Demystifying the

Kernel Bootstrap
Process

Claudia Salzberg
IBM Linux Technology Center

Overview

m Highlight the multiple levels of the
bootstrap process.

m Explain the purpose of each of these
levels.

m |llustrate how these levels interleave and
Interrelate

" J
Booting Process Overview

y
y
y
y

BIOS
Hardware init

Boot Loader Kernel Init System Init

Power On

* BIOS

Hardware initialization upon PC power-up. This involves a basic
memory check, the initialization of key devices, and the
determination of bootable devices.

» Boot Loader

|dentifies bootable images, places the selected image into memory
and jumps to its point of entry for execution.

e Kernel Initialization

Linux kernel takes control of system. It initializes its subsystems,
probes and initializes for particular devices. Jumps to init process

» System Initialization

Hardware Power On

m Main memory is empty.

m CPU begins execution by accessing a pre-defined address in ROM
iIntended for the initial boot process (0xO00F:FFFO).

m BIOS ROM (firmware) is loaded to main memory

m BIOS performs basic tests on the hardware

Initializes the keyboard, video card, system board, memory, and
identifies additional I/O devices.

Examines first sector of bootable disk for the MBR

Copies first 512 bytes from boot device (boot sector) to 0x7c00 (tests for
valid signature)

m MBR determines active boot partition and jumps to it

m Boot Loader is located in active boot partition (can also be
elsewhere)

y
y

Kernel Init

System Init

"

Partition Table

Boot Loading Code

A Closer Look at the MBR

« MBR is 512-byte boot sector in PC architecture

+Oxlfe « Located in first sector of hard drive (/dev/hda)
. Contains
1. Master Boot Code/boot loader code (446
bytes)
2. Drive’s Partition Table (4 16-byte entries)
+Oxlbe 3. MBR signature (2 bytes)

Partition Table Entry (16 bytes)

A
I T T Partition Length
Offset
Ending Cylinder/Head/Sector of Boot Partition
Partition Type
Starting Cylinder/Head/Sector of Boot Partition

Active Boot Partition Flag

+0x000

"
View of Memory over Time

0x100000 Current Addressing Mode:
Real Mode

0x90020

0x90000

0x10000

0x7c00

0x1000
0x0000

Jump to Boot Loader: LILO

BIOS I Kernel Init
Hardware init

m \What is a Boot Loader?

A limited functionality program dedicated to spanning the gap between
firmware routines and the full fledged operating system.

LILO is one of the earliest boot-loading programs
Located in MBR (or root partition)
Makes use of BIOS functions (Interrupt calls) to load sectors
Basic Steps:
Load operating system into memory
Load ramdisk (optional)

Pass kernel arguments to kernel
Transfer execution to kernel

y
y

Power On System Init

Jump to Boot Loader: LILO

Power On BIOS I Kernel Init
Hardware init

m Load Kernel into Memory

Copies kernel image referenced in /etc/lilo.conf from hard drive using
BIOS services

Loads kernel image to 0x90000 (using firmware functions):
m 0x900000 (bootsect sector)
m 0x900200 (setup sector)
m 0x1000000 (compressed image)
Jumps to label start_of setup @ 0x90200
m Alternative to bootloader — using bootsect.S

y

y

System Init

" J
Kernel Image Topology

m Building the kernel Image:
User input of make zlmage or make bzimage
All C and assembly source files are compiled and linked into vmlinux
nm vmlinux => System.map
arch/i386/boot

Type of Kernel Image IMAGE_OFFSET Preprocessor Flags

bzlmage 0x100000 -D__ BIG_KERNEL_

zlmage 0x1000

bootsect.S is assembled into bootsect.s and converted into raw binary form
setup.S is assembled into setup.s and converted into raw binary form
arch/i386/boot/compressed

= Remove .note and .comment ELF sections from vmlinux

m Gzip vmlinux
m Compile compression routines in head.S and misc.c and link into vmlinux.out

arch/boot/tools/build [-b] bootsect setup system [rootdev] [> image]
m Concatenates bootsect, setup, and compressed/vmlinux.out into zimage

"
View of Memory over Time

Bootsect.S

T mnraceon Ya r=¥
| uncompressed Lode]

0x100000

0x90020
0x90000

0x10000 (64K)

0x7c00

0x1000 (4K)
0x0000

Current Addressing Mode:
Real Mode

v

0x0009:0020

0x0009:0000

0x0001:0000 (64K)

0x0000:7c00

0x0000:1000

.S Execution

Jump to 0x0009:0020

Get system data from BIOS and
generate memory map

Initialize hardware

Move compressed kernel

Set up provisional IDT and GDT
Change from real to protected mode

Jump to head.S startup_32()

Kernel Initialization

Power On > BIOS » Boot Loader
Hardware init

.

System Init

m The jump to startup_ 32 (head.S)

Initialize page tables

m The jJump to start_kernel() (init/main.c)
Initialize all the kernel subsystems

Execute Init()

Head.S execution - startup 32()

Initialize page tables, enable paging

0x0010:0000 (1 MB) Set-up stack (zero out BSS)

Call decompress_kernel()

0x0009:0020) _
0x0009:0000 Uncompressing Linux..

Ck, booting the kernel.

0x0001:0000 (64K) Jump to start_kernel()

0x0000:7c00

MeadSimiso e (x0000:1000 (4K)
0x0000:0000

High level initialization: start_kernel() to init()

CONFIG_SMP=y CONFIG _HIGHMEM=

CONFIG_SMP=y

‘ lock_kernel() page_address_init()

printk(linux_banner) H setup_arch() |_>;etup_per_cpu_areas)

ONFIG_HOTPLUG_CPU=!

page_alloc_init() -smp_prepare_boot_cpu()

CONFIG_SMP=y
A 4

parse_args() < printk() <
trap_init() > rcu_init() » Init_ IRQ() » pid_hash_init()

console_init() - soft_irg_init()

pgtable_cache_init() buffer_init()

A 4

A4

rest_init() init_idle()

A

signals_init()

A

Security_scaffolding |

vfs_caches_init()
- - startup()

A

setup_arch(&command_line)

m Takes in a pointer to Linux command-line data entered
at boot time

Initializes architecture-specific subsystems
Grabs data from boot time structures
|dentifies the processor

Grabs and performs early parsing of boot time
parameters

m Calls paging_init()

High level initialization: start_kernel() to init()

CONFIG_SMP=y CONFIG_HIGHMEM=y

lock_kernel() printk(linux_banner) 4.| setup_arch() etup_per_cpu_areas

Paging is finalized

ONFIG_HOTPLUG_CPU=!

parse_args() < printk() <«— Ppage_alloc_init() build_all_zonelists() mp_prepare_boot_cu()
l Kernel command line..
trap_init() > rcu_init() » |nit IRQ() > pid_hash_init()

local_irq_enable() console_init() soft_irq_init()

Interrupts arg enabled

pgtable_cache_init() buffer_init()

A 4

Numphyspages determined Initializes the slab allocator

Release of bootmem

A4

Security_scaffolding |
startup()

rest_init() init_idle() signals_init() vfs_caches_init()

A
A
A

build all zonelists()

m Splits up memory into the three zones:
ZONE_DMA
ZONE_NORMAL
ZONE_HIGHMEM

m zones: linear separations of physical memory that are
used to address hardware limitations

"
High level initialization: start_kernel() to init()

CONFIG_SMP=y CONFIG_HIGHMEM=y CONFIG_SMP=y

lock_kernel() - printk(linux_banner) setup_per_cpu_areas()

Paging is finalized

CONFIG_SMP=y
A 4

‘ parse_args() H printk() page_alloc_init() build_all_zonelists() |<—5mp_prepare_boot_cp u()

l Kernel command line.. Memory zones are created
trap_init() rcu_init() Init_IRQ() pid_hash_init() H sched_init() ‘
Traps Initialized Interrupts Initialized
v

local_irq_enable() - console_init() < time_init() < soft_irg_init()

rest_init()

pgtable_cache_init() buffer_init()

\ 4
A 4

A 4

Security_scaffolding |
startup()

init_idle() signals_init() vfs_caches_init()

A
A
A

"
sched_Init()

m Routine to initialize scheduler

m Each CPU’s runqueue is initialized (active queue, expired queue,
and spinlock)

rq >

lock =1

prio_array_t *active

| prio_array_t *expired

prio_array_t arrays

»

best_expired_prio = MAX_PRIO

" S
softirg_init()

m Prepares the CPU to accept notification from tasklets

m Kernel response time upon interrupts are kept small by splitting the
Interrupt-generated task into tasklets that can be queued and
handled at a different time.

m Event:

Interrupt is generated by some device
The interrupt handler schedules a tasklet (softirg) and exits
Eventually, tasklet is executed.

" A
High level initialization: start_kernel() to init()

CONFIG_SMP=y CONFIG_HIGHMEM=y

CONFIG_SMP=y

lock_kernel() printk(linux_banner)

setup_per_cpu_areas()

Paging is finalized

CONFIG_SMP=y
ONFIG_HOTPLUG_CPU= v
parse_args() < printk() < page_alloc_init() smp_prepare_boot_cfu()
l Kernel command line.. Memory zones are created
trap_init() > rcu_init() » |nit IRQ() > pid_hash_init() 4>| sched_init() ‘

Traps Initialized

Interrupts Initialized Scheduler|created

local_irq_enable() profile_init() ‘l \ console_init() ‘I \ time_init() soft_irg_init()

Interrupts arj enabled

Tasklets enabled

mem_init() kmem_cache_init() Calibrate_delay() |_> pgtable_cache_init)l—p| buffer_init()
Numphyspages determined Initializes the slab allocator BogoMips!
Release of bootmem v
rest_init() init_idle() signals_init() «| Vs_caches_init() || Security_scaffolding |
- startup()

"
rest_init()

static void noinline rest_init(void)

{
kernel _thread(init, NULL, CLONE FS | CLONE SGHAND);
unlock_kernel();
cpu_idle();

}

» Creates the init thread
» Removes the kernel lock

» Calls the idle thread

High level initialization: start_kernel() to init()

CONFIG_SMP=y CONFIG_HIGHMEM=y

lock_kernel()

printk(linux_banner)

ONFIG_HOTPLUG_CPU=!

A

parse_args() printk()

A

page_alloc_init()

Kernel command line..

l

Paging is finalized

Memory zones are created

trap_init()

\ 4

rcu_init()

Init_IRQ()

A

A 4

pid_hash_init()

Traps Initialized

local_irq_enable()

Interrupts arg enabled

Numphyspages determined Initializes the slab allocator

Release of bootmem

Interrupts Initialized

console_init()

BogoMips!

CONFIG_SMP=y

setup_per_cpu_areas

CONFIG_SMP=y
A\ 4

smp_prepare_boot_c

Scheduler|created

soft_irg_init()

Tasklets enabled

pgtable_cache_init()

A 4

buffer_init()

A4

rest_init() init_idle()

signals_init()

A

vfs_caches_init()

A

startup()

Security_scaffolding |

u()

" J

The End of Kernel Initialization:

INit()

m Set to reap any thread whose parent has died

m Initializes
Driver model and subsystems involved in driver support
Sysctl interface
Network socket interface
Work queue support
Prepares the namespace for the filesystem hierarchy
Mounts /dev, nfs root mount, root device mounting

Calls free_initmem() to clear memory segments with __init.
run_init_process("/ sbin/init");

| essons Learned

m The boot process has multiple steps each
of which is dependent on its predecessor

m Many structures and functions are created
that are only temporary

"

=1
Prentice Hall Open Source Software Development Series *:,?N;ﬂ

The

GORDON z:zscr-téé
STEVEN SMOLSKI

	Demystifying the Kernel Bootstrap Process
	Overview
	Booting Process Overview
	Hardware Power On
	A Closer Look at the MBR
	View of Memory over Time
	Jump to Boot Loader: LILO
	Jump to Boot Loader: LILO
	Kernel Image Topology
	View of Memory over Time
	Setup.S Execution
	Kernel Initialization
	Head.S execution - startup_32()
	High level initialization: start_kernel() to init()
	setup_arch(&command_line)
	High level initialization: start_kernel() to init()
	build_all_zonelists()
	High level initialization: start_kernel() to init()
	sched_init()
	softirq_init()
	High level initialization: start_kernel() to init()
	rest_init()
	High level initialization: start_kernel() to init()
	The End of Kernel Initialization:init()
	Lessons Learned

