Booting Linux: The History and the Future

Werner Almesberger
Werner.Almesberger@epfl.ch

June 25, 2000

Abstract 1 Introduction

Booting an operating system means to mediate be-
tween a usually very basic, and frequently unreli-
able system environment (e.g. the PC BIOS), the
functionality required by the operating system it-
self, and the sometimes rather sophisticated setups

users wish to create.

From the humble beginnings of the floppy boot sec-
tor, the Linux boot process has grown rich function-
ality, with versatile boot loaders (LILO, LOADLIN,
GRUB, etc.), several boot image formats, and an
increasing variety of operations that can be done
even before the system is fully booted, e.g. load-
ing of driver modules before mounting the root file
system.

The boot process is also becoming more difficult
with time: new peripherals with interesting func-
tionality and sometimes even more interesting prob-
lems get widely deployed and need to be supported,
users create new and complicated system configura-
tions and still need to be able to boot, and last but
not least, new functionality is constantly added to
the kernel, and some of it, e.g. new file systems, can
also affect the boot process.

All the complications the boot process has to handle
are even worse during system installation, because
a large number of possible configurations must be
considered, but storage space is limited. Frequently
a single floppy disk has to suffice for the first steps.

This paper describes the boot process under Linux,
the challenges it has to face, and how it evolved to
meet them. Besides this historical overview, which
also illustrates general design concepts, some more
recent additions are discussed in detail.

The boot process consists of two major phases: (1)
loading the Linux kernel into memory and passing
control to it, and (2) initializing the normal oper-
ation environment. Some of the possible ways to
performs these steps are depicted in figure 1.

|

Hardware startup

|~

Firmware (BIOS)

g }
©
2 Boot selector
o
g —

Legacy OS

i Linux-capable
Linux loader boot loader
Linux kernel \
Mount initrd
o
Qo /linuxrc
x
E o,
- Mount root file system
/sbin/init

System runs

Figure 1: Boot process overview.

While this paper focuses mainly on the 1386 archi-
tecture, many concepts also apply to other architec-
tures supported by Linux.

1.1 Loading the kernel

The first phase is the domain of boot loaders. They
have to retrieve the kernel executable and possibly
additional data from some storage media, e.g. a
disk, or from an external source, e.g. from a boot
server on the network, load them at the right mem-
ory location, maybe change the execution mode of
the processor, and start the kernel.

Boot loaders typically perform some additional
tasks, like providing the kernel with parameters such
as information retrieved from the firmware or the
boot command line. Some boot loaders can also act
as a boot selector and load other operating systems.

The duties of boot loaders and some common de-
signs are discussed in more detail in section 2. An
introduction to boot concepts on 1386 in general can
be found in [1].

1.2 Up and running

Once the kernel is running, it initializes its inter-
nal data structures, detects hardware components
and activates the corresponding drivers, etc., until
it eventually becomes ready to run user-space pro-
grams. Before it can start the user-space environ-
ment, it needs to provide it with a file system, so it
has to mount the root file system first.

In order to mount the root file system, the kernel
needs two things: it needs to know the media on
which the root file system is located, and it needs
drivers to access that media. In the most common
configuration, when the root file system is simply
an ext2 partition on an IDE disk, this is simple: the
number of the root device is passed to the kernel as a
parameter, and the IDE driver is typically compiled
into the kernel.

1.3 Complications

Things get more complicated if the kernel has no
driver for the device. This is quite common for the
“generic” kernels that are used when installing a
new Linux system, because a kernel with all avail-
able drivers would simply be far too big, and some
drivers may also upset other hardware when probing
for their devices.

This problem is solved by the initrd mechanism,
which allows the use of a RAM disk before mount-
ing the actual root file system. This RAM disk is
loaded by the boot loader. initrd is described in
section 3.

While initrd has proven to be very useful, the design
of the mechanism used to mount the root file system
after initrd has completed its work was never quite
satisfactory. Also, other changes in the kernel made
it increasingly difficult to use that mechanism in a
“clean” way. Section 4 discusses those issues in more
detail.

1.4 The future

Three new challenges await the boot process in the
future: (1) the firmware and any hardware the boot
loaders have to interface with will grow more func-
tionality and, if the past is any indication of the
future, a richer set of bugs too. (2) file systems con-
taining kernel images will become more complex,
e.g. journaling file systems or RAID, and correctly
interpreting their content will be very difficult for
boot loaders. (3) people will want to load kernels
from other exotic sources, e.g. from the network,
using a secure connection.

[New hard- and firmwa@

Boot
process

More complex
configuration

Figure 2: The boot process is facing new challenges
from three directions.

Linux system

architecture
advances

While there is little choice but to teach the boot
loaders to deal with their immediate firmware and
hardware environment, loading the kernel from dif-
ficult to access media can be greatly simplified by
leaving most of the work to a Linux kernel. Section
5 elaborates further on this topic.

2 Boot loaders

A boot loader performs the following tasks:

e decide what to load, e.g. by prompting the user

e load the kernel and possibly additional data,
such as an initrd or parameters for the kernel

e set up an execution environment suitable for
the kernel, e.g. put the CPU in privileged mode

e run the kernel
2.1 Taxonomy

Boot loaders come in many sizes and shapes. As
shown in figure 3, we will distinguish the following
four types of them:

e specialized loaders, e.g. the floppy boot sector
LinuxBIOS [2], SYSLINUX [3], Nethoot [4]

e general loaders running under another operat-

ing system, e.g. LOADLIN [5], ArLo [6]

e file system aware general loaders running on the
firmware, e.g. Shoelace, GRUB [7], SILO

e file system unaware general loaders running on
the firmware, e.g. LILO [8]

FS—-unaware

By other OS L User space) .
——————— File abstraction
FS—-aware - Operating system . .
o T~~a[———— | Device abstraction
Specialized —> Firmware)
No abstraction
Hardware

Figure 3: Layers at which boot loaders interact with
the underlying services.

Specialized loaders typically know only one storage
device, e.g. flash memory or the floppy disk, on
which a small number of kernels is stored in some
format specific to the boot loader.

Boot loaders that run under another operating sys-
tem normally use the services provided by the host
operating system for reading the kernel image and

additional data. This frees them from having to
know the structure of the underlying file system or
any properties of the actual store devices. One of
their disadvantages is that they have to take spe-
cial precautions when loading the kernel, in order
to keep the host operating system operational until
they are ready to run the Linux kernel, e.g. they
must not overwrite memory locations occupied by
the host operating system. Another disadvantage is
that the entire boot process takes longer than with
other boot loaders, because the host operating sys-
tem needs some time to boot too.

File system aware boot loaders are almost little op-
erating systems by themselves: they know the struc-
ture of one or more file systems, they access devices
via the services provided by the firmware, and some-
times, they may even have their own drivers to ac-
cess hardware directly.

File system unaware boot loaders rely on a third
party to map the on-disk data structures to a more
general and more convenient representation. E.g.
in the case of LILO, the so-called map installer
(/sbin/1ilo) uses the file system drivers already
contained in the Linux kernel to perform this map-
ping, and simply writes the list of data sector loca-
tions in its map file. A description of LILO internals
can be found in [9].

2.2 File system awareness

The lack of file system awareness is a common com-
plaint about LILO, and competing boot loaders ad-
vertize their ability to read file systems without
prior mapping as one of their main features. It is
therefore interesting to compare the two approaches.

Figure 4 shows what a file system aware boot loader
does when using the Second Extended file system:
first, the file is written to disk, via the ext2 file sys-
tem driver. The file system driver adds a bit of
meta information. At boot time, the boot loader
interprets the ext2 meta information and loads the
corresponding data sectors into memory. In order
to do so,it has to contain a simplified version of the
file system driver.

A file system unaware boot loader (figure 5) requires
an additional step after writing the file: the map-
ping, during which the generalized meta information
is written. The boot loader uses this meta informa-

Kernel image

\
—

Boot
loader \%(M

Kernel
N (= el s}
/ AN
Meta data Kernel image data

Figure 4: Data flow with file system aware boot
loader.

tion to retrieve the actual data. The meta data
generated by the file system driver is not needed.

Kernel image

\
—

Map /
1 Boot _
X v‘ loader read list

Kernel ’ ext2

Disk o ____]
] DD\FD
il e —

Meta data /

Meta data (map file)

/
L]

Kernel image data

Figure 5: Data flow with file system unaware boot
loader.

File system unaware boot loaders have the main dis-
advantage that the map installer has to be run af-
ter adding new kernel images and after an already
mapped kernel image changes its on-disk location
for some reason.

However, they have one big advantage: if a file sys-
tem is supported by the Linux kernel and if it fulfills
some fairly basic properties, they can load a kernel
from it without requiring any change to the boot
loader or the map installer. And this is the main
reason why LILO was designed to be file system un-
aware.

2.3 File system history and LILO

In the early days of Linux, the only boot loaders
available were the floppy boot sector and Shoelace,
a file system aware boot loader inherited from
Minix. Shoelace only supported the Minix file sys-
tem. Since also Linux supported only the Minix
file system back then, this was no limitation. How-
ever, it became soon clear that the Minix file sys-
tem, lacking some functionality traditionally found
in Unix file systems, e.g. distinct creation, modifi-
cation, and access time for files, and also restricting
file names to 14 characters, was not good enough as
the primary file system for Linux.

In order to allow for the implementation of other
file systems, the VFS (Virtual File System) inter-
face was added, which quickly led to the creation
of a wide variety of new file systems, among them
the Extended file system, Xiafs (named after its au-
thor), and also a “big” variant of the Minix file
system that raised the file name length limit to a
whole thirty characters. There was fierce competi-
tion among the file systems, and it was quite un-
certain which design would eventually prevail, or if
there would actually be a single “winner”.

In all this confusion, one thing was clear: no mat-
ter what file system one favoured, in order to boot
from the hard disk, the root file system had to be
Minix, because Shoelace did not support anything
else. LILO was written to fill this gap. Since imple-
menting and maintaining support for a large number
of different file systems (at that time there were al-
ready Minix, Extended (ext), and Xiafs in the main-
stream kernel, some people had ported BSD FFS,
and there was no end in sight) appeared hardly de-
sirable, and the boot loader should not prevent peo-
ple from experimenting with new file system propos-
als, a file system unaware design was chosen.

This approach turned out to be very successful.
Even today, LILO can boot from most disk file sys-
tems supported by the Linux kernel. However, since
ext2 has become the de facto standard, and has been
so for many years, file system aware boot loader de-
signs have been successfully tried again, and some
of them have already gained a certain popularity.

While ext2 was handling everybody’s daily work,
file system designers have been busy with the next
generation of file systems, whose key feature is sup-
port for journaling. Considering that there are now

Limited Unix

extfs

Big Minix Xiafs
Fully featured
"modern” Unix

ext3 Reiser XFS JFS

@

Journaling

Figure 6: Evolution of the “standard” Linux file
system.

(again) several competing proposals (figure 6), it
seems likely that the need for the flexibility offered
by a file system unaware boot loader will again be-
come strong.

2.4 Other things to load

A Linux boot loader does not only load the kernel
image, but it has to give further data to the kernel,
e.g. the initial RAM disk, which allows the kernel to
set up a fully functional user space without accessing
any peripherals. This is discussed in section 3.

Other additional data is a parameter block used dur-
ing kernel initialization. It typically contains things
like the number of the device with the root parti-
tion, the desired video mode for the system console,
the boot command line, etc. The type of infor-
mation and its layout are architecture-specific. It
is also quite common that the parameter block is
merged from multiple sources, e.g. LILO can selec-
tively overwrite the default VGA mode.

2.5 1386 details

One problem that is constantly plaguing the authors
of boot loaders, particularly on the 1386 platform,
are the various disk size limits imposed by hardware
or, more frequently, firmware. A good discussion of
most known limits can be found in [10]. The usual
effect of using a hard disk that exceeds such a limit
is that the part of the disk beyond the limit is only
accessible under some circumstances.

One such limit that has earned particular fame in

the Linux world is the 1024 cylinder limit commonly
encountered when using LILO. It originates from
the BIOS, which only supports a maximum of 1024
cylinders in the traditional functions for accessing
hard disks. This limit is exceeded on all hard disks
larger than 8 GB, and sometimes even with smaller
ones. Since LILO uses the BIOS for all disk opera-
tions, all files accessed by it had to be within the first
1024 cylinders of the hard disk. In 1995, an exten-
sion called “Enhanced Disk Drive Specification” [11]
raised the limits of the BIOS interface by a factor
of roughly 2%° to a more reasonable 27 bytes. Un-
fortunately, it took some more years until one could
be reasonably sure that correct implementations of
EDD were widely deployed. Support for EDD has
been added to a development version of LILO in
1999, and later versions released for general use and
maintained by John Coffman also support EDD.

End of - -

memory .
Maximum amount of

64MB -~~~ -----~ = - memory reported by
int 0x15,0x88

Maximum amount of
16MB - -q-——---- - 1 memory accessible with
initrd i286 BIOS functions

—1 Free space for kernel

data
bzimage Maximum amount of
IMB - ——= - - - memory accessible in
Boot sector real mode
loaded by —
BIOS or MBR

Figure 7: Simplified memory layout at boot time on
i386.

Another interesting problem on 1386 are the various
memory size limits (figure 7). First of all, in the so-
called real mode, the CPU has a 4416 bit address
space giving it access to only 1 MB. Since the CPU is
in real mode when the boot sector is started, early
boot loaders were not able to load kernels (called
“Image”) larger than several hundred kilobytes.!

This was soon found to be too confining, and com-
pressed kernel images were introduced. Compressed
kernels (called “zImage”) were still limited to 512
kB, but once started, they uncompressed themselves

1Some of the lower address space is reserved for the BIOS
and video memory, and some space is also claimed by the
boot loader. This leaves 512 kB for loading the kernel.

to higher memory locations. This increased the
maximum kernel size to approximately 1 MB.

After a few years, also this became a problem, and a
mechanism was added to load bigger kernels, called
“bzImage”. A bzlmage is loaded above the 1 MB
barrier, then uncompresses itself, and moves the re-
sulting uncompressed kernel down to 1 MB. The
parameter block contained in the floppy boot sector
and the real mode setup code are still loaded at their
original addresses below 1 MB. This is described in
more detail at the end of this section.

Because zImage is inferior to bzImage in almost all
respects, support for it is likely to be phased out in
the near future.

In order to load the bzImage above 1 MB, the boot
loader either switches to a CPU mode giving ac-
cess to the full address space, or it runs still in real
mode but uses special BIOS functions for the copy.
Unfortunately, those BIOS functions originate from
the 1286 era and may still use the so-called protected
mode of the 1286 with a 8416 bit address space, giv-
ing access only to 16 MB. While 15 MB? should be
more than sufficient for compressed kernels alone, it
also limits the maximum size of initrds, which use
the space not occupied by the kernel. Since the 16
MB limit comes from the boot loader but does not
exist in the kernel, it is likely to disappear in the
future. Some boot loaders are already using copy
mechanisms that do not have this restriction.

The next barrier is 64 MB, which is the amount of
memory that can be traditionally reported by the
BIOS. All newer BIOSes support mechanisms that
can report larger memory sizes, and kernels have
recently started using them. It is not clear if the 64
MB limit is likely to ever become a serious problem
for boot loaders.

The maximum kernel size is also limited by the page
tables the kernel sets up prior to its own initializa-
tion. For a long time, only 4 MB were mapped.
Since kernels started to exceed this limit, it was re-
cently raised to 8 MB.

It should be noted that all these restrictions only
apply to the kernel image loaded at boot time. Any
additional code loaded by modules can use all of the
memory the kernel is willing to provide.

2The lower megabyte is reserved for BIOS, boot loader,
video memory, etc.

The loading of a bzImage is a fairly intricate proce-
dure, as shown in figure 8. First, the boot loader
loads the kernel setup sectors (1) and the com-
pressed kernel (2), and jumps to the setup code
(3). The bzlmage consists of the compressed ker-
nel code (“text”) and data, and a small piece of
uncompressed code for extracting the kernel. Once
finished, the setup code jumps to the extractor (4).
Then, the kernel is uncompressed into a low memory
region below 1 MB (5), and a high memory region
after the end of the loaded bzImage (6). By us-
ing the low memory region, the extraction process
reduces its peak memory usage by 568 kB.

End

Ktbd ——

Y?high)\A "

!

Kernel text+data ’,’ Kernel

(compressed) /

loader

| 8kB
| 4kB

Figure 8: Loading a bzImage.

When the kernel is extracted, it needs to be moved
to 1 MB. This is done by a mover function which is
copied to a low address (7 and 8). After moving the
uncompressed kernel to its destination (9 and 10)
the mover jumps to the kernel entry point (11).

3

2.6 Adding new features

When adding new functionality to the boot process,
frequently the question arises where it should be
implemented — in the boot loader or in the kernel ?
Figure 9 illustrates this choice.

With a large number of different architectures and
possibly a large number of boot loaders per archi-

\

Etherboot . \\Alpha
GRUB \
LILO k ARM
LOADLIN

i386,ia64
nuni
~ - m68k

Netboot / T linux
e MlPSM; kernel

" _-PPC

-7 -390

-" . SuperH
© - (Ultra)SPARC

s
s

SysLinux

Figure 9: Where to add a new feature ?

tecture, it is clear that additions requiring major
changes in boot loaders are not likely to be met
with much enthusiasm. With the number of sup-
ported architectures increasing, even architecture-
dependent changes should not be considered lightly.
The introduction of the initial RAM disk was the
last time a change affecting all architectures and
most boot loaders was made. Fortunately, most au-
thors agreed on the usefulness of initrd, and it is
well supported today.

More recent extensions of the boot process try to
stay within the kernel, e.g. the mechanisms to boot
Linux kernels from Linux combine an architecture-
specific part with a more general framework, and
recent improvements of mechanisms related to ini-
trd (see section 4) are completely architecture-
independent.

Section 3.5 continues this discussion, examining the
choice between kernel and user space.

3 Loading drivers

Only loading the kernel is sometimes not enough,
because the driver(s) needed to access the root file
system may not be included in the kernel. This sec-
tion describes the reasons for this seemingly para-
doxical situation and the solution adopted for it.

3.1 Conflicting drivers

Very early, many Linux distributions encountered
the problem that some of the drivers they needed
to access any further storage medium, e.g. the CD-
ROM, were conflicting with the drivers they needed
in other cases.

This can happen quite easily with ISA cards, be-
cause the only way to probe for their presence used
to be to blindly write to registers at well-known ad-
dresses and to check if the card showed whatever
reaction was expected in this case. If two cards hap-
pened to have some well-known addresses in com-
mon and did not respond gracefully to incorrect ac-
cesses, e.g. by entering a state that could only be
left by following a complicated reset procedure or, in
extreme cases, only by a hardware reset, one could
not probe for one card without upsetting systems
that used the other one.

In order to avoid such conflicts, distributions started
to use large numbers of pre-compiled kernels con-
taining only a small number of drivers each. Such
a distribution then either had to ship with several
floppy disks for all those kernels, or the user had to
pick the right kernel from the distribution medium
and make their own boot disk before installation.
This was hardly a satisfying situation.

The readily available solution to such problems was
the use of kernel modules, which can be loaded after
either performing a more detailed hardware config-
uration analysis than done by the kernel, or simply
after asking the user for advice.

3.2 Dynamic kernel composition

Loading modules before the kernel mounts the root
file system is also desirable after installation, when
a customized kernel containing only the components
required on the respective system should be used.

Ideally, one would go through regular kernel con-
figuration and compile the kernel from scratch for
this, but most users would be rather unpleasantly
surprised by the daunting task of having to pick
the right set from more than a thousand config-
uration options, particularly since many mistakes
would lead to an unbootable system. Also, there are
usually some dependencies among options that are

not caught by the kernel configuration system, so
certain choices could lead to obscure build failures.
Last but not least, building the kernel requires sev-
eral tools (compiler, etc.), which are not necessarily
installed on every system, and the build process may
also take a long time on slower machines.

Linking a pre-compiled monolithic kernel would
only offer partial relief, because it still requires al-
most all of the tools needed for compilation, and
any conflicts would make the entire linking process
fail.

Again, the most reasonable choice is to use modules.
The modules framework is regularly used by many
people and is therefore quite reliable. If there are
conflicts among modules (e.g. missing or duplicate
symbols), the respective module and any modules
depending on it cannot be loaded, but this is still
safer than failing the entire build process.

In principle, a simplified linker could be built on the
basis of modules, offering all the advantages of a
modular system, while avoiding the slight overhead
introduced by modules. For some reason, such a
linker was never implemented.

3.3 Chicken and modular eggs

The use of modules requires the presence of a file
system.> While an installation floppy disk can con-
tain a file system, this does not help for other me-
dia, e.g. a CD-ROM or the scenario described in
the previous section. Also, every once in a while,
floppy disk drives appear that can be accessed via
the BIOS, but that are not properly handled by the
regular floppy driver.

Fortunately, there is already a program that by
definition knows how to read data from the boot
medium under all circumstances: the boot loader.
The logical conclusion was therefore to let the boot
loader load the modules too. In order to keep the
concept as flexible as possible, and the work of the
boot loader simple, it loads a single file that is pre-
sented to the kernel as a linear block of memory.
The kernel then uses it as a RAM disk. Therefore,
the mechanism is called “initial RAM disk” or short

3An alternative approach that is proposed every once in
a while is to teach the boot loader to link modules into the
kernel at boot time. The problems of this approach have
been discussed in section 2.6.

May be made available
as/dev/initrd

initrd

Copied by RAM

P disk driver
RAM disk
Loaded by
boot loader
-
Kernel

Figure 10: Loading an initial RAM disk.

“initrd”. As a pleasant synergy effect, the RAM
disk driver automatically detects if the RAM disk is
compressed, and uncompresses it if necessary.

For debugging or for using the initrd mechanism
for other purposes than the initial RAM disk, the
boot command line option noinitrd can be used
to prevent automatic use of the memory block as a
RAM disk. Instead, its content is made available
via the block device /dev/initrd.

3.4 Using the initrd

Once the RAM disk is loaded, any regular Linux
programs can be run from it. Initrd can be used in
two modes: either for the regular root file system,
so the program run is the usual /sbin/init, or as
an intermediate environment in which the system is
prepared for mounting the real file system.

In the latter case, a program called /linuxrc is in-
voked to perform the necessary initialization. When
/linuxrc finishes, the “real” root file system is
mounted and it replaces the initial RAM disk. After
this, /sbin/init commences with the usual startup
procedures. The process of changing the root file
system is described in section 4.

3.5 Size matters

The main limitation of an initial RAM disk is that
there has to be enough memory for the kernel, the
initrd file as loaded by the boot loader, the RAM
disk extracted from it by the RAM disk driver, and

any other data the kernel needs at that time. This
limits the size of compressed initrds to roughly a
third of the memory not occupied by the kernel it-
self.

One obvious improvement is to free memory con-
taining the original initrd data immediately after it
has been read when building the RAM disk. This
will be implemented in the near future.

By the way, it is a common misconception that
the use of initrd automatically implies that many
megabytes of precious memory will be wasted. This
misconception comes from the fact that most pro-
grams are linked with the shared C library (libc),
and that some versions of libc are fairly large — typ-
ically up to around 4 MB. Even linking with the
static version of libc, which yields a program con-
taining only the library functions which are really
used, does not result in the desired size reduction.
E.g. a program that does nothing at all (main(){})
still gets larger than 200 kB.

One reason for this is that libc has many internal
dependencies, which require the inclusion of auxil-
iary components. When some of those dependencies
are removed, program sizes become more reason-
able, e.g. the example above shrinks to a mere 3
kB. More work is needed in this direction.

Another possibility is simply to refrain from using
any library at all. This is feasible for reasonably
simple programs. The micro-shell [12] is an example
for this.

4 Changing the root file system

Changing the root file system is similar to the task
of changing a carpet while still standing on it. Most
people would probably suggest to jump up while try-
ing to throw the new carpet under one’s feet, and
to smooth any wrinkles afterwards. The first im-
plemented solution, called change_root, is actually
remarkably similar to this approach. It is described
in section 4.2.

A much lazier possibility is to roll out the new carpet
next to the old one and to just walk over. This
much more elegant approach, recently implemented
in a mechanism called pivot_root, is described in
section 4.3. A similar solution, involving layering

of the new root file system on top of the old one,
is currently being worked on. Its current design is
described in section 4.4.

4.1 What’s keeping it busy

Changing the root file system is tricky, because the
design of Unix makes sure there is always something
accessing it. In particular, at least the following
items are “busy” if any process is running:

Mapped files The executable of the process
and any shared libraries used by
it.

Terminal Standard input, output, and er-
ror of that process. Typically
/dev/console

Directories The current directory and the

current root directory of the
process.

Furthermore, the root file system can also be busy
because of:
Mounted file

Mount points systems (e.g.

/proc or any auxiliary file
systems)

Demons Demon processes or kernel
threads.

4.2 Feet in the air

Figure 11 illustrates the approach of awkwardly
jumping up while rearranging things underneath
one’s feet. It works as follows:

e Kernel prepares initrd and starts /linuxrc

e /linuxrc makes everything ready for mounting
the root file system and writes the number of
the new root file system device to /proc/sys/
kernel/real-root-dev

e When /linuxrc terminates, the kernel tries
to unmount the old root file system and to
mount, the file system on the device described
in /proc/sys/kernel/real-root-dev instead

e Kernel runs /sbin/init

One of the design goals for change_root was to
make its use easy for shell scripts, in order to sim-
plify the transition to initrd.

/
Root and cwd

/V of process 1
change_r oot /

new_roy finitrd
T unount /i
root dev
Figure 11: Changing the root file system with

change_root.

The following table shows how well this approach
handles things keeping the root file system busy:

Mapped files Disappear at process termina-
tion.

Terminal Closed at process termination.

Directories Not accessed after process ter-
mination.

Mount points Unaffected.

Demons Unaffected.

Mount points and demons are still a problem.
Mount points can be avoided by simply unmount-
ing everything before /linuxrc terminates. Demon
processes can be more difficult to avoid, and kernel
threads may refuse to disappear at all.

If change_root fails to unmount the old root file
system (because it is kept busy by something), it
prints a warning and tries to mount it on a mount
point called /initrd on the new root file system
instead. Once all accesses to the old root file system
have been removed, it can the be unmounted like
any other mounted file system. If no directory called
/initrd exists, change_root gives up and leaves
the old root file system mounted but inaccessible.

4.3 Towards a general solution

While change_root is good enough for most pur-
poses, it has a few undesirable restrictions:

e It can only mount objects which exist as a block

device, which precludes NFS,* SMB, etc.”

e Kernel threads have become quite popular and
some of them keep the root file system busy.

e change_root can only be used once, which
makes it hard to debug initialization proce-
dures.

o If change_root fails to mount the new root file
system, the system hangs.

Besides, all the device number magic and the hard-
coded names of change_root are just plain ugly.

Already at the time when change_root was intro-
duced, an alternative design based loosely on the
chroot system call was discussed. Recent improve-
ments in VFS have made it comparably easy to im-
plement, so this was finally done.

/
Root and cwd of

all processes
T ——pivot_root —
new_root (usually cwd of the old_root

current process)
T\ mount unount /i

Figure 12:

pivot_root.

Changing the root file system with

The new mechanism is called pivot_root and figure
12 shows how it works:

e The new root file system is mounted like any
other file system.

e A directory is selected as the location for the
old (now current) root file system.

e pivot_root is called with the name of the di-
rectory containing the new root file system and

4change_root was originally able to mount NFS root file
systems using the “NFS root” mechanism built into the ker-
nel. Support for this disappeared after a while during a reor-
ganization of the NFS code. Note that the new pivot_root
mechanism can be used to cleanly replace and even general-
ize the NFS root mechanism. It is therefore likely that the
latter will be phased out in future kernels.

5Recent changes in VFS may allow mounting of such file
systems even via their “anonymous” block device. However,
this would still be a fairly messy operation.

the name of the directory for the old root file
system.

e pivot_root moves the current root file sys-
tem to the directory for the old file system and
makes the new root file system the current root.

The most important differences to change_root are:

e An arbitrary file system can become the new
root, including NFS, SMB, etc.

e pivot_root does not attempt to unmount the
old root file system, yielding more predictable
behaviour than change_root with its two fall-
back levels.

e pivot_root can be invoked any number of
times, which allows cascading of root file sys-
tem transitions, and makes it easier to debug
initialization scripts.

e pivot_root can be retried and is even re-
versible, which also helps debugging.

Unfortunately, this does not yet help against
demons and kernel threads keeping the old root file
system busy. The solution chosen is based on the
observation that most demons and kernel threads
are actually not interested in the file system. They
just keep it busy because they, like any other pro-
cess, reference their current directory and their cur-
rent root directory.® pivot_root therefore scans all
processes and changes their current directory and
their current root directory if they point to the old
root.

This operation is admittedly rather ugly, and the
documented behaviour of pivot_root leaves it open
to change only root and current directory of the pro-
cess executing pivot_root. The implications of this
are described in the pivot_root man pages included
in [13, 14].

Unlike change_root, which makes all changes in
a single step after /linuxrc exits, pivot_root al-
lows for a gradual switch to the new root file sys-
tem. This requires a bit more cooperation from user
space for releasing any remaining references to the
old root file system. The running executable and

6Kernel threads can release their references to these two
directories. Unfortunately, only very few kernel threads make
use of this possibility.

shared libraries accessed by it can be closed sim-
ply by exec’ing an executable on the new root file
system. At the same time, the console can be con-
veniently closed and re-opened with the device file
on the new root file system.”

Although all those operations can in principle be
done before or after the call to pivot_root, it is
usually more convenient to change the root file sys-
tem first, because this avoids accidental use of items
on the old root file systems, e.g. shared libraries.

To summarize, with pivot_root, the situation is
now as follows:

Mapped files Changed by exec.

Terminal Closed and re-opened.

Directories Changed with chdir and
chroot.

Mount points Unaffected (except for new

root, which is handled directly
by pivot_root)
Current and root directory are
forcibly changed.

Demons

4.4 Union mounts

The need to forcibly change the current and root
directories of processes is the only remaining ugly
hack with pivot_root.

Alexander Viro is currently designing so-called
“union mounts”, an extension of VFS that allows
multiple file systems to be stacked at a single mount
point. The file systems are accessed only when try-
ing to look up items on that mount point.

To return to the carpet analogy, this gives us a tiny
patch of flying carpet that we can use to avoid step-
ping on the real carpet while replacing it.

Although this work has not yet finished at the time
of writing, one can already speculate on how it may
allow for a cleaner use of the concepts introduced
by pivot_root.

Figure 13 illustrates how this concept may work.
The file systems can be either directly mounted and
unmounted at the root, or they can be moved from
or to other directories.

“When using devfs, a second instance of it should be
mounted on the new root file system for this purpose.

Root and cwd of
all processes

new root old root

Figure 13: Changing the root file system with union
mounts.

So the final situation is as follows:

Mapped files
Terminal
Directories

Changed by exec.

Closed and re-opened.
Directories change is transpar-
ent.

Unaffected (except if moving
mount points to root)
Directories change is transpar-
ent.

Mount points

Demons

The mechanism described in this section is likely to
be added to the mainstream kernel in the very near
future.

5 Linux boots Linux

With the infrastructure discussed so far, we can use
any file system the kernel can mount as the root file
system. Now wouldn’t it be nice if we could also use
any file the kernel can read as kernel or initrd ?

File system unaware boot loaders reach their lim-
its when files are no longer stored in sequences of
data sectors on the disk, e.g. in the case of software
RAID, there may be multiple instances of the same
data block, and a RAID5 array in reconstruction
mode needs to perform calculations over multiple
data blocks in order to obtain the content of a block
on a defective volume. Worse yet, the files may not
even be on a local disk, but maybe on an NFS or
HTTP server.

In principle, any boot loader can of course access
any resources the kernel can access too. The only
problem is that all the necessary functionality needs
to be rebuilt in the boot loader. And once half a

dozen file systems, RAID, a TCP/IP stack, NFS,
SMB, DHCP, HTTP, etc. are added to a boot
loader, it probably looks like a complete operating
system . ..

5.1 The ultimate boot loader

. which brings us right to a very convenient so-
lution: there is already a program that can access
everything the kernel can access — it’s the kernel it-
self. And all the other tools that might be needed
(e.g. DHCP and such) are conveniently available
too.

The only missing element is a means to boot a Linux
kernel from within Linux. The concept is basically
the same as for boot loaders running under some
other host operating system. However, some re-
quirements are slightly higher, because it is desir-
able to have a solution that can be easily adapted for
all platform supported by Linux, and also the range
of possible system configurations is wider than for
most other such boot loaders, e.g. it seems quite
unlikely that LOADLIN is ever used on multipro-
cessor systems. On the other hand, the work can be
simplified by making small changes to the kernel.

Another requirement is to pass on data obtained
from the firmware from kernel to kernel. E.g. on
i386, video mode, memory layout, SMP configura-
tion, etc. are retrieved either directly from the BIOS
or from memory areas initialized by the BIOS. Since
these memory areas may be overwritten by the ker-
nel in normal operation, they either need to be pro-
tected if booting kernels from Linux is desired, or
the information contained in them needs to be ex-
tracted and passed on to the next kernel.

Finally, some operations done during initialization,
e.g. SCSI or IDE bus scans, may take a significant
amount of time. It would be desirable to pass this
information from kernel to kernel in order to speed
up the boot process.

There are currently at least three different imple-
mentations that allow booting a Linux kernel from
Linux: bootimg, LOBOS, and Two Kernel Monte.
The last two are described in [15] and [16], respec-
tively. Bootimg is described in section 5.3 of this

paper.

5.2 What a waste 7

The concept of using a fully featured Unix kernel
as a boot loader may look like the perfect waste
of resources. In the section, we will consider the
implications on time, memory, and disk space.

Note that these calculations may not apply to spe-
cial environments like embedded systems or small
battery-powered devices, which may have very lit-
tle memory or use a slow CPU. Fortunately, the
flexibility offered by the ability of booting a kernel
from Linux is hardly necessary in those cases, so an
optimized specific solution can be chosen.

First time: loading a kernel and an initrd takes time.
Since the kernel is probably compressed, some more
time is spent for uncompressing. If we assume that
any expensive bus scans are not repeated, and that
the hardware is not overly slow or obsolete, we ob-
tain:

1-2 sec Loading 1-2 MB (kernel and initrd)
1-2 sec Uncompressing kernel and initrd

1 sec Other overhead
3-5 sec

Considering that a normal reboot typically takes 20-
60 seconds, this is a reasonably small increase. Also,
reboots for configuration changes or kernel updates
are much faster now, because the old kernel can
directly load the new one, without going through
BIOS or boot loader.

The peak memory utilization occurs when the kernel
acting as boot loader has loaded the next kernel
along with its compressed initrd. Assuming fairly
large kernels and initrds, we obtain:

1-2 MB Boot kernel (running)

2-4 MB Kernel data

1-2 MB initrd (mounted)
0.5-2 MB Compressed kernel
0.5-2 MB Compressed initrd
5-12 MB

Since 5 MB is probably the minimum amount of
memory required for any usable Linux system, these
memory requirements can only become a significant
problem if using very large kernels or feature-laden
initrds, which are of little use on systems with tight
memory constraints.

Finally, the disk space requirements:

1 MB Compressed boot kernel
1 MB Compressed initrd
2 MB

This is hardly noticeable. Developers who fre-
quently change their boot kernel may wish to keep
an additional kernel build tree for this purpose. This
takes about 100-120 MB.

5.3 Case study: bootimg on i386

This section gives a rough overview of how bootimg
[17] currently loads a Linux kernel. Note that this is
still work in progress, and major changes are quite
probable. Bootimg consists of two parts: a user
space program that loads the necessary files and
prepares a load map, and kernel code that moves
the memory pages to the right locations and starts
the new kernel.

1
—

Kernel memory

2
5
3
4
6
Desc 7
bootimg

Physical addresses of target pages
Pointers to source pages in user memol

Figure 14: Bootimg: set up from user space.

As shown in figure 14, the user space program first
loads the kernel image and, optionally, an initrd file
into its address space (1). It registers the addresses
of these memory pages in an array of pointers (2).
Note that the data does not necessarily have to come
from a disk, but it may as well be loaded over the

network, or bootimg could even generate it on the
fly, e.g. from object modules. Next, bootimg copies
the parameter block from the running kernel (3) and
adds the new boot command line and the initrd pa-
rameters (4). By copying the current parameter
block, all other values set by the BIOS, e.g. the
memory configuration, are preserved. Along with
the pointer array to the source data, bootimg also
maintains a second array (5) that contains the tar-
get addresses in physical memory for all pages. Once
all this is done, bootimg sets up a descriptor con-
taining pointers to the two arrays and some addi-
tional information (6), and invokes the bootimg sys-
tem call (7).

As shown in figure 15, the bootimg system call first
copies the source pages to kernel memory (1). This
is done mainly in order to check access permissions
and to ensure proper alignment of the pages, but it
also makes it easier to implement the crash dump
utility described in the next section. When copy-
ing, bootimg also updates the source pointers (2)
to point to the new pages in kernel memory.® Since
the pages have been allocated at arbitrary loca-
tions, they must be moved to the right place before
the kernel can be started. This is done by a lit-
tle position-independent function that is copied to
its own memory page (3). This function moves all
pages to the location indicated in the target address
array (4). If a target address happens to coincide
with a page that is still needed, the function copies
the content of the target page first to a free page.
Note that this may also include the page contain-
ing the function itself. Once all pages have reached
their destination, the startup code of the new kernel
is called (6).

Two likely future changes are the addition of sup-
port for references to physical pages in the source
pointer array in order to support copying of data
that may change after the call to bootimg (i.e. the
kernel message buffer), and a split of the bootimg
user-space program into a set of library functions
and a simple utility calling them, in order to make

it easier to use bootimg in other programs.

8Tt actually does this in two steps: first, it uses addresses
in the kernel address space. Then, immediately before re-
ordering the memory pages, it changes them to addresses in
physical memory. This way, the addresses are still available
if any operation fails before the reordering, and the pages can
be freed before the system call returns. This would be more
difficult if the addresses were already translated to physical
memory addresses, because the latter can not generally be
converted back to kernel address space.

Kernel memory

before reordering after reordering

1|~
I

U
M L Tha
2 1
N LT <5
|
> |

Descr

Physical addresses of target pages

Pointers to source pages in user memory
then to source pages in kernel memory

Figure 15: Bootimg: memory reordering in the ker-
nel.

5.4 Other interesting applications

Besides just booting Linux kernels from odd sources,
two other possible applications for such a mecha-
nism have been proposed recently.

LinuxBIOS [2] takes the reduction of boot loader
functionality to the logical extreme and simply puts
a Linux kernel in the Flash EPROM that normally
holds the PC BIOS. This kernel can then act as a
very feature-rich boot loader.

Another interesting use is the creation of crash
dumps. Many traditional Unix systems can write
the memory content to disk when a kernel panic
occurs. A crash dump can later be analyzed to de-
termine what has caused it. Since a kernel panic
should only occur in cases where the kernel has de-
tected a serious defect, it is not safe to assume that
the normal drivers can be used for writing that crash
dump. Even if the drivers still work, using them
may change the system state such that the problem
leading to the kernel panic can no longer be discov-
ered.

It is therefore desirable to use an subsystem that is
independent from the regular kernel for this task.

With a mechanism like bootimg, this is quite sim-
ple: a small kernel for taking the crash dump is
pre-loaded along with a suitable initial RAM disk,
and when a panic occurs, the pre-loaded pages are
checksummed (they may have been damaged as a
result of the problem leading to the kernel panic),
and the kernel is launched. Tt can then set up a new
clean environment, and write the dump.

An implementation of such a crash dumper, based
on bootimg, can be found at [18].

6 Acknowledgements

Many people have contributed to LILO over the
years by reporting bugs and suggesting improve-
ments. Development has stalled in the last years,
but John Coffman is now carrying on the torch with
fresh energy.

The architectures for the initial RAM disk and for
bzImage are a joint work with Hans Lermen.

The design of pivot_root was strongly influenced
by discussions in the linux-kernel mailing list. In
particular, comments from H. Peter Anvin, Linus
Torvalds, and Matthew Wilcox helped to shape the
current design, and Alexander Viro is currently re-
fining the concept.

The basic idea for bootimg comes from an imple-
mentation for SVR4 written by Markus Wild in the
early nineties. The memory reordering algorithm
of bootimg was strongly inspired by FiPaBoL, de-
signed mainly by Otfried Cheong and Roger Gam-
mans, and implemented by the latter.

7 Conclusion

Table 1 shows the evolution of boot concepts in the
history of Linux. Ttems still under development are
shown in italics. Also, boot loaders for other archi-
tectures than i386 have been omitted.

The first boot loaders plainly got the kernel loaded,
without much convenience beyond this. The second
generation of boot loaders overcame the file system
type constraints and added many useful features,

such as the boot command line or the ability to boot
other operating systems. Almost all boot loaders in
use today are of the second generation.

The ability to use arbitrary file systems as the root
file system evolved slowly since the beginning of
Linux. Since the introduction of pivot_root, a
completely generic solution is available.

Finally, the ability to load kernels from other sources
than floppy or hard disks is comparably recent.
Since the three current approaches to boot Linux
from Linux are already quite generic, convergence
will probably be reached soon.

As has been shown, the apparently simple act of
booting a Linux system is full of interesting prob-
lems. Modern Linux systems offer a rich set of fea-
tures to handle those problems, and even more ex-
citing improvements continue to be developed.

References

[1] Almesberger, Werner. LILO User’s guide,
ftp://metalab.unc.edu/pub/Linux/
system/boot/1ilo/

[2] Minnich, Ron; Hendricks, James; Webster,
Dale. The Linux BIOS Home Page, http://

www.acl.lanl.gov/linuxbios/

[3] Anvin, H. Peter. SYSLINUX, http:
//wwu .kernel.org/pub/linux/utils/boot/
syslinux/

[4] Kuhlmann, Gero. Netboot, ftp:

//metalab.unc.edu/pub/Linux/system/
boot/ethernet/netboot-0.8.1.tar.gz

[5] Lermen, Hans. LOADLIN, ftp://metalab.
unc.edu/pub/Linux/system/boot/loaders/
lodlinl6.tgz

[6] Cheong, Otfried. Arlo Arm boot loader, £tp:
//ftp.calcaria.net/pub/arlo051.tgz

[7] Boleyn, Erich; et al. GNU GRUB, http://
www.gnu.org/software/grub/grub.html

[8] Almesberger, Werner; Coffman, John.
LILO - (Generic boot loader for Linuz,
ftp://metalab.unc.edu/pub/Linux/
system/boot/1ilo/

The humble beginnings

1991 Linux boots stand-alone from floppy.

Shoelace is used to boot from Minix file system on hard disk.

Beyond Minix

1992

BOOTLIN allows booting from DOS.

1994 LOADLIN replaces BOOTLIN.

SYSLINUX reads FAT (MS-DOS) floppies.

1995 GRUB, a modern file system aware boot loader.

LILO allows booting from (almost) arbitrary file systems and of other operating systems.

Root file system abstraction

1991 Root file system device can be set in kernel image.
1995 NFS root mounts root file system from NFS server.
1996 Initial RAM disk support added to kernel.

change_root mechanism.

2000 pivot_root mechanism.

Union root mount.
Early freeing of initrd memory pages.

Kernel image abstraction

1996 Netboot boots from Ethernet, using TFTP.
1999 GRUB supports TFTP boot too.
2000 Linux boots Linux.

LinuzBIOS.

[9]

Table 1: Evolution of the boot process. (Work in progress is shown in italics.)

Almesberger, Werner. LILO Technical [17] Almesberger, Werner. bootimg

ftp:

overview, ftp://metalab.unc.edu/pub/ //icaftp.epfl.ch/pub/people/almesber/

Linux/system/boot/1lilo/ misc/bootimg-current.tar.gz

Brouwer, Andries. Large Disk HOWTO, [18] Mission Critical Linux. Kernel Core Dump,
http://www.win.tue.nl/ aeb/linux/ http://www.missioncriticallinux.com/

Large-Disk.html technology/coredump/

Phoenix Technologies Ltd. Enhanced Disk
Drive Specification Ver 1.1, http://www.
phoenix.com/products/specs-edd11.pdf

Almesberger, Werner. wush micro shell,
ftp://icaftp.epfl.ch/pub/people/
almesber/psion/ush-2.tar.gz

Brouwer, Andries. util-linuz: Miscellaneous
utilities for Linuz, ftp://ftp.win.tue.nl/
pub/linux-local/utils/util-1inux/

Brouwer, Andries. man pages for Linuz,
ftp://ftp.win.tue.nl/pub/linux-local/
manpages/

Minnich, Ron. LOBOS: (Linuxz OS Boots OS)
Booting a kernel in 32-bit mode, http://wuw.
acl.lanl.gov/linuxbios/papers/lobos.ps

Hendriks, FErik. Two Kernel Monte (Linuz
loading Linuz on x86), http://www.scyld.
com/software/monte.html

