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t
Booting an operating system means to mediate be-tween a usually very basi
, and frequently unreli-able system environment (e.g. the PC BIOS), thefun
tionality required by the operating system it-self, and the sometimes rather sophisti
ated setupsusers wish to 
reate.From the humble beginnings of the 
oppy boot se
-tor, the Linux boot pro
ess has grown ri
h fun
tion-ality, with versatile boot loaders (LILO, LOADLIN,GRUB, et
.), several boot image formats, and anin
reasing variety of operations that 
an be doneeven before the system is fully booted, e.g. load-ing of driver modules before mounting the root �lesystem.The boot pro
ess is also be
oming more diÆ
ultwith time: new peripherals with interesting fun
-tionality and sometimes even more interesting prob-lems get widely deployed and need to be supported,users 
reate new and 
ompli
ated system 
on�gura-tions and still need to be able to boot, and last butnot least, new fun
tionality is 
onstantly added tothe kernel, and some of it, e.g. new �le systems, 
analso a�e
t the boot pro
ess.All the 
ompli
ations the boot pro
ess has to handleare even worse during system installation, be
ausea large number of possible 
on�gurations must be
onsidered, but storage spa
e is limited. Frequentlya single 
oppy disk has to suÆ
e for the �rst steps.This paper des
ribes the boot pro
ess under Linux,the 
hallenges it has to fa
e, and how it evolved tomeet them. Besides this histori
al overview, whi
halso illustrates general design 
on
epts, some morere
ent additions are dis
ussed in detail.

1 Introdu
tionThe boot pro
ess 
onsists of two major phases: (1)loading the Linux kernel into memory and passing
ontrol to it, and (2) initializing the normal oper-ation environment. Some of the possible ways toperforms these steps are depi
ted in �gure 1.
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1.1 Loading the kernelThe �rst phase is the domain of boot loaders. Theyhave to retrieve the kernel exe
utable and possiblyadditional data from some storage media, e.g. adisk, or from an external sour
e, e.g. from a bootserver on the network, load them at the right mem-ory lo
ation, maybe 
hange the exe
ution mode ofthe pro
essor, and start the kernel.Boot loaders typi
ally perform some additionaltasks, like providing the kernel with parameters su
has information retrieved from the �rmware or theboot 
ommand line. Some boot loaders 
an also a
tas a boot sele
tor and load other operating systems.The duties of boot loaders and some 
ommon de-signs are dis
ussed in more detail in se
tion 2. Anintrodu
tion to boot 
on
epts on i386 in general 
anbe found in [1℄.1.2 Up and runningOn
e the kernel is running, it initializes its inter-nal data stru
tures, dete
ts hardware 
omponentsand a
tivates the 
orresponding drivers, et
., untilit eventually be
omes ready to run user-spa
e pro-grams. Before it 
an start the user-spa
e environ-ment, it needs to provide it with a �le system, so ithas to mount the root �le system �rst.In order to mount the root �le system, the kernelneeds two things: it needs to know the media onwhi
h the root �le system is lo
ated, and it needsdrivers to a

ess that media. In the most 
ommon
on�guration, when the root �le system is simplyan ext2 partition on an IDE disk, this is simple: thenumber of the root devi
e is passed to the kernel as aparameter, and the IDE driver is typi
ally 
ompiledinto the kernel.1.3 Compli
ationsThings get more 
ompli
ated if the kernel has nodriver for the devi
e. This is quite 
ommon for the\generi
" kernels that are used when installing anew Linux system, be
ause a kernel with all avail-able drivers would simply be far too big, and somedrivers may also upset other hardware when probingfor their devi
es.

This problem is solved by the initrd me
hanism,whi
h allows the use of a RAM disk before mount-ing the a
tual root �le system. This RAM disk isloaded by the boot loader. initrd is des
ribed inse
tion 3.While initrd has proven to be very useful, the designof the me
hanism used to mount the root �le systemafter initrd has 
ompleted its work was never quitesatisfa
tory. Also, other 
hanges in the kernel madeit in
reasingly diÆ
ult to use that me
hanism in a\
lean" way. Se
tion 4 dis
usses those issues in moredetail.1.4 The futureThree new 
hallenges await the boot pro
ess in thefuture: (1) the �rmware and any hardware the bootloaders have to interfa
e with will grow more fun
-tionality | and, if the past is any indi
ation of thefuture, a ri
her set of bugs too. (2) �le systems 
on-taining kernel images will be
ome more 
omplex,e.g. journaling �le systems or RAID, and 
orre
tlyinterpreting their 
ontent will be very diÆ
ult forboot loaders. (3) people will want to load kernelsfrom other exoti
 sour
es, e.g. from the network,using a se
ure 
onne
tion.
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.



2 Boot loadersA boot loader performs the following tasks:� de
ide what to load, e.g. by prompting the user� load the kernel and possibly additional data,su
h as an initrd or parameters for the kernel� set up an exe
ution environment suitable forthe kernel, e.g. put the CPU in privileged mode� run the kernel2.1 TaxonomyBoot loaders 
ome in many sizes and shapes. Asshown in �gure 3, we will distinguish the followingfour types of them:� spe
ialized loaders, e.g. the 
oppy boot se
torLinuxBIOS [2℄, SYSLINUX [3℄, Netboot [4℄� general loaders running under another operat-ing system, e.g. LOADLIN [5℄, ArLo [6℄� �le system aware general loaders running on the�rmware, e.g. Shoela
e, GRUB [7℄, SILO� �le system unaware general loaders running onthe �rmware, e.g. LILO [8℄
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h boot loaders intera
t withthe underlying servi
es.Spe
ialized loaders typi
ally know only one storagedevi
e, e.g. 
ash memory or the 
oppy disk, onwhi
h a small number of kernels is stored in someformat spe
i�
 to the boot loader.Boot loaders that run under another operating sys-tem normally use the servi
es provided by the hostoperating system for reading the kernel image and

additional data. This frees them from having toknow the stru
ture of the underlying �le system orany properties of the a
tual store devi
es. One oftheir disadvantages is that they have to take spe-
ial pre
autions when loading the kernel, in orderto keep the host operating system operational untilthey are ready to run the Linux kernel, e.g. theymust not overwrite memory lo
ations o

upied bythe host operating system. Another disadvantage isthat the entire boot pro
ess takes longer than withother boot loaders, be
ause the host operating sys-tem needs some time to boot too.File system aware boot loaders are almost little op-erating systems by themselves: they know the stru
-ture of one or more �le systems, they a

ess devi
esvia the servi
es provided by the �rmware, and some-times, they may even have their own drivers to a
-
ess hardware dire
tly.File system unaware boot loaders rely on a thirdparty to map the on-disk data stru
tures to a moregeneral and more 
onvenient representation. E.g.in the 
ase of LILO, the so-
alled map installer(/sbin/lilo) uses the �le system drivers already
ontained in the Linux kernel to perform this map-ping, and simply writes the list of data se
tor lo
a-tions in its map �le. A des
ription of LILO internals
an be found in [9℄.2.2 File system awarenessThe la
k of �le system awareness is a 
ommon 
om-plaint about LILO, and 
ompeting boot loaders ad-vertize their ability to read �le systems withoutprior mapping as one of their main features. It istherefore interesting to 
ompare the two approa
hes.Figure 4 shows what a �le system aware boot loaderdoes when using the Se
ond Extended �le system:�rst, the �le is written to disk, via the ext2 �le sys-tem driver. The �le system driver adds a bit ofmeta information. At boot time, the boot loaderinterprets the ext2 meta information and loads the
orresponding data se
tors into memory. In orderto do so,it has to 
ontain a simpli�ed version of the�le system driver.A �le system unaware boot loader (�gure 5) requiresan additional step after writing the �le: the map-ping, during whi
h the generalized meta informationis written. The boot loader uses this meta informa-



ext2

Kernel image

Kernel

Disk

Boot
loader

Meta data Kernel image data

ext2(ro)

Figure 4: Data 
ow with �le system aware bootloader.tion to retrieve the a
tual data. The meta datagenerated by the �le system driver is not needed.
Kernel

Disk

Boot
loader

ext2

read list

Meta data (map file)
Kernel image data

Kernel image

Map

Meta dataFigure 5: Data 
ow with �le system unaware bootloader.File system unaware boot loaders have the main dis-advantage that the map installer has to be run af-ter adding new kernel images and after an alreadymapped kernel image 
hanges its on-disk lo
ationfor some reason.However, they have one big advantage: if a �le sys-tem is supported by the Linux kernel and if it ful�llssome fairly basi
 properties, they 
an load a kernelfrom it without requiring any 
hange to the bootloader or the map installer. And this is the mainreason why LILO was designed to be �le system un-aware.

2.3 File system history and LILOIn the early days of Linux, the only boot loadersavailable were the 
oppy boot se
tor and Shoela
e,a �le system aware boot loader inherited fromMinix. Shoela
e only supported the Minix �le sys-tem. Sin
e also Linux supported only the Minix�le system ba
k then, this was no limitation. How-ever, it be
ame soon 
lear that the Minix �le sys-tem, la
king some fun
tionality traditionally foundin Unix �le systems, e.g. distin
t 
reation, modi�-
ation, and a

ess time for �les, and also restri
ting�le names to 14 
hara
ters, was not good enough asthe primary �le system for Linux.In order to allow for the implementation of other�le systems, the VFS (Virtual File System) inter-fa
e was added, whi
h qui
kly led to the 
reationof a wide variety of new �le systems, among themthe Extended �le system, Xiafs (named after its au-thor), and also a \big" variant of the Minix �lesystem that raised the �le name length limit to awhole thirty 
hara
ters. There was �er
e 
ompeti-tion among the �le systems, and it was quite un-
ertain whi
h design would eventually prevail, or ifthere would a
tually be a single \winner".In all this 
onfusion, one thing was 
lear: no mat-ter what �le system one favoured, in order to bootfrom the hard disk, the root �le system had to beMinix, be
ause Shoela
e did not support anythingelse. LILO was written to �ll this gap. Sin
e imple-menting and maintaining support for a large numberof di�erent �le systems (at that time there were al-ready Minix, Extended (ext), and Xiafs in the main-stream kernel, some people had ported BSD FFS,and there was no end in sight) appeared hardly de-sirable, and the boot loader should not prevent peo-ple from experimenting with new �le system propos-als, a �le system unaware design was 
hosen.This approa
h turned out to be very su

essful.Even today, LILO 
an boot from most disk �le sys-tems supported by the Linux kernel. However, sin
eext2 has be
ome the de fa
to standard, and has beenso for many years, �le system aware boot loader de-signs have been su

essfully tried again, and someof them have already gained a 
ertain popularity.While ext2 was handling everybody's daily work,�le system designers have been busy with the nextgeneration of �le systems, whose key feature is sup-port for journaling. Considering that there are now
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ompeting proposals (�gure 6), itseems likely that the need for the 
exibility o�eredby a �le system unaware boot loader will again be-
ome strong.2.4 Other things to loadA Linux boot loader does not only load the kernelimage, but it has to give further data to the kernel,e.g. the initial RAM disk, whi
h allows the kernel toset up a fully fun
tional user spa
e without a

essingany peripherals. This is dis
ussed in se
tion 3.Other additional data is a parameter blo
k used dur-ing kernel initialization. It typi
ally 
ontains thingslike the number of the devi
e with the root parti-tion, the desired video mode for the system 
onsole,the boot 
ommand line, et
. The type of infor-mation and its layout are ar
hite
ture-spe
i�
. Itis also quite 
ommon that the parameter blo
k ismerged from multiple sour
es, e.g. LILO 
an sele
-tively overwrite the default VGA mode.2.5 i386 detailsOne problem that is 
onstantly plaguing the authorsof boot loaders, parti
ularly on the i386 platform,are the various disk size limits imposed by hardwareor, more frequently, �rmware. A good dis
ussion ofmost known limits 
an be found in [10℄. The usuale�e
t of using a hard disk that ex
eeds su
h a limitis that the part of the disk beyond the limit is onlya

essible under some 
ir
umstan
es.One su
h limit that has earned parti
ular fame in

the Linux world is the 1024 
ylinder limit 
ommonlyen
ountered when using LILO. It originates fromthe BIOS, whi
h only supports a maximum of 1024
ylinders in the traditional fun
tions for a

essinghard disks. This limit is ex
eeded on all hard diskslarger than 8 GB, and sometimes even with smallerones. Sin
e LILO uses the BIOS for all disk opera-tions, all �les a

essed by it had to be within the �rst1024 
ylinders of the hard disk. In 1995, an exten-sion 
alled \Enhan
ed Disk Drive Spe
i�
ation" [11℄raised the limits of the BIOS interfa
e by a fa
torof roughly 240 to a more reasonable 273 bytes. Un-fortunately, it took some more years until one 
ouldbe reasonably sure that 
orre
t implementations ofEDD were widely deployed. Support for EDD hasbeen added to a development version of LILO in1999, and later versions released for general use andmaintained by John Co�man also support EDD.
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Figure 7: Simpli�ed memory layout at boot time oni386.Another interesting problem on i386 are the variousmemory size limits (�gure 7). First of all, in the so-
alled real mode, the CPU has a 4+16 bit addressspa
e giving it a

ess to only 1 MB. Sin
e the CPU isin real mode when the boot se
tor is started, earlyboot loaders were not able to load kernels (
alled\Image") larger than several hundred kilobytes.1This was soon found to be too 
on�ning, and 
om-pressed kernel images were introdu
ed. Compressedkernels (
alled \zImage") were still limited to 512kB, but on
e started, they un
ompressed themselves1Some of the lower address spa
e is reserved for the BIOSand video memory, and some spa
e is also 
laimed by theboot loader. This leaves 512 kB for loading the kernel.



to higher memory lo
ations. This in
reased themaximum kernel size to approximately 1 MB.After a few years, also this be
ame a problem, and ame
hanism was added to load bigger kernels, 
alled\bzImage". A bzImage is loaded above the 1 MBbarrier, then un
ompresses itself, and moves the re-sulting un
ompressed kernel down to 1 MB. Theparameter blo
k 
ontained in the 
oppy boot se
torand the real mode setup 
ode are still loaded at theiroriginal addresses below 1 MB. This is des
ribed inmore detail at the end of this se
tion.Be
ause zImage is inferior to bzImage in almost allrespe
ts, support for it is likely to be phased out inthe near future.In order to load the bzImage above 1 MB, the bootloader either swit
hes to a CPU mode giving a
-
ess to the full address spa
e, or it runs still in realmode but uses spe
ial BIOS fun
tions for the 
opy.Unfortunately, those BIOS fun
tions originate fromthe i286 era and may still use the so-
alled prote
tedmode of the i286 with a 8+16 bit address spa
e, giv-ing a

ess only to 16 MB. While 15 MB2 should bemore than suÆ
ient for 
ompressed kernels alone, italso limits the maximum size of initrds, whi
h usethe spa
e not o

upied by the kernel. Sin
e the 16MB limit 
omes from the boot loader but does notexist in the kernel, it is likely to disappear in thefuture. Some boot loaders are already using 
opyme
hanisms that do not have this restri
tion.The next barrier is 64 MB, whi
h is the amount ofmemory that 
an be traditionally reported by theBIOS. All newer BIOSes support me
hanisms that
an report larger memory sizes, and kernels havere
ently started using them. It is not 
lear if the 64MB limit is likely to ever be
ome a serious problemfor boot loaders.The maximum kernel size is also limited by the pagetables the kernel sets up prior to its own initializa-tion. For a long time, only 4 MB were mapped.Sin
e kernels started to ex
eed this limit, it was re-
ently raised to 8 MB.It should be noted that all these restri
tions onlyapply to the kernel image loaded at boot time. Anyadditional 
ode loaded by modules 
an use all of thememory the kernel is willing to provide.2The lower megabyte is reserved for BIOS, boot loader,video memory, et
.

The loading of a bzImage is a fairly intri
ate pro
e-dure, as shown in �gure 8. First, the boot loaderloads the kernel setup se
tors (1) and the 
om-pressed kernel (2), and jumps to the setup 
ode(3). The bzImage 
onsists of the 
ompressed ker-nel 
ode (\text") and data, and a small pie
e ofun
ompressed 
ode for extra
ting the kernel. On
e�nished, the setup 
ode jumps to the extra
tor (4).Then, the kernel is un
ompressed into a low memoryregion below 1 MB (5), and a high memory regionafter the end of the loaded bzImage (6). By us-ing the low memory region, the extra
tion pro
essredu
es its peak memory usage by 568 kB.
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Figure 8: Loading a bzImage.When the kernel is extra
ted, it needs to be movedto 1 MB. This is done by a mover fun
tion whi
h is
opied to a low address (7 and 8). After moving theun
ompressed kernel to its destination (9 and 10),the mover jumps to the kernel entry point (11).2.6 Adding new featuresWhen adding new fun
tionality to the boot pro
ess,frequently the question arises where it should beimplemented { in the boot loader or in the kernel ?Figure 9 illustrates this 
hoi
e.With a large number of di�erent ar
hite
tures andpossibly a large number of boot loaders per ar
hi-
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ture, it is 
lear that additions requiring major
hanges in boot loaders are not likely to be metwith mu
h enthusiasm. With the number of sup-ported ar
hite
tures in
reasing, even ar
hite
ture-dependent 
hanges should not be 
onsidered lightly.The introdu
tion of the initial RAM disk was thelast time a 
hange a�e
ting all ar
hite
tures andmost boot loaders was made. Fortunately, most au-thors agreed on the usefulness of initrd, and it iswell supported today.More re
ent extensions of the boot pro
ess try tostay within the kernel, e.g. the me
hanisms to bootLinux kernels from Linux 
ombine an ar
hite
ture-spe
i�
 part with a more general framework, andre
ent improvements of me
hanisms related to ini-trd (see se
tion 4) are 
ompletely ar
hite
ture-independent.Se
tion 3.5 
ontinues this dis
ussion, examining the
hoi
e between kernel and user spa
e.
3 Loading driversOnly loading the kernel is sometimes not enough,be
ause the driver(s) needed to a

ess the root �lesystem may not be in
luded in the kernel. This se
-tion des
ribes the reasons for this seemingly para-doxi
al situation and the solution adopted for it.

3.1 Con
i
ting driversVery early, many Linux distributions en
ounteredthe problem that some of the drivers they neededto a

ess any further storage medium, e.g. the CD-ROM, were 
on
i
ting with the drivers they neededin other 
ases.This 
an happen quite easily with ISA 
ards, be-
ause the only way to probe for their presen
e usedto be to blindly write to registers at well-known ad-dresses and to 
he
k if the 
ard showed whateverrea
tion was expe
ted in this 
ase. If two 
ards hap-pened to have some well-known addresses in 
om-mon and did not respond gra
efully to in
orre
t a
-
esses, e.g. by entering a state that 
ould only beleft by following a 
ompli
ated reset pro
edure or, inextreme 
ases, only by a hardware reset, one 
ouldnot probe for one 
ard without upsetting systemsthat used the other one.In order to avoid su
h 
on
i
ts, distributions startedto use large numbers of pre-
ompiled kernels 
on-taining only a small number of drivers ea
h. Su
ha distribution then either had to ship with several
oppy disks for all those kernels, or the user had topi
k the right kernel from the distribution mediumand make their own boot disk before installation.This was hardly a satisfying situation.The readily available solution to su
h problems wasthe use of kernel modules, whi
h 
an be loaded aftereither performing a more detailed hardware 
on�g-uration analysis than done by the kernel, or simplyafter asking the user for advi
e.3.2 Dynami
 kernel 
ompositionLoading modules before the kernel mounts the root�le system is also desirable after installation, whena 
ustomized kernel 
ontaining only the 
omponentsrequired on the respe
tive system should be used.Ideally, one would go through regular kernel 
on-�guration and 
ompile the kernel from s
rat
h forthis, but most users would be rather unpleasantlysurprised by the daunting task of having to pi
kthe right set from more than a thousand 
on�g-uration options, parti
ularly sin
e many mistakeswould lead to an unbootable system. Also, there areusually some dependen
ies among options that are



not 
aught by the kernel 
on�guration system, so
ertain 
hoi
es 
ould lead to obs
ure build failures.Last but not least, building the kernel requires sev-eral tools (
ompiler, et
.), whi
h are not ne
essarilyinstalled on every system, and the build pro
ess mayalso take a long time on slower ma
hines.Linking a pre-
ompiled monolithi
 kernel wouldonly o�er partial relief, be
ause it still requires al-most all of the tools needed for 
ompilation, andany 
on
i
ts would make the entire linking pro
essfail.Again, the most reasonable 
hoi
e is to use modules.The modules framework is regularly used by manypeople and is therefore quite reliable. If there are
on
i
ts among modules (e.g. missing or dupli
atesymbols), the respe
tive module and any modulesdepending on it 
annot be loaded, but this is stillsafer than failing the entire build pro
ess.In prin
iple, a simpli�ed linker 
ould be built on thebasis of modules, o�ering all the advantages of amodular system, while avoiding the slight overheadintrodu
ed by modules. For some reason, su
h alinker was never implemented.3.3 Chi
ken and modular eggsThe use of modules requires the presen
e of a �lesystem.3 While an installation 
oppy disk 
an 
on-tain a �le system, this does not help for other me-dia, e.g. a CD-ROM or the s
enario des
ribed inthe previous se
tion. Also, every on
e in a while,
oppy disk drives appear that 
an be a

essed viathe BIOS, but that are not properly handled by theregular 
oppy driver.Fortunately, there is already a program that { byde�nition { knows how to read data from the bootmedium under all 
ir
umstan
es: the boot loader.The logi
al 
on
lusion was therefore to let the bootloader load the modules too. In order to keep the
on
ept as 
exible as possible, and the work of theboot loader simple, it loads a single �le that is pre-sented to the kernel as a linear blo
k of memory.The kernel then uses it as a RAM disk. Therefore,the me
hanism is 
alled \initial RAM disk" or short3An alternative approa
h that is proposed every on
e ina while is to tea
h the boot loader to link modules into thekernel at boot time. The problems of this approa
h havebeen dis
ussed in se
tion 2.6.
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Figure 10: Loading an initial RAM disk.\initrd". As a pleasant synergy e�e
t, the RAMdisk driver automati
ally dete
ts if the RAM disk is
ompressed, and un
ompresses it if ne
essary.For debugging or for using the initrd me
hanismfor other purposes than the initial RAM disk, theboot 
ommand line option noinitrd 
an be usedto prevent automati
 use of the memory blo
k as aRAM disk. Instead, its 
ontent is made availablevia the blo
k devi
e /dev/initrd.3.4 Using the initrdOn
e the RAM disk is loaded, any regular Linuxprograms 
an be run from it. Initrd 
an be used intwo modes: either for the regular root �le system,so the program run is the usual /sbin/init, or asan intermediate environment in whi
h the system isprepared for mounting the real �le system.In the latter 
ase, a program 
alled /linuxr
 is in-voked to perform the ne
essary initialization. When/linuxr
 �nishes, the \real" root �le system ismounted and it repla
es the initial RAM disk. Afterthis, /sbin/init 
ommen
es with the usual startuppro
edures. The pro
ess of 
hanging the root �lesystem is des
ribed in se
tion 4.3.5 Size mattersThe main limitation of an initial RAM disk is thatthere has to be enough memory for the kernel, theinitrd �le as loaded by the boot loader, the RAMdisk extra
ted from it by the RAM disk driver, and



any other data the kernel needs at that time. Thislimits the size of 
ompressed initrds to roughly athird of the memory not o

upied by the kernel it-self.One obvious improvement is to free memory 
on-taining the original initrd data immediately after ithas been read when building the RAM disk. Thiswill be implemented in the near future.By the way, it is a 
ommon mis
on
eption thatthe use of initrd automati
ally implies that manymegabytes of pre
ious memory will be wasted. Thismis
on
eption 
omes from the fa
t that most pro-grams are linked with the shared C library (lib
),and that some versions of lib
 are fairly large { typ-i
ally up to around 4 MB. Even linking with thestati
 version of lib
, whi
h yields a program 
on-taining only the library fun
tions whi
h are reallyused, does not result in the desired size redu
tion.E.g. a program that does nothing at all (main(){})still gets larger than 200 kB.One reason for this is that lib
 has many internaldependen
ies, whi
h require the in
lusion of auxil-iary 
omponents. When some of those dependen
iesare removed, program sizes be
ome more reason-able, e.g. the example above shrinks to a mere 3kB. More work is needed in this dire
tion.Another possibility is simply to refrain from usingany library at all. This is feasible for reasonablysimple programs. The mi
ro-shell [12℄ is an examplefor this.4 Changing the root �le systemChanging the root �le system is similar to the taskof 
hanging a 
arpet while still standing on it. Mostpeople would probably suggest to jump up while try-ing to throw the new 
arpet under one's feet, andto smooth any wrinkles afterwards. The �rst im-plemented solution, 
alled 
hange_root, is a
tuallyremarkably similar to this approa
h. It is des
ribedin se
tion 4.2.A mu
h lazier possibility is to roll out the new 
arpetnext to the old one and to just walk over. Thismu
h more elegant approa
h, re
ently implementedin a me
hanism 
alled pivot_root, is des
ribed inse
tion 4.3. A similar solution, involving layering

of the new root �le system on top of the old one,is 
urrently being worked on. Its 
urrent design isdes
ribed in se
tion 4.4.4.1 What's keeping it busyChanging the root �le system is tri
ky, be
ause thedesign of Unix makes sure there is always somethinga

essing it. In parti
ular, at least the followingitems are \busy" if any pro
ess is running:Mapped �les The exe
utable of the pro
essand any shared libraries used byit.Terminal Standard input, output, and er-ror of that pro
ess. Typi
ally/dev/
onsoleDire
tories The 
urrent dire
tory and the
urrent root dire
tory of thepro
ess.Furthermore, the root �le system 
an also be busybe
ause of:Mount points Mounted �le systems (e.g./pro
 or any auxiliary �lesystems)Demons Demon pro
esses or kernelthreads.4.2 Feet in the airFigure 11 illustrates the approa
h of awkwardlyjumping up while rearranging things underneathone's feet. It works as follows:� Kernel prepares initrd and starts /linuxr
� /linuxr
makes everything ready for mountingthe root �le system and writes the number ofthe new root �le system devi
e to /pro
/sys/kernel/real-root-dev� When /linuxr
 terminates, the kernel triesto unmount the old root �le system and tomount the �le system on the devi
e des
ribedin /pro
/sys/kernel/real-root-dev instead� Kernel runs /sbin/init



One of the design goals for 
hange_root was tomake its use easy for shell s
ripts, in order to sim-plify the transition to initrd.
/

Root and cwd
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/initrdnew_root

umount

root_dev

change_root

Figure 11: Changing the root �le system with
hange root.The following table shows how well this approa
hhandles things keeping the root �le system busy:Mapped �les Disappear at pro
ess termina-tion.Terminal Closed at pro
ess termination.Dire
tories Not a

essed after pro
ess ter-mination.Mount points Una�e
ted.Demons Una�e
ted.Mount points and demons are still a problem.Mount points 
an be avoided by simply unmount-ing everything before /linuxr
 terminates. Demonpro
esses 
an be more diÆ
ult to avoid, and kernelthreads may refuse to disappear at all.If 
hange_root fails to unmount the old root �lesystem (be
ause it is kept busy by something), itprints a warning and tries to mount it on a mountpoint 
alled /initrd on the new root �le systeminstead. On
e all a

esses to the old root �le systemhave been removed, it 
an the be unmounted likeany other mounted �le system. If no dire
tory 
alled/initrd exists, 
hange_root gives up and leavesthe old root �le system mounted but ina

essible.4.3 Towards a general solutionWhile 
hange_root is good enough for most pur-poses, it has a few undesirable restri
tions:� It 
an only mount obje
ts whi
h exist as a blo
k

devi
e, whi
h pre
ludes NFS,4 SMB, et
.5� Kernel threads have be
ome quite popular andsome of them keep the root �le system busy.� 
hange_root 
an only be used on
e, whi
hmakes it hard to debug initialization pro
e-dures.� If 
hange_root fails to mount the new root �lesystem, the system hangs.Besides, all the devi
e number magi
 and the hard-
oded names of 
hange_root are just plain ugly.Already at the time when 
hange_root was intro-du
ed, an alternative design based loosely on the
hroot system 
all was dis
ussed. Re
ent improve-ments in VFS have made it 
omparably easy to im-plement, so this was �nally done.
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Figure 12: Changing the root �le system withpivot root.The new me
hanism is 
alled pivot_root and �gure12 shows how it works:� The new root �le system is mounted like anyother �le system.� A dire
tory is sele
ted as the lo
ation for theold (now 
urrent) root �le system.� pivot_root is 
alled with the name of the di-re
tory 
ontaining the new root �le system and4
hange root was originally able to mount NFS root �lesystems using the \NFS root" me
hanism built into the ker-nel. Support for this disappeared after a while during a reor-ganization of the NFS 
ode. Note that the new pivot rootme
hanism 
an be used to 
leanly repla
e and even general-ize the NFS root me
hanism. It is therefore likely that thelatter will be phased out in future kernels.5Re
ent 
hanges in VFS may allow mounting of su
h �lesystems even via their \anonymous" blo
k devi
e. However,this would still be a fairly messy operation.



the name of the dire
tory for the old root �lesystem.� pivot_root moves the 
urrent root �le sys-tem to the dire
tory for the old �le system andmakes the new root �le system the 
urrent root.The most important di�eren
es to 
hange_root are:� An arbitrary �le system 
an be
ome the newroot, in
luding NFS, SMB, et
.� pivot_root does not attempt to unmount theold root �le system, yielding more predi
tablebehaviour than 
hange_root with its two fall-ba
k levels.� pivot_root 
an be invoked any number oftimes, whi
h allows 
as
ading of root �le sys-tem transitions, and makes it easier to debuginitialization s
ripts.� pivot_root 
an be retried and is even re-versible, whi
h also helps debugging.Unfortunately, this does not yet help againstdemons and kernel threads keeping the old root �lesystem busy. The solution 
hosen is based on theobservation that most demons and kernel threadsare a
tually not interested in the �le system. Theyjust keep it busy be
ause they, like any other pro-
ess, referen
e their 
urrent dire
tory and their 
ur-rent root dire
tory.6 pivot_root therefore s
ans allpro
esses and 
hanges their 
urrent dire
tory andtheir 
urrent root dire
tory if they point to the oldroot.This operation is admittedly rather ugly, and thedo
umented behaviour of pivot_root leaves it opento 
hange only root and 
urrent dire
tory of the pro-
ess exe
uting pivot_root. The impli
ations of thisare des
ribed in the pivot root man pages in
ludedin [13, 14℄.Unlike 
hange_root, whi
h makes all 
hanges ina single step after /linuxr
 exits, pivot_root al-lows for a gradual swit
h to the new root �le sys-tem. This requires a bit more 
ooperation from userspa
e for releasing any remaining referen
es to theold root �le system. The running exe
utable and6Kernel threads 
an release their referen
es to these twodire
tories. Unfortunately, only very few kernel threads makeuse of this possibility.

shared libraries a

essed by it 
an be 
losed sim-ply by exe
'ing an exe
utable on the new root �lesystem. At the same time, the 
onsole 
an be 
on-veniently 
losed and re-opened with the devi
e �leon the new root �le system.7Although all those operations 
an in prin
iple bedone before or after the 
all to pivot_root, it isusually more 
onvenient to 
hange the root �le sys-tem �rst, be
ause this avoids a

idental use of itemson the old root �le systems, e.g. shared libraries.To summarize, with pivot_root, the situation isnow as follows:Mapped �les Changed by exe
.Terminal Closed and re-opened.Dire
tories Changed with 
hdir and
hroot.Mount points Una�e
ted (ex
ept for newroot, whi
h is handled dire
tlyby pivot_root)Demons Current and root dire
tory arefor
ibly 
hanged.4.4 Union mountsThe need to for
ibly 
hange the 
urrent and rootdire
tories of pro
esses is the only remaining uglyha
k with pivot_root.Alexander Viro is 
urrently designing so-
alled\union mounts", an extension of VFS that allowsmultiple �le systems to be sta
ked at a single mountpoint. The �le systems are a

essed only when try-ing to look up items on that mount point.To return to the 
arpet analogy, this gives us a tinypat
h of 
ying 
arpet that we 
an use to avoid step-ping on the real 
arpet while repla
ing it.Although this work has not yet �nished at the timeof writing, one 
an already spe
ulate on how it mayallow for a 
leaner use of the 
on
epts introdu
edby pivot_root.Figure 13 illustrates how this 
on
ept may work.The �le systems 
an be either dire
tly mounted andunmounted at the root, or they 
an be moved fromor to other dire
tories.7When using devfs, a se
ond instan
e of it should bemounted on the new root �le system for this purpose.
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Figure 13: Changing the root �le system with unionmounts.So the �nal situation is as follows:Mapped �les Changed by exe
.Terminal Closed and re-opened.Dire
tories Dire
tories 
hange is transpar-ent.Mount points Una�e
ted (ex
ept if movingmount points to root)Demons Dire
tories 
hange is transpar-ent.The me
hanism des
ribed in this se
tion is likely tobe added to the mainstream kernel in the very nearfuture.5 Linux boots LinuxWith the infrastru
ture dis
ussed so far, we 
an useany �le system the kernel 
an mount as the root �lesystem. Now wouldn't it be ni
e if we 
ould also useany �le the kernel 
an read as kernel or initrd ?File system unaware boot loaders rea
h their lim-its when �les are no longer stored in sequen
es ofdata se
tors on the disk, e.g. in the 
ase of softwareRAID, there may be multiple instan
es of the samedata blo
k, and a RAID5 array in re
onstru
tionmode needs to perform 
al
ulations over multipledata blo
ks in order to obtain the 
ontent of a blo
kon a defe
tive volume. Worse yet, the �les may noteven be on a lo
al disk, but maybe on an NFS orHTTP server.In prin
iple, any boot loader 
an of 
ourse a

essany resour
es the kernel 
an a

ess too. The onlyproblem is that all the ne
essary fun
tionality needsto be rebuilt in the boot loader. And on
e half a

dozen �le systems, RAID, a TCP/IP sta
k, NFS,SMB, DHCP, HTTP, et
. are added to a bootloader, it probably looks like a 
omplete operatingsystem : : :5.1 The ultimate boot loader: : : whi
h brings us right to a very 
onvenient so-lution: there is already a program that 
an a

esseverything the kernel 
an a

ess { it's the kernel it-self. And all the other tools that might be needed(e.g. DHCP and su
h) are 
onveniently availabletoo.The only missing element is a means to boot a Linuxkernel from within Linux. The 
on
ept is basi
allythe same as for boot loaders running under someother host operating system. However, some re-quirements are slightly higher, be
ause it is desir-able to have a solution that 
an be easily adapted forall platform supported by Linux, and also the rangeof possible system 
on�gurations is wider than formost other su
h boot loaders, e.g. it seems quiteunlikely that LOADLIN is ever used on multipro-
essor systems. On the other hand, the work 
an besimpli�ed by making small 
hanges to the kernel.Another requirement is to pass on data obtainedfrom the �rmware from kernel to kernel. E.g. oni386, video mode, memory layout, SMP 
on�gura-tion, et
. are retrieved either dire
tly from the BIOSor from memory areas initialized by the BIOS. Sin
ethese memory areas may be overwritten by the ker-nel in normal operation, they either need to be pro-te
ted if booting kernels from Linux is desired, orthe information 
ontained in them needs to be ex-tra
ted and passed on to the next kernel.Finally, some operations done during initialization,e.g. SCSI or IDE bus s
ans, may take a signi�
antamount of time. It would be desirable to pass thisinformation from kernel to kernel in order to speedup the boot pro
ess.There are 
urrently at least three di�erent imple-mentations that allow booting a Linux kernel fromLinux: bootimg, LOBOS, and Two Kernel Monte.The last two are des
ribed in [15℄ and [16℄, respe
-tively. Bootimg is des
ribed in se
tion 5.3 of thispaper.



5.2 What a waste ?The 
on
ept of using a fully featured Unix kernelas a boot loader may look like the perfe
t wasteof resour
es. In the se
tion, we will 
onsider theimpli
ations on time, memory, and disk spa
e.Note that these 
al
ulations may not apply to spe-
ial environments like embedded systems or smallbattery-powered devi
es, whi
h may have very lit-tle memory or use a slow CPU. Fortunately, the
exibility o�ered by the ability of booting a kernelfrom Linux is hardly ne
essary in those 
ases, so anoptimized spe
i�
 solution 
an be 
hosen.First time: loading a kernel and an initrd takes time.Sin
e the kernel is probably 
ompressed, some moretime is spent for un
ompressing. If we assume thatany expensive bus s
ans are not repeated, and thatthe hardware is not overly slow or obsolete, we ob-tain:1-2 se
 Loading 1-2 MB (kernel and initrd)1-2 se
 Un
ompressing kernel and initrd1 se
 Other overhead3-5 se
Considering that a normal reboot typi
ally takes 20-60 se
onds, this is a reasonably small in
rease. Also,reboots for 
on�guration 
hanges or kernel updatesare mu
h faster now, be
ause the old kernel 
andire
tly load the new one, without going throughBIOS or boot loader.The peak memory utilization o

urs when the kernela
ting as boot loader has loaded the next kernelalong with its 
ompressed initrd. Assuming fairlylarge kernels and initrds, we obtain:1-2 MB Boot kernel (running)2-4 MB Kernel data1-2 MB initrd (mounted)0.5-2 MB Compressed kernel0.5-2 MB Compressed initrd5-12 MBSin
e 5 MB is probably the minimum amount ofmemory required for any usable Linux system, thesememory requirements 
an only be
ome a signi�
antproblem if using very large kernels or feature-ladeninitrds, whi
h are of little use on systems with tightmemory 
onstraints.

Finally, the disk spa
e requirements:1 MB Compressed boot kernel1 MB Compressed initrd2 MBThis is hardly noti
eable. Developers who fre-quently 
hange their boot kernel may wish to keepan additional kernel build tree for this purpose. Thistakes about 100-120 MB.5.3 Case study: bootimg on i386This se
tion gives a rough overview of how bootimg[17℄ 
urrently loads a Linux kernel. Note that this isstill work in progress, and major 
hanges are quiteprobable. Bootimg 
onsists of two parts: a userspa
e program that loads the ne
essary �les andprepares a load map, and kernel 
ode that movesthe memory pages to the right lo
ations and startsthe new kernel.
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Figure 14: Bootimg: set up from user spa
e.As shown in �gure 14, the user spa
e program �rstloads the kernel image and, optionally, an initrd �leinto its address spa
e (1). It registers the addressesof these memory pages in an array of pointers (2).Note that the data does not ne
essarily have to 
omefrom a disk, but it may as well be loaded over the



network, or bootimg 
ould even generate it on the
y, e.g. from obje
t modules. Next, bootimg 
opiesthe parameter blo
k from the running kernel (3) andadds the new boot 
ommand line and the initrd pa-rameters (4). By 
opying the 
urrent parameterblo
k, all other values set by the BIOS, e.g. thememory 
on�guration, are preserved. Along withthe pointer array to the sour
e data, bootimg alsomaintains a se
ond array (5) that 
ontains the tar-get addresses in physi
al memory for all pages. On
eall this is done, bootimg sets up a des
riptor 
on-taining pointers to the two arrays and some addi-tional information (6), and invokes the bootimg sys-tem 
all (7).As shown in �gure 15, the bootimg system 
all �rst
opies the sour
e pages to kernel memory (1). Thisis done mainly in order to 
he
k a

ess permissionsand to ensure proper alignment of the pages, but italso makes it easier to implement the 
rash dumputility des
ribed in the next se
tion. When 
opy-ing, bootimg also updates the sour
e pointers (2)to point to the new pages in kernel memory.8 Sin
ethe pages have been allo
ated at arbitrary lo
a-tions, they must be moved to the right pla
e beforethe kernel 
an be started. This is done by a lit-tle position-independent fun
tion that is 
opied toits own memory page (3). This fun
tion moves allpages to the lo
ation indi
ated in the target addressarray (4). If a target address happens to 
oin
idewith a page that is still needed, the fun
tion 
opiesthe 
ontent of the target page �rst to a free page.Note that this may also in
lude the page 
ontain-ing the fun
tion itself. On
e all pages have rea
hedtheir destination, the startup 
ode of the new kernelis 
alled (6).Two likely future 
hanges are the addition of sup-port for referen
es to physi
al pages in the sour
epointer array in order to support 
opying of datathat may 
hange after the 
all to bootimg (i.e. thekernel message bu�er), and a split of the bootimguser-spa
e program into a set of library fun
tionsand a simple utility 
alling them, in order to makeit easier to use bootimg in other programs.8It a
tually does this in two steps: �rst, it uses addressesin the kernel address spa
e. Then, immediately before re-ordering the memory pages, it 
hanges them to addresses inphysi
al memory. This way, the addresses are still availableif any operation fails before the reordering, and the pages 
anbe freed before the system 
all returns. This would be morediÆ
ult if the addresses were already translated to physi
almemory addresses, be
ause the latter 
an not generally be
onverted ba
k to kernel address spa
e.
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Figure 15: Bootimg: memory reordering in the ker-nel.5.4 Other interesting appli
ationsBesides just booting Linux kernels from odd sour
es,two other possible appli
ations for su
h a me
ha-nism have been proposed re
ently.LinuxBIOS [2℄ takes the redu
tion of boot loaderfun
tionality to the logi
al extreme and simply putsa Linux kernel in the Flash EPROM that normallyholds the PC BIOS. This kernel 
an then a
t as avery feature-ri
h boot loader.Another interesting use is the 
reation of 
rashdumps. Many traditional Unix systems 
an writethe memory 
ontent to disk when a kernel pani
o

urs. A 
rash dump 
an later be analyzed to de-termine what has 
aused it. Sin
e a kernel pani
should only o

ur in 
ases where the kernel has de-te
ted a serious defe
t, it is not safe to assume thatthe normal drivers 
an be used for writing that 
rashdump. Even if the drivers still work, using themmay 
hange the system state su
h that the problemleading to the kernel pani
 
an no longer be dis
ov-ered.It is therefore desirable to use an subsystem that isindependent from the regular kernel for this task.



With a me
hanism like bootimg, this is quite sim-ple: a small kernel for taking the 
rash dump ispre-loaded along with a suitable initial RAM disk,and when a pani
 o

urs, the pre-loaded pages are
he
ksummed (they may have been damaged as aresult of the problem leading to the kernel pani
),and the kernel is laun
hed. It 
an then set up a new
lean environment and write the dump.An implementation of su
h a 
rash dumper, basedon bootimg, 
an be found at [18℄.6 A
knowledgementsMany people have 
ontributed to LILO over theyears by reporting bugs and suggesting improve-ments. Development has stalled in the last years,but John Co�man is now 
arrying on the tor
h withfresh energy.The ar
hite
tures for the initial RAM disk and forbzImage are a joint work with Hans Lermen.The design of pivot_root was strongly in
uen
edby dis
ussions in the linux-kernel mailing list. Inparti
ular, 
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urrently re-�ning the 
on
ept.The basi
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omes from an imple-mentation for SVR4 written by Markus Wild in theearly nineties. The memory reordering algorithmof bootimg was strongly inspired by FiPaBoL, de-signed mainly by Otfried Cheong and Roger Gam-mans, and implemented by the latter.7 Con
lusionTable 1 shows the evolution of boot 
on
epts in thehistory of Linux. Items still under development areshown in itali
s. Also, boot loaders for other ar
hi-te
tures than i386 have been omitted.The �rst boot loaders plainly got the kernel loaded,without mu
h 
onvenien
e beyond this. The se
ondgeneration of boot loaders over
ame the �le systemtype 
onstraints and added many useful features,

su
h as the boot 
ommand line or the ability to bootother operating systems. Almost all boot loaders inuse today are of the se
ond generation.The ability to use arbitrary �le systems as the root�le system evolved slowly sin
e the beginning ofLinux. Sin
e the introdu
tion of pivot_root, a
ompletely generi
 solution is available.Finally, the ability to load kernels from other sour
esthan 
oppy or hard disks is 
omparably re
ent.Sin
e the three 
urrent approa
hes to boot Linuxfrom Linux are already quite generi
, 
onvergen
ewill probably be rea
hed soon.As has been shown, the apparently simple a
t ofbooting a Linux system is full of interesting prob-lems. Modern Linux systems o�er a ri
h set of fea-tures to handle those problems, and even more ex-
iting improvements 
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The humble beginnings1991 Linux boots stand-alone from 
oppy.Shoela
e is used to boot from Minix �le system on hard disk.Beyond Minix1992 LILO allows booting from (almost) arbitrary �le systems and of other operating systems.BOOTLIN allows booting from DOS.1994 LOADLIN repla
es BOOTLIN.SYSLINUX reads FAT (MS-DOS) 
oppies.1995 GRUB, a modern �le system aware boot loader.Root �le system abstra
tion1991 Root �le system devi
e 
an be set in kernel image.1995 NFS root mounts root �le system from NFS server.1996 Initial RAM disk support added to kernel.
hange_root me
hanism.2000 pivot_root me
hanism.Union root mount.Early freeing of initrd memory pages.Kernel image abstra
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