
Demystifying the
Kernel Bootstrap
Process
Claudia Salzberg
IBM Linux Technology Center

Overview

Highlight the multiple levels of the
bootstrap process.
Explain the purpose of each of these
levels.
Illustrate how these levels interleave and
interrelate

Booting Process Overview
Power On BIOS Boot Loader Kernel Init System Init

Hardware init

• BIOS

Hardware initialization upon PC power-up. This involves a basic
memory check, the initialization of key devices, and the
determination of bootable devices.

• Boot Loader

Identifies bootable images, places the selected image into memory
and jumps to its point of entry for execution.

• Kernel Initialization

Linux kernel takes control of system. It initializes its subsystems,
probes and initializes for particular devices. Jumps to init process

• System Initialization

Hardware Power On
Power On Boot Loader Kernel Init System InitBIOS

Hardware Init

Main memory is empty.
CPU begins execution by accessing a pre-defined address in ROM
intended for the initial boot process (0x000F:FFF0).
BIOS ROM (firmware) is loaded to main memory
BIOS performs basic tests on the hardware

Initializes the keyboard, video card, system board, memory, and
identifies additional I/O devices.
Examines first sector of bootable disk for the MBR
Copies first 512 bytes from boot device (boot sector) to 0x7c00 (tests for
valid signature)

MBR determines active boot partition and jumps to it
Boot Loader is located in active boot partition (can also be
elsewhere)

A Closer Look at the MBR
• MBR is 512-byte boot sector in PC architecture

• Located in first sector of hard drive (/dev/hda)

• Contains

1. Master Boot Code/boot loader code (446
bytes)

2. Drive’s Partition Table (4 16-byte entries)

3. MBR signature (2 bytes)+0x1be

+0x1fe
0xAA55

Pa
rti

tio
n

Ta
bl

e
Bo

ot
 L

oa
di

ng
 C

od
e

+0x000

Partition Table Entry (16 bytes)

Active Boot Partition Flag
Starting Cylinder/Head/Sector of Boot Partition

Partition Type
Ending Cylinder/Head/Sector of Boot Partition

Offset
Partition Length

View of Memory over Time

Current Addressing Mode:

Real Mode

Protected Mode

0x100000

0x90020

MBR

0x90000

0x10000

0x7c00

BIOS

0x0000
0x1000

Jump to Boot Loader: LILO
Boot LoaderPower On BIOS Kernel Init System Init

Hardware init

What is a Boot Loader?
A limited functionality program dedicated to spanning the gap between
firmware routines and the full fledged operating system.

LILO is one of the earliest boot-loading programs
Located in MBR (or root partition)
Makes use of BIOS functions (Interrupt calls) to load sectors
Basic Steps:

Load operating system into memory
Load ramdisk (optional)
Pass kernel arguments to kernel
Transfer execution to kernel

Jump to Boot Loader: LILO
Boot LoaderPower On BIOS Kernel Init System Init

Hardware init

Load Kernel into Memory
Copies kernel image referenced in /etc/lilo.conf from hard drive using
BIOS services
Loads kernel image to 0x90000 (using firmware functions):

0x900000 (bootsect sector)
0x900200 (setup sector)
0x1000000 (compressed image)

Jumps to label start_of_setup @ 0x90200
Alternative to bootloader – using bootsect.S

Kernel Image Topology
Building the kernel Image:

User input of make zImage or make bzImage
All C and assembly source files are compiled and linked into vmlinux
nm vmlinux => System.map
arch/i386/boot

bootsect.S is assembled into bootsect.s and converted into raw binary form
setup.S is assembled into setup.s and converted into raw binary form
arch/i386/boot/compressed

Remove .note and .comment ELF sections from vmlinux
Gzip vmlinux
Compile compression routines in head.S and misc.c and link into vmlinux.out

arch/boot/tools/build [-b] bootsect setup system [rootdev] [> image]
Concatenates bootsect, setup, and compressed/vmlinux.out into zImage

Type of Kernel Image IMAGE_OFFSET Preprocessor Flags

bzImage 0x100000 -D__BIG_KERNEL__

zImage 0x1000

View of Memory over Time

Current Addressing Mode:

Real Mode

Protected Mode

0x100000

0x0000
0x1000 (4K)

0x7c00

0x10000 (64K)

0x90000

BIOS

MBR

Bootsect.S

Setup.S

Compressed Code

Uncompressed Code

0x90020

MBR

Setup.S

0x0009:0020

0x0001:0000 (64K)

0x0000:7c00

0x0009:0000
Bootsect.S

Compressed Code

Head.S, misc.c

Setup.S Execution

Jump to 0x0009:0020

Get system data from BIOS and
generate memory map

Initialize hardware

Move compressed kernel

Set up provisional IDT and GDT

Change from real to protected mode

Jump to head.S startup_32()

0x0000:1000

Kernel Initialization
Kernel InitPower On BIOS System InitBoot Loader

Hardware init

The jump to startup_32 (head.S)
Initialize page tables

The jump to start_kernel() (init/main.c)
Initialize all the kernel subsystems
Execute Init()

Head.S execution - startup_32()

0x0000:0000
0x0000:1000 (4K)

0x0000:7c00

0x0001:0000 (64K)

0x0009:0000
0x0009:0020

0x0010:0000 (1 MB)

Setup.S

Compressed Code

Head.S, misc.c

Initialize page tables, enable paging

Set-up stack (zero out BSS)

Call decompress_kernel()

Uncompressed

kernel

Uncompressing Linux…

Ok, booting the kernel.

Jump to start_kernel()

High level initialization: start_kernel() to init()

setup_per_cpu_areas()

CONFIG_HIGHMEM=yCONFIG_SMP=y CONFIG_SMP=y

smp_prepare_boot_cpu()

CONFIG_SMP=y

build_all_zonelists()page_alloc_init()

CONFIG_HOTPLUG_CPU=y

printk()parse_args()

trap_init() rcu_init() Init_IRQ() pid_hash_init() sched_init()

soft_irq_init()time_init()console_init()profile_init()local_irq_enable()

mem_init() kmem_cache_init() Calibrate_delay() pgtable_cache_init()

Security_scaffolding_
startup()

buffer_init()

vfs_caches_init()signals_init()init_idle()rest_init()

page_address_init() printk(linux_banner) setup_arch()lock_kernel()

setup_arch(&command_line)
Takes in a pointer to Linux command-line data entered
at boot time
Initializes architecture-specific subsystems
Grabs data from boot time structures
Identifies the processor
Grabs and performs early parsing of boot time
parameters
Calls paging_init()

High level initialization: start_kernel() to init()

lock_kernel()

CONFIG_HIGHMEM=yCONFIG_SMP=y CONFIG_SMP=y

CONFIG_SMP=y
Paging is finalized

page_alloc_init()

CONFIG_HOTPLUG_CPU=y

printk()

Kernel command line…

parse_args()

trap_init() rcu_init() Init_IRQ() pid_hash_init() sched_init()

soft_irq_init()time_init()console_init()profile_init()local_irq_enable()

mem_init() kmem_cache_init() Calibrate_delay() pgtable_cache_init()

Security_scaffolding_
startup()

buffer_init()

vfs_caches_init()signals_init()init_idle()rest_init()

Interrupts are enabled

Initializes the slab allocatorNumphyspages determined

Release of bootmem

page_address_init() printk(linux_banner) setup_arch() setup_per_cpu_areas()

smp_prepare_boot_cpu()build_all_zonelists()

build_all_zonelists()
Splits up memory into the three zones:

ZONE_DMA
ZONE_NORMAL
ZONE_HIGHMEM

zones: linear separations of physical memory that are
used to address hardware limitations

High level initialization: start_kernel() to init()

lock_kernel()

CONFIG_HIGHMEM=yCONFIG_SMP=y CONFIG_SMP=y

CONFIG_SMP=y
Paging is finalized

CONFIG_HOTPLUG_CPU=y

Kernel command line…

soft_irq_init()time_init()console_init()profile_init()local_irq_enable()

mem_init() kmem_cache_init() Calibrate_delay() pgtable_cache_init()

Security_scaffolding_
startup()

buffer_init()

vfs_caches_init()signals_init()init_idle()rest_init()

page_address_init() printk(linux_banner) setup_arch() setup_per_cpu_areas()

smp_prepare_boot_cpu()build_all_zonelists()page_alloc_init()printk()parse_args()

Memory zones are created

trap_init() rcu_init() Init_IRQ() pid_hash_init() sched_init()

Traps Initialized Interrupts Initialized

sched_init()
Routine to initialize scheduler
Each CPU’s runqueue is initialized (active queue, expired queue,
and spinlock)

rq
lock

prio_array_t *active

prio_array_t *expired

prio_array_t arrays

best_expired_prio = MAX_PRIO

= 1

softirq_init()
Prepares the CPU to accept notification from tasklets
Kernel response time upon interrupts are kept small by splitting the
interrupt-generated task into tasklets that can be queued and
handled at a different time.
Event:

Interrupt is generated by some device
The interrupt handler schedules a tasklet (softirq) and exits
Eventually, tasklet is executed.

High level initialization: start_kernel() to init()

lock_kernel()

CONFIG_HIGHMEM=yCONFIG_SMP=y CONFIG_SMP=y

CONFIG_SMP=y
Paging is finalized

CONFIG_HOTPLUG_CPU=y

Kernel command line…

pgtable_cache_init()

Security_scaffolding_
startup()

buffer_init()

vfs_caches_init()signals_init()rest_init()

Interrupts are enabled

Initializes the slab allocatorNumphyspages determined

Release of bootmem

page_address_init() printk(linux_banner) setup_arch() setup_per_cpu_areas()

smp_prepare_boot_cpu()build_all_zonelists()page_alloc_init()printk()parse_args()

trap_init() rcu_init() Init_IRQ() pid_hash_init()

Memory zones are created

sched_init()

Scheduler createdTraps Initialized Interrupts Initialized

soft_irq_init()

Tasklets enabled

time_init()console_init()profile_init()local_irq_enable()

mem_init() kmem_cache_init() Calibrate_delay()

BogoMips!

init_idle()

rest_init()
static void noinline rest_init(void)
{

kernel_thread(init, NULL, CLONE_FS | CLONE_SIGHAND);
unlock_kernel();
cpu_idle();

}

• Creates the init thread

• Removes the kernel lock

• Calls the idle thread

High level initialization: start_kernel() to init()

lock_kernel()

CONFIG_HIGHMEM=yCONFIG_SMP=y CONFIG_SMP=y

CONFIG_SMP=y
Paging is finalized

CONFIG_HOTPLUG_CPU=y

Kernel command line…

pgtable_cache_init()

Security_scaffolding_
startup()

buffer_init()

vfs_caches_init()signals_init()

Interrupts are enabled

Initializes the slab allocatorNumphyspages determined

Release of bootmem

page_address_init() printk(linux_banner) setup_arch() setup_per_cpu_areas()

smp_prepare_boot_cpu()build_all_zonelists()page_alloc_init()printk()parse_args()

trap_init() rcu_init() Init_IRQ() pid_hash_init() sched_init()

Scheduler created

soft_irq_init()

Tasklets enabled

time_init()console_init()profile_init()local_irq_enable()

mem_init() kmem_cache_init() Calibrate_delay()

Memory zones are created

Traps Initialized Interrupts Initialized

BogoMips!

init_idle()rest_init()

The End of Kernel Initialization:
init()

Set to reap any thread whose parent has died
Initializes

Driver model and subsystems involved in driver support
Sysctl interface
Network socket interface
Work queue support
Prepares the namespace for the filesystem hierarchy
Mounts /dev, nfs root mount, root device mounting
Calls free_initmem() to clear memory segments with __init.
run_init_process("/ sbin /init");

Lessons Learned

The boot process has multiple steps each
of which is dependent on its predecessor
Many structures and functions are created
that are only temporary

	Demystifying the Kernel Bootstrap Process
	Overview
	Booting Process Overview
	Hardware Power On
	A Closer Look at the MBR
	View of Memory over Time
	Jump to Boot Loader: LILO
	Jump to Boot Loader: LILO
	Kernel Image Topology
	View of Memory over Time
	Setup.S Execution
	Kernel Initialization
	Head.S execution - startup_32()
	High level initialization: start_kernel() to init()
	setup_arch(&command_line)
	High level initialization: start_kernel() to init()
	build_all_zonelists()
	High level initialization: start_kernel() to init()
	sched_init()
	softirq_init()
	High level initialization: start_kernel() to init()
	rest_init()
	High level initialization: start_kernel() to init()
	The End of Kernel Initialization:init()
	Lessons Learned

