the efficiency of
the FD HF method depends solely on the efficacy of the method used to solve
the systems of linear equations. That is why some effort has been put into
the careful implementation of the SOR method (and its multicolour variant)
[? ]. With the 17-point numerical stencil the relaxation of a single grid value
requires 56 floating point operations and the process can be performed with
speeds of about 1 and 2 GFLOPS for AMD Opteron 2200 (2.8 GHz) and
Intel E8400 (3 GHz) processors, respectively.

4. ONE-ELECTRON POTENTIALS

The primary application of the FD HF method is of course solving the
Fock equations for diatomic molecules. However, with some modifications it
can also be used to solve these sorts of two-dimensional partial differential
equations with other one- and two-particle attractive potentials.

4.1. DFT potentials

In particular, the FD HF method can be used to solve the Fock equa-
tions with various density functional potentials. The program supports the
LDA and B88 [? ] local exchange potentials and the LYP [? ] and VWN
[? ] correlation potentials; the corresponding formulae for potentials and
energies together with the relevant references can be found in Appendix ??,
p. ??. Table ?? presents a comparison of total energies of the He, Be and Ne

3In case one solves a model Poisson equation the savings due to the higher-order dis-
cretization can be even larger.
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atoms calculated within the finite basis set and finite difference approaches
with various combinations of local exchange (LDA and B88) and correlation
potentials (LYP and VWN). The present version of the FD HF program can
be used to perform calculations by means of the self-consistent multiplica-
tive constant method of Karasiev and Ludeña [? ] where the Xα exchange
potential is used with the α parameter adjusted in every SCF iteration (see
Table ??, ??). The program also allows one to calculate LDA, B88, PW86,
PW91, LYP and VWN contributions to the total energy for any set of or-
bitals. It is worth mentioning that automatically adjusted values of the
relaxation parameters ωorb and ωpot should be avoided when using the local
exchange potentials. In such instances one should set these parameters to
(sometimes much) smaller values in order to guarantee the convergence of
the SCF/SOR process.

The LDA (Xα) approximation is often used as a handy way of generating
good initial estimates of orbitals. In such a case the recommended α values
for elements from helium to niobium are taken from Schwarz [? ] and are
extrapolated for the remaining ones. To this end, one can also use the model
potential of Green, Sellin and Zachor [? ]. For a given atom, this potential
produces HF-like orbitals, and it was found useful in finding decent starting
orbitals for any molecular system.

4.2. Krammers-Henneberger potential

The FD HF program can also be employed to solve the Schrödinger equa-
tion for a one-electron diatomic system with an arbitrary but binding poten-
tial and it can be treated as a finite difference solver of the Schrödinger equa-
tion for the three-dimensional potential in cylindrical coordinates [? ]. The
present version of the program supports the (smoothed) Coulomb potential

V =
−V0√
a2 + r2

=
−V0√

a2 + x2 + y2 + z2

and the Krammers-Henneberger potential

V =
−V0

2π
ω

√
a2 + b2

x + y2 + z2

with bx = x + α0 + α0(cos(ωt) − 1), α0 = E0/ω
2, and where a is a width of

the model potential, V0 its depth, E0 the laser field intensity and ω its cycle
frequency.
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4.3. Finite field approximation

For diatomic molecules, the z-components of polarizabilities and hyper-
polarizabilities can be evaluated by the finite field approximation when the
field is applied along the internuclear axis. The effect of this field is attributed
by adding terms of the form

−
∑
i

µiz(0)Fz (50)

to the Hamiltonian where µiz(0) is the z-component of the permanent dipole
moment for the i-th electron. The induced dipole and quadrupole moments
can be written as the expansions [? ? ]

µz(Fz) = µz(0) + αzzFz +
1

2
βzzzF

2
z +

1

6
γzzzzF

3
z + · · ·

Θzz(Fz) = Θzz(0) + Az,zzFz +
1

2
Bzz,zzF

2
z + · · · (51)

When the moments are evaluated for 0, ±F 0
z and ±2F 0

z values of the field, the
5-point central difference approximations to the derivatives can be employed,
resulting in the following approximate formulae for the dipole polarizability
(αzz), and the first and second dipole hyperpolarizabilities (βzzz and γzzzz),
the dipole-quadrupole polarizability (Az,zz) and the dipole-dipole-quadrupole
hyperpolarizability (Bzz,zz), respectively

αzz =

(
dµz
dFz

)
Fz=0

≈ µz(−2F 0
z )− 8µz(−F 0

z ) + 8µz(+F
0
z )− µz(+2F 0

z )

12F 0
z

βzzz =

(
d2µz
dF 2

z

)
Fz=0

≈ −µz(−2F 0
z ) + 16µz(−F 0

z )− 30µz(0) + 16µz(+F
0
z )− µz(+2F 0

z )

12(F 0
z )2

γzzzz =

(
d3µz
dF 3

z

)
Fz=0

≈ −µz(−2F 0
z ) + 2µz(−F 0

z )− 2µz(+F
0
z ) + µz(+2F 0

z )

2(F 0
z )3

(52)

Az,zz =

(
dΘzz

dFz

)
Fz=0

≈ Θzz(−2F 0
z )− 8Θzz(−F 0

z ) + 8Θzz(+F
0
z )−Θzz(+2F 0

z )

12F 0
z

Bzz,zz =

(
d2Θzz

dF 2
z

)
Fz=0

≈ −Θzz(−2F 0
z ) + 16Θzz(−F 0

z )− 30Θzz(0) + 16Θzz(+F
0
z )−Θzz(+2F 0

z )

12(F 0
z )2

In principle, the polarizability and the first hyperpolarizability can also
be evaluated as the second and the third derivatives of the total energy with
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respect to the field, i.e.

αzz = −
(
d2E

dF 2
z

)
Fz=0

βzzz = −
(
d3E

dF 3
z

)
Fz=0

(53)

and approximated by the above finite differences accordingly. However, this
approach is less preferable, as it requires total energy values of very high
quality to be applied in a numerically stable fashion. The calculations of (hy-
per)polarizabilities by means of Eqs (??) seems to be a straightforward pro-
cedure but it also requires very accurate values of the dipole moment, espe-
cially when the second dipole hyperpolarizability values are of interest. This
is readily seen from Table ??, where the values of the total energies and the
dipole and quadrupole moments of hydrogen fluoride obtained for five dif-
ferent values of the electric field are examined. The upper part of the table
contains raw data extracted from the program’s listings by a Perl script.4

This script uses Eqs (??) to evaluate the polarizabilities and hyperpolariz-
abilities from the supplied data. A careful examination of the SCF/SOR
iteration process shows that the total energies and multipole moments are
known with a relative error of the order 10−12. This information can also be
supplied to the script, and the dependence of the electric properties on the
quality of the solution estimated. It is worth noting that even the dipole mo-
ment calculated by taking the first derivative of the energy has at most four
correct figures, and as a consequence leads to the polarizability with only two
significant figures. The value of the first hyperpolarizability is completely
useless. By contrast, the dipole moment calculated from orbitals inherits
their accuracy, and even the second hyperpolarizability can be quoted with
3-4 figures.

The problems with the finite field approach are twofold. First, if the
FD HF equations with the Hamiltonian modified by the presence of the ex-
ternal field are solved, the chosen field strength must be small enough to
yield converged and numerically stable results. The presence of the external
electric field makes it more difficult to apply boundary conditions at infin-
ity. In fact, much larger values of the practical infinity (up to 150-200 bohr)
must be chosen in order to converge the SCF/SOR process to high accuracy.
As a result, the number of grid points required is increased, thereby raising

4The listings and the script can be found in examples/fh and utils subdirectories of the
x2dhf package, respectively.
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the computational demands of the FD HF calculations, which are already
multiplied by a factor of 5 because of the 5-point difference formulae used to
calculate the (hyper)polarizabilities. Second, the field must be strong enough
to facilitate meaningful numerical differentiation of the dipole moment values
for different field strengths. Since it may be difficult to satisfy both require-
ments, the FD HF equations are usually solved on a number of different grids
and with several field strengths.

Recently, this approach has been used to calculate accurate values of po-
larizabilities and hyperpolarizabilities for atoms, heteronuclear and homonu-
clear diatomic molecules and their ions [? ? ]. The dependence of these prop-
erties on the internuclear separation can also be studied, as Table ?? shows.
Calculations for atoms and heteronuclear molecules are rather straightfor-
ward once the grid is chosen. However, homonuclear systems pose a problem
since a weak external electric field breaks the inversion symmetry, and the
SCF/SOR iteration process fails to deliver well-converged solutions. It has
recently been shown that the problem encountered is due to a near degen-
eracy of some of the orbitals and this can be circumvented by allowing for
non-zero off-diagonal Lagrange multipliers between such orbitals. The modi-
fied FD HF method was used to perform calculations of electrical properties
for the H2, Li2, F2, N2 and O2 molecules and the results can be found in [? ].
The quality of the properties can be assessed by the examination of the re-
sults for the N2 molecule shown in Table ??. The values of the polarizability
and the first hyperpolarizability should be compared with the best algebraic
HF values obtained to date by Maroulis, namely 15.0289 and 799 [? ].

4.4. Finite nuclei

The FD HF program is also suited to study atomic and diatomic systems
with finite nuclei. The charge distribution within a nucleus can be described
by either Gaussian and Fermi models [? ], where parameters defining the
atomic masses of the nuclei are taken from the table of atomic masses com-
piled by Wapstra and Audi [? ? ] (see Appendix ??, p. ??, for details).

5. DESCRIPTION OF THE CODE

5.1. Structure of the code

It is assumed that the reader has unpacked the program’s package and
has access to the User’s Guide pdf file that can be found in docs directory.
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The large scale structure of the program is presented in Fig. ??.5 The
main routine x2dhf is shown calling the twelve first level routines in the
order given, i.e. printBanner is invoked before setPrecision, setDefaults and
so forth. The routines of the second and third levels are also given and if their
calling order is irrelevant they are put into a box. The program starts by
printing its name and version. Then it determines the lengths of integer and
floating-point constants and variables since the program can be compiled to
support calculations using three different combinations of integer/real data
types: i32 (4-byte integers, 8-byte reals), i64 (8-byte integers, 8-byte reals)
and r128 (8-byte integers, 16-byte reals); see src/Makefile for details. These
values are used for seamless retrieval of binary data when reading orbitals and
potentials from disk files. In some cases, especially when quadruple precison
calculations are attempted, this is not enough because of non-standard data
formats employed by Fortran compilers. In such cases it is recommended to
export and import data in formatted instead of unformatted form (see inout
label). Next the default values of various scalar and array variables are set
and the program is ready to read input data. The retrieval of input data is
controlled by inputData routine and inCard routine is used to read a single
line at a time and scan it in search for nonspace fields (if an exclamation
mark or a hash is found then whatever follows is treated as a comment).
Subsequently inStr, inInt and inFloat routines are used to extract string,
integer and floating-point data, respectively. The input must contain at
least the following cards: TITLE, NUCLEI, GRID, CONFIG, ORBPOT and
STOP. TITLE gives at most 80 character-long description of a given case and
is used as a label of disk files with orbitals and potentials. NUCLEI card
defines the charges of atoms A and B and their separation (in atomic units or
angstroms). The grid is specified by providing at least the number of points
in the ν variable (Nν) and the practical infinity (r∞). The number of point
in the µ variable (Nµ) is then subsequently calculated so that the step sizes
in both the variables are approximately the same to guarantee a comparable
level of truncation errors when performing differentiation and integration of
functions. Additionally, Nν and Nµ are adjusted to the form 6k + 1 since
the numerical integration is based on a 7-point integration formula. If the
multicolour SOR method is used then Nν must be further restricted to the

5The x2dhf package contains the file ftnchek html/CallTree.html which can be used
to browse the complete call tree of the program.
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form 5k + 6 in order to subdivide the mesh points into five independent
subsets.

The program uses fixed-size common blocks and variable-length arrays to
move data between routines. However, the size of some common block arrays
is determined during the compilation through MAXNU and MAXMU vari-
ables (see src/Makefile.am). These variables set the maximum number of grid
points in ν and µ variables, respectively, that can be used when specifying the
grid size for a given case. The size of the variable-lenghth arrays is however
case dependent and the C routine memAlloc is used to allocate the required
space. Now initArrays is called to perform initialization of various com-
mon block variables and common block and variable-length arrays. First of
all the subroutine initCBlocks initializes grid, orbital and SOR data. Then
initAddr is called to calculate dimensions of variable-length arrays cw orb,
cw coul, cw exch for holding orbitals, Coulomb and exchange potentials and
to calculate their respective addresses within these arrays. cw suppl array is
also partitioned and the routine initSuppl is called to initialize arrays for
one-electron potentials, integration weights and Jacobians for one- and two-
particle integrations, etc. initMesh is responsible for establishing an order of
mesh points. By default the ’middle’ type of ordering is chosen but the natu-
ral column-wise, row-wise and the reverse natural column-wise orderings can
also be selected (see below). Finally initExWeights calculates the weights
of exchange contributions to the (restricted) open-shell Hartree-Fock energy
expression. Now, when the input data are processed the relevant information
about the way the given case will be handled can be printed (printCase).
One can thus check the method that will be applied, the electronic configura-
tion defined and the grid, SCF and SOR parameters. The detected machine
accuracy, the values of the π constant and the bohr to angstrom conversion
factor together with the summary of memory usage are also printed.

Before the SCF process can begin the initial values of orbitals and Coulomb
and exchange potentials must be provided. The molecular orbitals can be
formed as a linear combination of either atom-centred hydrogen-like orbitals
(via LCAO label, see initHyd) or numerical orbitals taken from the atomic
HF program (see initHF). Good estimates of the molecular orbitals can
be obtained by means of the GAUSSIAN package when its appropriate output
files are provided (see mkgauss option of tests/xhf script). The Coulomb
potentials are calculated using the Thomas-Fermi model and the exchange
ones are approximated by 1/r (see initPot). Unless the LCAO cards are
present the contributions from both the centres are taken with equal weights
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(in case one of the centres has zero nuclear charge the corresponding mixing
coefficient is also set to zero). Of course orbitals and potentials (together
with other relevant data) can be retrieved from disk files so that the current
case can be treated as a continuation of a previous run of the program.

Now, the initial orbitals can be normalized and orthogonalized and the
evaluation of diagonal and off-diagonal Lagrange multipliers can follow (see
prepSCF). The multiple moments and the total energy are also calculated
and the program proceeds to its core doSCF routine (see Fig. ??). There
the already calculated multipole moments are used to determine boundary
values of Coulomb and exchange potentials at the practical infinity, r∞ (see
potAsympt), and the solution of the Poisson equations for potentials can be
advanced by perfoming several (10 by default) iterations of the SOR method
(see coulSOR and exchSOR). This is done in the orbital loop for each orbital
in turn with the order determined by the electronic configuration as specified
by input data, i.e. σ-type orbitals first, then π, δ and ϕ. For each orbital the
updated Coulomb and exchange potentials are used to construct the Fock
equation, the boundary values of the orbital at r∞ are evaluated and the
orbital values at the mesh points are updated by performing several SOR
iterations (see the discussion of orbSOR routine below). Then the orbital is
normalized and orthogonalized and the diagonal and, if needed, off-diagonal
Lagrange multiplies are recalculated. When all the orbitals are thus pro-
cessed the convergence criteria are examined. If the SCF iteration limit is
reached or the maximum changes of orbital energies and/or their norms meet
their respective thresholds the SCF/SOR iteration process terminates. Oth-
erwise the next SCF iteration begins with the recalculation of the multipole
moments, if the changes in orbital energies between two consecutive SCF
iterations are large enough.

A few more words are needed to clarify the algorithm used to perform
SOR iterations. Since the boundary values for the potentials are calculated
before calling the coulSOR and exchSOR routines these are only responsible
for relaxing the function values. In Fig. ?? the unnumbered star-like points
represent these boundary values. In order to be able to use the same 17-point
cross-like stencil for the discretization of the Poisson equation for all (num-
bered) grid points the function being relaxed is immersed in a larger grid.
When the routine putin transfers this function from the original grid into its
extended counterpart it also sets the values at the bullit-like points using the
even or odd symmetry of the function. Now the relaxation can proceed in a
chosen given order of grid points (the column-wise in our example). When
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the process is over the symmetry of the function can be used again to fix the
values of ×- and ⊗-like grid points: for functions of even symmetry these
values are obtained from interpolation or set to zero otherwise (see sor rou-
tine). The relaxation sweeps (together with the interpolation) are repeated
as many times as required and putout routine is used to transfter updated
function values from the extended grid to the original one. In the case of
orbSOR routine the local and non-local parts of the Hartree-Fock potential
has to be calculated first by calling fock routine (see Fig. ??). Then the
asymptotic behaviour of the Fock equation is used to determine parameters
needed to calculate the boundary values of orbitals at µ∞ (see orbAsymptDet
and orbAsymptSet).

Fig. ?? shows the column-wise ordering of mesh points. By default
however, the x2dhf program uses the so-called middle-type ordering which
results in a bit faster convergence of the SCF/SOR process. As shown in
Fig. ?? the µ coordinates change according to the following order µ(M−1)/2,
µ(M−1)/2−1, . . ., µ1, µM/2, µM/2+1, . . ., µM . For each µi the ν coordinates
form the sequence: ν(N−1)/2, ν(N−1)/2−1, . . ., ν1, νN/2, νN/2+1, . . ., νN , where
M and N are number of grid points in each direction undergoing relaxation.

In case the multi-colour SOR is used all the mesh points undergoing
relaxation can be subdivided into five colours or colour suits as shown in
Fig. ?? (the triangles denote the no trump). It can easily be seen that when
the 17-point stencil is used for descritization the relaxation of, say, the clubs
points depend only on the values of points of remaining colours. That is
why the points of the same colour can be relaxed simultaneously and the
algorithm can be vectorized resulting in a five-fold speedups. It is possible to
parallelize the method within the OpenMP scheme but unfortunately no gain
in efficiency could be obtained. It is hoped that the MCSOR algorithm can be
effectively implemented on general-purpose graphics processing units using
CUDA technology (http://www.nvidia.com/object/cuda home new.html).

In order to help to understand how the program works, a short description
of all its most important routines follows in lexicographic order.

inCard reads (and echoes) a single line of input data and scans it in search
for nonspace fields. If an exclamation mark or a hash is found then
whatever follows is treated as a comment. inStr, inInt and inFloat

routines are used to extract string, integer and floating-point data,
respectively.
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coulAsympt determines for a given orbital asymptotic values of the corre-
sponding Coulomb potential

coulMCSOR prepares the right-hand side of the Poisson equation for a given
Coulomb potential and performs the default number of MCSOR itera-
tions (cf. mcsor).

coulMoments determines the multipole expansion coefficients for Coulomb
potentials

coulSOR prepares the right-hand side of the Poisson equation for a given
Coulomb potential and performs default number of SOR iterations (cf.
sor). In order to be able to use the same numerical stencil for all
grid points putin and putout routines are used transfer the function
between the primary and extended grids.

doSCF controls the SCF process. In every SCF iteration orbitals are relaxed
in the reverse order as defined by the input data. For a given orbital the
boundary values of the corresponding Coulomb and exchange potentials
at r∞ are calculated and the functions are relaxed by performing several
SOR iterations. Then the boundary values of the orbital are evaluated
and the orbital undergoes SOR relaxations. Next, it is normalized and
orthogonalized by means of the Schmidt algorithm. If required, the
inversion symmetry of the orbital can also be imposed. Subsequently,
its orbital energy and, if necessary, off-diagonal Lagrange multipliers
are calculated. This same procedure is repeated for every (non-frozen)
orbital. From time to time the mpoleMom routine is called and the
multipole moments needed to evaluate asymptotic values of potentials
are recalculated. Also every declared number of SCF iterations the
total energy is calculated and the orbitals and potentials are written
to disk. The SCF process is terminated if the convergence criteria are
met or the maximum number of SCF iterations is reached.

Ea computes the eigenvalue of the Fock equation for a given normalized
orbital as

Ea =< φa| − 1
2
∇2 + Vn + VC − V a

x |φa >.

Eab computes the off-diagonal Lagrange multiplier for a pair of normalized
orbitals.
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EaDFT computes the eigenvalue of the Fock equation for a given orbital when
a local exchange approximation is used.

EabDFT computes the off-diagonal Lagrange multiplier for a pair of normal-
ized orbitals in case a local exchange approximation is used.

Etotal evaluates the HF total energy.

EtotalDFT evaluates the total energy for a given DFT potential.

exchAsympt determines from the multipole expansion asymptotic (bound-
ary) values of the exchange potentials entering a given Fock equation.

exchMCSOR prepares the right-hand side of the Poisson equation for a given
exchange potential and performs the default number of MCSOR itera-
tions.

exchMom determines the multipole expansion coefficients for exchange poten-
tials.

exchSOR prepares the right-hand side of the Poisson equation for a given
exchange potential and performs the default number of SOR iterations.

initArrays initializes various common blocks and variable-length arrays.

initAddr calculates dimensions of arrays and addresses of particular or-
bitals, Coulomb and exchange potentials within dynamically allocated
arrays cw orb, cw coul, cw exch; arrays cw suppl and cw sctch are also
partitioned.

initCBlocks checks and adjusts the requested dimensions of the grid and
initializes some common block arrays with grid, orbital and SOR data.

initDisk controls retrieving of orbitals and potentials together with some
other data (Lagrange multipliers, multipole moment expansion coeffi-
cients, etc.) from disk files in binary or ascii format.

initExWeights calculates the weights of exchange contributions to the (re-
stricted) open-shell Hartree-Fock energy expression.
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initGauss initializes molecular orbitals through the discretization of GAUS-
SIAN orbitals reconstructed from the GAUSSIAN output (see prepGauss
for details); Coulomb and exchange potentials are initialized as in
initHyd.

initHF initializes molecular orbitals as a linear combinations of Hartree-Fock
orbitals on centres A and B (orbitals are generated by the qrhf pro-
gram6); Coulomb and exchange potentials are initialized as in initHyd.

initHyd initializes molecular orbitals as a linear combinations of hydrogenic
functions on centres A and B; Coulomb and exchange potentials are
initialized by calling initPot.

initMesh establishes ordering of mesh points (cf. order label).

initOrbPot initializes orbitals and potentials (see initHyd, initHF, prepGauss,
initGauss, initDisk and initTF for details).

initPot initializes Coulomb potentials as a linear combination of the Thomas-
Fermi potentials at the atomic centres. In case of HF calculations ex-
change potentials are approximated as the corresponding linear com-
bination of 1/r terms. In case of DFT calculations the local exchange
approximation is used.

initSuppl initializes various supplementary arrays of case-dependent lengths
supported by cw suppl (one-electron potentials, Jacobians, integration
weights, etc.).

inFloat – see inCard.

inInt – see inCard.

inputData handles the input to the x2dhf program.

inStr – see inCard.

mcsor performs one iteration of the multicolour successive overrelaxation
scheme.

6This is a modified version of Fischer’s MCHF program that can be downloaded from
http://fizyka.umk.pl/˜jkob/qrhf.
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memAlloc dynamically allocates memory acccording to grid requirements
and orbital configuration of the current case (a C routine).

memDealloc releases memory allocated by memAlloc (a C routine).

mpoleMom determines the coefficients of the multipole expansion for Coulomb
and exchange potentials (see coulMom and exchMom).

norm performs normalization of a given orbital.

ortho performs the Schmidt orthonormalization of a given orbital.

orbAsymptDet initializes an array which is used by orbAsymptSet to calcu-
late boundary values of a given orbital at practical infinity.

orbAsymptSet recalculates asymptotic values of a given orbital at the practi-
cal infinity using exponential decay values prepared by calling orbAsymptDet.

orbMCSOR performs the same tasks as orbSOR but uses the MCSOR method
for solving the Poisson equation (cf. mcsor).

orbSOR evaluates the Fock potential (cf. fock and fockDFT) for a given
orbital, sets up the right-hand side of the Poisson equation for that
orbital and performs a default number of SOR iterations (cf. sor). In
order to be able to use the same numerical stencil for all grid points
putin and putout routines are used to transfer functions between the
primary and extended grids. orbAsymptDet and orbAsymptSet are
used to calculate boundary values.

potAsympt determines from the multipole expansion asymptotic (boundary)
values of the Coulomb and exchange potentials needed for a given Fock
equation.

prepGauss extracts basis set parameters from an output of the GAUSS-
SIAN94/98 program (gaussian.out and gaussian.pun files) to be used
by initGauss routine.

prepSCF prepares the SCF process by orthogonalizing orbitals, calculation
of orbital energies, evaluation of Lagrange multipliers and multipole
moment expansion coefficients.

printBanner prints the name and version of the program.
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printCase outputs the information about the case being defined by the
input data (molecular system, internuclear separation, configuration,
grid, memory requirements, etc.).

printResults outputs the results of calculations, i.e. the final total energy
together with its contributions, DFT values of Coulomb, exchange and
correlation energies, orbital energies and normalization errors, multi-
pole moments and CPU usage.

putin takes a function defined on the primary grid and immerses it into
the extended grid so that the same 17-point cross-like stencil can be
used for the discretization of the Poisson equation for all grid points
undergoing relaxation; the odd or even symmetry of the function is
used to supply extra boundary values.

putout reverses the work of the putin routine and transfers a given function
values from the extended to primary grid.

setCi determines inversion symmetry of a given orbital (or set of orbitals)
and sets its value at (ν, µ), where ν = π/2, . . . , π and µ = 1, . . . , µ∞ by
the corresponding values at ν = 0, . . . , π/2.

setDefaults sets default values of various scalar and array variables, in par-
ticular those responsible for the ordering of mesh points and controlling
the SOR relaxations and the SCF process.

setPrecision calculates floating-point precision and the lengths of integer
and real variables in order to handle input and output data and print-
outs correctly. On x86 systems the precision depends on compiler op-
timization flags used and therefore this routine must be compiled with
the minimum optimization in order to avoid reporting precision of the
extended IEEE 754 arithmetic (see src/Makefile.am).

sor performs one iteration of the successive overrelaxation scheme.

writeDisk writes molecular orbitals, Coulomb and exchange potentials to-
gether with some other data such as Lagrange multiplies, multipole
moment expansion coefficients etc. in binary format to disk files.
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5.2. Language, features and limitations of the program

Except for two C routines used to allocate and deallocate memory, the
program has been written in Fortran 77. Fortran 95 can also be used to
compile the program, but no specific features of this version of the language
are used. The program uses the date and time library routine for retrieving
from the system the current time and date (see getDateTime). To monitor
the CPU time spent by the program calculating multipole moments, relax-
ing orbitals and potentials, etc., the cpu time library routine is used (see
getCpuTime). Several BLAS routines are emulated by the program. If pos-
sible they should be replaced by their optimized equivalents (see INSTALL).
The present version of the program is restricted to 60 orbitals. The maxi-
mum grid size that can be used is dependent on the case being considered
and available memory, and can be modified by the parameters MAXNU and
MAXMU (see src/Makefile.am). The maximum number of basis functions
used to prepare the initial estimates of orbitals by means of the Gaussian
program is restricted in a similar fashion by the parameter MAXBASIS.

The command and data file structure is described in User’s Guide, where
examples of sample input data cards are also included (see docs/users-guide.-
pdf). The latest release of the program together with its description, User’s
Guide, several examples of its inputs and outputs is available at http://-
www.leiflaaksonen.eu/num2d.html.
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Appendix A. DFT exchange and correlation potentials

Appendix A.1. LDA exchange potential

The local density approximation (Xα) potential is defined as

VX(α) = −3

2
α

(
3

π

)1/3

2−2/3
∑
σ

ρ1/3
σ (A.1)
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In case α = 2/3 we have so-called the Slater exchange potential. The corre-
sponding total energy reads

EX(α) = −9

8
α

(
3

π

)1/3

21/3
∑
σ

∫
ρ4/3
σ d3r (A.2)

Appendix A.2. B88 exchange potential

Becke [? ] proposed the following form of the exchange energy

EB88 = EX(2/3)−
∑
σ

∫
ρ4/3
σ

βx2
σ

1 + 6βxσ sinh−1 xσ
d3r (A.3)

= EX(2/3)−
∑
σ

∫
ρ4/3
σ βx2

σh(xσ)d3r (A.4)

where

xσ(ρσ,∇ρσ) =
|∇ρσ|
ρ

4/3
σ

and β = 0.0042 a.u.

EB88 =
∑
σ

∫
ρ4/3
σ

{
−3

2

(
3

4π

)1/3

− βx2
σh(xσ)

}
d3r =

∑
σ

∫
ρ4/3
σ g(xσ)d3r

(A.5)
This form leads to the corresponding expression for the exchange potential

VB88 = −
(

3

π

)1/3

2−2/3
∑
σ

ρ1/3
σ

−β
∑
σ

ρ−4/3
σ h(xσ)

{
4

3
x2
σρ

5/3 −∇2ρσ

[
1 + h(xσ)

(
1− 6βx2

σ√
1 + x2

σ

)]

+6βh(xσ)∇ρσ · ∇xσ
[

(1 + 2h(xσ)) sinh−1 xσ

+
xσ√

1 + x2
σ

(
1

1 + x2
σ

+ 2h(xσ)

(
2− 6βx2

σ√
1 + x2

σ

))]}
(A.6)
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Appendix A.3. PW86 exchange potential

According to Perdew and Wang [? ]

EPW86 =
1

2

∑
σ

E(2ρσ) (A.7)

E(ρ) = Ax

∫
ρ4/3(1 + as2 + bs4 + cs6)mdr3 = Ax

∫
ρ4/3F (s)

where Ax = −3
4
(3/π)1/3, F (s) = (1 + as + bs + cs)m = Fm

0 (s), a = 1.296,
b = 14, c = 0.2, m = 1/15, kF = (3π2ρ)1/3 and

s =
|∇ρ|
2kFρ

=
|∇ρ|/ρ4/3

(24π2)1/3

According to the user’s manual of the MOLPRO program (http://wild.life.-
nctu.edu.tw/˜jsyu/molpro2002.1/doc/manual/manual.html)

s =
|∇ρ|/ρ4/3

(48π2)1/3
.

This discrepancy is due to the different definition of ρ: ρ = 2ρσ and ρ = ρσ
in the two respective cases.

Eq. (??) leads to the following expresion for the potential

VPW86 =
1

2

∑
σ

V (2ρσ) (A.8)

V (ρ) = Axρ
1/3

{
4

3
F − ts−1dF

ds
−
(
u− 4

3
s3

)
d

ds

(
s−1dF

ds

)}
where

t = (2kF )−2ρ−1∇2ρ

u = (2kF )−3ρ−2∇ρ · ∇|∇ρ|
and

|∇ρ| = (∇ρ · ∇ρ)1/2
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dF

ds
= m(1 + as2 + bs4 + cs6)m−1(2as+ 4bs3 + 6cs5) = mF0

m−1dF0

ds

d

ds

(
s−1dF

ds

)
= mFm−2

0

[
(8bs+ 24cs3)F0 + (m− 1)s−1

(
F0

ds

)2
]

Appendix A.4. PW91 exchange potential

According to Perdew [? ] the exchange energy can be approximated by
the following formula

EPW91 =
1

2

∑
σ

E(2ρσ) (A.9)

E(ρ) = −3

4

(
3

π

)1/3

ρ4/3F (s)

F (s) =
1 + a1s sinh−1(as) + (a2 − a3 exp(−a4s

2)) s2

1 + a1s sinh−1(as) + b1s4
(A.10)

where a1 = 0.19645, a = 7.7956, a2 = 0.2743, a3 = 0.1508, a4 = 100,
b1 = 0.004 and

s =
|∇ρ|/ρ4/3

(24π2)1/3
.

sinh−1(x) can be calculated as log(x+
√

1 + x2).

Appendix A.5. LYP correlation potential

The correlation correction energy of an electron gas distribution charac-
terized by ρα and ρβ densities is calculated according to Eq. (22) of Lee, Yang
and Parr [? ], namely

ELY P = −a
∫

γ

1 + dρ−1/3
{ρ+2bρ−5/3[22/3CF (ρ8/3

α + ρ
8/3
β )− ρtW

+
1

9
(ραtW (ρα) + ρβtW (ρβ))

+
1

18
(ρα∇2ρα + ρβ∇2ρβ)]e−cρ

−1/3} (A.11)
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where a = 0.04918, b = 0.132, c = 0.2533, d = 0.349, CF = 3
10

(3π2)2/3,

γ = 2

[
1−

ρ2
α + ρ2

β

ρ2

]
, ρ = ρα + ρβ

tW (n) =
1

8

[ |∇n|2
n
−∇2n

]
, n = ρ, ρα, ρβ

VLY P = −a(F
′

1ρ+ F1)−abCFρ5/3(G
′

1ρ+
8

3
G1)

−ab
4

[
G
′′

1ρ|∇ρ|2 +G
′

1(3|∇ρ|2 + 2ρ∇2ρ) + 4G1∇2ρ
]

−ab
72

[
3G

′′

1ρ|∇ρ|2 +G
′

1(5|∇ρ|2 + 6ρ∇2ρ) + 4G1∇2ρ
]

(A.12)

where G1 = F1ρ
−5/3e−cρ

−1/3
, F−1

1 = 1 + dρ−1/3 and |∇2ρ| = ∇ρ · ∇ρ.
The potential for a closed-shell case can be expressed via F1 as

VLY P =−ad
3
ρ−1/3F 2

1 − aF1

−abCFF1g0ρ
5/3

(
g2 +

8

3

)
−19

18
abF1g0∇2ρ

−ab
72
F1g0g2

(
42∇2ρ+ 59ρ−1|∇ρ|2

)
− 7

24
abF1g0ρ

−1|∇ρ|2
[
g2

(
d

3
F1ρ

−1/3 + g1 − 1

)
+

1

9
g3ρ
−1/3

]
(A.13)

where
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g0(ρ) = ρ−5/3e−cρ
−1/3

g1 = −5

3
+
c

3
ρ−1/3

g2(ρ) =
d

3
F1ρ

−1/3 + g1

g3(ρ) = d2F 2
1 ρ
−1/3 − dF1 − c

G1(ρ) = F1g0

dg0

dρ
= g0g1ρ

−1

dg1

dρ
= − c

9
ρ−4/3

dg2

dρ
=

1

9
g3ρ
−4/3

dF1

dρ
=

d

3
F 2

1 ρ
−4/3

dG1

dρ
= F1g0g2ρ

−1

Appendix A.6. VWN correlation potential

The VWN correlation functional [? ] is defined as

EVWN =

∫
ρ(r)qklmn(x)dr (A.14)

where x =
(

3
4π

)1/6
ρ(r)−1/6 and qklmn(x) is given by

qApcd(x) = A

{
ln

x2

X(x, c, d)
+

2c

Q(c, d)
arctan

(
Q(c, d)

2x+ x

)
− cp

X(p, c, d)

(
ln

x− p
X(x, c, d)

+ 2
c+ 2p

Q(c, d)
arctan

(
Q(c, d)

2x+ x

))}
Q(c, d) =

√
4d− c2

X(i, c, d) = i2 + ic+ d

This formuala is valid for a closed-shell system and the parameters k, l,m, n
are equal 0.0310907, -0.10498, 3.72744 and 12.9352, respectively (cf. http://-
wild.life.nctu.edu.tw/˜jsyu/molpro2002.1/doc/manual/node184.html), and leads
to the following expression for the correlation potential

V (r) = qklmn(x) + ρ(r)
dx

dρ

dqklmn(x)

dx
(A.15)
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where

dx

dρ
= − 1

8π

(
4π

3

)5/6

ρ−7/6

dqApcd
dx

= A

{
2

x
− X ′(x, c, d)

X(x, c, d)
− 4c

Q(d, c)2 +X ′(x, c, d)2

+
4cp(c+ 2p)

X(p, c, d)(Q(d, c)2 +X ′(x, c, d)2)

− cp

X(p, c, d)

(
2

x− p −
X ′(x, c, d)

X(x, c, d)

)}

and X ′(x, c, d) = ∂X/∂x = 2x+ c.

Appendix A.7. Differential operators in prolate spheroidal coordinates

When perfoming DFT calculations using generalized gradient approxi-
mation one needs to evaluate ∇2f and ∇f∇g in the (transformed) prolate
spheroidal coordinates where f(x, y, z) and g(x, y, z) functions are densities
(or functions thereof) and thus are symmetric (i.e. ma in Eq. (??) is zero).
In order to help the reader to follow, check or modify the code responsible
for evaluation of various DFT potentials used in the x2dhf program several
relevant formulae have been collected below. Employing the definitions of
prolate spheroidal coordinates as defined by Eqs (??), (??) and (??) one can
write

∂f

∂x
=
∂ξ

∂x

∂µ

∂ξ

∂f

∂µ
+
∂η

∂x

∂ν

∂η

∂f

∂ν

∂f

∂y
=
∂ξ

∂y

∂µ

∂ξ

∂f

∂µ
+
∂η

∂y

∂ν

∂η

∂f

∂ν

∂f

∂z
=
∂ξ

∂z

∂µ

∂ξ

∂f

∂µ
+
∂η

∂z

∂ν

∂η

∂f

∂ν

∂µ

∂x
=

1√
ξ2 − 1

∂ξ

∂x

∂µ

∂y
=

1√
ξ2 − 1

∂ξ

∂y

∂µ

∂z
=

1√
ξ2 − 1

∂ξ

∂z

∂ν

∂x
=

−1√
1− η2

∂η

∂x

∂ν

∂y
=

−1√
1− η2

∂η

∂y

∂ν

∂z
=

−1√
1− η2

∂η

∂z
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∂ξ

∂x
=

4

R2(ξ2 − η2)
ξx

∂ξ

∂y
=

4

R2(ξ2 − η2)
ξy

∂ξ

∂z
=

4

R2(ξ2 − η2)
(ξz−1

2
Rη)

∂η

∂x
=

−4

R2(ξ2 − η2)
ηx

∂η

∂y
=

−4

R2(ξ2 − η2)
ηy

∂η

∂z
=

−4

R2(ξ2 − η2)
(ηz−1

2
Rξ)

∂f

∂x
=

4

R2(ξ2 − η2)

{
ξx√
ξ2 − 1

∂f

∂µ
+

ηx√
1− η2

∂f

∂ν

}
∂f

∂y
=

4

R2(ξ2 − η2)

{
ξy√
ξ2 − 1

∂f

∂µ
+

ηy√
1− η2

∂f

∂ν

}
∂f

∂z
=

4

R2(ξ2 − η2)

{
(ξz − 1

2
Rη)√

ξ2 − 1

∂f

∂µ
+

(ηz − 1
2
Rξ)√

1− η2

∂f

∂ν

}

∂f

∂x

∂g

∂x
=

[
4

R2(ξ2 − η2)

]2{
ξ2

(ξ2 − 1)

∂f

∂µ

∂g

∂µ
+

η2

(1− η2)

∂f

∂ν

∂g

∂ν

+
ξη√

ξ2 − 1
√

1− η2

(
∂f

∂µ

∂g

∂ν
+
∂f

∂ν

∂g

∂µ

)}
x2

∂f

∂y

∂g

∂y
=

[
4

R2(ξ2 − η2)

]2{
ξ2

(ξ2 − 1)

∂f

∂µ

∂g

∂µ
+

η2

(1− η2)

∂f

∂ν

∂g

∂ν

+
ξη√

ξ2 − 1
√

1− η2

(
∂f

∂µ

∂g

∂ν
+
∂f

∂ν

∂g

∂µ

)}
y2

∂f

∂z

∂g

∂z
=

[
4

R2(ξ2 − η2)

]2
{

(ξz − R
2
η)2

(ξ2 − 1)

∂f

∂µ

∂g

∂µ
+

(ηz − R
2
ξ)2

(1− η2)

∂f

∂ν

∂g

∂ν

+
(ξz − R

2
η)(ηz − R

2
ξ)√

ξ2 − 1
√

1− η2

(
∂f

∂µ

∂g

∂ν
+
∂f

∂ν

∂g

∂µ

)}

48



Since x2 + y2 = R2

4
(ξ2 − 1)(1− η2)

∇f∇g =

[
4

R2(ξ2 − η2)

]2

{(
R2

4
ξ2(1− η2) +

(ξz − R
2
η)2

(ξ2 − 1)

)
∂f

∂µ

∂g

∂µ
+(

R2

4
η2(1− ξ2) +

(ηz − R
2
ξ)2

(1− η2)

)
∂f

∂ν

∂g

∂ν
+(

R2

4
ξη
√
ξ2 − 1

√
1− η2 +

(ξz − R
2
η)(ηz − R

2
ξ)√

ξ2 − 1
√

1− η2

)(
∂f

∂µ

∂g

∂ν
+
∂f

∂ν

∂g

∂µ

)}

∇2f =
4

R2(ξ2 − η2)

(
∂2f

∂µ2
+

ξ√
ξ2 − 1

∂f

∂µ
+
∂2f

∂ν2
+

η√
1− η2

∂f

∂ν

)

Appendix A. Finite nucleus models

In contemporary investigations of nuclear structure in neutron scattering
experiments two representations of the nuclear structure are most often used:
a Fourier-Bessel expansion and a linear combination of (distributed) Gaussian
functions, whose adjustable parameters are refined to allow for an accurate
description of the nuclear charge distribution deduced from experimental
studies [? ]. It is, however, an established practice to use simpler empirical
models in atomic and molecular electronic structure calculation, of which the
uniform charge distribution, the Gaussian and Fermi models are encountered
most often in electronic structure theory. A detailed discussion of different
nuclear charge distribution models has been recently published by D. Andrae
[? ].

We assume that the nuclear charge distribution is spherically symmetrical
and can be written in the form

V (r) = −Z(r)

r
, r > 0

The x2dhf program implements two simple parametric nuclear models: the
Gaussian nuclear model and the Fermi nuclear model.

49



Appendix A.1. Gaussian nuclear model

The Gaussian nuclear charge distribution has the form

ρ(r) = Z

(
λ

π

) 3
2

exp
(
−λr2

)
where the exponent of the normalized Gaussian-type function representing
the nuclear distribution is determined by the root-mean-square radius of the
nuclear charge distribution via the relation λ = 3/2 〈r2〉. A statistical model
gives the following value for the root-mean-square radius (in fm)〈

r2
〉1/2

= 0.836A1/3 + 0.570, A > 6 (A.1)

where A is the atomic mass of a nucleus. Therefore, when the distance is
expressed in atomic units we have

λ =
3

2
1010

(
0.529177249

0.836A
1
3 + 0.570

)2

For any spherically symmetric charge distribution ρ(r) the potential energy
is

−rV (r) = 4π

(∫ r

0

s2ρ(s)ds+ r

∫ ∞
r

sρ(s)ds

)
If ρ(r) = ρ0 exp(−λr2) then the first integral is equal to

ρ0

(
−r exp(−λr2)

2λ
+

√
πerf(

√
λr)

4λ3/2

)

and the second to ρ0r exp(−λr2)/2λ. Thus

−rV (r) = ρ0

(π
λ

)3/2

erf
(√

λr
)

= Zerf
(√

λr
)

=
2Z√
π

(
γ

(
3

2
, ηr2

)
+
√
ηre−ηr

2

)
=

2Z√
π

(
γ

(
3

2
, ηr2

)
+
√
ηr
(
1− γ(1, ηr2)

))
since ρ0 = Z(λ/π)3/2 (the last form of the potential can be found in Parpia’s
paper [? ]). This potential reduces to the Coulomb potential if r �

√
λ. In
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case a very tight diatomic system with finite nuclei is considered the Z1Z2/r
contribution to the total energy must be replaced by

Z1Z2

r

1√
π
γ

(
1

2
, λ12r

2

)
where γ(a, x) is the lower incomplete gamma function

γ(a, x) =

∫ x

0

ta−1e−tdt (A.2)

and 1/λ12 = 1/λ1 + 1/λ2 [? ].

Appendix A.2. Fermi nuclear model

The Fermi nuclear model contains more detail concerning the charge dis-
tribution than the Gaussian model and has traditionally been employed in
fitting nuclear scattering data. The Fermi nucleus has the form of a Fermi
distribution

ρ(r) =
ρ0

1 + e(r−c)/a

where c is the half-density radius since ρ(c) = ρ0/2. The parameter a is
related to the nuclear skin thickness t through t/a = 4 ln 3. It may be verified
that ρ(c − t/2) = 0.9ρ0 and that ρ(c + t/2) = 0.1ρ0. The skin thickness is
thus the interval across which the nuclear charge density drops from 0.9ρ0 to
0.1ρ0. It is a standard practice to take t = 2.30 fm independent of the atomic
mass. The parameter c depends on the atomic mass through Eq. (??) and
the following relation 〈

r2
〉
≈ 3

5
c2 +

7

5
π2a2

The Fermi nuclear potential reads

− rV (r) =
Z

N

{
6
(a
c

)3
[
−S3

(
− c
a

)
+ S3

(
r − c
a

)]
+
r

c

[
3

2
+

1

2
π2
(a
c

)2

− 3
(a
c

)2

S2

(
r − c
a

)
− 1

2

(r
c

)2
]}

for r/c < 1 and

− rV (r) =
Z

N

{
N + 3

(a
c

)2
[
r

c
S2

(
r − c
a

)
+ 2

(a
c

)
S3

(
r − c
a

)]}
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otherwise; N = 1 + π2(a/c)2 − 6(a/c)3S3(−c/a) and Sk is an infinite series
defined as

Sk(r) =
∞∑
n=1

(−1)n
enr

nk

This is the potential for the Fermi charge distribution used in GRASP2
package [? ] and the x2dhf program follows suit.

Appendix A. Miscelenous formulae

Recursive formula for the Legendre polynomials

Pn+1(z) =
1

n+ 1
[(2n+ 1)zPn(z)− nPn−1(z)]

Recursive formulae for the associate Legendre polynomials

P q
k+1 =

1

k − q + 1

[
(2k + 1)zP q

k (z)− (k + q)P q
k−1(z)

]
P q
k =

(−1)qΓ(k + q + 1)(1− z2)q/2

2qΓ(k − q + 1)q!
F

(
q − k, qk + 1; q + 1;

1− z
2

)
The program uses the following associate Legrendre polynomials to calculate
boundary values from the multipole expansion:
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P 1
1 (z) = − 1√

2

√
1− z2

P 1
2 (z) = − 3√

6
z
√

1− z2

P 1
3 (z) =

3

2
√

12
(1− 5z2)

√
1− z2

P 1
4 (z) =

5

2
√

20
(3z − 7z3)

√
1− z2

P 1
5 (z) =

15

8
√

30
(−1 + 14z2 − 21z4)

√
1− z2

P 1
6 (z) =

21

8
√

42
(−5z + 30z3 − 33z5)

√
1− z2

P 1
7 (z) =

7

16
√

56
(5− 135z2 + 495z4 − 429z6)

√
1− z2

P 1
8 (z) =

9

16
√

72
(35z − 385z3 + 1001z5 − 715z7)

√
1− z2

P 2
2 (z) =

3√
24

(1− z2)

P 2
3 (z) =

15√
120

(z − z3)

P 2
4 (z) =

15

2
√

360
(−1 + 8z2 − 7z4)

P 2
5 (z) =

105

2
√

840
(−z + 4z3 − 3z5)

P 2
6 (z) =

108

2
√

1680
(1− 19z2 + 51z4 − 33z6)

P 2
7 (z) =

63

8
√

3024
(15z − 125z3 + 253z5 − 143z7)

P 2
8 (z) =

315

8
√

5040
(−1 + 34z2 − 176z4 + 286z6 − 143z8)
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P 3
3 (z) =

15√
720

(−1 + z2)
√

1− z2

P 3
4 (z) =

105√
5040

z(−1 + z2)
√

1− z2

P 3
5 (z) =

105

2
√

20160
(−1 + 9z2)(−1 + z2)

√
1− z2

P 3
6 (z) =

315

2
√

60480
(−3z + 11z3)(−1 + z2)

√
1− z2

P 3
7 (z) =

315

8
√

151200
(3− 66z2 + 143z4)(−1 + z2)

√
1− z2

P 3
8 (z) =

3465

8
√

332640
(3z − 26z3 + 39z5)(−1 + z2)

√
1− z2

P 4
4 (z) =

105√
40320

(1− 2z2 + z4)

P 4
5 (z) =

945√
362880

(z − 2z3 + z5)

P 4
6 (z) =

945

2
√

1814400
(−1 + 13z2 − 23z4 + 11z6)

P 4
7 (z) =

3465

2
√

6652800
(−3z + 19z3 − 29z5 + 13z7)

P 4
8 (z) =

10395

8
√

19958400
(1− 28z2 + 118z4 − 156z6 + 65z8)

The first and second derivatives are approximated by 9-point finite difference
formulae derived from the following Stirling central difference formula

f(x) = f(x0 + uh) = f(x0) + uN1f(x0) +
u2

2!
δ2f(x0) +

u(u2 − 1)

3!
N3f(x0) + . . .

+
u(u2 − 1)(u2 − 22) . . . (u2 − (p− 1)2)

(2p− 1)!
N2p−1f(x0)

+
u2(u2 − 1)(u2 − 22) . . . (u2 − (p− 1)2)

(2p)!
δ2pf(x0)
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where

δf(x0) = f(x0 + h/2)− f(x0 − h/2)

δkf(x0) = δ
(
δk−1f(x0)

)
Nkf(x0) =

1

2

(
δkf(x0 + h/2) + δkf(x0 − h/2)

)
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Table A.1:

Dependence of the number of SCF iterations (M) required to solve the FD HF
equations for the hydrogen fluoride molecule on overrelaxation parameters for
orbitals (ωorb) and potentials (ωpot) [? ]. The calculations were carried out
using the grid a [451×877/200] grid and the orbital energy threshold was set
to 10−8 with the initial orbitals and potentials converged to 10−2. Next to
optimal values of overrelaxation parameters are 1.947 and 1.994, respectively.

ωorb ωpot M
1.650 1.700 23059
1.850 1.880 9212
1.940 1.890 8411
1.947 1.980 1696
1.927 1.987 1519
1.947 1.987 1217
1.950 1.989 1111
1.967 1.987 1095
1.947 1.994 1065
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Table A.2: Dependence of the number of SOR iterations (total SOR) and the time (in
seconds) required to solve the FD HF equations on the number of SOR iterations used to
relax the orbitals and potentials in a single SCF iteration (SOR/SCF). The calculations
were started using as initial estimates the orbitals and potentials converged to within
10−4 (in orbital energy) and were stopped when the largest differences in orbital energies
between two successive SCF iteration were less than 10−10.

SOR/SCF 5 10 15 20 30 40 50
Be [169× 217/35]
total SOR 1520 1670 1785 1840 1860 1960 2000
time 29.5 27.6 26.1 25.2 25.2 21.5 24.1
BO [169× 223/40]
total SOR 2730 2990 3285 3700 4260 4600 19450
time 310.1 269.4 276.2 295.9 312.6 344.1 1468.2
BO [265× 361/40]
total SOR 4555 4870 4935 4780 5160 6120 6750
time 1269.9 1080.5 1009.6 922.7 938.3 1073.9 1257.0
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Table A.3: Dependence of the hydrogen ground state kinetic, nuclear and total energy on
discretization errors (r∞ = 25 bohr) when the exact 1 σ function is used. Discretization
errors due to the kinetic energy operator are proportional to h8, where h is equal to
the step size in ν/µ variables (hν ≈ hµ). Integration errors are of the same order of
magnitude. |1 − 〈I〉 | denotes the error of the 1σ normalization constant and 1

2 − 〈T 〉,
−1− 〈Vn〉 and − 1

2 − 〈T + Vn〉 denote the absolute errors of the kinetic, nuclear and total
energy, respectively.

Nν ×Nµ h8 |1− 〈I〉 | 1
2
− 〈T 〉 −1− 〈Vn〉 −1

2
− 〈T + Vn〉

7× 7 6.4× 10−2 1.1× 10−1 −2.8× 10−2 2.1× 10−2 −7.0× 10−3

13× 19 2.1× 10−5 1.9× 10−5 1.7× 10−4 −1.7× 10−4 1.7× 10−6

25× 31 1.5× 10−7 3.6× 10−6 −2.6× 10−6 2.7× 10−6 1.1× 10−9

37× 49 3.9× 10−9 2.3× 10−8 −3.3× 10−8 3.3× 10−8 4.0× 10−11

55× 73 1.5× 10−10 1.4× 10−10 −4.8× 10−10 5.0× 10−10 1.6× 10−12

103× 139 8.5× 10−13 7.4× 10−13 −2.7× 10−12 2.8× 10−12 5.1× 10−14

64



Table A.4: Dependence of the helium ground state energy and its virial ratio on the grid
used by the FD HF method (r∞ = 25 bohr). The accuracy of the 1 σ orbital is monitored
by calculating the deviation of the total electronic dipole moment of the atom, µz, from its
exact value. ∆ 〈T + Vn〉, ∆ 〈VC〉 and ∆ 〈T + Vn + VC〉 denote the errors of one- and two-
electron contributions and their sum on a given grid as measured with respect to the values
obtained on the largest of the grids, namely −3.887 448 865 512 68, 1.025 768 869 897 97 and
−2.861 679 995 614 71.

Nν ×Nµ |µz − 2| ∆ 〈T + Vn〉 ∆ 〈VC〉 |∆ 〈T + Vn + VC〉 | | 〈Vn + VC〉 / 〈T 〉 − 2|
7× 7 1.7×10−1 1.9×10−1 2.2×10−1 3.2×10−2 2.9×10−1

13× 13 4.9×10−3 -4.0×10−3 5.2×10−3 1.2×10−3 2.0×10−2

25× 25 3.4×10−5 2.1×10−5 -2.9×10−5 8.2×10−6 8.9×10−5

31× 37 9.5×10−7 -5.7×10−6 1.2×10−6 4.4×10−6 1.3×10−5

43× 49 2.7×10−8 -5.6×10−9 -7.0×10−8 7.5×10−8 4.7×10−7

55× 67 1.4×10−9 -4.1×10−9 -3.4×10−9 7.5×10−9 4.6×10−8

67× 79 1.6×10−10 -1.1×10−9 -4.3×10−10 1.6×10−9 9.0×10−9

79× 97 1.6×10−11 -2.8×10−10 -7.6×10−11 3.6×10−10 2.1×10−9

91× 109 1.8×10−11 -9.5×10−11 -2.4×10−11 1.2×10−10 6.9×10−10

103× 127 4.1×10−12 -3.2×10−11 -8.0×10−12 4.0×10−11 2.4×10−11

121× 145 2.2×10−12 -9.7×10−12 -3.0×10−12 1.2×10−11 6.6×10−11

151× 193 6.4×10−14 -1.7×10−12 -2.0×10−12 3.3×10−12 9.9×10−12

217× 265 1.2×10−13 -1.3×10−13 -1.8×10−13 3.0×10−13 4.2×10−13

317× 391 3.7×10−14 0.0 0.0 0.0 8.8×10−13



Table A.5: Comparison of FD energies (in au) for the GaF+39 one-electron system
(R=3.353 bohr, [649×1129/200]) with the exact values from Power’s program (OEDM) [?
]. Orbitals are labeled with nlm triplet where n, l and m are the principal, orbital and
magnetic quantum numbers, respectively.

nlm OEDM FD
100 −483.184 164 997 5 −483.184 164 997 9
210 −122.888 205 876 7 −122.888 205 876 8
200 −122.733 220 197 1 −122.733 220 197 1
320 −56.325 432 982 08 −56.325 432 982 09
310 −56.064 747 360 03 −56.064 747 360 04
300 −55.857 809 071 15 −55.857 809 071 16
430 −49.748 077 736 59 −49.748 077 736 62
540 −33.278 686 476 70 −33.278 686 476 95
420 −32.852 093 071 00 −32.852 093 071 00

211 −122.807 726 783 2 −122.807 726 783 2
321 −56.186 870 411 89 −56.186 870 411 65
311 −55.955 787 708 24 −55.955 787 708 00
431 −33.044 405 068 15 −33.044 405 068 14

322 −56.064 605 666 57 −56.064 605 666 58
432 −32.851 020 550 42 −32.851 020 550 43
422 −32.549 061 245 47 −32.549 061 245 47

433 −32.688 193 618 11 −32.688 193 618 11
543 −22.037 772 085 85 −22.037 772 085 85
533 −21.676 770 733 19 −21.676 770 733 15
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Table A.6: Comparison of orbital (Eorb) and total (Etot) energies of the Ca atom (in au) ob-
tained by the one-dimensional (1D) and two-dimensional (2D) FD HF method (correspond-
ing orbital labels are given in parentheses) [? ]. Calculations were performed using the
one- and two-dimensional grids defined as ρ0=-18, h=0.0156, N=2500 and [451×859/200],
respectively.

1D Eorb/Etot 2D Eorb/Etot

−0.195 529 692 462 (4s) −0.195 529 692 550 (6σ)
−1.340 706 956 90 (3p) −1.340 706 956 98 (5σ/2π)
−2.245 376 006 03 (3s) −2.245 376 006 11 (4σ)
−13.629 269 206 5 (2p) −13.629 269 206 6 (3σ/1π)
−16.822 744 273 6 (2s) −16.822 744 273 7 (2σ)
−149.363 725 893 (1s) −149.363 725 893 (1σ)
−676.758 185 924 −676.758 185 926

Table A.7: Comparison of total HF energies calculated by the finite difference (EFD)
method and the multigrid finite element (EFE) method [? ]. The FE results correspond to
extrapolated values from a series of calculations performed on grids of increasing density
[? ]. [Nν×Nµ/r∞] denotes the FD grid. The FD results for the Be and LiH systems were
taken from [? ].

System [Nν×Nµ/r∞] EFD EFE

LiH (R=3.015 au) [259×433/150] −7.987 352 237 23 −7.987 352 237 228
Be (R=2.386 au) [349×643/200] −14.573 023 168 3 −14.573 023 168 305
BH (R=2.336 au) [349×643/200] −25.131 598 702 3 −25.131 598 702 31
N2 (R=2.068 au) [445×841/200] −108.993 825 634 −108.993 825 634 82
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Table A.8: Total energies of the He, Be and Ne atoms calculated using various combi-
nations of local exchange (LDA and B88) and correlation potentials (LYP and VWN).
Algebraic results of Johnson, Gill and Pople [? ] (denoted FB) are compared with the
corresponding values obtained within the finite difference method (FD).

system HF LDA LDA+VWN LDA+LYP B88 B88+VWN B88+LYP
He
FB 2.8552 2.7146 2.8267 2.7582 2.8540 2.9671 2.8978
FD 2.861680 2.723640 2.833886 2.767056 2.861725 2.972987 2.905317
Be
FB 14.5669 14.2164 14.4420 14.3119 14.5606 14.78691 14.6563
FD 14.573026 14.223291 14.445390 14.318062 14.564197 14.787469 14.659353
Ne
FB 128.4744 127.3950 128.1419 127.7777 128.4964 129.2442 128.6262
FD 128.547098 127.49074 128.228894 127.873286 128.587350 129.326586 128.970274

Table A.9: Total (absolute) energies of the Be and Ne atoms calculated using LDA, B88
and SCα-LDA potentials within the finite difference method as modified by Karasiev and
Ludenia (FD-KL) [? ] (note a typo in the LDA energy for the Be atom in Table II of
their paper) and the present author (FD).

system HF LDA B88 SCα-LDA
Be
FD-KL 14.2233 14.5664 14.5707
FD 14.573026 14.223291 14.564244 14.570693
Ne
FD-KL 128.5471 127.4907 128.5901 128.5322
FD 128.547098 127.490741 128.587350 128.533177
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Table A.10: Exchange (absolute) energies of the Be and Ne atoms calculated using LDA,
B88 and SCα-LDA potentials within the finite difference method as modified by Karasiev
and Ludenia (FD-KL) [? ] and the present author (FD).

system HF LDA B88 SCα-LDA
Be
FD-KL 2.667 2.278 2.652 2.663
FD 2.666914 2.277843 2.684667 2.663346
Ne
FD-KL 12.108 10.937 12.086 12.065
FD 12.108351 10.937090 12.139002 12.065332
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Table A.11: Electrical properties of the FH molecule calculated by means of the finite
field on a [451 × 877/200] grid using the data from the upper part of the table. µz, αzz,
etc. denote the z-components of the total dipole moment, polarizability, etc. with respect
to the centre of mass, while ET , µez and Θe

zz denote the total energy and electrical dipole
and quadrupole moments for a given field strength. Entries with ∆ show the properties
when the raw data are modified by a relative error 10−12.

field strength ET µez Θe
zz

-0.0002 -100.070 823 358 990 -0.104 967 386 574 450 -1.044 975 755 481 64
-0.0001 -100.070 812 891 021 -0.104 391 834 078 358 -1.044 577 910 264 44
0.0 -100.070 802 480 605 -0.103 816 366 336 909 -1.044 180 598 585 64

+0.0001 -100.070 792 127 745 -0.103 240 983 076 439 -1.043 783 820 062 32
+0.0002 -100.070 781 832 421 -0.102 665 684 024 677 -1.043 387 574 315 97
µz 0.755 983 631 461 119 0.756 075 857 950 02
µz + ∆ 0.755 982 964 308 859 0.756 075 857 950 78

αzz 5.755 839 419 900 136 5.754 254 554 649 43
αzz + ∆ 5.769 182 465 087 396 5.754 254 555 345 37

βzzz -8.085 976 332 949 940 -8.448 086 128 802 03
βzzz + ∆ 91.986 862 571 502 570 -8.448 100 082 570 72

γzzzz 272.967 398 684 543
γzzzz + ∆ 272.862 996 086 865

Az,zz 3.970 450 376 067 36
Az,zz + ∆ 3.970 450 383 032 16

Bzz,zz -53.315 512 212 511 4
Bzz,zz + ∆ -53.315 651 508 493 5
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Table A.12: Dipole moments, polarizabilities and hyperpolarizabilities (in au) for the FH
molecule from finite difference Hartree-Fock calculations performed on a [451×877/200]
grid as a function of the internuclear distance (RFH) [? ].

RFH µz αzz βzzz γzzzz Az,zz Bzz,zz

1.5000 0.664 944 721 966 4.650 181 3 −3.950 18 178.2 1.992 651 −33.312 3
1.6000 0.703 241 445 779 5.084 822 2 −5.556 00 177.2 2.735 080 −40.602 4
1.7000 0.742 834 220 524 5.578 450 0 −7.640 36 247.5 3.636 170 −49.805 2
1.7328 0.756 075 857 946 5.754 254 6 −8.448 09 273.0 3.970 450 −53.315 5
1.8000 0.783 567 762 981 6.137 247 9 −10.314 73 311.9 4.720 885 −61.365 2
1.9000 0.825 315 757 659 6.767 259 9 −13.689 27 374.7 6.015 908 −75.771 0
2.0000 0.867 979 378 698 7.474 265 9 −17.886 06 456.5 7.549 393 −93.575 9
2.1000 0.911 482 614 182 8.263 677 7 −23.025 59 548.7 9.350 725 −115.375 2
2.2000 0.955 766 163 516 9.140 458 0 −29.221 11 655.5 11.450 279 −141.793 6
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Table A.13: Electrical properties of the N2 molecule (R=2.07432 bohr) calculated by
means of the finite field on a [643× 1261/250] grid using the data from the upper part of
the table. µz, αzz, etc. denote the z-components of the total dipole moment, polarizability,
etc. with respect to the centre of mass while ET , µez and Θe

zz denote the total energy and
electrical dipole and quadrupole moments for a give field strength. Entries with ∆ show
the properties when the raw data are modified by a relative error of 4 × 10−14, 3 × 10−9

and 2× 10−14 for the energy, dipole moment and quadrupole moment, respectively.

field strength ET µez Θe
zz

-0.002 -108.993 203 207 341 -0.030 061 943 076 783 -15.991 059 035 127
-0.001 -108.993 180 661 183 -0.015 030 571 406 828 -15.990 794 227 794
0.0 -108.993 173 145 936 -0.000 000 000 000 027 -15.990 705 975 670

+0.001 -108.993 180 661 182 0.015 030 571 408 096 -15.990 794 227 794
+0.002 -108.993 203 207 337 0.030 061 942 998 232 -15.991 059 035 132
µz -0.000 000 000 280 664 0.756 075 857 950 02
µz + ∆ -0.000 000 003 407 052 0.756 075 857 950 78

αzz 15.030 425 559 577 527 67 15.030 438 037 031 0
αzz + ∆ 15.030 431 812 353 601 4 15.030 438 063 214 3

βzzz -0.001 335 820 343 229 0.000 008 302 469 534
βzzz + ∆ 0.003 353 761 712 788 -0.000 044 063 158 215

γzzzz 800.222 583 420 898
γzzzz + ∆ 800.183 308 998 642

Az,zz 0.000 000 000 707 878
Az,zz + ∆ 0.000 000 000 909 199

Bzz,zz -176.495 752 138 035 783
Bzz,zz + ∆ -176.495 752 540 676 648
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Figure A.1: Distribution of grid points in the z− item plane corresponding to the uniform
distribution in (ν, µ) variables on a [50×50/50] grid. The lower plot is a close-up of the
region around the A and B nuclei, i.e. around (-1,0) and (1,0) points.
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Figure A.2: Convergence patterns of 1 σ and 2 σ FH orbitals discretized on a
[451×877/200] grid for suboptimal overrelaxation parameters: ωorb = 1.65, ωpot = 1.68.
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Figure A.3: Convergence patterns of 3 σ and 1 π FH orbitals discretized on
a [451×877/200] grid for suboptimal overrelaxation parameters: ωorb = 1.65, ωpot = 1.68.
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Figure A.4: Convergence patterns of 1 σ and 2 σ FH orbitals discretized on
a [451×877/200] grid for near optimal overrelaxation parameters: ωorb = 1.950, ωpot =
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Figure A.5: Convergence patterns of 3 σ and 1 π FH orbitals discretized on
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Figure A.12: Colouring of mesh points for the MCSOR method and [31×13] grid when
17-point cross-like stencil is used for discretization.
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