
Version 1.1, January 1, 2007 © Charles Petzold, 2006-2007

.NET Book Zero

What the C or C++ Programmer Needs to
Know about C# and the .NET Framework

by

Charles Petzold

www.charlespetzold.com

http://www.charlespetzold.com/

.NET Book Zero Charles Petzold

Version 1.1 Page 1

Table of Contents

Chapter 1. Why This Book? .. 2

Chapter 2. Why .NET? .. 5

Chapter 3. Runtimes and SDKs .. 7

Chapter 4. Edit, Compile, Run, Disassemble 11

Chapter 5. Strings and the Console .. 22

Chapter 6. Primitive Data Types ... 51

Chapter 7. Operators and Expressions ... 68

Chapter 8. Selection and Iteration .. 75

Chapter 9. The Stack and the Heap .. 83

Chapter 10. Arrays ... 88

Chapter 11. Methods and Fields ... 95

Chapter 12. Exception Handling ..108

Chapter 13. Classes, Structures, and Objects117

Chapter 14. Instance Methods ...126

Chapter 15. Constructors ..135

Chapter 16. Concepts of Equality ..144

Chapter 17. Fields and Properties..153

Chapter 18. Inheritance ..166

Chapter 19. Virtuality ...175

Chapter 20. Operator Overloading ...191

Chapter 21. Interfaces ...202

Chapter 22. Interoperability ..206

Chapter 23. Dates and Times ..210

Chapter 24. Events and Delegates ...221

Chapter 25. Files and Streams ..226

Chapter 26. String Theory ...250

Chapter 27. Generics ..253

Chapter 28. Nullable Types ...259

.NET Book Zero Charles Petzold

Version 1.1 Page 2

Chapter 1. Why This Book?

Some books have a Chapter Zero. That‘s the chapter with the stuff the

reader needs to know before reading Chapter One. Chapter Zero might be
a refresher course in subjects the reader once knew but has now forgot-
ten, or it might be a quick-and-dirty summary of prerequisites for the

rest of the book.

This book originated as a Chapter Zero in my book Applications = Code +
Markup: A Guide to the Microsoft Windows Presentation Foundation
(Microsoft Press, 2006), which is about the new Windows client program-
ming platform that‘s part of Microsoft .NET 3.0 and Microsoft Windows

Vista.

I wanted Applications = Code + Markup to focus almost exclusively on the

Windows Presentation Foundation. I knew there was enough to cover
without going into the basics of general .NET programming and C#. Yet, I
wasn‘t sure how much .NET my readers would know. I started writing a

Chapter Zero for the book that would summarize all the basics of .NET
and C# for the C and C++ programmers who might be coming to .NET for
the very first time.

It soon became evident that this Chapter Zero would be very long. It
occurred to me that I could extract the material and make it a book on

its own. And so I did and this is it. What you have in your hands (or are
reading on a screen) is an introduction to C# and those topics in .NET
that are typically found in all .NET programming.

C# is a modern type-safe and object-oriented programming language
based on the syntax of C and (to a certain extent) C++ and Java. Even if

you‘re an experienced C++ programmer, you might be in for a few sur-
prises. You may think you know the difference between a class and a
struct, for example, but the difference between a class and a struct in C#

is completely different from C++. (That difference is actually one of the
lamest features of C++ and one of the most profound features of C#.) For

that reason and others, I approach object-oriented programming con-
cepts in this book almost as if you‘re learning about them for the very
first time.

However, I do expect you to have some programming experience with a
C-family language. If you‘re learning C# as a first programming language,

you might be better off with a slower, gentler introduction, such as my
book Programming in the Key of C#: A Primer for Aspiring Programmers
(Microsoft Press, 2003).

.NET Book Zero Charles Petzold

Version 1.1 Page 3

The contents of .NET Book Zero are copyrighted by me, but the book is
freely distributable. You can give it to whomever you want. You can make

copies. You can print it out and give it away. But you can‘t charge for it,
and you can‘t modify it, and you can‘t use any part of this book in anoth-

er work without my permission.

If you‘d like to reference this book on your own Web site, I ask that you
do so using a link to the page on my Web site where this book is found.

That page is:

http://www.charlespetzold.com/dotnet

That‘s the page where people can find the latest version of the book and
download the source code I show in the pages that follow.

If you like this book, perhaps you‘d like to read some other books I‘ve

written. Come to my web site, www.charlespetzold.com and check them
out. These other books aren‘t free, alas. They will cost you money. But
you will be pleased to know that I receive a small percentage of the price

you pay for each book. That money helps me pay my rent and feed my-
self, and enables me to write more books in the future.

In writing this book, I‘ve drawn upon some of my earlier writing about C#
and the .NET Framework. Some of the earlier chapters are revisions of
Chapter 1 in Programming Microsoft Windows with C# (Microsoft Press,

2001), which is an introduction to Windows Forms programming. Some
of the later chapters were drawn from appendices of that book. The chap-

ters specific to the object-oriented programming aspects of C# were
drawn from my book Programming in the Key of C#.

As a .NET programmer, you‘ll probably specialize in a particular aspect of

.NET, and you‘ll likely buy a couple books on that subject. But there are
two essential books that every C# and .NET programmer should have.

The first essential book is The C# Programming Language by Anders
Hejlsberg, Scott Wiltamuth, and Peter Golde (2nd edition, Addison-
Wesley, 2006). This book is the official technical specification of the C#

language. It is certainly not a tutorial for learning the language, but a
great book to read after you‘ve become adept at C# programming.

Downloadable versions of The C# Programming Language are available
under the title C# Language Specification from this Web page:

http://msdn2.microsoft.com/en-us/vcsharp/aa336809.aspx

Because the online title C# Language Specification is actually more

accurate than the book title The C# Programming Language, I will refer to
the online title rather than the book title when I sometimes refer to the
book using chapter and section numbers.

http://www.charlespetzold.com/dotnet
http://www.charlespetzold.com/
http://msdn2.microsoft.com/en-us/vcsharp/aa336809.aspx

.NET Book Zero Charles Petzold

Version 1.1 Page 4

The second essential .NET book is Jeffrey Richter‘s CLR via C# (Microsoft

Press, 2006), which is actually the second edition of Applied Microsoft
.NET Framework Programming. There are many subtle and interesting

aspects of .NET programming that Richter‘s book explores in much more
depth than you‘ll find in the pages ahead that I‘ve written.

In .NET Book Zero and my other books, I tend to focus more on the C#
language and the .NET Framework class libraries rather than Microsoft
Visual Studio. As you probably know, Visual Studio is the primary

programming environment for creating .NET applications. You might
want to supplement your C# and .NET studies with a book specific to

Visual Studio.

Because this book is intended to teach C# and the rudiments of .NET,
much of the code I show in the pages ahead targets the traditional (and

largely obsolete) command line using character-mode programming
interfaces. I am well aware that you‘ll probably eventually be coding for

graphical environments, and that you might consider learning about
character-mode programming to be a complete waste of your time. This
is not so. The character-formatting techniques you learn here are directly

applicable to graphical programming as well.

This book is written in tutorial style, which means that it is intended to
be read sequentially. The reader is encouraged to type in the programs as

they are encountered in the book, to run them, and experiment with
them.

 * * *

Version 1.0 of this book was posted to www.charlespetzold.com/dotnet
on December 4, 2006.

Version 1.1 was posted on January 1, 2007. It incorporated many minor
corrections reported by Larry Danielle, Paul Dougherty, Paul Duggan,

David Evans, Thorsten Franz, Konstantin Korobkov, Tyson Maxwell,
Ryan McFarren, and Larry Smith.

.NET Book Zero Charles Petzold

Version 1.1 Page 5

Chapter 2. Why .NET?

The Microsoft .NET Framework (which I‘ll often refer to with the simpler

term .NET) is a collection of software technologies that began emerging
from Microsoft Corporation around the turn of the century. The first
version of .NET was released early in 2002, and version 1.1 came out in

2003. Version 2.0 was released late in 2005, and Version 3.0 followed in
late 2006. A good overview of the .NET releases can be found in the Wiki-
pedia entry on the Microsoft .NET Framework:

http://en.wikipedia.org/wiki/.NET_Framework

From the end-user‘s perspective, .NET is fairly invisible. The savvier user

might feel enlightened to know that .NET is basically a collection of
dynamic link libraries. These DLLs might already be installed along with
Windows XP on a new machine, or they might be installed during the

process of installing an application that uses .NET. The latest version of
Windows—Microsoft Windows Vista—includes the .NET Framework 3.0

as an intrinsic part of its architecture.

From the programmer‘s perspective, .NET is a huge class library that
contains everything you need to write Web applications or client applica-

tions—the type of programs sometimes called ―regular old Windows
apps.‖

If you are a programmer, and you write (or want to write) Web applica-

tions or Windows client applications, and you haven‘t yet started explor-
ing .NET, then reading this book is a good move. Congratulations on

getting started!

You can program for .NET in a variety of programming languages. How-
ever, any language you use for .NET programming must meet a set of

minimum requirements to order to use the .NET class libraries. These
requirements are known as the .NET Common Language Specification or
CLS. Related to the CLS is the .NET Common Type System (CTS) which

defines the basic data types (such as integer, floating point, and string)
that .NET languages support. The CLS and CTS are in turn part of the

Common Language Infrastructure (CLI). The CLI is an ISO standard and
an ECMA standard.

When you compile one of your .NET programs, the program is generally

compiled to a processor-independent intermediate language that resem-
bles machine code. This intermediate language was once called Micro-

soft Intermediate Language (MSIL), and it‘s still often known by that
name. Sometimes it‘s just called IL. But the most proper term is now the
Common Intermediate Language (CIL).

http://en.wikipedia.org/wiki/.NET_Framework

.NET Book Zero Charles Petzold

Version 1.1 Page 6

When a .NET program is run on a particular machine, the CIL is com-
piled to the native code of the processor by a just-in-time (JIT) compiler.

This two-stage compilation potentially allows for portability among
various platforms and processors.

The just-in-time compilation is performed by the .NET Common
Language Runtime (CLR), which is part of the .NET system installed on
end-user‘s machines. The CLR manages the execution of .NET programs,

and can prevent programs from causing damage to the user‘s machine.
Thus, when you are programming for .NET you are said to be writing
―managed code.‖

One important aspect of managed code involves the management of
memory. As object-oriented programming and class libraries have be-

come more complex over recent years, common problems have arisen
involving memory allocation. Very often it‘s not clear who is responsible
for freeing a particular memory block. For that reason, the CLR imple-

ments garbage collection. The CLR can determine if a particular block of
memory can no longer be referenced by a program, and then free such

blocks of memory if required.

Microsoft makes available several languages to the .NET programmer.
Which one you use is mostly a matter of personal taste. Some people

program for .NET using Visual Basic .NET. Others use Managed C++,
more formally known now as C++/CLI.

However, most .NET programmers have come to know and love C#, the

programming language designed in conjunction with .NET largely under
the guidance of Anders Hejlsberg. That‘s the language I‘ll be describing in

the pages that follow.

C# incorporates much of the basic expression and statement syntax of C,
and has a rather cleaner object-oriented programming syntax than C++.

The big difference that veteran programmers will discover is that C# does
not require you to mess around with pointers. Traditional C-like pointers
are supported in C# syntax, but they are normally relegated to inter-

operability with existing code. (I won‘t be discussing C# pointers in this
book; if you want that information, you can find it elsewhere.)

Rather than pointers, the .NET and C# programmer works with ―refer-
ences,‖ and these references are usually implied rather than being syn-
tactically explicit. It is part of becoming a good C# programmer that you

learn when you are working with a reference and when you are not.

It is never too early to start learning the C# and .NET mantra:

Classes are reference types; structures are value types.

.NET Book Zero Charles Petzold

Version 1.1 Page 7

Chapter 3. Runtimes and SDKs

To run .NET programs on your machine, you‘ll need to have some soft-

ware installed that is variously known as the .NET ―runtime‖ or ―runtime
components‖ or ―redistributable‖ or ―redistributable package.‖ The term
―redistributable‖ means that a software developer like yourself can distri-

bute the .NET runtime if it‘s part of an installation for an application that
requires the .NET Framework to run.

You‘ll need the .NET runtime components to run .NET programs. To

develop .NET programs on your machine, you‘ll also need to install the
.NET Framework Software Development Kit (SDK). Both the runtime and

the SDK are free and both are generally downloadable from the same or
related Web pages.

To determine what versions of .NET (if any) are currently installed on

your machine, the following Knowledge Base article can help:

http://support.microsoft.com/kb/318785

For installations of the .NET Framework 1.1 and the SDK, go to this
page:

http://msdn2.microsoft.com/netframework/aa569264.aspx

Although this page includes a redistributable for .NET 1.1, it is recom-
mended that end users install the .NET 1.1 runtime components as part
of a Windows update.

For the .NET Framework 2.0, go here:

http://msdn2.microsoft.com/netframework/aa731542.aspx

For the .NET Framework 3.0, go here:

http://msdn2.microsoft.com/windowsvista/aa904955.aspx

The SDK is referred to on this page as the ―Windows SDK.‖ As of this

writing, .NET version 3.0 is fairly recent, but it is likely to become the
―standard‖ version of .NET because it is built into Microsoft Windows
Vista. However, you may want to target a lesser version of .NET if you

know that it‘s supported by an existing user base.

The most recent version of Microsoft Visual Studio is Visual Studio 2005,

which incorporates the .NET Framework 2.0 SDK. The next version of
Visual Studio will incorporate the .NET Framework 3.0 SDK. Meanwhile,
if you want to do .NET 3.0 programming with Visual Studio, you‘ll need

to install the 3.0 SDK along with Visual Studio 2005. If you need to pro-
gram for a specific subsystem of .NET 3.0 (such as the Windows Presen-

http://support.microsoft.com/kb/318785
http://msdn2.microsoft.com/netframework/aa569264.aspx
http://msdn2.microsoft.com/netframework/aa731542.aspx
http://msdn2.microsoft.com/windowsvista/aa904955.aspx

.NET Book Zero Charles Petzold

Version 1.1 Page 8

tation Foundation or the Windows Communication Foundation or the
Windows Workflow Foundation) you can install extensions to Visual

Studio 2005. These are available as links from the .NET Framework 3.0
page.

Microsoft also makes available a free Visual C# 2005 Express Edition
that you can download here:

http://msdn.microsoft.com/vstudio/express/visualcsharp

This package installs the .NET 2.0 runtime and a good chunk of the
SDK. (You can install the 2.0 SDK in addition to the Visual C# Express
Edition.) The installation asks if you want to install MSDN, which stands

for Microsoft Developer Network and refers to documentation that in-
cludes the .NET class libraries. You‘ll very likely want to install this

documentation.

Strictly speaking, you don‘t need either Visual Studio or Visual C# to
program for .NET. The .NET Framework SDK comes with a command-

line version of the C# compiler, and you can use that. However, Visual
Studio and Visual C# simplify several aspects of .NET programming.

Besides the compiler itself, perhaps the most important part of the SDK
is the documentation of the .NET class libraries. When you install one of
the SDKs, the SDK itself appears on the Windows start menu, and a

Documentation item appears within that group. (If you‘ve only installed
Visual C# 2005 Express Edition, you can bring up the documentation by
selecting Contents from the Help menu of Visual C#.)

The .NET documentation is displayed by the Document Explorer applica-
tion. On the left side of the Document Explorer window is a pane that

you can switch between Content and Index views with a tab at the bot-
tom. The pane on the right side shows information on the selected item.

Select the Content tab. I want you to find the documentation of the .NET

class libraries. If you‘ve installed the .NET 1.1 SDK, you‘re looking for the
Class Library heading in the following hierarchy:

.NET Framework SDK

 Reference
 Class Library

With a later SDK, the hierarchy is a bit shorter:

.NET Framework SDK
 Class Library

Or:

http://msdn.microsoft.com/vstudio/express/visualcsharp

.NET Book Zero Charles Petzold

Version 1.1 Page 9

.NET Framework Development
 Class Library

When you find it, you‘ll know it by the large list of entries. Many of the
early entries begin with the word Microsoft. The later entries begin with

the word System. What you‘re seeing here is the basic class
documentation of the .NET Framework, and you‘ll be spending lots of
time with it. You can also access the .NET Framework documentation

online at this page:

http://msdn2.microsoft.com/library/aa388745.aspx

The top-level entries in this long list that begin with the words Microsoft
or System are known as namespaces. The namespaces serve to separate

the .NET Framework into functional groups. For example, System.Win-
dows.Forms is the basic namespace for Windows Forms. Namespaces

also help avoid problems resulting from duplicate class names. The .NET
Framework can have different classes with the same names. If these
classes are in different namespaces, there‘s no name clash. There are

three classes named Timer, for example, all in different namespaces.

Some of these namespaces will become an intimate part of your life;

others you‘ll probably never get to know. As the popular tee-shirt says,
―So many .NET namespaces… so little time.‖

The most important namespace is System, and that‘s the namespace I‘ll

be referring to most in this book. A few other namespaces are often
useful, even in traditional character-mode programs. The System.-
Globalization namespace contains classes that help you tailor your
programs to an international market. The System.Collections and

System.Collections.Generic contain classes that help you store inform-
ation in familiar collections such as queues, stacks, and dictionaries. The

System.IO namespace contains essential classes for working with files
and streams, and System.Xml supplements those classes for working
with XML.

If you open one of these namespaces in the documentation, you‘ll see a
number of types defined in the namespace. Most of these types are

classes. Some are structures. Others are interfaces, enumerations, and
delegates. You‘ll learn more about these five types in the pages ahead.

Open up a class or structure, and you‘ll see members of that type. These

members can include constructors, fields, methods, properties, and
events, which you‘ll also learn more about in the pages ahead.

Whenever you‘re doing .NET programming (or whenever you‘re reading
this book or any other .NET programming book) you‘ll probably want to
have the .NET documentation open and ready for browsing.

http://msdn2.microsoft.com/library/aa388745.aspx

.NET Book Zero Charles Petzold

Version 1.1 Page 10

To quickly find a particular item in the class documentation, click the
Index tab in the left pane. In the Look For field, enter what you‘re looking

for: ―Timer class,‖ for example. Select ―about Timer class‖ in the list. Over
at the right on the bottom, you‘ll see the three Timer classes with their

namespaces in parentheses. Select the one you want, and the first page
of the class documentation will appear. You can then click the Sync With
Table Of Contents button on the toolbar to get back to the Contents view

and continue exploring the particular class. (In the .NET Framework 1.1
SDK, it works a little differently. There is no separate pane for index

results; the three Timer classes are listed separately in the index.)

Besides providing all the class documentation of the .NET Framework,
another important role of the .NET Framework documentation is the

teaching of humility. You will never, ever, come close to any type of
familiarity with the entire .NET class library. (But you can always try.)

.NET Book Zero Charles Petzold

Version 1.1 Page 11

Chapter 4. Edit, Compile, Run, Disassemble

A file containing C# code generally has the filename extension .cs for ―C

Sharp.‖ Here‘s a simple example (the boldfaced filename at the top is not
part of the program):

FirstProgram.cs
//---
// FirstProgram.cs (c) 2006 by Charles Petzold
//---

class FirstProgram
{
 public static void Main()
 {
 System.Console.WriteLine("Hello, Microsoft .NET Framework!");
 }
}

Let‘s first try to create, compile, and run this program, and then I‘ll
discuss its structure and contents.

Although you‘ll probably eventually use Microsoft Visual Studio to devel-

op .NET programs, that‘s not your only option. You can actually edit,
compile, and run .NET programs from the MS-DOS command line. In
many respects, compiling a C# program on the command line is quite

similar to the way you might have compiled a C program on the com-
mand line two decades ago.

Compiling .NET programs on the MS-DOS command line might seem like
an odd and eccentric practice in modern graphical environments like
Windows, but I think it‘s important for the beginning .NET programmer

to try it just once. At the very least, you‘ll be disabused of the notion that
you need the powerful resources of Visual Studio to compile every .NET

program you‘ll ever write.

(Some information in this chapter does not apply to the .NET 1.1 SDK. If
that‘s what you‘re using, you‘ll want to select the Tools item in the Micro-

soft .NET Framework SDK v1.1 entry in the Windows start menu for
information about the command line, the IL disassembler, and the IL
assembler.)

Both Visual Studio 2005 and the .NET 2.0 and 3.0 SDKs create entries
in the Windows start menu for running command-line windows. This is

what you should use. It‘s harder to use the regular Windows Command
Prompt window for compilations because it doesn‘t have the proper
environment variables set so that MS-DOS can locate the C# compiler.

.NET Book Zero Charles Petzold

Version 1.1 Page 12

If you run one of these command-line windows, you can then navigate to
a particular directory where you want to store your programs. On the

command line, type

notepad

and Windows Notepad will run. Or, you can type a filename as an argu-
ment to Windows Notepad like this:

notepad firstprogram.cs

Then Notepad will ask you if you want to create that file.

In Notepad, type in the program shown above. C# is a case-sensitive

language. Make sure that you type the words class, public, static, and
void entirely in lowercase. Make sure you type the words Main, System,

and Console, with an initial capital but the rest in lower-case. Make sure
that WriteLine has an initial capital and an embedded capital. You can

type FirstProgram whatever way you want (or you can use a different
name), but don‘t embed a blank in the name and don‘t begin the name

with a number. You don‘t need to include the lines that begin with
double slashes.

Save the file from Notepad with the name firstprogram.cs, or something

else if you prefer. (You don‘t need to exit Notepad at this point, but you
do need to save the file.) Then, on the command-line, run the C# com-

piler, which is a program named csc.exe:

csc firstprogram.cs

The C# compiler reads your source code and (if all is well) emits a file

named firstprogram.exe, which you can run like this:

firstprogram

The program displays a text greeting and then terminates.

I mentioned in the second chapter that a .NET executable actually con-

tains Common Intermediate Language (CIL) code. The .NET SDK includes
a tool called the IL Disassembler (ildasm.exe) that disassembles a .NET
executable and shows you the CIL statements. From the Windows start

menu, find the SDK group, and then a tool named IL Disassembler. Run
it. Or, just enter

ildasm

on the command line. From the File Open dialog box, navigate to the
directory you‘ve been using, and load FirstProgram.exe. Open the First-
Program class and double-click Main. That‘s your program in CIL. The
ldstr command loads a text string on the stack, and then a call command

calls System.Console.WriteLine (but with a syntax more reminiscent of
C++) to display the string. When you run the program, the .NET Common

Language Runtime (CLR) compiles the CIL into machine code appropriate
for your particular processor.

.NET Book Zero Charles Petzold

Version 1.1 Page 13

If learning CIL appeals to you, you can discover more about it here:

http://www.ecma-international.org/publications/standards
/Ecma-335.htm

The .NET SDK includes an assembler program for CIL named ilasm.exe.

Programs written directly in CIL are just as managed and just as
portable as programs written in C#.

Of course, most .NET programmers don‘t know any CIL at all, and even

fewer know enough CIL to be able to actually code in it. However, it is
sometimes instructive and revealing to examine the CIL that the C# com-
piler emits, and in this book I‘ll occasionally call your attention to it.

Now let‘s jump from command-line programming to the opposite extreme
by running Visual Studio 2005 or Visual C# 2005 Express Edition.

From the menu select File, then New and Project. In Visual Studio, first
select Visual C# and Windows at the left. In either edition, select Empty
Project on the right. Give the project a name (FirstProgram, let‘s say). In

Visual Studio, you‘ll need to select a directory location for the project and
uncheck the Create Directory For Solution checkbox. In Visual C# Ex-

press Edition, you select the directory when you save the project.

In the Solution Explorer on the right, right-click the FirstProgram project
and select Add and New Item. (Or, select Add New Item from the Project

menu.) Select Code File and give the file a name of FirstProgram.cs.

Now type in the program shown above. As you type, you‘ll see that Visual
Studio trys to anticipate what you need. When you type System and a

period, for example, it will give you a list of types in that namespace, and
when you type Console and a period, you‘ll get a list of members of the

Console class. This is Visual Studio‘s Intellisense, and you might come to
find it addictive, and then hate yourself from relying on it so much.

You can compile and run the program by selecting Start Without Debug-
ging from the Debug menu or by pressing Ctrl-F5. The program will
compile and run in a command-line window.

What you‘ve done here is to create a Visual Studio project named First-
Program, which occupies the FirstProgram directory. A project generally

creates a single executable file or a single dynamic link library. (In Visual
Studio, multiple related projects can also be bundled into solutions.) A

project can contain one or more C# source code files. In the simplest
case, a project contains one C# file, and for convenience the C# file is
generally given the same name as the project but with a .cs extension.

Back on the command line or in Windows Explorer, you can see that
Visual Studio has created a project file in the FirstProgram directory
named FirstProgram.csproj. This is an XML file that references the .cs

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 14

file and contains all the other information Visual Studio needs to main-
tain the project and compile it.

During compilation, Visual Studio has also created some intermediate
files in a subdirectory of FirstProgram named obj. The executable file is

found in bin in a subdirectory named either Release or Debug depending
on the configuration you‘ve chosen in Visual Studio.

If you‘re running .NET 3.0, go back to the command line. Make sure the

FirstProgram.csproj file is in the current directory and run:

msbuild firstprogram.csproj

The MSBuild program will compile the project and (by default) deposit
the executable file in the bin\Debug directory.

The MSBuild program became necessary in .NET 3.0 partially because
Windows Presentation Foundation programs can be built from both C#
files and XAML (Extensible Application Markup Language) files. The

MSBuild program invokes the C# compiler and other tools to assemble
an entire executable. You can write your own .csproj project files, if you

want.

Between the extremes of the command prompt and Visual Studio are
other .NET programming tools, such as my own KeyOfCSharp.exe, which

you can download here:

http://www.charlespetzold.com/keycs

If you want to run the sample programs shown in this book without
typing them in, you can download all the source code from the same
page where you found this book:

http://www.charlespetzold.com/dotnet

However, you‘ll better accustom your brain and fingers to C# code by
typing in the code yourself.

Let‘s look at the program listing again:

FirstProgram.cs
//---
// FirstProgram.cs (c) 2006 by Charles Petzold
//---

class FirstProgram
{
 public static void Main()
 {
 System.Console.WriteLine("Hello, Microsoft .NET Framework!");
 }
}

http://www.charlespetzold.com/keycs
http://www.charlespetzold.com/dotnet

.NET Book Zero Charles Petzold

Version 1.1 Page 15

At the top are a few single-line comments beginning with the familiar
double slashes. C# also supports multi-line or partial-line comments

delimited by /* and */.

All code in a C# program must be in either a class or a structure. This

particular program defines a class (denoted by the keyword class) named
FirstProgram:

class FirstProgram
{
 // contents of the class
}

Curly brackets delimit the contents of the class. You can change that
class to a structure using the keyword struct:

struct FirstProgram
{
 // contents of the structure
}

The program will compile and run the same.

It is common to define the class or structure with the public keyword:

public class FirstProgram
{
 // contents of the class
}

However, using the public keyword with a class is not generally required

in program code. (There are some cases where it is required.) The public
keyword applied to a class is generally found much more in code that
contributes to dynamic link libraries.

When creating this project in Visual Studio, I‘ve used a project name that
is the same as the C# file name, which is the same as the name of the

class defined in that file. None of these name matches is required. In
fact, a C# file can contain multiple class definitions, none of which match
the file name. A class can also be split between multiple files, none of

whose names need match the class name. None of these names need to
be the same as the project name.

Just to avoid confusion, I generally like to restrict my C# source code
files to just a single class and structure, and to use a file name that
matches the class or structure name. (But I sometimes break this rule in

this book.)

In the FirstProgram class (or structure) is a single method named Main.

The entry point to a C# program is always a method named Main, and it
must have an initial capital. C# is a case-sensitive language.

The Main method is defined with the public and static keywords:

.NET Book Zero Charles Petzold

Version 1.1 Page 16

public static void Main()
{
 // contents of the method
}

The public keyword indicates that the method is visible from outside the

class in which it is defined. The public keyword is not actually required
for the Main method, and the program will compile and run fine without

it. Sometimes I use public with Main and sometimes not. It‘s a mystery.

The static keyword means that this method is associated with the class

itself rather than an instance of that class. A class is basically an ice
cream dispenser, and instances of the class are sundaes. Unfortunately,
this simple program isn‘t making any sundaes. There is no instance

keyword, however, because static methods are generally the exception
rather than the rule. The world has many more sundaes than ice cream

dispensers, and generally sundaes are more interesting.

This particular Main method has no parameters — indicated by the

empty parentheses following Main—and doesn‘t return anything to the
caller, indicated by the keyword void. (You can also define Main to have a

parameter that is an array of text strings, which are set to the command-
line arguments of the program. Main can also return an integer as a
termination code. See the C# Language Specification, §3.1 for details.)

The body of a method is delimited by curly brackets. The entire body of
this Main method is the statement:

System.Console.WriteLine("Hello, Microsoft .NET Framework!");

As in C and C++, statements in C# are terminated by semicolons. This

statement is a method call. The argument is a string literal enclosed in
double-quotation marks. String literals in C# are restricted to a single

line. In other words, the two quotation marks delimiting the string must
appear on the same line. (If you need to break up a long string on mul-
tiple lines, you can concatenate multiple string literals using the plus

operator, as I‘ll demonstrate in the next chapter.)

Although string literals must appear on one line, C# can otherwise be
freely formatted. This is allowed:

class
 FirstProgram
 {
public
 static
 void
 Main
 (
)
 {
 System
 .

.NET Book Zero Charles Petzold

Version 1.1 Page 17

 Console
 .
 WriteLine
 (
 "Hello, Microsoft .NET Framework!"
)
 ;
 }
 }

So is this:

class FirstProgram{public static void Main(
){System.Console.WriteLine("Hello, Microsoft .NET Framework!");}}

If you code like this, however, nobody will be your friend.

FirstProgram doesn‘t do much except make a call to a method named
System.Console.WriteLine. That‘s a fully-qualified method name. Like

romance novelists, methods in the .NET Framework generally have three
names:

o System is a namespace.

o Console is a class in that namespace.

o WriteLine is a method in that class.

In the .NET class documentation you‘ll find that the Console class

actually has many methods named WriteLine. These various versions of
the WriteLine method are known as overloads. The one I‘m using in this

particular program is defined like so (eliminating line breaks provided in
the documentation):

public static void WriteLine(string value)

There‘s that keyword static again, and what it means here is that Write-
Line is a method associated with the Console class rather than an

instance of the Console class. The static keyword means the method
must be referenced by prefacing it with the name of the class in which

it‘s defined, separated by a period. The class is prefaced with the name-
space in which the class is defined, also separated with a period.

Where is the code for System.Console.WriteLine. which is the code that
actually puts the text on the console? If you look at the first page of the
documentation for the Console class, you‘ll see near the top the following:

 Assembly: mscorlib (in mscorlib.dll)

This indicates that the code for the Console class is located in an assem-

bly named mscorlib. An assembly can consist of multiple files, but in this
case it‘s only one file, which is the dynamic link library mscorlib.dll. The

mscorlib.dll file is very important in .NET. The file name at one time
stood for ―Microsoft Common Object Runtime Library‖ but now it stands
for ―Multilanguage Standard Common Object Runtime Library.‖ This is

.NET Book Zero Charles Petzold

Version 1.1 Page 18

the main DLL for class libraries in .NET, and it contains all the basic
.NET classes and structures.

As you know, when you compile a C or C++ program, you generally need
an #include directive at the top that references a header file. The include

file provides function prototypes to the compiler.

The C# compiler does not need header files. During compilation, the C#
compiler access the mscorlib.dll file directly and obtains information

from metadata in that file concerning all the classes and other types
defined therein. The C# compiler is able to establish that mscorlib.dll

does indeed contain a class named Console in a namespace named
System with a method named WriteLine that accepts a single argument of

type string. The C# compiler can determine that the WriteLine call is
valid, and the compiler establishes a reference to the mscorlib assembly
in the executable.

Intellisense also works by referencing mscorlib.dll and getting informa-
tion from the DLL about the namespaces, types, and members.

As you probably know, compiling a C or C++ program is just the first
step in creating an executable. You must then (either explicitly or im-
plicitly) run a linker that accesses library files. Traditionally, code in the

standard runtime libraries is inserted right into the executable. For code
in DLL‘s, only references are inserted.

The C# compiler doesn‘t require library files. Because the compiler is

already accessing the actual DLL, it can insert references to that DLL
into the executable. At the time the program is run, the CLR links the

program with the actual method call in mscorlib.dll.

Many of the basic classes and structures are included in mscorlib.dll. As
you go beyond the command line, you‘ll start encountering classes that

are stored in other DLLs. For example, classes in the System.Windows.-
Forms namespace are stored in the assembly system.windows.forms,

which is the DLL system.windows.forms.dll.

The C# compiler will access mscorlib.dll by default, but for other DLLs,
you‘ll need to tell the compiler the assembly in which the classes are

located. These are known as references. In Visual Studio, right click
References under the project name in the Solution Explorer, and select

Add Reference. Or, select Add Reference from the Project menu. (For the
command line compiler, you specify references with the /r compiler
switch.)

It may seem like a big bother to type System.Console.WriteLine just to
display a line of text, and that‘s why the C# language supports a directive

that reduces your typing a bit. This program is functionally equivalent to
the program shown earlier:

.NET Book Zero Charles Petzold

Version 1.1 Page 19

SecondProgram.cs
//--
// SecondProgram.cs (c) 2006 by Charles Petzold
//--
using System;

class SecondProgram
{
 public static void Main()
 {
 Console.WriteLine("Hello, Microsoft .NET Framework!");
 }
}

The Console.WriteLine call is no longer prceded with the System name-
space. This is made possible by the line near the top that begins with the

keyword using. This line is called a directive because it‘s not, strictly
speaking, a statement. It must appear before any type definition in the

file, such as a class. The using directive basically tells the C# compiler
that if it can‘t find a static method named Console.WriteLine, it should try

appending System to the front to make System.Console.WriteLine and try
looking for that.

Of course, the using directive hasn‘t exactly reduced the size of the pro-

gram, but if you had very many WriteLine calls, it certainly would. All the
sample programs from now on will have a using directive for the System

namespace and occasionally other namespaces as well.

The using directive is not like a header file, and it‘s not like a library file.

It doesn‘t reference a file. The using directive only indicates a namespace,
and having using directives is never required in a C# program.

A slightly different form of the using directive defines an alias that lets
you decrease your repetitive typing even more.

ThirdProgram.cs
//---
// ThirdProgram.cs (c) 2006 by Charles Petzold
//---
using C = System.Console;

class ThirdProgram
{
 public static void Main()
 {
 C.WriteLine("Hello, Microsoft .NET Framework!");
 }
}

Now any reference to the System.Console class can be shortened to just a

capital C. That‘s about as succinct as you‘re going to get here. (The next
step would involve defining your own short-named method that then

calls WriteLine.)

.NET Book Zero Charles Petzold

Version 1.1 Page 20

I need to warn you how limited the alias facility is: The using directive
does not perform a substitution of System.Console for any and all occur-

rences of a capital C in your code. In the using directive, the right side of
the equals sign must be a namespace or type, and this particular

example only comes into play if the compiler cannot find a class named C
with a method named WriteLine.

Also keep in mind that C# culture does not encourage the use of tech-
niques like this to make your code look more obscure than it should be.

The use of this form of the using statement is primarily for a situation
where you need to reference classes with the same name from two dif-
ferent namespaces.

For example, suppose you purchase two helpful class libraries in the
form of DLLs from Bovary Enterprises and Karenina Software. Both these

libraries contain a class named SuperString that is implemented entirely
differently in each DLL but is useful to you in both versions. Using both
SuperString clases is not a problem because both companies defined

unique namespace names for their classes.

The people at Bovary put their SuperString class in a namespace named

BovaryEnterprises.VeryUsefulLibrary. Yes, the namespace contains an
embedded period, and it‘s in accordance with accepted practices. The

company name goes first, followed by a product name. The code
developed at Bovary looked something like this:

namespace BoveryEnterprises.VeryUsefulLibrary
{
 public class SuperString
 {
 ...
 }
}

The clever programmers at Karenina also used the accepted naming

convention and put their SuperString class in the namespace Karenina-
Software.HandyDandyLibrary.

So, when using both these DLLs in your own program, you can reference
either SuperString class simply by using the fully-qualified name, which

is either

BovaryEnterprises.VeryUsefulLibrary.SuperString

or:

KareninaSoftware.HandyDandyLibrary.SuperString

And here‘s where the alias form of the using directive comes into play. To
simplify your typing, you can include the following two using directives in

your program:

using Emma = BovaryEnterprises.VeryUsefulLibrary;
using Anna = KareninaSoftware.HandyDandyLibrary;

.NET Book Zero Charles Petzold

Version 1.1 Page 21

Now you can refer to the two classes as

Emma.SuperString

and:

Anna.SuperString

If you are writing code for a DLL, and particularly if you intend to make
this DLL available to others, you should put everything in a namespace

that identifies your company and product.

You can also use namespace definitions in your non-DLL program code,
but here it‘s not so vital. For the first couple of .NET programming books

I wrote, I didn‘t use namespaces at all in my programs. In my recent
book on the Windows Presentation Foundation, I used namespaces in my

program code that consisted of my name followed by the project name. I
did this for two reasons. Most importantly, when integrating C# code
with XAML, it helps for the program code to be in a namespace. Also,

when one project references code from another project (as I do in my
WPF book), the namespace helps identify where the referenced code

comes from.

The following program shows how you can put your own program code
inside a namespace definition.

FourthProgram.cs
//--
// FourthProgram.cs (c) 2006 by Charles Petzold
//--
using System;

namespace Petzold.FourthProgram
{
 class FourthProgram
 {
 public static void Main()
 {
 Console.WriteLine("Hello, Microsoft .NET Framework!");
 }
 }
}

However, in this little book, that‘s the last you‘ll see of a namespace

definition.

.NET Book Zero Charles Petzold

Version 1.1 Page 22

Chapter 5. Strings and the Console

In the previous chapter, the argument passed to the Console.WriteLine

method looked like this:

"Hello, Microsoft .NET Framework"

That is known as a string literal. It consists of a bunch of characters
delimited by double quotation marks. The characters are Unicode, which
means that each character is represented by a 16-bit number. (More

information about Unicode can be found at www.unicode.org.)

As in C and C++, the backslash character is interpreted as an escape

character, and the character that follows is treated specially. This allows
the embedding of characters in a character string that would otherwise
not be possible. The following table shows the supported escape

sequences with their Unicode equivalents in hexadecimal.

Escape Sequence Result Unicode Encoding

\0 Null 0x0000

\a Alert (beep) 0x0007

\b Backspace 0x0008

\t Horizontal tab 0x0009

\n New line 0x000A

\v Vertical tab (printing) 0x000B

\f Form feed (printing) 0x000C

\r Carriage return 0x000D

\" Double quote 0x0022

\' Single quote 0x0027

\\ Backslash 0x005C

\uABCD

\xABCD

Unicode character 0xABCD

I‘ve never found it necessary to precede a single quote mark with a back-
slash in a string. (You‘ll need to do so when defining a character literal

because character literals are delimited by single quote marks.) The last
entry in the table indicates how you can embed arbitrary Unicode
characters in a character string. The ABCD characters stand for any 4-

digit hexadecimal number. For example:

http://www.unicode.org/

.NET Book Zero Charles Petzold

Version 1.1 Page 23

"Hello, Microsoft\x00AE .NET Framework"

Now the word ―Microsoft‖ is followed by a ® symbol to make the lawyers
happy. However, the console doesn‘t support non-ASCII characters very
well, so if you actually make this change in the program from the last

chapter, it will probably show up simply as a lower-case ‗r‘.

If you really, really, really want to see your program display an ® symbol,
you can abandon the console and write a small Windows Forms program.

Windows Forms is a Windows client platform supported under all
versions of .NET.

TextWithUnicodeChar.cs
//--
// TextWithUnicodeChar.cs (c) 2006 by Charles Petzold
//--
using System.Windows.Forms;

class TextWithUnicodeChar
{
 public static void Main()
 {
 MessageBox.Show("Hello, Microsoft\x00AE .NET Framework");
 }
}

Show is a static method in the MessageBox class, which is in the Sys-
tem.Windows.Forms namespace. Without the using directive, you‘d have
to call this method with the horrific fully-qualified name:

System.Windows.Forms.MessageBox.Show(
 "Hello, Microsoft\x00AE .NET Framework");

The Windows Forms classes are in the System.Windows.Forms assembly,
which is the System.Windows.Forms.dll file. To compile this program you

need a reference to that assembly. In Visual Studio in the Solution
Explorer, right click References and then Add Reference. (Or select Add

Reference from the Project menu.) In the Add Reference dialog box, select
the .NET tab and the System.Windows.Forms assembly. When compiling
on the command line, use the /r switch to specify other assemblies.

The MessageBox.Show method displays a Windows message box with an
OK button. When you click the OK button, the message box disappears

from the screen, MessageBox.Show returns, and the program terminates.

Although the Windows Forms program correctly displays the ® symbol,
keep in mind that not every font supports every Unicode character.

You can also use Unicode escape sequences in variable names. See the
C# Language Specification, §2.4.1 for details.

In some cases you might want to encode a string literal with several
backslashes. This is common with directory paths:

.NET Book Zero Charles Petzold

Version 1.1 Page 24

"\\Documents and Settings\\Charles\\Favorites"

You can alternatively use a type of string literal known as the verbatim
string literal. You preface the first double quote with an @ sign:

@"\Documents and Settings\Charles\Favorites"

The backslash ceases to be an escape character so you only need one
backslash for each separator. None of the normal escape sequences are

allowed. If you need to embed a double quote in the string, use two
double quotes in a row.

@"The symbol \ is called a ""backslash"""

Verbatim strings can begin on one line and continue to the next,

although the resultant string will have embedded carriage return and
line feed characters.

Unlike C and C++, C# supports a string data type for storing strings.

Within a method such as Main you can declare a variable of type string
using a declaration statement:

string str;

All variables must be declared before they are used. Variable names

generally begin with letters or an underscore, and can also contain num-
bers, but the rules for what Unicode characters are allowed in a variable
name are quite complex. (See the C# Language Specification, §2.4.2.)

Certainly the variable name doesn‘t have to begin with the letters str, but
I like to do that because it reminds me that this is a string variable.

You can optionally initialize that string when you declare it:

string str = "This is an initialized string";

Or you can set the value of the string after it‘s declared with an assign-
ment statement:

string str;
str = "This is an assigned string";

There‘s no difference between initializing a string in a declaration state-
ment and assigning it immediately after the declaration statement.

You can declare multiple string variables in a single declaration state-

ment by separating them with commas:

string str1, str2, str3;

You can initialize all or some of these variables:

string str1, str2 = "initialized", str3;

Until a string variable is assigned a value, it is considered to be
uninitialized, and the C# compiler will not allow that variable to be used.
Here‘s an illegal sequence of statements:

string str;

.NET Book Zero Charles Petzold

Version 1.1 Page 25

Console.WriteLine(str);

The C# will complain about the ―Use of unassigned local variable ‗str‘.‖

You can set a string variable to an empty string:

string str = "";

Or you can set the string variable to the C# keyword null:

string str = null;

In either case, the variable is now considered to be initialized, but in two
distinctly different ways. In the first case, the str variable refers to a

string that happens to have no characters. In the second case, the str
variable is considered to have a null reference, which means that it

doesn‘t refer to anything. In either case, Console.WriteLine will just
display nothing for that string.

Here‘s a complete program that uses an initialized string in Main:

class Program
{
 static void Main()
 {
 string strDisplay = "Hello, Microsoft .NET Framework";
 System.Console.WriteLine(strDisplay);
 }
}

The string variable must be declared and set before it‘s used. This code is
no good:

class Program
{
 static void Main()
 {
 System.Console.WriteLine(strDisplay);
 string strDisplay = "Hello, Microsoft .NET Framework";
 }
}

You‘ll get an compiler error message saying ―The name ‗strDisplay‘ does

not exist in the current context.‖ This code is no good either:

class Program
{
 static void Main()
 {
 string strDisplay;
 System.Console.WriteLine(strDisplay);
 strDisplay = "Hello, Microsoft .NET Framework";
 }
}

The variable is declared but it‘s uninitialized at the time WriteLine is

called. The compiler error message is ―Use of unassigned local variable
‗strDisplay‘.‖

.NET Book Zero Charles Petzold

Version 1.1 Page 26

The strDisplay variable is known as a local variable because it is declared
within a method (in this case Main), and the variable is only visible

within that method. You can also declare a variable outside of Main but
within the class:

class Program
{
 static string strDisplay = "Hello, Microsoft .NET Framework";

 static void Main()
 {
 System.Console.WriteLine(strDisplay);
 }
}

The strDisplay variable is now known as a field, and it is potentially
accessible to any method within the Program class. Both strDisplay and

Main are considered members of the class. Notice that strDisplay is
declared as static, meaning it is part of the class itself rather than an

instance of the class. The program could refer to strDisplay by prefacing
it with the class name:

System.Console.WriteLine(Program.strDisplay);

It doesn‘t matter where inside the class the strDisplay field is declared.

This will work fine as well:

class Program
{
 static void Main()
 {
 System.Console.WriteLine(strDisplay);
 }

 static string strDisplay = "Hello, Microsoft .NET Framework";
}

This might look a little strange because in the context of the whole class

strDisplay is declared after it‘s used, but that rule only applies to local
variables. Both Main and strDisplay are members of the class, and the

ordering of members usually doesn‘t matter. (However, if one field is set
from the value of another field, then the ordering does matter.)

You can also declare a field but set its value in a method:

class Program
{
 static void Main()
 {
 strDisplay = "Hello, Microsoft .NET Framework";
 System.Console.WriteLine(strDisplay);
 }

 static string strDisplay;
}

.NET Book Zero Charles Petzold

Version 1.1 Page 27

If you leave out the assignment statement in Main, the program will still
compile and run fine, but nothing will be displayed. If they‘re not explic-

itly initialized, fields are always implicitly initialized to zero values. A
string field (and other reference types) is initialized to null.

But you can‘t have assignment statements outside of methods. This code
doesn‘t compile at all:

class Program
{
 static string strDisplay;
 strDisplay = "Hello, Microsoft .NET Framework";

 static void Main()
 {
 System.Console.WriteLine(strDisplay);
 }
}

The compiler error message is ―Invalid token ‗=‘ in class, struct, or inter-

face member declaration,‖ meaning that when the C# compiler was
parsing the program, everything appeared OK until it got to the equal
sign.

You can use the same name for fields and local variables:

class Program
{
 static string strDisplay = "This is a field";

 static void Main()
 {
 string strDisplay = "This is a local variable";
 System.Console.WriteLine(strDisplay);
 }
}

Within Main, the local variable takes precedence and the program will
display ―This is a local variable.‖ However, because the field seems to

serve no purpose in this program, the C# compiler will emit a warning
message that says ―The private field ‗Program.strDisplay‘ is assigned but

its value is never used.‖

That warning message suggests how you can access the field rather than
the local variable:

class Program
{
 static string strDisplay = "This is a field";

 static void Main()
 {
 string strDisplay = "This is a local variable";
 System.Console.WriteLine(Program.strDisplay);
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 28

}

Notice that strDisplay is now prefaced with the class name in the Write-
Line call. The program displays ―This is a field,‖ But the compiler now

complains with a warning message that ―The variable ‗strDisplay‘ is
assigned but its value is never used.‖

If you look at the documentation for the Console class, and particularly

the WriteLine method, you‘ll find lots of different versions. The one that
we‘ve been implicitly using is the one defined like this (in C# syntax):

public static void WriteLine(string value)

This method displays the string passed as an argument and then skips

to the next line. The void keyword indicates that the method returns
nothing to the caller. Exploring the Console class further, you‘ll also find

a method named Write, and a version of the Write method defined like
this:

public static void Write(string value)

The Write method displays its argument but does not skip to the next
line. There‘s also a version of WriteLine that does nothing but skip to the

next line:

public static void WriteLine()

There‘s no parameterless version of Write because it wouldn‘t do any-
thing at all. You can rewrite the guts of FirstProgram so it looks like this:

Console.Write("Hello, ");
Console.Write("Microsoft ");
Console.Write(".NET ");
Console.Write("Framework!");
Console.WriteLine();

Notice that the first three strings end with a space so the words are still
nicely separated.

If you look further in the Console documentation, you‘ll discover a meth-

od named ReadLine:

public static string ReadLine()

This method has no parameter, but it returns a string. This method ob-
tains text typed by the user and then returns it to the program. You can

store this return value in a string variable and then later display it.

GetTheUsersName.cs
//--
// GetTheUsersName.cs (c) 2006 by Charles Petzold
//--
using System;

class GetTheUsersName
{

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Void.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_String.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Void.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_String.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Void.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_String.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 29

 static void Main()
 {
 Console.Write("Type your name and press Enter: ");
 string strName = Console.ReadLine();
 Console.Write("Your name is ");
 Console.WriteLine(strName);
 }
}

Notice how the first Console.Write call is used to display the prompt. No
new line is displayed and the cursor sits one space from the colon. The
Console.ReadLine call echos typed characters to the console but does not

return until the user presses Enter, which also causes the cursor to skip
to the next line. The combination of Console.Write and Console.WriteLine

then prints the information in a single line.

You can concatenate multiple strings using the plus operator, which

means that those two last statements could have been written like this:

Console.WriteLine("Your name is " + strName);

A string literal must appear on a single line (except for verbatim strings,
which can straddle multiple lines), so the concatenation operator is a
good way to combine strings that are too long to fit comfortably on a

single line.

Limerick.cs
//---
// Limerick.cs (c) 2006 by Charles Petzold
//---
using System;

class Limerick
{
 static void Main()
 {
 string strLimerick =
 "There once was a coder named Otto\r\n" +
 "Who had a peculiar motto:\r\n" +
 " \"The goto is king,\r\n" +
 " To thee I sing!\"\r\n" +
 "Maybe that's why he's often quite blotto.\r\n";

 Console.WriteLine(strLimerick);
 }
}

Notice the escape sequences for the embedded double quote marks in the
third and fourth lines, and also that each of the five lines is terminated

with escape sequences for a carriage return and line feed, which is the
customary way to terminate lines in MS-DOS environments and Win-
dows. Because the last line has a carriage return and line feed, and the

entire string is displayed with Console.WriteLine, a blank line will appear
after the end of the limerick.

.NET Book Zero Charles Petzold

Version 1.1 Page 30

In the documentation of the Console class, the Write, WriteLine, and
ReadLine methods all appear in the section labeled ―Methods.‖ You‘ll also

see a section labeled ―Properties.‖ If you have the SDK installed for the
.NET Framework 1.0 or 1.1, you‘ll only see a few items under that head-

ing. For versions 2.0 and above, however, you‘ll see a lot more. Let‘s
examine a few of these items.

Here‘s how the property named Title is documented in C# syntax:

public static string Title { get; set; }

Like the methods in Console, this property is public, which means that
we can access the Title property from outside the Console class, such as

one of our programs. The property is also static, which means that we‘ll
actually be referring to it as Console.Title. Each property has a type, and
the type of this Title property is string. Within curly brackets appear the

words get and set. This means that the property can be both read (―get‖)
and set. When you write your own properties (which I‘ll get to in Chapter

17), you‘ll see how these words get and set figure in the property
definition.

The Console.Title property is ―gettable,‖ which means that you can obtain
and store the value of the property like this:

string strTitle = Console.Title;

Or, you can pass Console.Title to WriteLine to display the value of the

property:

Console.WriteLine(Console.Title);

If you put this code at the top of Limerick.cs, it will display the same title
as displayed in the titlebar of the console window in which Limerick
runs.

The Title property is also ―settable,‖ which means you can put the follow-
ing statement in Limerick.cs:

Console.Title = "Limerick";

This title will then appear at the top of the console window. (However, if

you‘re compiling and running on the command line, the title will only be
changed for the duration the program is running, which is a very short
time. You might want to put a Console.ReadLine call at the bottom of the

program to actually see the new title take effect.)

As you can see, the syntax involved in getting and setting Title makes it

look like a field. But it‘s not that simple. Although properties certainly
resemble fields in use, properties are actually implemented with code.
There is actual code being executed when you obtain or set a property.

If you insert statements to access and change Title in the Limerick pro-
gram, and then you look at the executable with the IL Disassembler,

you‘ll see that Title has magically changed to the method calls get_Title

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_String.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 31

and set_Title. Although properties have the syntax of fields, they are
implemented in the Console class as methods.

The Console class also defines properties named BackgroundColor and
ForegroundColor. These two properties are also gettable and settable, but

the type of the properties is ConsoleColor. What on earth is ConsoleColor?
If you look a little further in the System namespace documention, you

will indeed see a page entitled ―ConsoleColor Enumeration.‖

ConsoleColor is an enumeration, which means that it has a collection of

members that have been associated with integers. In C#, enumerations
are strongly typed, and the enumeration member has to be prefaced with

the enumeration name. Here‘s how you set the Background and Fore-
ground colors in a program:

Console.BackgroundColor = ConsoleColor.Yellow;
Console.ForegroundColor = ConsoleColor.Blue;

Using enumerations in C# involves a little more typing than you may be
accustomed to, but there is very little room for confusion or blunders.

If you put those Background and Foreground statements at the top of

Limerick.cs, the results won‘t be very attractive because only the char-
acters displayed by the program will be rendered with these new colors.

After setting the colors, you probably want to clear the console screen
with a call to the static method:

Console.Clear();

The Limerick.cs file terminates every line with the characters ‗\r‘ and
‗\n‘, which denote a carriage return and line feed. A ‗\n‘ works by itself to

skip to the next line, but a ‗\r‘ by itself causes the next line to overwrite
the terminated line. As you might know, the next-line character varies by

the operating system platform, and if you really want to help your pro-
grams achieve some kind of platform independence, you might consider
using instead the static property Environment.NewLine. That‘s the static

NewLine property in the Environment class, which is also part of the
System namespace. This property is intended to be appropriate for the

particular environment on which the program is running.

The Environment.NewLine property is documented in C# syntax like this:

public static string NewLine { get; }

The type is string, but the property is get only. You cannot set the

Environment.NewLine property. Here‘s how you might use it in
Limerick.cs:

"There once was a coder named Otto" + Environment.NewLine +

That‘s not exactly a pleasant solution if you have to repeat it five times.
Instead, you might begin by defining a local variable just for the new-line

sequence:

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_String.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 32

string NL = Environment.NewLine;

Or you might define NL as a field if you need it in more than one method.
Either way you can then refer to NL at the end of each line:

"There once was a coder named Otto" + NL +

Much better!

C# also defines a char type for storing a single 16-bit Unicode character.

But strictly speaking, char is not a numeric type as it is in C and C++.
There is no such thing as a signed char or an unsigned char. A character

literal is defined with single quotation marks, and all the escape
sequences shown earlier in this chapter are valid:

char chBackSlash = '\\';

You can concatenate char variables with string variables or literal strings:

string strDirectory = "C:" + chBackSlash + "Windows";

You can also concatenate strings and integers. Here‘s an example:

Console.WriteLine("Schubert was " + 31 + " when he died.");

That will display as:

Schubert was 31 when he died.

What‘s going on behind the scenes here is actually a bit more involved

than you might imagine, but I don‘t want to give away the secret just yet.

As in C and C++, the basic integral data type in C# is the int. You can
declare and initialize an int like this:

int age = 31;

You can then concatenate that variable with the string:

Console.WriteLine("Schubert was " + age + " when he died.");

The result is the same as before. You might try performing a calculation
in the Console.WriteLine statement using the years in which Schubert
was born and died:

Console.WriteLine("Schubert was " + 1828 - 1797 + " when he died.");

This will not work. C# (like C and C++) evaluates additive operators like

plus and minus from left to right. The first plus sign causes the number
1828 to be concatenated to the string ―Schubert was ‖ and the result is

―Schubert was 1828‖. Then there‘s a minus sign, and that‘s a problem
because we now have a string minus a number.

A simple set of parentheses around the calculation will help:

Console.WriteLine("Schubert was " + (1828 – 1797) + " when he died.");

The subtraction is now performed first and the result is concatenated

with the strings. You can even start with the number, as in this variation
in Yoda syntax:

.NET Book Zero Charles Petzold

Version 1.1 Page 33

Console.WriteLine(31 + " when he died Schubert was.");

This will work as well:

Console.WriteLine(1828 – 1797 + " when he died Schubert was.");

As in C and C++, the standard floating-point data type in C# is the
double. Here‘s a declared and initialized double, and a statement that
displays the value:

double onethird = 1 / 3.0;
Console.WriteLine("One divided by three equals " + onethird);

As you‘ll note, the expression that‘s set to the variable onethird is not
written as 1 divided by 3. Like C and C++, C# interprets numeric literals

without decimal points as integers, and integer division is performed with
truncation, so the result would be zero. Expressing one of the two num-

bers as a floating-point literal causes the other to be converted to floating
point for the division. The WriteLine statement displays:

One divided by three equals 0.333333333333333

The Math class is the System namespace contains a collection of static
methods that mostly perform logarithmic and trigonometric calculations.

The Math class also contains two constant fields named PI and E, which
are of type double. Here‘s a statement using Math.PI:

Console.WriteLine("A circle's circumference divided by its diameter is "
 + Math.PI);

That statement displays:

A circle's circumference divided by its diameter is 3.14159265358979

I‘m sure that some programmers want to know: How does C# store
strings? Are strings terminated with zero characters as they are in C and

C++, or something else? And the answer is: Something else.

The string keyword is C# is actually an alias for a class in the System

namespace named String. Notice the difference in case: The C# keyword
is string but the class is String. In any C# program, you can replace the

word string with System.String and the program will be exactly the same:

System.String str = "Just a string";

If you have a using directive for the System namespace, you can replace
string with String and use the two forms interchangeably:

String str = "Another string";

What you cannot do is refer to the System.string class (notice the lower-

case string):

System.string str = "Not a workable string"; // Won’t work!

Because string is an alias for System.String, that translates as System.-
System.String, which does not exist.

.NET Book Zero Charles Petzold

Version 1.1 Page 34

Similarly, the char data type is an alias for the structure System.Char,
and the int data type is an alias for the structure System.Int32, and

double is an alias for System.Double. As Jeffrey Richter points out (CLR
via C#, page 119), it‘s as if every C# program contained using directives

like the following:

using string = System.String;
using char = System.Char;
using int = System.Int32;
using double = System.Double;

And so forth. (There are more basic data types than just these four.)

The more profound repercussion is this: Any string variable can also be
termed ―an object of type String‖ or ―an instance of the String class.‖ And

the String class itself provides many goodies. As you explore the docu-
mentation of the String class you‘ll discover many methods with quasi-

familiar names: Substring, LastIndexOf, ToLower, ToUpper, and many
more. All these methods perform various manipulations of strings.

The String class also has two important properties. The Length property
is defined like so:

public int Length { get; }

This property is of type int, and it is get-only. But the big difference

compared with the other properties you‘ve seen so far is the absence of
the static keyword. Length is not a static property of the String class.

Length is, instead, an instance property, which means that it applies to a
particular string variable rather than to the String class. In the big

scheme of things, instance properties (and instance methods) are much
more common than static properties and static methods—so much so
that properties and methods are instance by default.

You don‘t preface the Length property with the String class name. You
don‘t use the expression String.Length. What could that possibly mean?

Instead, you use the Length property with an instance of the String
class—what we have been casually calling a string variable:

string strMyString = "This is my string";
Console.WriteLine(strMyString.Length);

The expression strMyString.Length returns the length of the string, in
this case the number 17.

Length does not return information about the ice cream dispenser that is
the String class. Length measures the size of an individual sundae.

You can also apply the Length property to a string literal:

"This is a string literal".Length

That expression has a value of 24.

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Int32.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 35

The String class has two properties, and the other property seems to be
named Chars. Indeed, in some programming languages you might

actually use that property name. However, in the C# representation of
the Chars property declaration, you‘ll see the following:

public char this [int index] { get; }

The word Chars does not appear in this declaration. Instead, we see a

property that seems to have a name of this, and the property is of type
char. But this is actually a C# keyword, and in this context it‘s a rather

special syntax. This declaration defines an indexer for the String class,
which indicates that you can use square brackets to index a string

variable and obtain its characters. For example, the expression

strMyString[0]

returns the first character of the strMyString, which, as defined above is
the character ‗T‘.

The syntax is the same as indexing a C or C++ array (and actually the
same as indexing an array in C#). Indexing begins at 0, so the expression
strMyString[5] is the 6th character of the string, or ‗i'. You can also index

string literals:

"This is a string literal"[15]

That‘s the character ‗g‘. The index can range from 0 to one less than the
Length property of the string. Here‘s a little program that demonstrates

the Length and indexer properties.

StringProperties.cs
//---
// StringProperties.cs (c) 2006 by Charles Petzold
//---
using System;

class StringProperties
{
 static void Main()
 {
 Console.Write("Enter some text: ");
 string strEntered = Console.ReadLine();
 Console.WriteLine();
 Console.WriteLine("The text you entered has " + strEntered.Length +
 " characters");
 Console.WriteLine("The first character is " + strEntered[0]);
 Console.WriteLine("The last character is " +
 strEntered[strEntered.Length - 1]);
 Console.WriteLine();
 }
}

Of course, because you are an inquisitive person, you‘ll want to see what
happens when you press the Enter key without typing any text at all. The

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Char.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Int32.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 36

Console.ReadLine method returns an empty string in that case, the
Length property of an empty string is 0, but the first indexer, which is

strEntered[0], has a little problem because there‘s no character for it to
return. You‘ll probably get a dialog box informing you of a problem, and

then some text in the console window that begins like this:

Unhandled Exception: System.IndexOutOfRangeException: Index was outside
the bounds of the array.

The fully-qualified StringProperties.cs filename will also be displayed in

this message, and a line number where the problem occurred. That line
number might be exact if you‘re compiling in Debug mode, or it might

only refer to the method in which it occurred.

At any rate, the program gracefully terminated. It didn‘t hang, or display
a bunch of funny characters to the screen, or bring down Windows along

with it. Notice that the message says ―Unhandled Exception,‖ which
implies that there‘s a way for you, the programmer, to write code that
handles this problem without terminating the program. (You‘ll see how to

handle exceptions in Chapter 12.) IndexOutOfRangeException is a class
in the System namespace, and it‘s one of several classes for various types

of exceptions a program might encounter. I‘ll be using these class names
to refer to common exceptions.

The exception message indicates that the ―Index was outside the bounds
of the array,‖ and that might prompt you to ask: Is a string really just an
array of characters? Definitely not in the same sense that C and C++

strings are arrays of characters. The big difference is implied in the
definition of the indexer:

public char this [int index] { get; }

This property is get-only. Code like this is simply not allowed:

strMyString[5] = 'a'; // Can't do it!

Once a string is created, you can‘t change the individual characters. Nor
is there any method in the String class that can change the characters of

the string. The string is said to be immutable.

What does this mean? Well, what it certainly does not imply is a prohibit-

tion against setting a string variable to another string. This code is per-
fectly legal:

string str = "first string";
str = "second string";

But that‘s really the only way you can change the contents of a string
variable. You have to set the variable to a different string rather than

changing the characters of the existing string.

Because strings are immutable, certain operations common in C and C++
are no longer possible in C#. For example, Microsoft C and C++ include a

ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Char.htm
ms-help://MS.MSSDK.1033/MS.NETFX30SDK.1033/cpref7/html/T_System_Int32.htm

.NET Book Zero Charles Petzold

Version 1.1 Page 37

library function named _strupr that converts a string to uppercase. In a C
program, if pMyCString is a pointer to char or an array of char, you‘d use

_strupr like this:

_strupr(pMyCString);

The _strupr function takes each character in pMyCString and converts it
to upper-case and stores it back in the same place. The _strupr function

returns a pointer to the converted string, but it‘s the same pointer
passed to the function.

The equivalent method of the String class is ToUpper. But for a string
instance named strMyCSharpString you can‘t just call the method like so:

strMyCSharpString.ToUpper(); // Won’t do anything!

Syntactically, this statement is valid, but it has no effect on the strMy-
CSharpString variable. Strings are immutable and hence the characters
of strMyCSharpString can‘t be altered. The ToUpper method actually

creates a new string. You need to assign the return value of ToUpper to a
string variable:

string strMyUpperCaseString = strMyCSharpString.ToUpper();

Or you could assign the return value to the same string variable:

strMyCSharpString = strMyCSharpString.ToUpper();

In the second case, the original string (the one containing lowercase
letters) still exists, but since it‘s probably no longer referenced anywhere

in the program, it becomes eligible for garbage collection.

So, suppose you have a string defined like so

string str = "abcdifg";

and you want to change the fifth character to an ‗e‘. You know you can‘t

do it this way:

str[4] = 'e'; // Won't work!

The indexer is get-only. So how do you do it? There are a couple possible
approaches, which you can dig up by searching through the String

documentation. The method call

str = str.Replace('i', 'e');

returns a string where all the occurrences of ‗i‘ have been replaced with

‗e‘ . Notice the return value from Replace is assigned to the same
varaiable that went into the method. Alternatively, you can first call

Remove to create a new string with one or more characters removed at a
specified index with a specified length. For example, the call

str = str.Remove(4, 1);

removes one character at the fourth position (the ‗i‘). You can then call

Insert to insert a new string, which in this case is a single character:

.NET Book Zero Charles Petzold

Version 1.1 Page 38

str = str.Insert(4, "e");

Or you can do both jobs in one statement:

str = str.Remove(4, 1).Insert(4, "e");

Despite the use of a single string variable named str, the two method
calls in this last statement create two additional strings, and the quoted
―e‖ is yet another string.

Or you can patch together a new string from substrings:

str = str.Substring(0, 4) + "e" + str.Substring(5);

Now that I have you looking through the documentation for the String
class, you‘ll notice it includes a section labeled ―String Constructor.‖

Constructors serve to create and initialize objects. In use, a constructor
requires the keyword new followed by the class name itself and possible
arguments in parentheses. Here‘s a declaration of a string variable that

uses one of the constructors defined by the String class:

string strAtSigns = new string('@', 15);

You can use either the lowercase string keyword or the uppercase String
class when calling a constructor. This particular constructor is defined

with a char as the first parameter and an int as the second parameter. It
creates a string containing 15 occurrences of the @ character, which is

enough for a charm bracelet:

@@@@@@@@@@@@@@@

Many of the string constructors create strings based on pointers, but one
handy one creates a string from an array of characters. This constructor
suggests yet another approach to replacing a character in a particular

string. You can convert the string into a character array, set the
appropriate element of the array, and then construct a new string based

on the character array. In C#, array variables are declared by following
the type of the array with empty double brackets:

char[] buffer = str.ToCharArray();
buffer[4] = 'e';
str = new string(buffer);

That array syntax may seem a little strange to the C and C++
programmer, but I‘ll discuss it in detail in Chapter 10.

As I‘ve mentioned, just as string is an alias for the System.String class,
the char, int, and double keywords in C# are also aliases. But these are

not aliases for classes in the System namespace. Instead, they‘re aliases
for structures.

The difference between classes and structures will become more appar-
ent in later chapters. But in many ways classes and structures are

similar, and instead of saying ―this is my int variable,‖ you can instead
say ―this is an instance of the Int32 structure‖ or ―this is an object of type

.NET Book Zero Charles Petzold

Version 1.1 Page 39

Int32‖ or ―this is an Int32 object.‖ It makes the humble thing sound just
a little bit more important.

Although you won‘t see any constructors listed in the documentation for
the Int32 and Double structures, both structures have default parameter-

less constructors that return zero values of the object. So, instead of
initializing an int like this

int index = 0;

you can do it like this:

int index = new int();

Or this:

System.Int32 index = new int();

Or this:

int index = new System.Int32();

Or, if you have a using directive for the System namespace, like this:

Int32 index = new Int32();

Or any other combination. All those declarations are equivalent.
Beginning in .NET 2.0, you can also use the default keyword to obtain

the default value of an int:

int index = default(int);

As you saw in the documentation of the String class, there seems to be
lots of good reasons why the string data type is an alias for a class. But is

there any reason that the int and double types are aliases for the Int32
and Double structures?

Oh, yes. Both structures have instance methods named ToString that
convert the object to a string. In fact, every single class and structure in

the .NET Framework—including those that you will create yourself—has
an instance method named ToString. This is because the System.Object
class (also known by its C# alias object) defines a method named
ToString. The System.Object class is the grand matriarch of every .NET

class and structure, and they all inherit this wonderful ToString method,
and many classes and structures tailor ToString to their own require-

ments.

Consider the following code:

int i = 55;
string str = i.ToString();

The ToString method converts the int variable to a string, which in this

case is the string ―55‖. You can even apply ToString to a integer literal:

12345.ToString()

That ToString call returns the string ―12345‖.

.NET Book Zero Charles Petzold

Version 1.1 Page 40

And this is how the concatenation of string objects with non-string
objects works. If a string variable or literal is on either side of a plus sign,

and if a non-string is on the other side, then the non-string object is con-
verted to a string by a call to its ToString method. It works every time!

Earlier I showed how to use the static NewLine property from the
Environment class. The Environment class has some other goodies that

can give your program information about the machine on which it‘s
running. Here‘s a program that shows just a couple of these items.

ShowEnvironmentStuff.cs
//---
// ShowEnvironmentStuff.cs (c) 2006 by Charles Petzold
//---
using System;

class ShowEnvironmentStuff
{
 static void Main()
 {
 Console.WriteLine("My Documents is actually " +
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments));
 Console.WriteLine();

 int msec = Environment.TickCount;
 Console.WriteLine("Windows has been running for " +
 msec + " milliseconds");
 Console.WriteLine("\tor " + msec / 3600000.0 + " hours");
 Console.WriteLine();

 Console.WriteLine("You are running " + Environment.OSVersion);
 Console.WriteLine("\tand .NET version " + Environment.Version);
 Console.WriteLine();
 }
}

The program begins by obtaining the actual directory referred to as My
Documents. This is available through a static Environment.GetFolderPath
method, which returns a string. The argument is a member of the

SpecialFolder enumeration, but the SpecialFolder enumeration is actually
defined within the Environment class, which is why the lengthy member

name is Environment.SpecialFolder.MyDocuments.

The static Environment.TickCount property returns an int indicating the

the number of milliseconds that the current Windows session has been
running. One WriteLine call in the program displays this value directly

while the other divides it by 3600000.0 to get the floating-point value in
hours.

When I ran this program under Windows XP, the first two sections of the

program displayed the following information:

My Documents is actually C:\Documents and Settings\Charles\My Documents

.NET Book Zero Charles Petzold

Version 1.1 Page 41

Windows has been running for 16729593 milliseconds
 or 4.64710916666667 hours

When I ran the program under a Windows Vista partition, the first item
displayed as:

My Documents is actually H:\Users\Charles\Documents

The last section of the program displays two static properties named
Environment.OSVersion and Environment.Version. The Version property is

documented as returning an object of type Version, which is a class de-
fined in the System namespace. It may be a bit confusing that a property

named Version returns an object of type Version, but that naming con-
vention is quite common in .NET.

The Version class (also defined in the System namespace) has four
crucial int properties named Major, Minor, Build, and Revision. The

ToString method defined by the Version class nicely displays these four
numbers separated by periods, just as we‘ve come to expect version

numbers to be displayed.

The Environment.OSVersion property returns an object of type Operating-
System. The crucial properties of the OperatingSystem class are Platform

(which is a member of the PlatformID enumeration), Version (which is an
object of type Version), and ServicePack, which is a string. Again, the

ToString method nicely renders this information in a readable form, so
that the last section of the ShowEnvironmentStuff program displays the

information (when I ran it under Windows XP):

You are running Microsoft Windows NT 5.1.2600 Service Pack 2
 and .NET version 2.0.50727.42

Under Windows Vista, the program reported:

You are running Microsoft Windows NT 6.0.6000
 and .NET version 2.0.50727.312

If you want to be a little more explicit about the objects returned from the
OSVersion and Version properties, you can do this:

Version vers = Environment.Version;
OperatingSystem opsys = Environment.OSVersion;
Console.WriteLine("You are running " + opsys);
Console.WriteLine("\tand .NET version " + vers);

Here, vers is declared as an object of type Version, and opsys is declared
as an object of type OperatingSystem, which are the types of the objects

returned from Envionment.Version and Environment.OSVersion.

Learning about C# generally begins with the static Main method and

static methods of the Console class, but static methods and properties
are generally the exception rather than the rule. In general, a program

deals with instances of classes and structures.

.NET Book Zero Charles Petzold

Version 1.1 Page 42

The only reason Console is entirely static is because to any application,
there is only one Console. If an application could create multiple con-

soles, then the Console class would have a constructor that returned an
instance of the Console class, and WriteLine would be an instance

method. You‘d precede WriteLine with one of the instances of the Console
class to indicate on which console you want to display the text.

Environment, also, is a collection of static methods and properties be-
cause to any application, there is only one operating system environment

and machine on which it‘s running. (However, the properties of Environ-
ment return instances of other classes.)

In .NET 1.0, it was actually possible to create instances of the Console
and Environment classes using a new expression like this:

Console cons = new Console(); // Doesn't work any more.

But that no longer works. Both Console and Environment contain nothing

but static methods and properties so the class definitions themselves
also contain the static keyword:

public static class Console
{
 ...
}

Because you can‘t create an instance of the Console class, you can‘t call
the ToString method in Console because ToString is always an instance

method.

Although the Int32 and Double structures are primarily for working with

int, and double instances, these structures also have some static mem-
bers. In particular, these structures have static methods named Parse

that convert strings into numbers.

The static Int32.Parse method accepts a string argument and returns an
object of type Int32. The Parse method is pretty much the opposite of

ToString. As you know by now, ToString is an instance method because it
applies to a particular integer. You must have an integer—either a

variable or a literal or perhaps the return value of a method—to call the
ToString method of the Int32 struture:

int i = 275;
string str = i.ToString();

Int32.Parse is a static method. You use this method by specifying the
Int32 structure to the left of the method name. You don‘t need to have an

integer around to call Int32.Parse. The method creates an integer for you:

string str = "275";
int i = Int32.Parse(str);

Because int is an alias for System.Int32, you can actually call Parse like

this:

.NET Book Zero Charles Petzold

Version 1.1 Page 43

int i = int.Parse(str);

Although it‘s perfectly legal, it sure looks peculiar. I prefer using the
actual class or structure name when calling static methods.

The System.Double structure has a static method named Parse as well,

and the Parse methods in both structures have overloads that accept a
member of the NumberStyles enumeration to govern the type of input

Parse will accept.

Here‘s a program that uses Double.Parse with a static method from the

all-static Math class to calculate powers.

Exponentiation.cs
//---
// Exponentiation.cs (c) 2006 by Charles Petzold
//---
using System;

class Exponentiation
{
 static void Main()
 {
 Console.Write("Enter the base: ");
 double number = Double.Parse(Console.ReadLine());

 Console.Write("Enter the power: ");
 double power = Double.Parse(Console.ReadLine());

 Console.WriteLine(number + " to the " + power + " power equals " +
 Math.Pow(number, power));
 }
}

Notice that in both cases the argument to Double.Parse is a call to

Console.ReadLine, which returns a string that is then passed to the Parse
method.

If you type something in that Parse can‘t handle, you‘ll get a Format-
Exception. You can either trap that exception, or you can use an
alternative method named TryParse that doesn‘t raise an exception for

improper input. (I‘ll describe both approaches in Chapter 12.)

Some of the common classes and structures defined in the .NET Frame-
work define multiple versions of the ToString method. The Double
structure, for example, defines four different ToString methods:

string ToString()
string ToString(string format)
string ToString(IFormatProvider provider)
string ToString(string format, IFormatProvider provider)

The second version of the ToString method allows you to use a formatting
string that consists of a letter optionally followed by a number. For

example, if num is a variable of type double, then

.NET Book Zero Charles Petzold

Version 1.1 Page 44

num.ToString("F3");

displays num in ―fixed-point‖ style with three decimal places. The
following program demonstrates some of the options you have in
displaying numbers.

NumericFormatting.cs
//--
// NumericFormatting.cs (c) 2006 by Charles Petzold
//--
using System;

class NumericFormatting
{
 static void Main()
 {
 Console.WriteLine("Currency C3: " + Math.PI.ToString("C3"));
 Console.WriteLine("Exponential E3: " + Math.PI.ToString("E3"));
 Console.WriteLine("Fixed-Point F3: " + Math.PI.ToString("F3"));
 Console.WriteLine("General G3: " + Math.PI.ToString("G3"));
 Console.WriteLine("Number N3: " + Math.PI.ToString("N3"));
 Console.WriteLine("Percent P3: " + Math.PI.ToString("P3"));
 Console.WriteLine("Round-Trip R3: " + Math.PI.ToString("R3"));
 Console.WriteLine();
 Console.WriteLine("Fixed-Point F3: " + 12345678.9.ToString("F3"));
 Console.WriteLine("General G3: " + 12345678.9.ToString("G3"));
 Console.WriteLine("Number N3: " + 12345678.9.ToString("N3"));
 Console.WriteLine();
 Console.WriteLine("Decimal D3: " + 55.ToString("D3"));
 Console.WriteLine("General G3: " + 55.ToString("G3"));
 Console.WriteLine("Hexadecimal X3: " + 55.ToString("X3"));
 }
}

The first seven statements display π and the following results appear
when you run this program with your region set to the United States:

Currency C3: $3.142
Exponential E3: 3.142E+000
Fixed-Point F3: 3.142
General G3: 3.14
Number N3: 3.142
Percent P3: 314.159 %
Round-Trip R3: 3.1415926535897931

In many cases, the number you provide in the formatting string indicates
the number of decimal places. The exception is General formatting, in
which case the number indicates the total number of digits displayed.

General formatting will use either Exponential or Fixed-Point formatting,
depending which one is most economical for the particular number. If
you use the parameterless version of ToString, it is equivalent to ―G‖.

As you can see, the Round-Trip formatting ignores the number in the
formatting string, and creates a string that can be passed to Parse to get

the original number back.

.NET Book Zero Charles Petzold

Version 1.1 Page 45

The next three statements in the program show what happens with a
number with more digits to the left of the decimal point:

Fixed-Point F3: 12345678.900
General G3: 1.23E+07
Number N3: 12,345,678.900

In this case, General formatting uses the Exponential format because it‘s

more economical. The Number formatting string inserts commas as
thousands separators (or whatever is regionally appropriate).

Two of the formatting options—Decimal and Hexadecimal—are for use
only with integers. Both insert zeros to the left of the number if necessary
to make it as wide as the number you specify in the formatting string:

Decimal D3: 055
General G3: 55
Hexadecimal X3: 037

If you change the number following the D or X to 1, you‘ll probably be
happy to note that no actual digits are stripped from the result.

If you go into the Control Panel and invoke the Regional and Language

Options applet, you can change some settings—for example, the currency
symbol and the thousands separator—that affect how ToString displays

the number. By default, ToString uses the regional settings, but this
behavior may be undesirable in some cases. You might want to display
currency in dollars or euros regardless of the user‘s regional settings.

This option is made possible by the third and fourth overloads of the
ToString method, which have the following syntax:

string ToString(IFormatProvider provider)
string ToString(string format, IFormatProvider provider)

If you look in the documentation of the System namespace, you‘ll find
IFormatProvider is identified as an interface. (By convention, all inter-

faces in the .NET Framework begin with the capital letter I.) You‘ll also
see that IFormatProvider has one method defined, which is named

GetFormat.

Interfaces contain no code of their own. Somewhere within the source

code for the .NET Framework, IFormatProvider is probably defined in its
entirety like this:

public interface IFormatProvider
{
 object GetFormat(Type formatType);
}

What actually must be passed to the ToString method is an instance of a
class that implements the IFormatProvider interface, and by that it is

meant that the class contains a method named GetFormat defined in the

.NET Book Zero Charles Petzold

Version 1.1 Page 46

same way as the signature in IFormatProvider, but which has actual
code.

For the job of formatting numbers, the relevant class that implements
the IFormatProvider interface is named NumberFormatInfo, and it‘s

defined in the System.Globalization namespace. To refer to the Number-
FormatInfo class in your program, you‘ll either need to preface the class

name with System.Globalization, or provide a using directive for System.-
Globalization. (I‘ll assume the latter.)

To customize the formatting of numbers by ToString, you need an
instance of the NumberFormatInfo class. If you look at the properties of

this class, you‘ll see stuff like CurrencySymbol, CurrencyDecimal-
Separator, and PercentSymbol. All these properties are settable and

gettable. This means that you can create an object of type Number-
FormatInfo, set the properties to whatever you want, and then pass that

object to ToString to get the desired result.

You can create an object of type NumberFormatInfo using the parameter-
less constructor defined by the class:

NumberFormatInfo info = new NumberFormatInfo();

You can then set some of the properties like so:

info.CurrencySymbol = "\x20AC";
info.CurrencyPositivePattern = 3;
info.CurrencyNegativePattern = 8;

The Unicode character 0x20AC is the symbol for the Euro. If you look at
the documentation of CurrencyPositivePattern, you‘ll see that a value of 3
means that the currency symbol is to be displayed after the number and

separated by a space. A CurrencyNegativePattern of 8 means that the
symbol will appear in the same place for negative numbers, but a

negative sign will appear in front of the number.

There are other ways to get instances of the NumberFormatInfo class

without explicitly using the constructor. The NumberFormatInfo class has
two static methods named CurrentInfo and InvariantInfo that return
instances of the NumberFormatInfo class.

It might sound a little peculiar that static methods of a class return
instances of the class, but it‘s perfectly legitimate. Here‘s what the syntax

might look like:

NumberFormatInfo info = NumberFormatInfo.CurrentInfo;

CurrentInfo is a static property of the NumberFormatInfo class, so it must
be prefaced with the name of the class. It is get-only, and it returns an

object of type NumberFormatInfo, which you can then save in a variable
of type NumberFormatInfo. The code for the CurrentInfo property

obviously invokes the NumberFormatInfo constructor to create an

.NET Book Zero Charles Petzold

Version 1.1 Page 47

instance of the class. Then it sets a bunch of instance properties on the
object.

The static NumberFormatInfo.CurrentInfo property returns a Number-
FormatInfo object with settings that are applicable for your particular

culture as you‘ve indicated in the Control Panel.

Similarly, the static NumberFormatInfo.InvariantInfo property returns an

instance of NumberFormatInfo initialized with ―invariant‖ settings, that is,
settings that do not depend on any particular culture, and which will be
the same regardless of the machine on which the program is running.

The NumberFormatInfo constructor creates a NumberFormatInfo instance
initialized with invariant information. It is quite likely that the static

NumberFormatInfo.InvariantInfo property is implemented by a simple call
to the constructor.

If you want to call ToString with an object of type NumberFormatInfo, you
can simply pass NumberFormatInfo.InvariantInfo or NumberFormat-
Info.CurrentInfo directly to the ToString method. (If you use a simpler
form of ToString, NumberFormatInfo.CurrentInfo is used by default.)

The following program displays a number in a currency format with

NumberFormatInfo.InvarientInfo (which uses a currency symbol of ¤),
NumberFormatInfo.CurrentInfo (which will use the currency symbol you‘ve

indicated in the Control Panel), and a custom version that displays the
Euro symbol (which, unfortunately, does not render on the console and

shows up as a question mark).

CurrencyFormatting.cs
//---
// CurrencyFormatting.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Globalization;

class CurrencyFormatting
{
 static void Main()
 {
 double money = 1234567.89;

 Console.WriteLine("InvariantInfo: " +
 money.ToString("C", NumberFormatInfo.InvariantInfo));

 Console.WriteLine("CurrentInfo: " +
 money.ToString("C", NumberFormatInfo.CurrentInfo));

 NumberFormatInfo info = new NumberFormatInfo();
 info.CurrencySymbol = "\x20AC";
 info.CurrencyPositivePattern = 3;
 info.CurrencyNegativePattern = 8;

.NET Book Zero Charles Petzold

Version 1.1 Page 48

 Console.WriteLine("Custom Info: " + money.ToString("C", info));
 }
}

Notice the using directive for the System.Globalization namespace.

I know you really, really want to see the Euro symbol, so let‘s put this

basic logic into a small Windows Forms program. For this next project,
you‘ll need to add a reference of System.Windows.Forms.dll.

CurrencyFormattingMessageBox.cs
//---
// CurrencyFormattingMessageBox.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Globalization;
using System.Windows.Forms;

class CurrencyFormatting
{
 static void Main()
 {
 double money = 1234567.89;
 string strDisplay;

 strDisplay = "InvariantInfo: " +
 money.ToString("C", NumberFormatInfo.InvariantInfo) +
 Environment.NewLine;

 strDisplay += "CurrentInfo: " +
 money.ToString("C", NumberFormatInfo.CurrentInfo) +
 Environment.NewLine;

 NumberFormatInfo info = new NumberFormatInfo();
 info.CurrencySymbol = "\x20AC";
 info.CurrencyPositivePattern = 3;
 info.CurrencyNegativePattern = 8;

 strDisplay += "Custom Info: " + money.ToString("C", info);

 MessageBox.Show(strDisplay, "Currency Formatting");
 }
}

Notice the using directive for System.Windows.Forms. In this program,
the strDisplay variable appears three times on the left of assignment and

compound assignment statements, and becomes the first argument to
the MessageBox.Show static method.

ToString is certainly a powerful tool for formatting. But in general
practice a somewhat different approach is used that is very similar to the
C and C++ printf function. The first argument to Console.WriteLine is a

formatting string, and subsequent arguments are the items to be
displayed. For example:

.NET Book Zero Charles Petzold

Version 1.1 Page 49

Console.WriteLine("{0} times {1} equals {2}", A, B, A * B);

In the formatting string, the numbers surrounded by curly brackets are
placeholders. The numbers correspond to the subsequent arguments,
where 0 is the first of the subsequent arguments, 1 is the second, and so

forth. The placeholder numbers in the formatting string don‘t have to be
in numeric order:

Console.WriteLine("{2} equals {0} times {1}", A, B, A * B);

You can repeat a particular placeholder number:

Console.WriteLine("{0} times {0} equals {1}", A, A * A);

You can skip placeholder numbers. In the following case, the variables C,

D, and E are ignored and don‘t get displayed:

Console.WriteLine("{1} times {2} equals {4}", C, A, B, D, A * B, E);

The only restriction is that the number of subsequent arguments must
be greater than the highest placeholder number.

If you need to display curly braces within the formatting string, use a

pair of curly braces: {{ or }} will be interpreted as a displayable symbol.

To control the formatting of the individual arguments, you follow the
placeholder number with a colon and the same formatting string you

would pass to the ToString method:

Console.WriteLine("{0:N2} times {1:N2} equals {2:N4}", A, B, A * B);

Basically, this statement is equivalent to:

Console.WriteLine(A.ToString("N2") + " times " + B.ToString("N2") +
 " equals " + (A * B).ToString("N4"));

You can also control the width of the field allowed for the string returned

from ToString. You do this by following the placeholder number with a
comma and a field width in characters:

Console.WriteLine("{0,5:N2} times {1,5:N2} equals {2,10:N4}",
 A, B, A * B);

What you‘re indicating here is a minimum field width. The method won‘t
truncate the result of ToString. In this example, A and B will be displayed

in a field of at least 5 characters width, and the product with 10
characters width. The number is right justified in the field, and spaces

are used to pad to the left. For left justification, use a negative field
width:

Console.WriteLine("{0,-5:N2} times {1,-5:N2} equals {2,-10:N4}",
 A, B, A * B);

These field widths are useful for aligning numbers in columns when

displaying multiple rows.

As you‘ve seen, the ToString methods of the individual classes and

structures are responsible for the bulk of the formatting job. The rest of

.NET Book Zero Charles Petzold

Version 1.1 Page 50

it isn‘t really handled by Console.WriteLine. When you use a formatting
string, Console.WriteLine just hands the job over to another static

method named String.Format. If Console.WriteLine is the C# version of
printf, then String.Format is the C# version of sprintf.

So, even if you never write another console program for the rest of your
life, you probably will still make use of String.Format for formatting

objects for display.

.NET Book Zero Charles Petzold

Version 1.1 Page 51

Chapter 6. Primitive Data Types

As you‘ve seen C# supports data types of string, char, int, and double.

This chapter takes a more methodical approach to these and the other
primitive data types supported by C# and the CLR.

Integers

Like C and C++, C# supports integral data types named short, int, and
long. But almost immediately, the differences between C/C++ and C#

start to become apparent. The C and C++ standards impose minimum bit
widths for the three integral data types, but C# fixes them precisely. The

C# short is always 16 bits wide, the int is 32 bits wide, and the long is 64
bits wide.

The short, int, and long are signed integers stored in standard two‘s
complement format. The short can range in value from -32,768 through

32,767, the int from -2,147,483,648 through 2,147,483,647, and the
long from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

Within a method like Main, you can declare an int named i (for example)

with the declaration statement:

int i;

This statement essentially allocates 4 bytes of space on the stack to store
the value of i. However, at this point, i is uninitialized, and any attempt

to refer to its value will provoke the C# compiler to report a problem. For
example, the C# compiler won‘t allow this code:

int i;
Console.WriteLine(i);

After i is declared, you can assign it a value:

i = 545;

Or, you can initialize i in its declaration statement:

int i = 545;

In either case, the number 545 is an integer literal that is normally
assumed to be of type int, except that the C# compiler will bend the rules

a bit if you assign the literal to a short, for example:

short s = 545;

You can assign the value of an int to a long:

long l = i;

.NET Book Zero Charles Petzold

Version 1.1 Page 52

This is known as an implicit cast. The int is converted to a long without
difficulty. Similarly, you can assign a short to an int or a long without a

cast. However, going the other way would be a problem because the
value of the long might exceed the capability of the int, so an explicit cast

is required:

i = (int)l;

Although there‘s obviously no problem in this particular example, in the
general case the value of the long would be truncated to fit in an int.
Similarly, you need an explicit cast to assign a long to a short, or an int to
a short.

C# also supports unsigned integral data types, but the word ―unsigned‖
is not a keyword as it is in C and C++. The three unsigned integral data
types are named ushort, uint, and ulong. The ushort ranges in value from

0 through 65,535; the uint from 0 through 4,294,967,295, and the ulong
from 0 through 18,446,744,073,709,551,615.

You can assign a ushort to a uint or a ulong without an explicit cast, or a
uint to a ulong without an explicit cast because nothing bad can ever

happen. You can also assign a ushort to an int, or a uint to a long without
an explicit cast. Again, the recipient can accommodate all possible values

of the source. But explicit casts are required anywhere the value may not
survive. For example, setting an int to a uint, or a uint to an int always
requires an explicit cast.

Numeric literals are generally assumed to be of type int, except if the
number is too big for an int, in which case, the C# compiler assumes

(progressively) that it‘s actually a uint, long, or ulong. You can be more
specific by applying a suffix of U or u (for unsigned) or L or l (for long) or a

combination of U or u and L or l.

You can represent hexadecimal numbers by proceeding the digits with a

0x or 0X:

int hex = 0x4AbC;

You can‘t express octal or binary literals in C#.

The long and ulong types are 64-bits wide, the int and uint types are 32-
bit wide, and the short and ushort types are 16-bit wide. C# also sup-

ports two 8-bit integral types, but the naming convention is reversed. The
byte is an unsigned 8-bit type capable of storing values from 0 through

255. The sbyte is the signed 8-bit type capable of storing values from
-128 to 127.

Implicit casts are allowed for converting byte to short, ushort, int, uint,
long, and ulong; and from sbyte to short, int, and long.

A program can also declare constants:

const int a = 17;

.NET Book Zero Charles Petzold

Version 1.1 Page 53

A data type must follow the const keyword, and the constant must be
initialized in the declaration statement. You can declare a const either

locally to a method or as a field. If you declare a const as a field, do not
use the static keyword with const. Constants are implicitly static, that is,

they don‘t vary by instance. The Math.PI field is a const.

Constants are sometimes treated as variables that cannot be varied, but

they are actually quite different from variables. Constants do not occupy
storage during runtime. They are always evaluated at compile time and

substituted into code. For example, if the constant a has been defined as
shown above, the statement

int b = a + 18;

is equivalent to:

int b = 17 + 18;

The initialized value of a const must be available at compile time.

If a program divides an integer by zero, a DivideByZeroException will be

raised. If a program contains an expression that divides an integer by a
literal 0 or a const with a value of 0, the C# compiler is alert enough to

flag that as a compile error.

By default, no exception is raised when integer overflow or underflow

occurs. For example:

int i = 50000;
Console.WriteLine(i * i);

That statement will print the value -1794967296 (and if you don‘t know
why it‘s negative, you can refer to Chapter 13 of my book Code: The
Hidden Language of Computer Hardware and Software or Chapter 8 of
Programming in the Key of C#).

If you‘d prefer that your integer arithmetic is checked for overflow and
underflow—perhaps just during program development—you can set a

compiler switch. When compiling on the command line, use the switch:

/checked+

In Visual Studio, bring up Project Properties, select the Build tab, click
the Advanced button, and check the checkbox labeled ―Check for arith-
metic overflow/underflow‖. Now any overflow or underflow raises an

OverflowException.

You can also perform overflow/underflow checking on individual

expressions or groups of statement using the checked keyword. For
example, this statement performs checking on just one expression:

B = checked(5 * A);

If you have turned on overflow/underflow checking with the compiler
switch, you can turn it off for individual expressions with the unchecked

.NET Book Zero Charles Petzold

Version 1.1 Page 54

keyword. Perhaps you need to keep a particular expression unchecked
because you use overflow deliberately here:

B = unchecked(5 * A);

You can also perform overflow/underflow checking for a particular block

of statements:

checked
{
 A += 1000000;
 B = B * A;
}

Similarly, you can turn off checking for a particular block of statements.

Just keep in mind that the most efficient code is that in which overflow

and underflow are not checked during runtime.

Integers and the .NET Framework

The byte, sbyte, short, ushort, int, uint, long, and ulong keywords are
aliases for structures in the .NET Framework class library. For example,

if you look in the documentation of the System namespace, you‘ll find a
structure named Int32. This is the structure that corresponds to the

unsigned 32-bit int. You can alternatively define an int named i like this:

System.Int32 i;

Or, if you have a using directive for the System namespace, you can use
this:

Int32 i;

Anywhere you use int, you can alternatively use System.Int32 or (if the
using directive exists) Int32. Jeff Richter actually recommends that C#

programmers use the .NET structure names. (See CLR via C#, page 119.)
As you‘ll discover, you sometimes need to refer to types by the structure

name, and it helps if you‘ve become accustomed to those names to begin
with.

The following table shows the eight integral data types and their
corresponding structures in the .NET Framework:

C# Alias .NET Structure Description CLS Compliant?

sbyte System.SByte Signed 8-bit integer No

byte System.Byte Unsigned 8-bit integer Yes

short System.Int16 Signed 16-bit integer Yes

ushort System.UInt16 Unsigned 16-bit integer No

int System.Int32 Signed 32-bit integer Yes

uint System.UInt32 Unsigned 32-bit integer No

.NET Book Zero Charles Petzold

Version 1.1 Page 55

long System.Int64 Signed 64-bit integer Yes

ulong System.UInt64 Unsigned 64-bit integer No

In the last column I‘ve indicated if the particular data type is compliant

with the Common Language Specification (CLS). The CLS specifies a
minimum standard for programming languages used in conjunction with
.NET. The CLS does not require programming languages to implement

signed 8-bit integers, or unsigned 16, 32, or 64 bit integers. What this
means is that a particular programming language can be CLS compliant

without implementing these data types.

There is no reason why you shouldn‘t use these data types in your C#
programs. However, if you are writing code for a dynamic link library,

then you should certainly avoid these data types to define public fields,
or as parameters or return values from public methods, or as types of

public properties. Methods in the DLL should not have uint arguments or
return uint values because that would prohibit the method from being

used by a program written in a language that does not implement the
UInt32 data type.

Does defining these data types as structures in the .NET Framework offer

any benefits?

Yes. The ToString method defined in the Int32 structure is particularly

tailored for formatting integers, for example. Also, each of the structures
for the numeric data types defines public const fields named MinValue

and MaxValue. The Int16 structure defines:

public const short MinValue = -32768;
public const short MaxValue = 32767;

You can refer to these fields in your programs by prefacing them with the

Int16 structure name:

Console.WriteLine(Int16.MinValue);

If you didn‘t have a using directive for the System namespace, this state-
ment would have to be:

System.Console.WriteLine(System.Int16.MinValue);

You can use the fully-qualified name even if you have a using directive
for System namespace. You can also preface the fields with the short
alias:

Console.WriteLine(short.MinValue);

Boolean Data Types

C# defines a bool data type, which is an alias for the System.Boolean
structure. A bool variable can have one of two possible values, which are
equivalent to the C# keywords true and false.

.NET Book Zero Charles Petzold

Version 1.1 Page 56

One of the naming conventions that has emerged in the .NET Framework
is that Boolean methods and properties often begin with the word Is.

Local fields or variables might begin with a lower-case is, like so:

bool isGreatDay = true;

As you‘ll discover in the next chapter, several common C# operators
return bool values. These are the equality operators (== and !=) and the

relational operators (<, >, <=, and >=). You can use the logical operators
(&, |, and ^) and the conditional operators (&& and ||) with bool values.

The Boolean structure defines a ToString method that displays the words
―True‖ or ―False‖, and a Parse method that implements a case-insensitive

conversion of strings of ―true‖ or ―false‖ to bool values.

Character and String Data Type

Like C and C++, C# defines a data type named char, but strictly speak-
ing, char is not an integral data type in C#. Although you can easily

convert between char and integral data types, there is no such thing as a
signed char or an unsigned char.

The char data type in C# is an alias for the System.Char structure. A
program can specify a single literal character using single quotation
marks:

char ch = 'A';

Converting a char variable to an integer requires casting:

int i = (char) ch;

In C# the char stores one Unicode character, which requires 16 bits.

Character variables thus have numeric values from 0x0000 to 0xFFFF.

As with string literals, the backslash is an escape character. The

following declaration statement initializes the character variable to the
Greek capital omega (Ω):

char omega = '\x03A9';

Or, you can cast an integer to a char:

char omega = (char) 0x03A9;

As you know, in C or C++, you can use functions declared in the ctype.h
header file to determine whether a particular character is a letter, num-

ber, control character, or whatever. In C#, you use static methods de-
fined in the Char structure: IsControl, IsSeparator, IsWhiteSpace, Is-
Punctuation, IsSymbol, IsDigit, IsNumber, IsLetter, IsUpper, IsLower, Is-
LetterOrDigit, IsSurrogate. These methods come in two versions, one

which has a single parameter of type char, and the other which accepts a
string and an index. The call

Char.IsControl(str[index]);

.NET Book Zero Charles Petzold

Version 1.1 Page 57

is equivalent to:

Char.IsControl(str, index);

All these method return bool values.

The string data type is an alias for the System.String class. A string is a

consecutive collection of char objects. The Length property defined by the
String class indicates the number of characters in a string. An indexer

obtains individual characters. The String class defines a multitude of
methods for working with strings, which you can explore on your own.

Because strings are immutable, it is easy to write code that looks very
innocent but which is very inefficient. See Chapter 26 for problems and

solutions.

Floating Point

Like C and C++, C# supports floating point data types named float and

double that correspond to the single-precision and double-precision
specifications defined in ANSI/IEEI Std 754-1985, the IEEE Standard for
Binary Floating-Point Arithmetic.

double num1 = 576.34;
float num2 = 34.89f;

By default, the C# compiler will assume that any numeric literal with a
decimal point is a double. If you want it instead to be a float, you must
use an F or f suffix, as is shown in the second declaration statement. You

can use a D or d suffix to explicitly indicate a double. At least one digit
must be specified after the decimal point. You can use a capital or lower-

case E to indicate an exponent:

double num1 = 5.7634E2;
float num2 = 3489.0e-2f;

The float type is an alias for the System.Single structure, and the double

type is an alias for the System.Double structure. (Notice that the C# data
type is float but the structure is named Single.)

A float value consists of a 24-bit signed mantissa and an 8-bit signed
exponent. The precision is approximately seven decimal digits. Values

range from

-3.402823 × 10
38

to:

3.402823 × 10
38

The smallest possible float value greater than 0 is:

1.401298 × 10
-45

You can obtain these three values from the MinValue, MaxValue, and

Epsilon constant fields defined in the Single structure.

.NET Book Zero Charles Petzold

Version 1.1 Page 58

A double value consists of a 53-bit signed mantissa and an 11-bit signed
exponent. The precision is approximately 15 to 16 decimal digits. Values

range from

-1.79769313486232 × 10
308

to:

1.79769313486232 × 10
308

The smallest possible double value greater than 0 is:

4.9465645841247 × 10
-324

The MinValue, MaxValue, and Epsilon fields are also defined in the
Double structure.

Implicit casting is allowed from float to double, and from any integral
type to float or double. Explicit casting is required from double to float, or

from double or float to any integral type. In arithmetical expressions that
mix float and integral types, integers are converted to float for the calc-

ulation. If the expressions involve double, any integers or float values will
be converted to double.

Here‘s some code that divides a floating-point number by zero:

double d1 = 1;
double d2 = 0;
double d3 = d1 / d2;

If these were integers, a DivideByZeroException would be raised. But
these are IEEE floating-point numbers. An exception is not raised. Float-

ing-point operations never raise exceptions in C#. Instead, in this case
d3 takes on a special value. If you use Console.WriteLine to display d3, it

will display the word

Infinity

If you change the initialization of d1 to -1, Console.WriteLine will display:

-Infinity

In the IEEE standard, positive infinity and negative infinity are legitimate
values of floating-point numbers. You can even perform arithmetic on
infinite values. For example, the expression

1 / d3

equals 0.

If you change the initialization of d1 in the preceding code to 0, then d3
will equal a value known as Not a Number, which is abbreviated as NaN

and pronounced ―nan.‖ Here‘s how Console.WriteLine displays a NaN:

NaN

You can create a NaN by adding positive infinity to negative infinity or by
a number of other calculations.

.NET Book Zero Charles Petzold

Version 1.1 Page 59

Both the Single and Double structures have static methods named
IsInfinity, IsPositiveInfinity, IsNegativeInfinity, and IsNaN to determine

whether a particular float or double value is infinity or NaN. These
methods require a floating-point argument and return a bool. For

example,

Double.IsInfinity(d)

returns true if d is either positive infinity or negative infinity.

The Single and Double structures also have constant fields named

PositiveInfinity, NegativeInfinity, and NaN to represent these values.
These values correspond to specific bit patterns in the IEEE standard.

However, these bit patterns are not unique, so it is not recommended
that you use these fields for comparison operations. For example, even if
d is a NaN, the operation

d == Double.NaN

will return false if the bit pattern of d does not correspond exactly with
that of Double.NaN. Use the static methods for determining the status of
particular numbers:

Double.IsNaN(d)

Much confusion surrounds the floating-point remainder operation. The

C# remainder or modulus operator (%) is defined for all numeric types.
(In C, the modulus operator is not defined for float and double, and the

fmod function must be used instead.) Here‘s a C# statement using double
numbers with the remainder operator:

result = dividend % divisor;

The sign of result is the same as the sign of dividend, and result can be

calculated with the formula

result = dividend – n * divisor

where n is the largest possible integer less than or equal to divided /
divisor. For example, the expression

4.5 % 1.25

equals 0.75. (The expression 4.5 / 1.25 equals 3.6, so n equals 3. The

quantity 4.5 minus (3 times 1.25) equals 0.75.

The IEEE standard defines a remainder a little differently, where n is the
integer closest to dividend / divisor. You can obtain a remainder in

accordance with the IEEE standard using the static Math.IEEERemainder
method. The expression

Math.IEEERemainder(4.5, 1.25)

equals -0.5. That‘s because 4.5 / 1.25 equals 3.6, and the closest integer

to 3.6 is 4. When n equals 4, the quantity 4.5 minus (4 times 1.25)
equals -0.5.

.NET Book Zero Charles Petzold

Version 1.1 Page 60

Decimal Data Type

C# also defines a decimal data type that offers about 28 decimal digits of
precision. The decimal is useful for storing and calculating numbers with

a fixed number of decimal points, such as money and interest rates.

In my book Programming in the Key of C#, I deliberately covered decimal
before floating point. I think it‘s important for new programmers to use

decimal for most applications involving non-integral data types, particu-
larly when the calculations involve money. The C and C++ languages

were not developed in a tradition that valued adequate tools for financial
applications. The decimal is an attempt to correct that historical

deficiency.

The decimal data type is an alias for the System.Decimal structure. For
decimal more than any of the other numeric data types, that structure is

of vital importance because decimal is not supported by Common Inter-
mediate Language.

What does that mean? CIL supports integral types and the two floating
point types directly, but not the decimal type. When you write C# code to

multiply two double values, for example, the C# compiler generates inter-
mediate language to push the two values on the stack, followed by a CIL
mul instruction. At runtime, this intermediate language is converted into

machine code that uses the math coprocessor.

But there is no CIL mul instruction for decimal. Instead, decimal is

supported almost entirely through the System.Decimal structure. When
you write C# code to multiply two decimal numbers, the multiplication is

actually performed by the op_Multiply method defined by the Decimal
structure. (This method name refers to an overload of the multiplication

operator defined by the Decimal class. I discuss operator overloading in
Chapter 20.)

Although the CIL does not directly support the decimal data type, it is

nonetheless part of the Common Language Specification. A .NET
language must support the Decimal structure, but this support can be

fairly minimal. In C#, it amounts to little more than recognizing decimal
literals, which are denoted with an m or M suffix:

decimal m = 55.23m;

Leaving out the m will result in a compile error. The literal will be

assumed to be a double, and there are no implicit conversions between
the floating point types and decimal.

Calculations involving decimal cannot be controlled using the checked
and unchecked keywords or the related compiler switch. Calculations

that result in overflow or underflow always raise an OverflowException.

.NET Book Zero Charles Petzold

Version 1.1 Page 61

The decimal type uses 16 bytes (128 bits) to store each value, which is
twice as many bits as the double. The 128 bits break down into a 96-bit

integral part, a 1-bit sign, and a scaling factor that can range from 0
through 28. (Twenty-six bits are unused.) Mathematically, the scaling

factor is a negative power of 10 and indicates the number of decimal
places in the number.

Don‘t confuse the decimal type with a binary-coded decimal (BCD) type

found in some programming languages. A BCD type stores each decimal
digit using 4 bits. The decimal type stores the entire number in binary.

For example, a decimal equal to 12.34 is stored as the integer 0x4D2 (or
decimal 1,234) with a scaling factor of 2, which denotes a multiplication

by 10-2. A BCD encoding of 12.34 would store the number as 0x1234.

As long as a number has 28 significant decimal digits (or fewer) and 28
decimal places (or fewer), the decimal data type stores the number

exactly. This is not true with floating point! If you define a float equal to
12.34, it‘s essentially stored as the value 0xC570A4 (or 12,939,428)

divided by 0x100000 (or 1,048,576), which is only approximately 12.34.
Even if you define a double equal to 12.34, it‘s stored as the value

0x18AE147AE147AE (or 6,946,802,425,218,990) divided by
0x2000000000000 (or 562,949,953,421,312), which again only
approximately equals 12.34.

And that‘s why you should use decimal when you‘re performing calc-
ulations where you don‘t want pennies to mysteriously crop up and

disappear. The floating-point data types are great for scientific and
engineering applications but often undesirable for financial ones.

Implicit conversions are allowed from all the integer types to decimal, and

it‘s easy to see why. Explicit casts are required going the other way, and
a runtime OverflowException will result if the decimal number is too large

to fit in the destination integral type. Explicit casts are required from
either floating-point type to decimal because the exponents of floating-

point allow values unrepresentable by decimal. Explicit casts are also
required for conversions from decimal to either floating-point type

because decimal allows greater precision.

The decimal type also includes constructors that accept an integral or
floating-point data type. These are mostly for languages that don‘t

explicitly support decimal.

If you want to explore decimal a bit, you can make use of another

constructor that lets you put together a decimal from its constituent
parts:

decimal m = new decimal(low, middle, high, isNegative, scale);

The first three arguments are defined as int but are treated as if they

were unsigned integers. (If they were defined as unsigned integers, this

.NET Book Zero Charles Petzold

Version 1.1 Page 62

constructor wouldn‘t be CLS compliant.) The three 32-bit values become
the 96-bit integral part of the decimal. The isNegative parameter is a bool
indicating if the number is negative. The scale argument can range from
0 to 28 to indicate the number of decimal points.

The expression

new decimal(1234567, 0, 0, false, 5)

creates the decimal number 12.34567. The largest positive decimal
number is

new decimal(-1, -1, -1, false, 0)

or 79,228,162,514,264,337,593,543,950,335, which you can also obtain

from the Decimal.MaxValue field. The smallest decimal number closest to
0 is

new decimal(1, 0, 0, false, 28)

or 0.0000000000000000000000000001 or 1 × 10-28. If you divide this
number by 2 in a C# program, the result is 0.

It is also possible to obtain the bits used to store a decimal value using
the static GetBits method. This method returns an array of four integers.

To get the four int values that make up a decimal, you need to declare an
array of type int and call Decimal.GetBits with a decimal argument:

int[] A = Decimal.GetBits(m);

The first, second, and third elements of the array (that is, A[0], A[1], and

A[2]) are the low, medium, and high components of the 96-bit unsigned
integer.

The fourth element contains the sign and the scaling factor. Bits 0
through 15 are 0; bits 16 through 23 contains a scaling factor between 0
and 28; bits 24 through 30 are 0; and bit 31 is 0 for positive and 1 for

negative. In other words, if A[3] is negative, the decimal number is
negative. The scaling factor is:

(A[3] >> 16) & 0xFF

Almost everyone who has worked extensively with floating-point can

recall incidences in which a calculated number that should have been
4.55 (for example) is often stored as 4.549999 or 4.550001. The decimal
representation is much better behaved. Suppose m1 is defined like so:

decimal m1 = 12.34m;

Internally m1 has an integer part of 1234 and a scaling factor of 2.

Suppose m2 is defined like this:

decimal m2 = 56.789m;

The integer part is 56789 and the scaling factor is 3. Now add these two
numbers:

.NET Book Zero Charles Petzold

Version 1.1 Page 63

decimal m3 = m1 + m2;

Conceptually, the integer part of m1 is multiplied by 10 (to get 12340),
and the scaling factor is set to 3. Now the integer parts can be added
directly: 12340 plus 56789 equals 69129 with a scaling factor of 3. The

actual number is 69.129. Everything is exact.

Now multiply the two numbers:

decimal m4 = m1 * m2;

The two integral parts are multiplied (1234 times 56789 equals

70,776,626), and the scaling factors are added (2 plus 3 equals 5). The
actual numeric result is 700.77626. Again, the calculation is exact.

When dividing… well, division is messy no matter how you do it. But for

the most part, when using decimal, you can have much greater
confidence in the precision and accuracy of your results.

Math Class

The Math class in the System namespace consists entirely of a collection

of static methods and the two constant fields. The two fields of type
double are named PI and E. Math.PI is the ratio of the circumference of a
circle to its diameter, or 3.14159265358979. Math.E is the limit of

n

n










1
1

as n approaches infinity, or 2.71828182845905.

Most of the methods in the Math class are defined only for double values.

However, some methods are defined for integer and decimal values as
well. The Max and Min methods both accept two arguments of the same

numeric type and return the maximum or minimum, respectively.

The Abs and Sign methods are defined for floating-point types, decimal
types, and signed integer types. The Abs method returns the absolute
value of the argument. The Sign method returns an int: 1 if the argument

is positive, –1 if the argument is negative, and 0 if the argument is 0.

The Abs method is the only method of the Math class that can raise an

exception, and then only for integral arguments, and only for one
particular value of each integral type, namely the value stored in the
MinValue field. The method call:

short s = Math.Abs(Int16.MinValue);

raises an OverflowException because Int16.MinValue is –32,768 and

32,768 can‘t be represented by a short.

The BigMul and DivRem methods were introduced in .NET 2.0 and are

defined for integers. BigMul accepts two int arguments and returns a
long:

.NET Book Zero Charles Petzold

Version 1.1 Page 64

long l = Math.BigMul(i1, i1);

You can get the same result if you first cast one of the arguments to a
long:

long l = (long)i1 * i2;

The DivRem method is defined for both int and long. In both cases, it has
three arguments and one return value of the same type. The return value

is the integer division of the first two arguments. The third argument
receives the remainder. For example, if a, b, c, and d are all defined as int
(or all defined as long) then you call DivRem like this:

c = Math.DivRem(a, b, out d);

The a and b variables must be initialized before calling the method, but d
does not. The c variable receives the result of the integer division, and d

get the remainder. Notice the out keyword that indicates that d is being
passed by reference to the method and then set from the method. I‘ll

have more to say about out in Chapter 11. The DivRem method is
functionally identical to the code:

c = a / b;
d = a % b;

The Floor and Ceiling methods are defined for double arguments only.
Floor returns the largest whole number less than or equal to the

argument. Ceiling returns the smallest whole number greater than or
equal to the argument. The call

Math.Floor(3.5)

returns 3, and

Math.Ceiling(3.5)

returns 4. The same rules apply to negative numbers. The call

Math.Floor(-3.5)

returns –4, and

Math.Ceiling(-3.5)

returns –3.

The Floor method returns the nearest whole number in the direction of

negative infinity, and that‘s why it‘s sometimes also known as ―rounding
toward negative infinity‖; likewise, Ceiling is sometimes known as

―rounding toward positive infinity.‖

It‘s also possible to round toward 0, which is to obtain the nearest whole
number closest to 0. You round toward 0 by casting to an integer. The

expression

(int) 3.5

returns 3, and

.NET Book Zero Charles Petzold

Version 1.1 Page 65

(int) -3.5

returns –3. Rounding toward 0 is commonly known as ―truncation.‖

The Round method is defined for both double and decimal. The version
with a single argument returns the whole number nearest to the argu-

ment. If the argument to Round is midway between two whole numbers,
the return value is the nearest even number. For example, the call

Math.Round(4.5)

returns 4, and

Math.Round(5.5)

returns 6. Although the return value is always a whole number, the type

of the return value is the same as the type of the argument (double or
decimal).

If you prefer the convention where numbers ending in .5 always round
up, add 0.5 to the number you wish to round and truncate. Or, you can
use one of the new overloads of Round introduced in .NET 2.0 that have

an enumeration argument:

Math.Round(4.5, MidpointRounding.ToEven)

returns 4 but

Math.Round(4.5, MidpointRounding.AwayFromZero)

returns 5. These enumeration values only affect the result when the
number is midway between two integers.

You can optionally supply an integer to Round that indicates the number

of decimal places in the return value. For example,

Math.Round(5.285, 2)

returns 5.28. And in .NET 2.0 and later you can supply an integer and
an enumeration value. The call

Math.Round(5.285, 2, MidpointRounding.AwayFromZero)

returns 5.29.

Three methods of the Math class involve powers. The first is Pow:

Math.Pow(base, power)

The method returns:

 powerbase

The method returns NaN, NegativeInfinity, or PositiveInfinity in some

cases. See the documentation for details.

The expression

Math.Exp(power)

is equivalent to:

.NET Book Zero Charles Petzold

Version 1.1 Page 66

Math.Pow(Math.E, power)

and the expression

Math.Sqrt(value)

is equivalent to:

Math.Pow(value, 0.5)

The Math class has three methods that calculate logarithms. The

expression

Math.Log10(value)

is equivalent to

Math.Log(value, 10)

and

Math.Log(value)

is equivalent to

Math.Log(value, Math.E);

The three basic trigonometric functions Math.Sin, Math.Cos, and Math.-
Tan require that angles be specified in radians. There are 2π radians in

360 degrees. If angle is in degrees, call Math.Sin like this:

Math.Sin(Math.PI * angle / 180)

The Math.Sin and Math.Cos methods return values ranging from –1 to 1.
In theory, the Math.Tan method should return infinity at π/2 (90 de-

grees) and 3π/2 (270 degrees) but it returns very large values instead.

The inverse trigonometric functions return angles in radians. The fol-

lowing table shows the return values for proper ranges of arguments:

Method Argument Return Value

Math.Asin(value) –1 through 1 –π/2 through π/2

Math.Acos(value) –1 through 1 π through 0

Math.Atan(value) –∞ through ∞ –π/2 through π/2

Math.Atan(y, x) –∞ through ∞ –π through π

To convert the return value to degrees, multiply by 180 and divide by π.
The Asin and Acos methods return NaN if the argument is not in the

proper range. The Atan2 method uses the sign of the two arguments to
determine the quandrant of the angle:

.NET Book Zero Charles Petzold

Version 1.1 Page 67

y Argument x Argument Return Value

Positive Positive 0 through π/2

Positive Negative π/2 through π

Negative Negative –π through –π/2

Negative Positive –π/2 through 0

Less commonly used are the hyperbolic trigonometric functions Math.-
Sinh, Math.Cosh, and Math.Tanh. Angle arguments are in hyperbolic

radians.

.NET Book Zero Charles Petzold

Version 1.1 Page 68

Chapter 7. Operators and Expressions

The following table is so important that you might want to print out an

extra copy of this page:

Operator Precedence and Associativity

Category Operators Associativity

Primary (x) x.y f(x) a[x] x++ x-- new

typeof sizeof checked unchecked

Left to right

Unary + - ! ~ ++x --x (T)x Left to right

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < > <= >= is as Left to right

Equality == != Left to right

Logical AND & Left to right

Logical XOR ^ Left to right

Logical OR | Left to right

Conditional AND && Left to right

Conditional OR || Left to right

Conditional ?: Right to left

Assignment = *= /= %= += -=

<<= >>= &= ^= |= ??

Right to left

Veteran C programmers will recognize this as a variation of a table on
page 49 in the first edition of Brian Kernighan and Dennis Ritchie‘s The
C Programming Language (Prentice-Hall, 1978). The C# version of the

.NET Book Zero Charles Petzold

Version 1.1 Page 69

table appears in §7.2.1 of the C# Language Specification. The comma
operator in C and C++ is not supported in C#.

When working with C#, it is advantageous to think in terms of operators
and expressions rather than statements. Operators are generally symbols

or small words that cause changes to variables, or which use the values
of a variable or multiple variables to produce a single result. An
expression involves one or more operators. For example,

A + B

is an expression. It‘s not a statement, even if you put a semicolon after it.

(C# doesn‘t allow the addition operator to be used by itself as a statement
because the statement doesn‘t do anything.) The table shown above

indicates how the C# compiler evaluates complex expressions.

For example, if you mix a multiplicative operator and an additive
operator in the same statement, the multiplicative operator will be

evaluated first. In the statement

C = A + B * 5;

the multiplication occurs first and then the addition.

If two operators have the same precedence, then the order is governed by
the associativity. For example:

C = A / B * 5;

Both are multiplicative operators. The division occurs first, followed by

the multiplication. All associativity is left to right except for the
conditional and assignment operators.

If the default precedence and associativity is not what you want, you can

use parentheses to change it:

C = (A + B) * 5;

Now the addition occurs first. The pair of parentheses is considered an
operator, and it is the first operator listed in the Primary operators row.

Approaching C# in terms of expressions and operators is helpful in
understanding what‘s going on here:

Console.WriteLine(C = A + B);

Some languages won‘t let you do that because assignment is not con-
sidered an operator like the plus sign. (Visual Basic .NET, for example,

will interpret the equal sign as an equality operator.) In C#, the addition
is evaluated first. As you can see in the chart, Additive operators have
higher precedence than Assignment operators. The result of the addition

operation then becomes the right hand side of the assignment operation.
The equal sign sets the variable on the left equal to the value on the

right. Also—and this is crucial in the example—the assignment operation

.NET Book Zero Charles Petzold

Version 1.1 Page 70

has a result, and that result is the new value of the variable on the left.
That result is the value passed to the Console.WriteLine method.

Primary Operators

You‘ve already seen many of the operators in the first row of the table:

The (x) operator symbolizes parentheses, which can surround an
expression to change the order of precedence or associativity.

The x.y operator symbolizes the period, which you‘ve seen separate
namespace names, class and structure names, and method, field, and
property names.

The f(x) operator symbolizes method calls (where ‗f‘ stands for ―function,‖
of course).

The a[x] operator symbolizes array access and indexing, such as with

strings.

The x++ and x-- operators symbolize the post-increment and post-

decrement operators. The variable is incremented or decremented, but
only after the variable is used in an expression. For example,

int A = 55;
Console.WriteLine(A++);
Console.WriteLine(A);

The first Console.WriteLine displays 55 because that‘s the value before

the incrementation. The second Console.WriteLine displays 56.

You‘ve also seen the new operator, as well as checked and unchecked.
I‘ll discuss typeof in Chapter 19. I won‘t be discussing sizeof in this

book.

Unary Operators

These operators are called ―unary‖ because they have only one argument,
which always appears to the right of the operator. The + operator is

defined for all numeric types but normally does nothing. For example,
the expression

+A

is just A. However, the operator could be overridden by a class or
structure.

The result of the – operator is the negative of a number. (The operator
doesn‘t change the variable itself.)

The ! operator is logical negation and is defined only for bool. When
applied to a true value, the result is false, and when applied to false, the

result is true.

.NET Book Zero Charles Petzold

Version 1.1 Page 71

The ~ is the bitwise complement operator and is defined only for int, uint,
long, and ulong. The operator results in an integer of the same type in

which all the bits have been flipped from 0 to 1, and from 1 to 0.

The pre-increment and post-increment operators are symbolized by ++x

and --x. The variable is incremented or decremented, and that‘s also the
result of the operation.

The operator (T)x symbolizes casting. C# is much stricter than C with

regard to casting. If you need to convert from one data type to another
beyond what C# allows, the Convert class (defined in the System

namespace) provides many methods that probably do what you want.

Multiplicative and Arithmetic Operators

The multiplicative and arithmetic operators are defined for all numeric
data types. The addition operator is also defined for string. Unlike C and

C++, the remainder operator is defined for float and double, as I
discussed in the previous chapter.

Shift Operators

The shift operators shift an integer (on the left of the operator) by a
specified number of bits (the operand on the right). The << operator is a

left shift; the >> operator is a right shift.

The operand on the left must be an int, uint, long, or ulong. The operand

on the right must be an int. When shifting an int or uint, only the bottom
5 bits of the operand on the right are used; when shifting a long or ulong,

only the bottom 6 bits of the right operand are used.

When an int or long is shifted right, the shift is arithmetic. That is, the
vacated high-order bits are set to the sign bit.

Relational Operators

The first four relational operators, <, >, <=, and >= are defined for all

numeric types and return a bool value.

The two type-testing operators is and as will be discussed in Chapter 19.

Equality Operators

The two equality operators == and != are defined for all numeric types.

They return a bool value.

There are some special considerations for the equality operators, which I

discuss in Chapter 16. For now, you might be pleased to know that the
equality operators work with string objects. Two strings are considered
equal if they have the same length and corresponding characters. The

comparison is case-sensitive. Other types of comparisons are possible
with methods defined by the String class.

.NET Book Zero Charles Petzold

Version 1.1 Page 72

Logical Operators and Conditional Operators

I want to discuss the two AND and OR operators in some detail because
they can cause some confusion among C and C++ programmers.

The &, ^, and | operators are termed the logical AND, XOR, and OR. (In

C, these are called the bitwise operators.) In C# these operators are
defined for both integral data types and bool. For integral data types,

they function as bitwise operators, the same as in C. For example, the
expression:

0x03 | 0x05

evaluates as 0x07.

For bool data types, the logical operators evaluate to a bool result. The
result of the logical AND operator is true only if both operands are true.
The result of the logical XOR is true only if one operand is true and the

other is false. The result of the logical OR is true if either of the operands
is true.

In C, the && and || operators are known as logical operators. In C#,
they‘re termed conditional AND and OR, and they are defined only for

bool data types.

C programmers are accustomed to using the && and || operators in

expressions like this:

A != 0 && B > 5

C programmers also know that if the first expression evaluates as false
(that is, if A equal 0), then the second expression isn‘t evaluated. It‘s

important to know this because the second expression could involve an
assignment or a function call. Similarly, when you use the || operator,
the second expression isn‘t evaluated if the first expression is true.

In C# you use the && and || operators in the same way you use them in
C. These operators are called the conditional AND and OR because the

second operand is evaluated only if necessary.

In C#, you can use the & and | operators in the same way as && and ||,
as in this example:

A != 0 & B > 5

When you use the & and | operators in this way in C#, both expressions

are evaluated regardless of the outcome of the first expression.

The statement using & rather than && is certainly legal in C, and it

works the same way as in C#, but most C programmers would probably
write such a statement only in error. The statement looks wrong to many
C programmers because they‘ve trained themselves to treat the & as the

bitwise AND and the && as the logical AND. But in C the result of a
relational or logical expression is an int that has a value of 1 if the

.NET Book Zero Charles Petzold

Version 1.1 Page 73

expression is true and 0 otherwise. That‘s why the bitwise AND operation
works here.

A C programmer might make the original statement involving the &&
operator a little more concise by writing it like so:

A && B >= 5

This works fine in C because C treats any nonzero expression as being

true. In C#, however, this statement is illegal because the && operator is
defined only for bool data types.

Where the C programmer gets into big trouble is using the bitwise AND
operator in the shortened form of the expression:

A & B >= 5

If B equals 7, then the expression on the right is evalulated as the value
1. If A is equal to 1 or 3 or any odd number, then the bitwise AND

operation yields 1 and the total expression evaluates as true. If A is 0 or 2
or any even number, then the bitwise AND operation yields 0 and the

total expression evalulates as false. It‘s likely that none of these results
are what the programmer intended, and this is precisely why the C

programmer has such a distressed reaction to seeing bitwise AND and
OR operators in logical expressions. (In C# this statement is illegal
because integers and bool values can‘t be mixed in the logical AND, XOR,

and OR statements.)

Suppose you have an integer variable named year and you wish to

calculate a bool named isLeapYear. Leap years are generally those years
divisible by 4, except that years divisible by 100 are not leap years,

except if the year is also divisible by 400. You could do it this way:

bool isLeapYear = year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);

The first expression to be evaluated is:

year % 4 == 0

That expression will be true only if year is equally divisible by 4. The

expression

year & 3 == 0

would also do the job. The single ampersand is a bitwise AND in this
expression, and the result is 0 only if year is equally divisible by 4.

Either way, three-quarters of all years are eliminated immediately.
Because the next operator is a conditional AND, the rest of the

expression doesn‘t even get evaluated for three-quarters of all years. The
remainder of the expression is enclosed in parentheses:

(year % 100 != 0 || year % 400 == 0)

This expression is evaluated only if year is divisible by 4. It is intended to
eliminate those years divisible by 100 but not divisible by 400. This

.NET Book Zero Charles Petzold

Version 1.1 Page 74

expression is true if year is divisible by 400, or if year is not divisible by
100.

Conditional Operator

The conditional operator, which is symbolized by ?: in the table, is the

only ternary operator, which means it has three operands:

A ? B : C

The expression A must resolve to a bool. The result of the operation is B
if A is true, and C if A is false.

The use of this operator is customarily restricted to special occasions,
such as this code that appends an ‗s‘ to some text only if the value being

displayed is not equal to 1:

Console.WriteLine("Please deposit {0} dollar{1}.",
 dollars, dollars == 1 ? '' : 's');

Assignment Operators

Assignment is a binary operation, and the result of an assignment
expression is the value being assigned. Assignment is evaluated right to
left, making possible statements like this one:

A = B = 3;

B is assigned the value 3, and that is also the result of the assignment

expression. That result is then assigned to A.

Like C and C++, C# also supports the popular compound assignment

operators for addition, subtraction, multiply, divide, remainder, shift,
and AND, OR, and XOR in both their bitwise and logical interpretations.

The final operator listed in the table is ??, called the null coalescing
operator, which I‘ll describe in Chapter 27.

.NET Book Zero Charles Petzold

Version 1.1 Page 75

Chapter 8. Selection and Iteration

C# supports the same selection, iteration, and flow control statements

used in C and C++, but generally with some restrictions. These
restrictions are not severe and generally are intended to help you avoid
common coding bugs. In this chapter I‘ll discuss statements built around

the if, else, switch, case, default, do, while, for, foreach, in, break,
continue, and goto keywords.

Selection Statements

The basic selection statement involves the if and else keywords. The

keyword if must be followed by a Boolean expression in parentheses. The
statement that follows is executed if the Boolean expression resolves to

true:

if (a < 5)
 b += 27;

The requirement that the parentheses contain a Boolean expression

eliminates a whole class of common C bugs. Almost every C and C++
programmer has committed the common pitfall of mistakenly using an
assignment as the test expression when a comparison was intended:

if (a = 5)

The C# compiler flags this statement as an error, and you‘ll probably be

thankful it does.

Of course, no compiler can offer full protection against programmer
sleepiness. In one early C# program I wrote, I defined a bool variable

named trigger, but instead of writing the statement

if (trigger)

for some reason I wanted to be a little more explicit and wanted to type
this:

if (trigger == true)

Instead, I typed this instead:

if (trigger = true)

If trigger is defined as a bool this is a perfectly valid statement in C# but

obviously didn‘t do what I wanted.

If more than one statement should be executed, you can group them as a

block of statements in curly brackets:

.NET Book Zero Charles Petzold

Version 1.1 Page 76

if (a < 5)
{
 b += 27;
 c = 0;
}

Some programmers prefer putting the first curly bracket at the end of the
line containing the if keyword; that‘s allowed, of course.

The if statement can include an else clause:

if (a < 5)
 b += 27;
else
 b -= 7;

Even if the if or else clause is followed by single statements, some
programmers prefer enclosing the single statement in curly brackets.

if (a < 5)
{
 b += 27;
}
else
{
 b -= 7;
}

You can nest if statements, and it‘s often common that an else clause
consists of nothing but another entire if statement:

if (a < 5)
{
 …
}
else
{
 if (a > 5)
 {
 …
 }
 else
 {
 …
 }
}

The statements in the second else clause are intended to be executed if a
equals 5. Because the if statement inside the first else clause is a single

statement, the curly brackets can be removed and the second if keyword
can be moved to the same line as the first else, as shown in this common
form:

if (a < 5)
{
 …
}

.NET Book Zero Charles Petzold

Version 1.1 Page 77

else if (a > 5)
{
 …
}
else
{
 …
}

The curly brackets and the statements within the curly brackets are
called a block. (See the C# Language Specification, §8.2) You can declare
new variables within the block, but they are only visible within the block

and all nested blocks.

You can‘t declare a variable with the same name as one already declared

in a parent block, for example:

int A;
...
{
 int A; // Not allowed!
 ...
}

The error message on the second declaration is: ―A local variable named

‗A‘ cannot be declared in this scope because it would give a different
meaning to ‗A‘, which is already used in a ‗parent or current‘ scope to

denote something else.‖ Again, this restriction helps avoid common bugs.

However, declaring variables with the same name in sibling blocks is
allowed:

{
 int A;
 ...
}
...
{
 int A; // No problem!
 ...
}

The switch and case construction in C# has a restriction not present in
C. In C and C++ you can do this:

switch(a)
{
case 3:
 b = 7;
 // Fall through isn’t allowed in C#
case 4:
 c = 3;
 break;

.NET Book Zero Charles Petzold

Version 1.1 Page 78

default:
 b = 2;
 c = 4;
 break;
}

In C or C++, in the case where a is equal to 3, one statement is executed
and then execution falls through to the case where a is equal to 4. That

may be what you intended, or you may have forgotten to type in a break
statement. To help you avoid bugs like that, the C# compiler will report

an error. C# allows a case to fall through to the next case only when the
case contains no statements. This is allowed in C#:

switch (a)
{
case 3:
case 4:
 b = 7;
 c = 3;
 break;

default:
 b = 2;
 c = 4;
 break;
}

To compensate for the restriction against fall-through, C# allows you to
use a goto statement at the end of a case to branch to another case. This

is a legal C# implemention of the illegal switch block shown earlier:

switch(a)
{
case 3:
 b = 7;
 goto case 4;

case 4:
 c = 3;
 break;

default:
 b = 2;
 c = 4;
 break;
}

You don‘t need the final break at the end of a case if the goto is there
instead. You can also branch to the default case:

switch(a)
{
case 1:
 b = 2;
 goto case 3;

.NET Book Zero Charles Petzold

Version 1.1 Page 79

case 2:
 c = 7;
 goto default;

case 3:
 c = 5;
 break;

default:
 b = 2;
 goto case 1;
}

The expression in the switch statement must resolve to any integer type,
char, string, or an enumeration, and must match the type in the case

labels.

You can indeed use a string variable in the switch statement and

compare it to literal strings in the case statements:

switch (strCity)
{
case "Boston":
 …
 break;

case "New York":
 …
 break;

case "San Francisco":
 …
 break;

default:
 …
 break;
}

Of course, this is exactly the type of thing that causes performance-
obsessed C and C++ programmers to cringe. All those string comparisons
simply cannot be very efficient. In fact, because of a technique known as

string interning (which involves a table of all the unique strings used in a
program), it‘s a lot faster than you might think.

Iteration Statements

C# also supports the while statement for repeating a group of statements

while a condition is true. You can test a conditional at the top of a block

while (a < 5)
{
 …
}

.NET Book Zero Charles Petzold

Version 1.1 Page 80

or at the bottom of a block:

do
{
 …
}
while (a < 5);

As with the if statement, the expression in parentheses must resolve to a

bool. In the second example, the block is executed at least once
regardless of the value of a.

The while or do block can contain a break statement, in which case
execution continues with the first statement after the while or do block.

The block can also contain a continue statement, which skips the
remainder of the statements and goes back to the top.

The for statement looks the same as in C and C++:

for (i = 0; i < 100; i++)
{
 …
}

Within the parentheses, the first part is an initializer that‘s executed

before anything in the loop. The second part is a Boolean expression. The
contents of the block are executed only if that expression is true. The last

part is executed at the end of the block. If A, B, and C are expressions,
the statement

for (A; B; C)
{
 …
}

is roughly equivalent to:

A;
while (B)
{
 …
 C;
}

I say ―roughly‖ because the for block might contain a continue statement
to skip the rest of the block and start with the next iteration. However,
the C expression will still be executed in that case, whereas it would not

in the while statement. The for block can contain a break statement to
exit the block.

As in C++, it‘s very common for C# programmers to define the iteration
variable right in the for statement:

.NET Book Zero Charles Petzold

Version 1.1 Page 81

for (float a = 0; a < 10.5f; a += 0.1f)
{
 …
}

The variable a is only valid within the for statement.

A handy addition to the iteration statements that C# inherited from C
and C++ is the foreach statement, which C# picked up from Visual Basic.

I‘ll show you some examples of foreach in the Chapter 10, which
discusses arrays. The foreach statement also works with other types of

collections, and with strings. Suppose you wanted to display all the
characters of a string named str, each on a separate line. With a for loop
the code looks like this:

for (int i = 0; i < str.Length; i++)
 Console.WriteLine(str[i]);

The foreach statement is considerably simpler:

foreach (char ch in str)
 Console.WriteLine(ch);

The parentheses consist of the definition of a variable named ch of type
char; this variable must match the type of the elements in the array or
collection. This is followed by the keyword in followed by the variable

containing the elements. You can use break and continue statements
within a foreach block.

Within the foreach block, the iteration variable is read-only. This is
rather obvious in the case of strings (because strings are enumerable

anyway) but in Chapter 10 you‘ll see that you cannot use the foreach
statement to initialize the elements of arrays.

The foreach statement requires a collection that supports a particular
method, as laboriously described in the C# Language Specification,

§8.8.4. In a practical sense, it can be said that the foreach statement
works with collections that implement the IEnumerable interface.

Jump Statements

The C# Language Specification, §8.9 defines the category of jump

statements as including break, continue, and return. I‘ll discuss return in
more detail in Chapter 11. This category also includes throw, which I‘ll

describe in Chapter 12, and finally goto.

You‘ve already seen how to use the goto in a switch statement. You can

also use goto to branch to a label. A label is defined with an identifier
followed by a colon:

NowhereElseToGo:

You can branch to the statement at that label with the statement

goto NowhereElseToGo;

.NET Book Zero Charles Petzold

Version 1.1 Page 82

Labels have scopes just like variables, and the label must be in the same
block or a parent block as the goto statement. In other words, you can‘t

jump into the middle of a block. You can jump out of a block, but not
into a block.

.NET Book Zero Charles Petzold

Version 1.1 Page 83

Chapter 9. The Stack and the Heap

We program in high-level languages for several reasons. Perhaps we

prefer that the code we write be compilable for multiple processors or
platforms. Perhaps we prefer block structure rather than jumps. And
perhaps we prefer solving problems strictly through an abstract quasi-

mathematical algorithmic language without taking machine architecture
into account.

In real life, however, it is rarely possible to design an efficient program-

ming language or programming interface that lets the programmer
remain entirely ignorant of machine or system architecture.

Such is certainly the case with C#. C# doesn‘t require the programmer to
mess around with pointers, but that doesn‘t mean that pointers can be
entirely banished from the programmer‘s mind. In fact, a very important

aspect of C# involves the different way in which instances of classes and
instances of structures are stored in memory. This difference is summed

up in the following statement:

Classes are reference types; structures are value types.

If programming languages had mantras, that would be the C# mantra.

As you probably know, one common form of memory storage is the stack.
In very simple computer architectures—CP/M, for example, or a .com

executable running under MS-DOS—the program code itself sits at the
bottom of a 64K block of memory, and the stack pointer is initially set to
the very top of the memory block. The assembly language PUSH

instruction decrements the stack pointer and places data at the location
addressed by the stack pointer. The POP instruction retrieves an item
from the stack and increments the stack pointer. The stack also comes

into play when a CALL instruction executes. A pointer to the next
instruction is pushed on the stack so that a RET instruction can pop the

instruction pointer off the stack and resume execution at the instruction
following the CALL.

If items A, B, and C are pushed on the stack in that order, then they are

popped from the stack in the order C, B, and A. The stack is thus known
as a last-in-first-out (LIFO) memory storage. An LIFO storage mechanism

is necessary to implement nested function calls. Each function can also
use the stack for storing local variables without interfering with other
functions. Because the stack traditionally starts at the high end of

memory, it can arbitrarily grow in size. The only problem occurs when
the stack gets so big it collides with program code.

.NET Book Zero Charles Petzold

Version 1.1 Page 84

In today‘s environments, the word ―stack‖ is used to refer to any LIFO
memory storage, and stacks can pretty much grow as large as they want

without getting entangled with program code. Stacks don‘t have to grow
from the top of memory, although they are often still envisioned that way.

Every thread of execution running under Windows has its own stack. The
stack is used for storing return addresses during function calls, for
passing arguments to function calls, and for storing local variables in

each function.

C# is similar. Consider a Main method in a C# program that declares two

int variables, a long and a string:

static void Main()
{
 int A, B;
 long C;
 string D;
 ...
}

When a method begins execution, memory on the stack is reserved to
store all variables declared in the method, and the memory for these

variables is freed when the method reaches its end. In this example, the
A and B variables both require 4 bytes of storage on the stack, and the C

variable requires 8 bytes. But now we have a problem. Exactly how many
bytes are needed to store a string?

It depends. Strings can be long and strings can be short, and it is simply
not possible to anticipate exactly how much memory is required for a
particular string, particular when the program can have statements like

this:

D = Console.ReadLine();

For this reason, the string itself is not stored on the stack. Instead, as
the program is running, the memory for the string is allocated from an
area known as the heap, and more specifically, in a local heap that is

private to the process. The heap is a general-purpose area of storage
organized so that chunks of memory of any size can be allocated and

freed at random during program execution. (Even nicer is a heap with
two levels of indirection that can be compacted if it becomes excessively
fragmented.)

Every program running under Windows has its own local heap; the heap
is shared among all threads in the program. (The stack and heap are also

different in regard to prepositions: We say that something is stored on
the stack but in the heap.)

In this example, the string itself is stored in the heap. However, the string
variable itself must be stored on the stack. What‘s actually stored on the
stack is a reference to the location of the string in the heap:

.NET Book Zero Charles Petzold

Version 1.1 Page 85

The string can be as small or as large as it needs to be, but the space on

the stack required for the reference remains the same.

What is this reference exactly? In the C# documentation it‘s often

referred to in a rather vague way, but it‘s probably something very close
to a memory address, and thus not very dissimilar from a traditional
pointer. However, there are major differences between references and

pointers. The reference is managed, and the memory it references is
known as the managed heap. The program can‘t manipulate or perform

any arithmetic on this reference. And, most importantly, if a memory
block allocated from the heap no longer has any references pointing to it,
that memory block becomes eligible for garbage collection.

Here‘s that C# mantra again:

Classes are reference types; structures are value types.

Structures are value types. We‘ve already encountered several
structures. All the numeric types in C# are aliases for structures in the
.NET Framework. The C# value types include sbyte, byte, short, ushort,
int, uint, long, ulong, float, double, decimal, char, and bool. When you
declare variables of these types, the actual numeric values are stored on

the stack.

Classes are reference types. The string type is an alias for the System.-
String class. It‘s a class. A reference type is stored on the stack as a
reference to an area of memory allocated from the heap.

Classes are reference types; structures are value types.

This difference was established for purposes of efficiency. Heap alloca-
tions take time, particularly when there‘s no more memory in the heap,

and the heap manager needs to compact the heap or begin garbage
collection. It makes no sense to store something as small as an int in the
heap when you‘ll probably need as much memory on the stack to store

587

807,234

-435

A

B

C

D

To be, or not to be, that is the question…

.NET Book Zero Charles Petzold

Version 1.1 Page 86

the reference as to store the int itself. The stack lets an int value be
stored quickly and retrieved quickly.

But the stack is not appropriate for objects that might vary in size, such
as string variables. The stack is certainly not appropriate for arrays,

which I‘ll cover in the next chapter. And the stack is not quite suited for
some aspects of object-oriented programming. It is often convenient to
refer to an instance of a particular class as an instance of an ancestor

class. This works best when the object is actually a reference to memory
in the heap rather than an area on the stack.

It‘s possible for a string literal to consist of two quote signs with no
characters between them:

D = "";

A string with no characters is referred to as an empty string. Even
though the string has no characters, memory is still allocated from the

heap to store information about the string, including the fact that it has
no characters. The Length property would reveal this fact: The expression

D.Length would equal 0.

If D were first assigned a return value from Console.ReadLine (as shown

in the code earlier in this chapter) and then assigned an empty string,
what happens to the memory allocated from the heap for the original
string? That string is still in the heap, but there‘s no longer any reference

to it, which means it‘s taking up unnecessary space that could be used
for something else. It becomes eligible for garbage collection. This

memory will not be freed immediately, but sometime in the future as the
program is running, and particularly if memory gets scarce, the
unreferenced memory in the heap will be freed and made available for

future allocations.

You can also assign D a special value, which is the keyword null:

D = null;

The keyword null essentially means ―no reference.‖ Instead of storing a

reference to something in the heap, the variable D is now storing a zero
value. A string variable that does not reference any heap memory is

called a null string. If you tried to determine the length of such a string
using D.Length, you‘d raise a NullReferenceException. There is nothing to
determine the length of.

You can use null with equality and inequality operators. If D is a null
string, then then the expression

D == null

is true.

The code shown at the beginning of this chapter declared a string
variable without setting it to anything:

.NET Book Zero Charles Petzold

Version 1.1 Page 87

string D;

In this case, space has been reserved on the stack for the variable D, but
it is considered to be uninitialized. It doesn‘t even equal null at this point.

The null string and the empty string may initially seem pretty similar but
you can see now that they‘re quite different. When a string variable
equals null, the value stored on the stack is 0, which doesn‘t reference

any memory in the heap. When a string variable equals the empty string,
memory has been allocated from the heap to store the string, but the

string is 0 characters in length.

You cannot set a value type (such as an int or a double) to null. Null

values only make sense for reference types. (However, C# 2.0 lets you
define ―nullable‖ value types, as I‘ll discuss in Chapter 28.)

.NET Book Zero Charles Petzold

Version 1.1 Page 88

Chapter 10. Arrays

Arrays are ordered collections of objects of the same type. Each object in

the array is referred to as an element of the array. A particular element is
associated with an index of the array, which is an integer ranging from
zero to one less than the size of the array. (In other words, C# has zero-

based array indexing.)

C# lets you define an array of any type. The simplest array declaration is

a one-dimensional array. This code defines A to be an array of type int:

int[] A;

In an array declaration statement, the square brackets follow the element
type, and they must be empty. A is a reference and space on the stack is
reserved for storing A. However, at this point A is uninitialized. Because

A is a reference, you can set it to null:

A = null;

Now A is no longer uninitialized, but no memory has been allocated for
storing the elements of the array. Allocating memory for the array

requires a new expression, which looks like this:

A = new int[100];

Another set of square brackets appear, but now they contain the desired
number of elements in the array. The new expression here allocates

sufficient memory in the managed heap for 100 32-bit integers and
returns a reference to that memory block, which is then stored in A.

You can declare the array variable and initialize it in the same statement:

int[] A = new int[100];

Memory allocated from the heap is always initialized to zero. Thus, all the
elements of the array have an initialized value of zero.

You can reference one of the elements in the array using the array name

and an index in square brackets:

Console.WriteLine(A[55]);

Because all the array elements have been initialized to zero, this
statement will display the value zero. If you use a negative index, or an
index equal to or greater than the number of elements in the array, you‘ll

raise an IndexOutOfRangeException.

You can fill the elements of an array with whatever means is convenient.

A for loop is common:

.NET Book Zero Charles Petzold

Version 1.1 Page 89

for (int i = 0; i < 100; i++)
 A[i] = i * i;

Any array is implicitly an object of type System.Array, and you can use

properties and methods defined by the Array class with arrays. Perhaps
the most important property of the Array class is Length, which indicates

the number of elements in the array. Here‘s a more generalized way to fill
an integer array with squares:

for (int i = 0; i < A.Length; i++)
 A[i] = i * i;

In this example, A.Length is the value 100. As with the same-named
property of the String class, the Length property is read-only.

You can access all the elements of an array sequentially in a foreach

statement:

foreach (int i in A)
 Console.WriteLine(i);

However, you cannot initialize the elements of an array in a foreach

statement because you need to set the value of the iteration variable and
that‘s not allowed.

Later on in the program, you might set A to a different new expression:

A = new int[20];

Enough memory is allocated from the managed heap for 20 elements,
and the reference to that memory is returned and stored in A.

But what happens to the original block of memory that was allocated for
the 100 integers? There is no delete or free operator in C#. If the original

block of memory is no longer referenced by anything else in the program,
it becomes eligible for garbage collection. At some point, the Common
Language Runtime will free up the memory originally allocated for the

array.

The number of elements in an array can be determined at runtime:

Console.Write("Enter the array size: ");
int num = Int32.Parse(Console.ReadLine());
double D = new double[num];

Obviously, this feature eliminates any need for C-type memory allocation

functions such as malloc.

In some cases, when writing a program you might know both the size of
the array and the elements it should contain. In that case you can

initialize the array when creating it:

double[] D = new double[3] { 3.14, 2.17, 100 };

The number of initializers must equal the declared size of the array. If
you‘re initializing the array, you can leave out the size of the array
because it‘s determined from the number of initializers:

.NET Book Zero Charles Petzold

Version 1.1 Page 90

double[] D = new double[] { 3.14, 2.17, 100 };

Notice the empty square brackets in the new expression. You can even
leave out the new expression:

double[] D = { 3.14, 2.17, 100 };

This shortcut is available only in the statement that declares the array
variable. You can‘t do something like this:

double[] D;
D = { 3.14, 2.17, 100 }; // Won’t work!

It‘s possible to declare multiple array variables in a single declaration
statement:

decimal[] sales, commissions, bonuses;

You can allocate memory for all of these arrays, or only some of them,

and even initialize elements of one or more of the arrays in the same
declaration statement, but it might get so messy that you‘ll want to split

it into several declarations.

Here‘s a declaration statement that allocates memory for an array of
strings:

string[] strs = new string[10];

That new expression allocates enough memory from the heap for ten

strings. However, because String is a class, and classes are reference
types, the new expression really allocates enough memory from the heap

for ten references. Heap memory is always initialized to zero, which
means that the ten elements of the array are effectively set to null. The

expression

strs[5] == null

returns true. Although these references are initially null, eventually they
will probably reference actual strings that are themselves stored in the
heap.

Understanding array creation and initialization is sometimes clarified if
you look at it in terms of expressions. The expression

new string[4]

allocates enough memory for an array of four strings and returns a

reference to that memory. If the element type were a value type (such as
int or decimal), each element would be initialized to 0. Because the
element type here is a reference type (specifically string), each element is

initialized to null.

Here‘s another expression:

new string[]{ "North", "East", "South", "West" }

.NET Book Zero Charles Petzold

Version 1.1 Page 91

This expression allocates memory for an array of four strings. Each
element of the array is another reference to the actual string.

Now here‘s an interesting expression:

new string[] { "North", "East", "South", "West" } [2]

It‘s the same as the previous expression except that it also includes an
array index at the end. If you check the Operator Precedence and
Associativity table at the back of this book, you‘ll see that the keyword

new and array indexing (indicated by a[x]) have the same precedence and
are associated from left to right. The index essentially chooses one of the

elements of the array. This expression evaluates to the string ―South‖.

This means that if you need to use a little array just once, you don‘t need

to declare an array variable. Here‘s a statement that displays one of the
four compass points based on the variable dir:

Console.Write(new string[] { "North", "East", "South", "West" } [dir]);

The array is created in the course of the execution of this statement and
then becomes eligible for garbage collection. I certainly would avoid

putting a statement like this in any kind of loop or a method that‘s
frequently called, but for a one-time execution, it‘s certainly elegant.

C# provides two types of multi-dimensional arrays. The simplest type of

multi-dimensional array is declared using a single set of square brackets,
and commas indicate multiple dimensions. Here are declarations of one-

dimensional, two-dimensional, and three-dimensional arrays:

int[] one;
int[,] two;
int[,,] three;

You can allocate memory for these arrays using new expressions that
contain the size of each dimension separated by commas:

one = new int[15];
two = new int[3, 6];
three = new int[8, 5, 3];

Or, you could include the new expression in the declaration.

You reference an element of the array with indices separated by commas:

three[i, j, k] = 39;

In this example the variable i must be in the range 0 through 7, j must
be 0 through 4, and k must be 0, 1 or 2.

The Length property reports the total number of elements in the array,
which is equal to the product of the sizes of each dimension. For

example, three.Length returns 120. The Rank property indicates the
number of dimensions: three.Rank returns 3.

.NET Book Zero Charles Petzold

Version 1.1 Page 92

If you need the number of elements in a particular dimension, you can
use the GetLength method of the Array class. The argument is a zero-

based dimension. For example,

three.GetLength(1)

returns the size of the second dimension of three, which is 5. The Array
class also contains methods for sorting and searching arrays.

Multidimensional arrays seem to be less common in object-oriented
programming than in traditional procedural programming. It‘s probably
more common in object-oriented programming to have single-

dimensional arrays of objects, where the objects themselves encapsulate
multiple items. But some ―real-life‖ examples of multidimensional arrays

do exist. If you were unfortunate enough to be working on a program
involving United States senators, for example, the following array would
help store their names:

string[,] senators = new string[50,2];

That‘s 50 states and 2 senators each.

Initializing the elements of multidimensional arrays in a new expression
requires a precise use of curly brackets. Here‘s another three-

dimensional array that‘s a bit smaller than the previous one:

int[,,] arr = new int[3, 2, 4] {{{ 8, 3, 4, 2}, { 7, 4, 1, 2}},
 {{ 2, 7, 3, 6}, { 5, 1, 9, 0}},
 {{ 0, 4, 9, 7}, { 3, 9, 8, 5}}};

The first four initialization values are arr[0,0,0] through arr[0,0,3], the
second four values are arr[0,1,0] through arr[0,1,3], and so forth. The last

four values are arr[2,1,0] through arr[2,1,3]. The Rank property of this
array returns 3; the Length property returns 24. You can shorten the

array initialization to

int[,,] arr = new int[,,] {{{ 8, 3, 4, 2}, { 7, 4, 1, 2}},
 {{ 2, 7, 3, 6}, { 5, 1, 9, 0}},
 {{ 0, 4, 9, 7}, { 3, 9, 8, 5}}};

without explicitly specifying the number of elements in each dimension,
or you can leave out the new expression entirely:

int[,,] arr = {{{ 8, 3, 4, 2}, { 7, 4, 1, 2}},
 {{ 2, 7, 3, 6}, { 5, 1, 9, 0}},
 {{ 0, 4, 9, 7}, { 3, 9, 8, 5}}};

C# also supports arrays of arrays, which are essentially arrays in which

the elements are themselves arrays. These are referred to as jagged
arrays because the size of the second dimension (and possibly

subsequent dimensions) is not constant. The size of each dimension is
different depending on the index of the previous dimension.

For example, suppose you want to declare an array for storing all the

family members of your four closest friends. These families range in size

.NET Book Zero Charles Petzold

Version 1.1 Page 93

from two people to eight people. You could certainly declare a normal
two-dimensional array sufficient for the largest family:

string[,] normalArray = new string[4, 8];

But that approach wastes some space. Not all of your four friends‘

families have eight people. (And if the wasted space of this example
seems meager, how about an array similar to the senators array but for

members of the House of Representatives? Depending on the state, the
number of representatives ranges from 1 to 53.)

Because a jagged array is essentially an array of arrays, creating the

array requires multiple new expressions. Here‘s the declaration and the
first new expression for the array that stores your four friends‘ family

members:

string[][] jaggedArray = new string[4][];

Notice the use of multiple square brackets. Next you need four additional
new statements for each of the four families:

jaggedArray[0] = new string[5];
jaggedArray[1] = new string[2];
jaggedArray[2] = new string[8];
jaggedArray[3] = new string[4];

Each of these new expression indicates the number of members in that
family. The family sizes range from two to eight.

At this point, you can access jaggedArray[0][0] through jaggedArray[0][4]
for the five members of the first family. The two members of the second
family are stored in jaggedArray[1][0] and jaggedArray[1][1]. And so forth.

An assignment such as

jaggedArray[3] = new string[4];

shown above can also include initializations for that family:

jaggedArray[3] = new string[4] { "Jack", "Diane", "Bobby", "Sally" };

or, a tiny bit simpler,

jaggedArray[3] = new string[] { "Jack", "Diane", "Bobby", "Sally" };

You can also initialize the whole array in the original declaration. The
initialization includes all the new expressions:

string[][] jaggedArray = new string[4][]
 {
 new string[] { "Jill", "Alice", "Billy", "Judy", "Sammy" },
 new string[] { "James", "Ellen" },
 new string[] { "Steve", "Sue", "Bernie", "Rich",
 "Chris", "Erika", "Michelle", "Alyssa" },
 new string[] { "Jack", "Diane", "Bobby", "Sally" }
 };

.NET Book Zero Charles Petzold

Version 1.1 Page 94

Because this is a declaration, the first new expression can be eliminated,
but the rest are required.

.NET Book Zero Charles Petzold

Version 1.1 Page 95

Chapter 11. Methods and Fields

When a certain block of code needs to be executed multiple times while a
program is running, it is common to put it in a loop. If the same block of
code must be executed from different parts of the program, it is common

to isolate it in a unit called in various languages a subroutine or
function, but which in C# is called method. Every C# program must

contain a method named Main. All but the most trivial C# programs
contain additional methods as well.

For example, suppose you need to write a program that asks the user to

type in some information, perhaps a first name, last name, and age.
Each of the three items requires a call to Console.Write to displays a

prompt such as ―Enter your first name.‖ Each of the three items requires
a call to Console.ReadLine to obtain the information the user types.

Here‘s an approach where everything is in the Main method

Interrogation1.cs
//---
// Interrogation1.cs (c) 2006 by Charles Petzold
//---
using System;

class Interrogation1
{
 static void Main()
 {
 Console.Write("Enter your first name: ");
 string strFirstName = Console.ReadLine();

 Console.Write("Enter your last name: ");
 string strLastName = Console.ReadLine();

 Console.Write("Enter your age: ");
 string strAge = Console.ReadLine();

 Console.WriteLine();
 Console.WriteLine("First name: " + strFirstName);
 Console.WriteLine("Last name: " + strLastName);
 Console.WriteLine("Age: " + strAge);
 }
}

Of course, in a real program, the age wouldn‘t be stored in a string. It
would be stored as an integer, which means there‘d be a call to

Int32.Parse, but I‘m trying to keep this simple.

.NET Book Zero Charles Petzold

Version 1.1 Page 96

Rather than calling Console.Write three times to display a prompt, and
Console.ReadLine three times to obtain what the user types, it would be

more convenient for the Main method to call another method three times.
Perhaps this method is called GetInfo. The first part of Main might be

simplified to look something like this:

string strFirstName = GetInfo("Enter your first name: ");
string strLastName = GetInfo("Enter your last name: ");
string strAge = GetInfo("Enter your age: ");

Here‘s a GetInfo method that does the grunt work:

static string GetInfo(string strPrompt)
{
 Console.Write(strPrompt);
 string strReturn = Console.ReadLine();
 return strReturn;
}

Like Main, the GetInfo method must be static. (Non-static methods will
make their appearance in Chapter 13.) Following the static keyword is

string, which is the return value of the GetInfo method. If a method has a
return type other than void, all code paths within the method must

terminate with a return statement that returns an object of the proper
type. (A method with a void return type can have a return statement by

itself to end execution of the method.) The parameter is also a string,
called strPrompt within the method.

The GetInfo method displays the prompt, and stores the return value of
Console.ReadLine in strReturn, which it then returns. As with C and C++,

the return value does not have to be in parentheses, although many
programmers tend to use them:

return (strReturn);

The strReturn variable is local to GetInfo, and is only visible within
GetInfo after its declaration. The method could actually be simplified a

little by combining the last two statements and eliminate the strReturn
variable entirely:

return Console.ReadLine();

Perhaps you‘re not quite sure you want to terminate each of the prompts

with a colon. Perhaps you suspect you may want to change it to a little
arrow. In that case, you might write the first statement of GetInfo like

this:

Console.Write(strPrompt + ": ");

And call GetInfo like this:

string strFirstName = GetInfo("Enter your first name");

Here‘s the whole program with these changes.

.NET Book Zero Charles Petzold

Version 1.1 Page 97

Interrogation2.cs
//---
// Interrogation2.cs (c) 2006 by Charles Petzold
//---
using System;

class Interrogation2
{
 static void Main()
 {
 string strFirstName = GetInfo("Enter your first name");
 string strLastName = GetInfo("Enter your last name");
 string strAge = GetInfo("Enter your age");

 ShowInfo(strFirstName, strLastName, strAge);
 }
 static string GetInfo(string strPrompt)
 {
 Console.Write(strPrompt + ": ");
 return Console.ReadLine();
 }
 static void ShowInfo(string strFirstName, string strSurName,
 string strYearsOld)
 {
 Console.WriteLine("First name: " + strFirstName);
 Console.WriteLine("Last name: " + strSurName);
 Console.WriteLine("Age: " + strYearsOld);
 }
}

I‘ve also added a second method called ShowInfo that displays the

information. Although ShowInfo is only called once from Main, that
doesn‘t necessarily prohibit it from being a separate method. ShowInfo
has three parameters but a void return value.

The order of methods in a class doesn‘t matter. Methods don‘t have to be
declared before they are referenced.

Two of the parameters to ShowInfo have slightly different names than the
string variables defined in Main. It doesn‘t matter whether they‘re the

same or different. The variables defined in Main aren‘t visible in
ShowInfo, and the ShowInfo parameters aren‘t visible in Main.

Both GetInfo and ShowInfo are static. The Main method can refer to these
methods by just their names, but it could also preface the method name

with the class name:

string strFirstName = Interrogation2.GetInfo("Enter your first name");

ShowInfo has a parameter for each of the items it needs to display.

There‘s nothing really wrong with this approach until you want to start
adding more items to the list of information you obtain. For each new

item you‘ll need another string variable, of course, and another call to
GetInfo, and you‘ll need to add a line to ShowInfo to display the new item.

.NET Book Zero Charles Petzold

Version 1.1 Page 98

You‘ll also need to add another parameter to ShowInfo, which means
you‘ll have to change the method itself, and the call to that method.

And what if it gets to the point where you‘re asking the user for twenty
pieces of information? You‘ll need to have twenty arguments to ShowInfo

and you have to be very careful that your call to ShowInfo has all the
arguments in the correct order.

Another approach would be to save the user‘s responses as fields. As you
know, fields look like local variables, except they are not defined inside a
method. They are defined inside the class but outside of all methods, and

they can be accessed by any method in the class.

Interrogation3.cs
//---
// Interrogation3.cs (c) 2006 by Charles Petzold
//---
using System;

class Interrogation3
{
 static string strFirstName, strLastName, strAge;

 static void Main()
 {
 strFirstName = GetInfo("Enter your first name");
 strLastName = GetInfo("Enter your last name");
 strAge = GetInfo("Enter your age");

 ShowInfo();
 }
 static string GetInfo(string strPrompt)
 {
 Console.Write(strPrompt + ": ");
 return Console.ReadLine();
 }
 static void ShowInfo()
 {
 Console.WriteLine();
 Console.WriteLine("First name: " + strFirstName);
 Console.WriteLine("Last name: " + strLastName);
 Console.WriteLine("Age: " + strAge);
 }
}

Notice the three fields of type string declared at the top of the

Interrogation3 class. Although it‘s common to put fields at the top of a
class, they don‘t need to be there; they can just as well be at the bottom

of the class after all the methods, or even between two methods, or
scattered among the methods.

Now ShowInfo has no parameters, and the three statements in ShowInfo

refer to the fields set in the Main method. With each additional item,

.NET Book Zero Charles Petzold

Version 1.1 Page 99

you‘ll need to make three changes: a new field, a new call to GetInfo, and
a new line in ShowInfo.

You‘re still not sure about the colon at the end of the prompt, but you
know that if you change it, you‘ll also want to change the three

statements in ShowInfo likewise. It would be nice to define this character
sequence just once, and use it wherever needed. You could make that a

field as well:

static string strDelimiter = ": ";

And then you can change the Console.Write statement in GetInfo and the
three statements in ShowInfo like so:

Console.WriteLine("First name" + strDelimiter + strFirstName);

This is pretty good, but there‘s another change you might consider. The
field named strDelimiter is never changed during the time the program is

running. In fact, you want to make sure that it‘s never changed. You
want to prevent yourself (or someone else) from modifying the program

and adding code that inadvertently changes strDelimiter. One way to do
this is to add a modifier named readonly:

static readonly string strDelimiter = ": ";

The order of the static and readonly keywords doesn‘t matter, but they

both must precede the type of the field, which is string. With the readonly
modifier, any code that tries to change the value of strDelimiter will be

flagged by the C# compiler as an error. (That‘s not entirely true. A
constructor can change the value, as you‘ll see in Chapter 17.)

Another possibility is this:

const string strDelimiter = ": ";

A constant must be initialized in its declaration statement. A const is

implicitly static.

There is a big difference between const and static readonly: A const is

evaluated during compilation and the value is substituted wherever it‘s
used. A static readonly field is evaluated at runtime. But in practice

they‘re pretty much the same.

In C and C++ you can have a local variable defined as static, and that
variable will retain its value between function calls. That option is not

available in C#. You can have a local const, however, which is a constant
whose visibility is restricted to a method. But the readonly modifier is

applicable only for fields, and can‘t be used for local variables.

In C#, as in C++, you can have multiple methods with the same name.

These are known as overloads. These multiple methods must be
distinguished by having a different number of arguments, or arguments
with different types. In C#, you can‘t have two methods in the same class

with the same name that differ only by the return type.

.NET Book Zero Charles Petzold

Version 1.1 Page 100

Here‘s yet another version of the Interrogation program that has a
parameterless method named GetInfo that calls the parametered versions

of GetInfo:

Interrogation4.cs
//---
// Interrogation4.cs (c) 2006 by Charles Petzold
//---
using System;

class Interrogation4
{
 const string strDelimiter = ": ";
 static string strFirstName, strLastName, strAge;

 static void Main()
 {
 GetInfo();
 ShowInfo();
 }
 static void GetInfo()
 {
 strFirstName = GetInfo("Enter your first name");
 strLastName = GetInfo("Enter your last name");
 strAge = GetInfo("Enter your age");
 }
 static string GetInfo(string strPrompt)
 {
 Console.Write(strPrompt + strDelimiter);
 return Console.ReadLine();
 }
 static void ShowInfo()
 {
 Console.WriteLine();
 Console.WriteLine("First name" + strDelimiter + strFirstName);
 Console.WriteLine("Last name" + strDelimiter + strLastName);
 Console.WriteLine("Age" + strDelimiter + strAge);
 }
}

Sometimes the choice of which overloaded method to call can be tricky
for the C# compiler. For example, suppose there are two methods with

the same name, but one has a long parameter and the other has a double
parameter. Some code calls the method with an int argument. Which

method does C# choose? Overload resolution is described in the C#
Language Specification, §7.4.2.

The next step in this Interrogation series of programs might be to define
a new class named Person with instance fields of strFirstName, strLast-
Name, and strAge, and jump right into object-oriented programming. But

let‘s hold off on that for another chapter or so, and explore some other
method-related issues.

.NET Book Zero Charles Petzold

Version 1.1 Page 101

Arguments to methods are normally passed by value, which means that
the following program displays 22 rather than 55:

PassByValue.cs
//--
// PassByValue.cs (c) 2006 by Charles Petzold
//--
using System;

class PassByValue
{
 static void Main()
 {
 int i = 22;
 AlterInteger(i);
 Console.WriteLine(i);
 }
 static void AlterInteger(int i)
 {
 i = 55;
 }
}

When a method such as AlterInteger is executing, its stack contains

space for all the parameters to the method (in this case just one int) and
all its local variables (in this case, none). As AlterInteger is called from

Main, a copy of the argument passed to AlterInteger is stored on the
stack for AlterInteger to use. AlterInteger refers to a copy of the integer

rather than to the integer referenced by Main.

However, there are times when you would rather be able to pass a

number or other object to a method by reference, so that any changes
made to the object within the method are reflected in the value after the
method has ended.

You can do this using the ref keyword, as demonstrated in the following
program. This program displays 55.

PassByReference.cs
//--
// PassByReference.cs (c) 2006 by Charles Petzold
//--
using System;

class PassByReference
{
 static void Main()
 {
 int i = 22;
 AlterInteger(ref i);
 Console.WriteLine(i);
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 102

 static void AlterInteger(ref int i)
 {
 i = 55;
 }
}

Notice that the ref keyword is required both in the declaration of the
method and when the method is called. This double requirement is just

to prevent you, the programmer, from making mistakes.

Inside AlterInteger, the stack contains a reference rather than the integer

itself. That reference is to the original integer in Main.

The C# language also supports a similar keyword named out. (You saw

out in the Math.DivRem method in Chapter 6. You‘ll see it again in the
TryParse method in Chapter 12.) When compiled to intermediate
language, the ref and out keywords are identical. However, when you use

ref, the C# compiler requires that the variable whose reference you‘re
using has already been initialized. When using out, the variable doesn‘t

have to be initialized.

For example, in the preceding program, if you change

int i = 22;

to

int i;

then the program will no longer compile because the variable has not
been initialized when the method is called. If you change the two

occurrences of ref to out, C# will obligingly compile the code. However,
now try changing AlterInteger to this:

static void AlterInteger(out int i)
{
 i += 33;
}

This has now become unacceptable to the C# compiler because the body
of the method implies that the parameter has already been set before the

method is called.

If you don‘t use the ref or out keywords, then arguments to methods are

passed by value. Essentially, a copy of the object is made and placed on
the stack for the method to use. If this object is a reference type (that is,
an array, or an instance of a class) then a copy of the reference is made

for use by the method.

So, if a parameter is a reference type, then the value passed to the

method is actually a reference, as the following program demonstrates.

.NET Book Zero Charles Petzold

Version 1.1 Page 103

PassArrayByValue.cs
//---
// PassArrayByValue.cs (c) 2006 by Charles Petzold
//---
using System;

class PassArrayByValue
{
 static void Main()
 {
 int[] arr = new int[10];
 arr[0] = 22;
 AlterInteger(arr);
 Console.WriteLine(arr[0]);
 }
 static void AlterInteger(int[] arr)
 {
 arr[0] = 55;
 }
}

This program creates an array of integers and sets the first element to
22. Then it passes this array to AlterInteger. However, that doesn‘t mean

the entire array is copied on the stack. The array is a reference, so only a
copy of that reference is made for use by the AlterInteger method. Even

though it‘s a copy of the reference, both references access the same heap
memory. AlterInteger is able to change an element of the original array.
The program displays 55.

Now, add the following statement to the bottom of AlterInteger:

arr = null;

The program still works as before. The method is only setting its copy of
the arr reference to null, so Main still has its original arr reference and

nothing bad happens.

Now let‘s add the ref keyword to the method parameter, and see what

happens.

PassArrayByReference.cs
//---
// PassArrayByReference.cs (c) 2006 by Charles Petzold
//---
using System;

class PassArrayByReference
{
 static void Main()
 {
 int[] arr = new int[10];
 arr[0] = 22;
 AlterInteger(ref arr);

.NET Book Zero Charles Petzold

Version 1.1 Page 104

 Console.WriteLine(arr[0]);
 }
 static void AlterInteger(ref int[] arr)
 {
 arr[0] = 55;
 arr = new int[5];
 }
}

Now the arr reference itself declared in Main is passed by reference, so
that the method is able to alter the arr itself in Main rather than just

elements of the array. The method sets arr to a new array, and each
element of a nearly allocated array has an initialized value of 0. The
program displays the number 0.

The difference between value types and reference types in C# may take
some getting accustomed to. Experimentation is encouraged. I‘ll explore

this topic more in Chapter 16.

The previous two program demonstate that you can pass whole arrays to
methods. The methods can then determine the size of the arrays with the

Length property and examine or change the array elements. However, a
method declared with an array parameter can be a bit more versatile

with the params keyword, as the following program demonstrates.

PassParamsArray.cs
//--
// PassParamsArray.cs (c) 2006 by Charles Petzold
//--
using System;

class PassParamsArray
{
 static void Main()
 {
 int[] arr = { 22, 33, 55, 100, 10, 2 };
 Console.WriteLine(AddUpArray(arr));
 Console.WriteLine(AddUpArray(22, 33, 55, 100, 10, 2));
 }
 static int AddUpArray(params int[] arr)
 {
 int sum = 0;

 foreach (int i in arr)
 sum += i;

 return sum;
 }
}

Without the params keyword, the method would be able to accept an

argument that is an array of integers, add up the elements, and return
the sum. With the keyword params, another option becomes available: A

.NET Book Zero Charles Petzold

Version 1.1 Page 105

list of integers can simply be passed to the method, as demonstrated by
the second call to AddUpArray (in the second WriteLine).

Behind the scenes, the list of integers is made into an array, so there‘s
definitely no performance advantage to providing a variable list of

arguments. There must be no more than one params parameter to a
method, and it must be the last parameter. These rules are obvious if
you consider the confusion that might result without them.

The most generalized form of Console.WriteLine and String.Format use a
params parameter for the list of objects after the formatting string. Both

classes also provide methods with one, two, or three objects following the
formatting string to prevent behind-the-scenes array creation when only

a couple items are being formatted.

As I‘ve discussed, when a method begins execution, space on the stack is
reserved for all the local variables in the method. For an array, the

amount of space needed on the stack is the size of a reference. If the
declaration of the array also includes element initialization, the compiler

generates code that allocates memory from the heap and initializes all
the element values in the array one by one.

If the array is declared in Main, the array creation and initialization occur

once when the program starts up. But suppose the array is in another
method. Here‘s a little method that calculates a day-of-year value based

on one-based month and day parameters (ignoring leap years);

static int DayOfYear(int month, int day)
{
 int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return cumulativeDays[month - 1] + day;
}

For example the expression

DayOfYear(5, 10)

returns the day-of-year value for May 10th, which is 130.

A program might be going through a file and calling this method

hundreds or thousands or even millions of times. Each and every time
the DayOfYear method is called, the array must be allocated from the

heap and initialized. After the method exits, the block of memory
allocated from the heap is no longer referenced and becomes eligible for
garbage collection.

The whole process seems to cry out for some kind of constant array.
However, you can‘t declare an array using const. Constants can be set

only to values available at compile time. An array requires a new
operation, and new operations occur at runtime.

.NET Book Zero Charles Petzold

Version 1.1 Page 106

What you can do, however, is define the array as static, which means
that it is initialized only once. But then you can‘t have the array inside

the method in which it‘s used. The array must be a field.

The following program defines two DayOfYear methods, one of which

uses an array inside the method, and another which uses a static array
outside the method. The program also uses the Random class to generate

random numbers, and the Stopwatch class to measure the time it takes
for 10 million calculations to occur.

The Stopwatch class in this project is in the System.Diagnostics

namespace, and it‘s in the System assembly, which is System.dll, so
you‘ll need a reference to that library. In the Solution Explorer in Visual

Studio, right click References, select Add Reference from the menu, and
find System.

TestArrayInitialization.cs
//--
// TestArrayInitialization.cs (c) 2006 by Charles Petzold
//--
using System;
using System.Diagnostics;

class TestArrayInitialization
{
 const int iterations = 10000000;

 static int[] daysCumulativeDays = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public static void Main()
 {
 Stopwatch watch = new Stopwatch();
 Random rand = new Random();

 watch.Start();

 for (int i = 0; i < iterations; i++)
 DayOfYear1(rand.Next(1, 13), rand.Next(1, 29));

 watch.Stop();
 Console.WriteLine("Local array: " + watch.Elapsed);

 watch.Reset();
 watch.Start();

 for (int i = 0; i < iterations; i++)
 DayOfYear2(rand.Next(1, 13), rand.Next(1, 29));

 watch.Stop();
 Console.WriteLine("Static array: " + watch.Elapsed);
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 107

 static int DayOfYear1(int month, int day)
 {
 int[] daysCumulative1 = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 return daysCumulative1[month - 1] + day;
 }

 static int DayOfYear2(int month, int day)
 {
 return daysCumulativeDays[month - 1] + day;
 }
}

The array defined inside the method is faster than you might anticipate.

Fortunately array initialization is optimized, so you can keep locally used
arrays inside of methods and not worry too much.

.NET Book Zero Charles Petzold

Version 1.1 Page 108

Chapter 12. Exception Handling

C# supports structured exception handling. As you‘ve experienced,

exceptions occur during runtime and are identified by classes, such as
the DivideByZeroException class. Most of the basic exception classes can
be found in the System namespace; some are explicitly listed in the C#
Language Specification, §16.4. Often the documentation of various
classes, methods, and properties indicate exactly what exceptions can be

raised.

For example, the static Double.Parse method indicates it can raise three

types of exceptions:

o FormatException if the argument is not in the correct format.

o OverflowException if the resultant number is smaller than

Double.MinValue or larger than Double.MaxValue.

o ArgumentNullException if the string argument to the method is null.

For example, the string ―5.45E400‖ passed to Double.Parse would rasie
an OverflowException because the exponent is too large.

If you‘d prefer that such problems are handled gracefully by your
program rather than by the Common Language Runtime, you can

enclose the call to Double.Parse in a try block, which is followed by a
catch clause that deals with the exception:

double input;

try
{
 input = Double.Parse(Console.ReadLine());
}
catch
{
 Console.WriteLine("You typed an invalid number");
 input = Double.NaN;
}

Notice that input variable is declared before the try block. If it‘s declared
within the try block, then it wouldn‘t be available outside the try block,

and couldn‘t be referred to elsewhere.

If Double.Parse succeeds in converting the input string into a double,

execution continues at the next statement following the catch block. If
Parse throws an exception, the the catch block catches it. The code in the

catch block is executed, and then normal execution resumes with the
code following the catch block. This particular catch block displays a

message and then sets input to NaN. (You could also initialize input to

.NET Book Zero Charles Petzold

Version 1.1 Page 109

NaN in the declaration statement and leave out this assignment.)
Presumably, the code that follows the catch block checks the value of

input for a NaN value and requests the user to re-enter the number.

In a real-life program that reads numeric values from the user, you‘ll

probably put the try and catch blocks in a do loop and keep asking the
user to re-enter the values until Parse properly returns, as the following

program demonstrates.

InputDoubles.cs
//---
// InputDoubles.cs (c) 2006 by Charles Petzold
//---
using System;

class InputDoubles
{
 static void Main()
 {
 double num = GetDouble("Enter the base: ");
 double exp = GetDouble("Enter the exponent: ");
 Console.WriteLine("{0} to the power of {1} is {2}",
 num, exp, Math.Pow(num, exp));
 }
 static double GetDouble(string strPrompt)
 {
 double input = Double.NaN;

 do
 {
 Console.Write(strPrompt);

 try
 {
 input = Double.Parse(Console.ReadLine());
 }
 catch
 {
 Console.WriteLine();
 Console.WriteLine("You typed an invalid number!");
 Console.WriteLine("Please try again.");
 Console.WriteLine();
 }
 }
 while (Double.IsNaN(input));

 return input;
 }
}

It‘s important to recognize that if Parse throws an exception, the Parse

method doesn‘t actually return to the program the way it normally does.
Execution leaps from somewhere deep inside the Parse method to the

catch clause. In this program, if you don‘t initialize the value of input in

.NET Book Zero Charles Petzold

Version 1.1 Page 110

the declaration statement (or explicitly set input to a value before calling
Double.Parse), then input will be uninitialized in the catch block.

The catch clause in the InputDouble program is known as a general catch
clause. It will catch any exception raised in the try block. You can

instead indicate that a catch clause apply only to a specific type of
exception. For example, here‘s a little variation of the basic try statement

that includes a specific catch clause:

try
{
 // Statement or statements to try
}
catch (System.Exception exc)
{
 // Error processing
}

The catch keyword is followed by parentheses and a variable declaration
that makes it look a bit like a parameter list to a method. Exception is a

class in the System namespace—you can leave out the System preface if
you have a using directive for System, of course—and exc (which you can

name whatever you want) is declared to be an object of type Exception.
Within the catch block, you can use this Exception object to obtain more

information about the error. You can display the Message property of the
object like so:

Console.WriteLine(exc.Message);

For the InputDouble program, the Message property will be either the

string

Input string was not in a correct format.

if the user types letters rather than numbers (for example), or:

Value was either too large or too small for a Double.

This error can be raised if the number is typed in scientific notation with
too large or too small an exponent. You may prefer displaying messages
like these to the user rather than making up your own.

If you pass the Exception object directly to WriteLine as

Console.WriteLine(exc);

you‘ll effectively call the ToString method of the Exception class, which
displays detailed information, including a stack trace. This is very useful

during program development.

Although the catch clause with the Exception object is classified as a

specific catch clause, it‘s really just as generalized as the general catch
clause. That‘s because all the different exception classes (such as
DivideByZeroException and OverflowException) are defined in a class

hierarchy with Exception at the top. (Actually, as Jeff Richter notes in

.NET Book Zero Charles Petzold

Version 1.1 Page 111

CLR via C#, pages 426-427, it‘s possible for CIL code to throw exceptions
not derived from Exception.)

Earlier I indicated the various exceptions that Double.Parse can raise.
You can get very specific in the way you handle each of these exception:

try
{
 input = Double.Parse(Console.ReadLine());
}
catch (FormatException exc)
{
 // Handle format exceptions
}
catch (OverflowException exc)
{
 // Handle overflow exceptions
}
catch (ArgumentNullException exc)
{
 // Handle null argument exceptions
}
catch (Exception exc)
{
 // Handle all other exceptions (if any)
}

The catch clauses are examined in sequence for the first one that

matches the exception. The final catch clause can alternatively be a
general clause with no parameter. At any rate, if you‘re examining

individual types of exceptions, you should always include a general catch
clause or a catch clause using Exception at the end to process all the

exceptions that are not handled individually.

In this particular example, the penultimate catch clauses should never
be executed because Console.ReadLine never returns null. But including

non-functional catch clauses never hurts, even if it just contains the
statement:

Console.WriteLine("This statement should never be executed");

It‘s surprising how often you see such messages!

The try block in this example actually has two method calls:
Console.ReadLine is executed first, and then Double.Parse. It is possible

for Console.ReadLine to raise three types of exceptions:

o IOException if an input error occurs.

o OutOfMemoryException if not enough memory is available to store
the string object.

o ArgumentOutOfRangeException if the number of characters typed
by the user is greater than Int32.MaxValue or 2,147,483,647.

.NET Book Zero Charles Petzold

Version 1.1 Page 112

Of course, it is extremely improbable that Console.ReadLine will raise any
of these three exceptions, and only someone who‘s extremely obsessive-

compulsive (or fatally pessimistic) will enclose every Console.ReadLine
statement in a try block. But it‘s useful to keep in mind that any

allocation of memory might raise an exception.

There‘s a third clause, called the finally clause, that you can use in the

try statement. The finally clause comes after all the catch clauses, like
this:

finally
{
 // Statements in finally block
}

The statements in the finally clause are guaranteed to execute following
the execution of the try clause (if no exception is thrown) or the relevant

catch clause.

At first, the finally clause doesn‘t seem necessary. If you want code

executed after try and catch, why can‘t you simply put it after the catch
clause itself?

The answer is simple: The try or catch clause could contain a return
statement to return control to the calling method or (if the method is
Main) to terminate the program. In that case, the statements following

the last catch clause of the try statement would not be executed. That‘s
where the finally clause helps out. If the try or catch clause contains a

return statement, the statements in the finally clause are guaranteed to
execute regardless. It‘s also possible to exit a try or catch clause with a

goto or a throw statement, which I‘ll describe shortly. The statements in
the finally clause execute in those cases as well.

You generally use a finally clause for clean up. A finally clause might
close a file, for example.

It‘s possible to have a finally clause following a try clause but with no
catch clause. In this case, the user is notified of the error as if the

program did not handle the exception, but the finally clause is executed
before the program is terminated.

Besides catching exceptions, you should also know how to throw them. If
you‘re writing a method that might encounter problems of various sorts,
generally you‘ll want the method to throw an exception to notify the code

calling the method of these problems. The throw statement can be as
simple as:

throw;

But this simple form of the throw statement can be used only in a catch

block to rethrow the exception.

.NET Book Zero Charles Petzold

Version 1.1 Page 113

Otherwise, you must supply an argument, which is an instance of the
Exception class or any class that is derived from Exception, including

classes you write yourself. Here‘s the simplest case:

throw new Exception();

But that‘s being unnecessarily vague about the type of error that
occurred. Try to use one of the more specific exceptions. Very often you‘ll

find a descendent of Exception in the System namespace that comes
close to what you want. For example, if your method has a string

parameter and the method can‘t work if a null argument is passed, you‘ll
probably have code that looks like this:

if (strInput == null)
 throw new ArgumentNullException();

It‘s also possible to pass a string argument to the ArgumentNullException
constructor, perhaps to indicate the particular method parameter that
caused the problem:

throw new ArgumentNullException("Input string");

That string you pass becomes part of the exception message in a catch

clause. Instead of the Message property being

Value cannot be null.

it will be:

Value cannot be null.
Parameter name: Input string

As soon as a throw statement executes, the method is finished. No

further code will be executed. If throw is executed as part of an if
statement, it makes no sense to have an else clause:

if (strInput == null)
 throw new ArgumentNullException();
else
{
 // Do stuff if exception is not thrown
}

You can simply follow the if statement containing the throw with the

other code:

if (strInput == null)
 throw new ArgumentNullException();

// Do stuff if exception is not thrown

Let‘s write our own Parse method for unsigned integers. Restricting it to
unsigned integers simplifies the logic because negative signs won‘t be
allowed. The method will throw the same three exceptions as the normal

Parse method.

.NET Book Zero Charles Petzold

Version 1.1 Page 114

MethodWithThrows.cs
//---
// MethodWithThrows.cs (c) 2006 by Charles Petzold
//---
using System;

class MethodWithThrows
{
 static void Main()
 {
 uint input;

 Console.Write("Enter an unsigned integer: ");

 try
 {
 input = MyParse(Console.ReadLine());
 Console.WriteLine("You entered {0}", input);
 }
 catch (Exception exc)
 {
 Console.WriteLine(exc.Message);
 }
 }
 static uint MyParse(string str)
 {
 uint result = 0;
 int i = 0;

 // If argument is null, throw an exception.
 if (str == null)
 throw new ArgumentNullException();

 // Get rid of white space.
 str = str.Trim();

 // Check if there's at least one character.
 if (str.Length == 0)
 throw new FormatException();

 // Loop through all the characters in the string.
 while (i < str.Length)
 {
 // If the next character's not a digit, throw exception.
 if (!Char.IsDigit(str, i))
 throw new FormatException();

 // Accumulate the next digit (notice "checked").
 result = checked(10 * result + (uint) str[i] - (uint) '0');

 i++;
 }
 return result;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 115

}

The MyParse method trims off any white space using the Trim method of
the String class and then uses a while statement to loop through all the

characters in the string. If a character passes the IsDigit test, the method
multiplies result by 10 and adds the new digit converted from Unicode to
its numeric value. MyParse doesn‘t explicitly throw an OverflowException;

instead, it performs the calculation in a checked statement to generate
the normal OverflowException. The Main method lets you experiment

with MyParse and catches any exceptions it may throw.

Although Parse certainly provides a good example for exception handling,

you actually have an alternative. All the numeric types also support a
method named TryParse. This method doesn‘t raise exceptions. Instead,

it returns a bool indicating if the string was successfully parsed. If so, the
number is returned as an argument defined using the out keyword.

Here‘s the InputDoubles program converted to use TryParse:

InputDoublesWithTryParse.cs
//---
// InputDoublesWithTryParse.cs (c) 2006 by Charles Petzold
//---
using System;

class InputDoublesWithTryParse
{
 static void Main()
 {
 double num = GetDouble("Enter the base: ");
 double exp = GetDouble("Enter the exponent: ");
 Console.WriteLine("{0} to the power of {1} is {2}",
 num, exp, Math.Pow(num, exp));
 }
 static double GetDouble(string strPrompt)
 {
 double input;
 Console.Write(strPrompt);

 while (!Double.TryParse(Console.ReadLine(), out input))
 {
 Console.WriteLine();
 Console.WriteLine("You typed an invalid number!");
 Console.WriteLine("Please try again: ");
 Console.WriteLine();
 Console.Write(strPrompt);
 }
 return input;
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 116

Notice that the while statement uses the return value from
Double.TryParse as its Boolean argument. Also notice the second

argument to the TryParse method includes the out keyword.

The TryParse method is particularly handy in graphical environments

such as Windows Forms. For example, suppose you have a dialog box
with an OK button named btnOK and a TextBox named txtbox for the

user to enter a floating-point number. You can install a TextChanged
event handler for the TextBox and whenever the text changes, you make

the following call:

btnOK.Enabled = Double.TryParse(txtbox.Text, out input);

Thus, the OK button isn‘t even enabled until the TextBox has proper
input.

.NET Book Zero Charles Petzold

Version 1.1 Page 117

Chapter 13. Classes, Structures, and Objects

Although the .NET Framework defines many classes and structures—

including those that support the basic data types of C# such as int and
string—object-oriented languages such as C# allow you, the programmer,
to define your own classes and structures.

Very often, programs of various sorts must deal with calendar dates. It‘s
easy enough to define three integers in your program that you can set to

represent a date:

int year, month, day;

However, if you have a method that must deal with this date in some
way, the method would require three parameters. Suppose you want to
write a method that determines the number of days between two dates.

That method requires six parameters.

For these reasons and others, it is probably much more convenient to

deal with a particular date as a single entity rather than three separate
numbers. This convenience is a primary impetus behind object-oriented
programming.

You might assume that the .NET Framework already defines a class or
structure to represent dates, and you would be correct. The DateTime

structure in the System namespace is very important in .NET program-
ming, which is why I devote Chapter 23 to it.

But for this exercise—which begins in this chapter and continues in

several subsequent chapters—I‘d like to assume that DateTime does not
exist. Or perhaps, you‘ve decided that you‘d rather use an alternative to

DateTime that you know inside and out.

Before the era of object-oriented programming, many languages allowed

programmers to consolidate several variables into entities sometimes
referred to as programmer-defined data types, or compound data types,
but very often named structures. Here‘s a C structure to represent a date:

struct Date
{
 int year;
 int month;
 int day;
};

The keyword struct is followed by the name of the structure. The body of

the structure is enclosed in curly brackets. This particular structure
contains three members, all of which are fields, and all of which are of

type int.

.NET Book Zero Charles Petzold

Version 1.1 Page 118

You can define a Date structure the same way in C#, but it wouldn‘t be
very useful. If a structure contains only fields, the fields need to be

accessible from outside the structure, and for that reason they must be
preceded by the public keyword:

struct Date
{
 public int year;
 public int month;
 public int day;
}

The keyword public is known as an access modifier and allows the fields

to be accessed from code outside the structure. If you want, you can
consolidate all three fields in a single declaration:

struct Date
{
 public int year, month, day;
}

The public access modifier applies to all three fields. (However, you can‘t
use the C++ syntax for applying the public modifier to multiple fields.)

Also important is the fact that these three fields do not include the static
keyword, which means these are instance fields rather than static fields.

There is no instance keyword; members of a class or structure not
defined as static are instance by default.

We‘ve had frequent contact with both static methods and instance

methods. The expression

i.ToString()

invokes an instance method that applies to a particular integer—an
instance of the Int32 structure. The expression

Int32.Parse(str)

invokes a static method. Static methods are always prefaced with the
class or structure name to which they belong. You don‘t need an actual

integer (otherwise known as an instance of the Int32 structure) to call
Parse.

You‘ve also had encounters with static fields, such as the PI field in the
Math class. (Actually PI is a constant, but a constant field is also

implicitly static.) You refer to a static field by prefacing it with the class
name:

Math.PI

Instance fields are different. You cannot refer to an instance field by

prefacing it with the class or structure name. For example, you can‘t
reference the year field of the Date structure by prefacing it with the
name of the structure:

.NET Book Zero Charles Petzold

Version 1.1 Page 119

Date.year = 1969; // Won't work!

Instead, you must first create an instance of the Date structure, which
you can do by declaring a variable of type Date:

Date dateMoonWalk;

Often when naming instances of classes or structures, I use a variable
name that begins with the lower-case class or structure name, or an

abbreviation of that name. You can refer to the variable dateMoonWalk is
―an instance of the Date structure‖ or ―an object of type Date.‖

Once you have declared a Date object, you can refer to the fields of that
object by prefacing the field with the variable name:

dateMoonWalk.year = 1969;

Or:

Console.WriteLine("The year of the first moon walk was " +
 dateMoonWalk.year);

Here‘s a complete program that defines the Date structure, sets its fields,
and then displays the information.

SimpleDateStructureDemo.cs
//--
// SimpleDateStructureDemo.cs (c) 2006 by Charles Petzold
//--
using System;

struct Date
{
 public int year;
 public int month;
 public int day;
}

class SimpleDateStructureDemo
{
 static void Main()
 {
 Date dateMoonWalk;

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}/{1}/{2}",
 dateMoonWalk.month, dateMoonWalk.day, dateMoonWalk.year);
 }
}

This file contains the definition of the Date structure and the definition of
a class named SimpleDateStructureDemo that contains a Main method

that refers to the Date structure. The order of these two definitions

.NET Book Zero Charles Petzold

Version 1.1 Page 120

doesn‘t matter. The Date structure doesn‘t have to be defined before the
SimpleDateStructureDemo class.

The structure and the class could also be defined in separate files, but
the two files must be part of the same project. If you develop a class or

structure that you‘d like to reuse in multiple projects, putting that class
or structure in its own file is crucial.

You can even define the Date structure inside the SimpleDateStructure-
Demo class (but not inside the Main method). The result might look
something like this:

class SimpleDateStructureDemo
{
 struct Date
 {
 public int year;
 public int month;
 public int day;
 }

 static void Main()
 {
 ...
 }
}

However, this Date structure would only be accessible from code inside
the SimpleDateStructureDemo class.

The code in the Main method illustrates some unstated ―rules‖ about
using the Date structure. Both the month and day fields are one-based

rather than zero-based. The month value ranges from 1 to 12 for January
through December. The day value is the familiar day of the month. Of

course, this simple Date structure has no way of enforcing these rules,
but that will be a later enhancement.

I‘m also going to set another rule that will come into play later: The year
field shall refer to years in the common era of the Gregorian calendar.
The Gregorian calendar was established by Pope Gregory XIII in 1582

and eventually adopted by much of the rest of the Western world to
replace the Julian calendar in effect since the days of Julius Caesar. The

Julian calendar had leap years every four years. In the Gregorian
calendar, years divisible by 100 are not leap years, except if the year is
also divisible by 400.

As you can see, you can declare instances of the Date structure as easily
as you define instances of the Int32 structure:

Date dateApollo11Launch, dateMoonWalk, dateApollo11SplashDown;

However, it is not possible (yet) to define an initial value for the structure

right in the declaration statement.

.NET Book Zero Charles Petzold

Version 1.1 Page 121

The SimpleDateStructureDemo program declares an object of type Date
like this:

Date dateMoonWalk;

Alternatively, it could initialize the Date structure with a declaration that

uses a new expression like this:

Date dateMoonWalk = new Date();

Or, following the simple declaration, you can set dateMoonWalk to the
new expression:

dateMoonWalk = new Date();

In either case, the new expression returns a Date structure has all its
fields set to zero. In this expression, it has the effect of initializing
dateMoonWalk to these zero values. The new expression essentially

―zeroes out‖ the object. If the structure happened to include fields that
were reference types (string, for example), those fields would be set to

null.

Obviously the SimpleDateStructureDemo program doesn‘t require a new

expression when defining the Date object. The program compiles and
runs just fine. That‘s because the program sets each field of the Date

object before accessing that field. A field that is not explicitly set—either
through a new expression or through an assignment statement—is

considered to be uninitialized and the C# compiler won‘t let you access
that field.

As your structures start getting larger and more complex, the C#

compiler can‘t always determine whether a particular field has been set
or not. It‘s a good idea to get into the habit of using a new expression

when defining instances of structures.

In this particular program, if you use a new expression but don‘t set the
fields explicitly, the date will be displayed as:

0/0/0

That date is invalid. It‘s an invalid month, and invalid day, and an invalid

year. There is no year zero. The year before 1 A.D. is 1 B.C.

If at all possible, you should define your structures so that the default
value—which is the value the object gets when it‘s zeroed-out by the new

expression—is valid and, moreover, represents something akin to zero for
the particular object. In theory, the default value for such a Date

structure should probably be the date January 1 in the year 1, but it
doesn‘t seem quite possible to do that (yet).

You can define an array of Date structures using a new expression with
the data type followed by an array size in square brackets:

Date[] dates = new Date[5];

.NET Book Zero Charles Petzold

Version 1.1 Page 122

This particular new expression allocates memory in the heap sufficient to
store five Date objects. Each Date object has three fields of four bytes

each, so that‘s a total of 60 bytes. (Some overhead is also required.)

You can set a particular element of this array like so:

dates[3].year = 1969;
dates[3].month = 7;
dates[3].day = 20;

And you can display the fields similarly. You index the array with square

brackets, and then refer to a field of that element with a period and the
field name. In the table of Operator Precedence and Associativity, both

array indexing (symbolized by a[x] in the table) and the dot operator (x.y)
have the same precedence and associate left to right.

The following is basically the same program as SimpleDateStructure-

Demo except that Date is defined as a class rather than a structure.

SimpleDateClassDemo.cs
//--
// SimpleDateClassDemo.cs (c) 2006 by Charles Petzold
//--
using System;

class Date
{
 public int year;
 public int month;
 public int day;
}

class SimpleDateClassProgram
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}/{1}/{2}",
 dateMoonWalk.month, dateMoonWalk.day, dateMoonWalk.year);
 }
}

A class is a reference type. When you simply declare a variable using a

class like this:

Date dateMoonWalk;

then dateMoonWalk is considered to be uninitialized. It doesn‘t even
equal null. No memory has been allocated from the heap. You can‘t

assign anything to the fields because there is no memory to hold the

.NET Book Zero Charles Petzold

Version 1.1 Page 123

values. Before you use dateMoonWalk at all you must use the new
operator to create a new instance of the Date class. You can do this

either in the declaration statement itself

Date dateMoonWalk = new Date();

or in an assignment statement:

dateMoonWalk = new Date();

In either case, sufficient memory is allocated from the heap for an
instance of the Date class. (It‘s 12 bytes plus overhead.) Because heap

memory is automatically set to zero, all the fields of the instance are
effectively set to zero.

You can also declare an array of Date objects:

Date[] dates;

At this point the dates array is uninitialized. You can allocate memory for
the array using a new expression by itself

dates = new Date[5];

or right in the declaration statement:

Date[] dates = new Date[5];

When Date was a structure, the new expression allocated memory from

the heap sufficient for 5 instances of the structure. When Date is a class,
memory is allocated from the heap sufficient for 5 references. Each of
these references is initialized to null. What you now have is an array of 5

null references.

Before you can use any element of this array, you must use a new

expression for that element:

dates[0] = new Date();

Most likely, you‘ll allocate memory for each element of the array in a for
loop:

for (int i = 0; i < dates.Length; i++)
 dates[i] = new Date();

You can‘t use foreach for this job because the array elements are read-
only in the body of the foreach.

Here‘s another way to declare, create, and initialize an array of Date
objects when Date is a class:

Date[] dates = new Date[5] { new Date(), new Date(), new Date(),
 new Date(), new Date() };

As usual, you can leave out the first new expression when you initialize
the array in the declaration statement.

.NET Book Zero Charles Petzold

Version 1.1 Page 124

Let‘s review.

Within a method such as Main you can declare an object of type Date like

this:

Date dateMoonWalk;

Regardless whether Date is a class or a structure, space for dateMoon-
Walk is set aside on the stack. If Date is a structure, the space on the

stack is the size of the structure, which is 12 bytes. If Date is a class, the
space on the stack is the size of a reference. In each case, the object is

uninitialized.

Only if Date is a class can you assign dateMoonWalk a null reference:

dateMoonWalk = null;

The object is no longer uninitialized, but it doesn‘t refer to anything.

You can also use the new operator with the object:

dateMoonWalk = new Date();

If Date is a structure, then the fields of the structure are all set to zero.
The object is now initialized. If Date is a class, then memory is allocated
from the heap sufficient to store a Date object. The heap memory is set to

zero, effectively setting the fields of the class to zero. The object is now
initialized.

You can also declare an array of Date objects:

Date[] dates;

Space on the stack is set aside for a reference. The dates array is a
reference regardless whether Date is a class or a structure. It is

unitialized.

Arrays themselves are always stored in the heap. You use the new

operator to allocate this heap memory:

dates = new Date[27];

If Date is a structure, then sufficient memory is allocated from the heap
to store 27 instances of the Date structure, with 12 bytes each. Each of

these instances is zeroed-out and considered initialized. If Date is a
class, memory is allocated to store 27 references. Each element of the
array is effectively initialized to null and must be allocated individually

with a new expression.

Instances of structures require less memory and less overhead than

instances of classes, and require much less activity when arrays are
involved. Structures are suitable for light-weight objects, particularly

objects that are similar to numbers in some way. Whenever you need a
new class or structure that has just a few fields, you should probably
make it a structure, especially if you expect to be creating arrays of the

objects.

.NET Book Zero Charles Petzold

Version 1.1 Page 125

However, there are certainly trade-offs. As you‘ll see in the chapters
ahead, structures have some distinct drawbacks.

.NET Book Zero Charles Petzold

Version 1.1 Page 126

Chapter 14. Instance Methods

One common task when working with dates is calculating day-of-year

values, which is the number of days from the beginning of the year to a
particular day.

One part of this job is determining whether a year is a leap year or not.

This static method does that job:

static bool IsLeapYear(int year)
{
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}

Chapter 11 showed a static DayOfYear method that ignored leap years.

The method used a static array named daysCumulative to simplify the
job:

static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

static int DayOfYear(int month, int day)
{
 return daysCumulative[month - 1] + day;
}

As we discovered in that chapter, it‘s better to declare initialized arrays

as static fields rather than local variables so they only get initialized
once.

The DayOfYear method is fairly easy to alter to take account of leap

years. All that‘s necessary is to add 1 when the year is a leap year and
the month is March or later:

static int DayOfYear(int year, int month, int day)
{
 return daysCumulative[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 : 0);
}

Notice that an extra parameter had to be added for the year, and that the

method makes use of the IsLeapYear method.

However, one of the reasons we originally decided it might be best to
treat dates as single entities is to avoid having three parameters to

methods like DayOfYear. It would be much better having just one
parameter of type Date:

.NET Book Zero Charles Petzold

Version 1.1 Page 127

static int DayOfYear(Date dateParam)
{
 return daysCumulative[dateParam.month - 1] + dateParam.day +
 (dateParam.month > 2 && IsLeapYear(dateParam.year) ? 1 : 0);
}

Now, rather than referring to the year, month, and day parameters to the
method, it refers to dateParam.year, dateParam.month, and dateParam.-
day. Unfortunately, simplifying the parameter list seems to make the
body of the method more complex. Don‘t worry—it‘ll shrink back down in

size before the end of this chapter.

Let‘s put all this stuff in a working program. The program is called
StructureAndMethodsOne because it is the first in a three-part series

that evolves from traditional procedural programming to object-oriented
programming. This program declares Date as a structure, but nothing in

this chapter depends on that. You can change Date to a class and all the
programs in this chapter will work the same.

StructureAndMethodsOne.cs
//---
// StructureAndMethodsOne.cs (c) 2006 by Charles Petzold
//---
using System;

struct Date
{
 public int year;
 public int month;
 public int day;
}

class StructureAndMethodsOne
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}/{1}/{2} Day of Year: {3}",
 dateMoonWalk.month, dateMoonWalk.day, dateMoonWalk.year,
 DayOfYear(dateMoonWalk));
 }
 static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

.NET Book Zero Charles Petzold

Version 1.1 Page 128

 static int DayOfYear(Date dateParam)
 {
 return daysCumulative[dateParam.month - 1] + dateParam.day +
 (dateParam.month > 2 && IsLeapYear(dateParam.year) ? 1 : 0);
 }
}

The Date structure is the same as the one in the previous chapter. All

I‘ve done is add one static field and two static methods to the
StructureAndMethods class to calculate the day-of-year for a particular

Date object. The call to DayOfYear occurs in the Console.WriteLine call in
Main.

There is nothing really wrong with this program, but there‘s not much
that couldn‘t also be done in C. One of the objectives of object-oriented

programming is to write code that is reusable, and perhaps even
accessible from a dynamic link library. If we have a structure named
Date, then it helps if that structure itself contains methods that involve

these dates.

C doesn‘t allow putting code in a structure, but object-oriented

languages like C++ and C# allow classes and structures to contain both
code and data. (Of course, you know this already, because classes that
contain methods like Main can also contain fields.)

StructureAndMethodsTwo.cs
//---
// StructureAndMethodsTwo.cs (c) 2006 by Charles Petzold
//---
using System;

struct Date
{
 public int year;
 public int month;
 public int day;

 public static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public static int DayOfYear(Date dateParam)
 {
 return daysCumulative[dateParam.month - 1] + dateParam.day +
 (dateParam.month > 2 && IsLeapYear(dateParam.year) ? 1 : 0);
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 129

class StructureAndMethodsTwo
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}/{1}/{2} Day of Year: {3}",
 dateMoonWalk.month, dateMoonWalk.day, dateMoonWalk.year,
 Date.DayOfYear(dateMoonWalk));
 }
}

This is really quite similar to the first version of the program except that
stuff has been moved around. I cut and pasted the two static methods
and static field into the Date structure themselves. Because the

DayOfYear method needs to be accessed from outside the class I gave it a
public modifier. I also gave IsLeapYear a public modifier just in case

anyone wants to use that one. But daysCumulative I left private under
the assumption that this array wouldn‘t be very important to external

classes.

You might notice that IsLeapYear has a parameter that is the same name

as one of the fields. That‘s OK. Within the method, year refers to the
method parameter.

The only real difference in Main is how the DayOfYear method is called.

When it was in the same class as Main, it was called like this:

DayOfYear(dateMoonWalk)

Now it‘s a static method in the Date structure so when called from
outside the structure, it must be prefaced with the structure name:

Date.DayOfYear(dateMoonWalk)

However, DayOfYear can still refer to IsLeapYear without prefacing it

with the structure name because the two methods are in the same
structure.

The next enhancement to the program certainly simplifies it. This
enhancement changes DayOfYear from a static method to an instance

method. Moving the static DayOfYear method into the Date structure
was only the preliminary step to this much more important change.

StructureAndMethodsThree.cs
//---
// StructureAndMethodsThree.cs (c) 2006 by Charles Petzold
//---
using System;

.NET Book Zero Charles Petzold

Version 1.1 Page 130

struct Date
{
 public int year;
 public int month;
 public int day;

 public static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] DaysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public int DayOfYear()
 {
 return DaysCumulative[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 : 0);
 }
}

class StructureAndMethodsThree
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}/{1}/{2} Day of Year: {3}",
 dateMoonWalk.month, dateMoonWalk.day, dateMoonWalk.year,
 dateMoonWalk.DayOfYear());
 }
}

The static version of DayOfYear in the previous program calculated a
day-of-year value based on a Date parameter to the method. It needed

this parameter to reference the three fields of the particular Date
structure for which it‘s calculating a day-of-year value.

The instance version of DayOfYear has no parameter; instead, it refers
directly to the three instance fields of the structure. Notice how much the
DayOfYear code has been simplified: Rather than dateParam.month, it

can now simply reference month. Any instance method in a class or
structure has direct access to the instance fields of that class or

structure.

Now look at Main. Previously Main had to call the static DayOfYear
method by specifying the Date structure in which the method is declared,
and passing a Date object to the method:

Date.DayOfYear(dateMoonWalk)

.NET Book Zero Charles Petzold

Version 1.1 Page 131

The new version calls the parameterless DayOfYear method using the
Date instance:

dateMoonWalk.DayOfYear()

The DayOfYear method basically needs the same information it did
before—a year, a month, and a day. In the static version, it was getting
this information through the method parameter. The instance version of

the method is always called based on a particular instance of the
structure so the method can access the structure instance fields directly.

This code change also brings about a change in perspective. Previously
Main was asking the DayOfYear method in the Date structure to
calculate a day-of-year value for a particular instance of Date. Now the

Main method is asking the Date instance named dateMoonWalk to
calculate its own day-of-year value.

I‘ve kept IsLeapYear a static method just for some variety. Perhaps a
static IsLeapYear method might be useful if a program wanted to

determine if a particular year were a leap year without actually creating
an instance of the Date structure.

Any instance method in a class or structure can access instance fields in
the class or structure; also, any instance method can call any other
instance method in the class or structure. Any instance method can also

access static fields and call any static method in the class or structure.

However, you can‘t go the other way. A static method cannot access

instance fields in the same class or structure, and a static method
cannot call instance methods. (Well, actually, a static method can call an
instance method or access instance fields, but only if that static method

has access to an instance of the class—like DayOfYear in the
StructureAndMethodsTwo program. In general, that‘s not the case.) A

static method can‘t access instance fields or call instance methods
because an instance of the class doesn‘t even have to exist when a static

method is called.

The first instance method you encountered in this book was ToString. As
you discovered, it‘s possible for a program to pass any object to

Console.WriteLine and the ToString method provides some kind of text
representation of the object. You might be curious to try this with the

Date structure by inserting the statement

Console.WriteLine(dateMoonWalk.ToString());

or just:

Console.WriteLine(dateMoonWalk);

In either case, you‘ll get the string

Date

.NET Book Zero Charles Petzold

Version 1.1 Page 132

which is nothing more nor less than the name of the Date structure. The
Date structure certainly seems to have a ToString method, but at the

moment it‘s not doing anything very interesting.

Every class and every structure in the .NET Framework—including those

classes and structure you write yourself—has a ToString method. The
ubiquity of ToString is made possible through inheritance, which is one

of the primary characteristics of object-oriented programming. When one
class inherits (or derives) from another class, the new class acquires all

the non-private fields and methods of the class it inherits from, and it
can add its own fields and methods to the mix. The class that a new
class derives from is called the base class, and base is also a C#

keyword.

One of the primary differences between classes and structures involves

inheritance. Classes can inherit from other classes, but a structure
exists mostly in isolation. A structure cannot explicitly inherit from
anything else, and nothing can inherit from a structure.

All classes and structures derive from the grand matriarch of the .NET
Framework, System.Object. In C#, the keyword object is an alias for

System.Object.

Another important class in the System namespace is System.ValueType,

which inherits directly from System.Object. Although structures can‘t
explicitly inherit from anything else, all structures implicitly derive from
System.ValueType.

The techniques and implications of inheritance will become more evident
in the chapters ahead. For now, you should know that the ToString

method exists in all classes and structures because it‘s defined in the
System.Object class like so:

public virtual string ToString()
{
 ...
}

Actually, just so you won‘t think the default implementation of ToString
is a long sophisticated chunk of code, I wouldn‘t be surprised if it were

implemented like this:

public virtual string ToString()
{
 return GetType().FullName;
}

GetType is another method defined by System.Object. It returns an object

of type Type, and FullName is a property of the Type class that returns
the namespace and name of the type.

At any rate, take note of the virtual keyword. This keyword means that
any class or structure can provide a custom-made ToString method that

.NET Book Zero Charles Petzold

Version 1.1 Page 133

supersedes the one declared in System.Object. This is known as
overriding the method, and you do it using the override keyword. To

provide a custom ToString method, you declare it like so:

public override string ToString()
{
 ...
}

Everything else about the method—the existence of the public keyword,
the return value of string, and the absence of parameters—must be the

same.

The virtual and override keywords are closely related. A virtual method in

one class can be superseded by an override method in a derived class. I‘ll
have more to say about this in Chapter 19.

A custom ToString method must return an object of type string, and

frequently it uses the String.Format static method for formatting data for
display. Here‘s a new version of the Date structure with such a ToString

method.

StructureWithToString.cs
//--
// StructureWithToString.cs (c) 2006 by Charles Petzold
//--
using System;

struct Date
{
 public int year = 1;
 public int month;
 public int day;

 public static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public int DayOfYear()
 {
 return daysCumulative[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 : 0);
 }

 static string[] strMonths = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

.NET Book Zero Charles Petzold

Version 1.1 Page 134

 public override string ToString()
 {
 return String.Format("{0} {1} {2}", day, strMonths[month - 1], year);
 }
}

class StructureWithToString
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.year = 1969;
 dateMoonWalk.month = 7;
 dateMoonWalk.day = 20;

 Console.WriteLine("Moon walk: {0}, Day of Year: {1}",
 dateMoonWalk, dateMoonWalk.DayOfYear());
 }
}

ToString is an instance method, of course, so it can refer directly to the

fields of the Date structure. It also makes use of a static array of month
names, and chooses to format the date in the European fashion.

Now Main can display the date just by passing an instance such as
dateMoonWalk to Console.WriteLine. Console.WriteLine passes the object

to String.Format, which calls the object‘s ToString method, which also
calls String.Format.

But the problem with invalid dates is getting much more critical. Try the
two statements:

Date dateDefault = new Date();
Console.WriteLine(dateDefault);

The ToString method of Date now throws an exception because it
attempts to access strMonths with an index of –1. DayOfYear has a

similar problem. That might suggest to you that ToString or DayOfYear is
at fault and must be fixed. But that‘s not so. The problem occurs much

earlier, when Date allows an invalid date to be created in the first place.
We must prevent that from happening.

.NET Book Zero Charles Petzold

Version 1.1 Page 135

Chapter 15. Constructors

Consider this expression:

new Date()

What this expression actually does depends on whether Date is a

structure or a class. If Date is a class, the new operator allocates
memory from the heap sufficient to store an object of type Date. This

memory must be sufficient for all the instance fields defined in the class.
The memory allocation causes these fields to be set to zero, which causes
all value-type fields to be set to zero, and all reference-type fields to be

set to null. The new operator returns a reference to the memory in the
heap.

If Date is a structure, the new expression returns a Date object with all
its fields set to zero, but the new expression by itself doesn‘t really do

much of anything. If dt is an object of type Date, then the expression

dt = new Date()

effectively sets all the fields of dt to zero or null.

In either case, this behavior has been causing problems. We want a
newly created Date object to represent a date of 1/1/1 rather than

0/0/0.

One way to fix this problem is to simply initialize the fields in the

declaration statements:

class Date
{
 public int year = 1;
 public int month = 1;
 public int day = 1;
 ...
}

Now a little more happens during the new expression. After the memory

for the instance has been allocated from the heap, the three fields are all
initialized to 1. It‘s a valid date.

The only problem is that you can initialize fields only for a class. If Date

is a structure, then fields are always initialized to zero or null, and you
can‘t override that behavior. Try it and you‘ll get an error message that

says you ―cannot have instance field initializers in structs.‖

This prohibition is part of the reduced overhead involved with structures.
For an individual structure, it may not seem like much, but it really

makes a difference when a program creates an array based on a

.NET Book Zero Charles Petzold

Version 1.1 Page 136

structure type. It‘s much faster to allocate a block of heap memory that‘s
initialized to zero, rather than to initialize each and every element of the

array to specific field settings, particularly considering that some of these
fields could be reference types set to new expressions themselves.

Of course, arrays based on classes work much differently. Each element
of the array is initialized to null and must be created with another new
expression. Only then is memory allocated for each element and the

fields are initialized.

There is another approach to object initialization that‘s much more

generalized than just setting fields. You can initialize fields and perform
other arbitrary initialization in special methods known as constructors.

Constructors are so called because they construct the object.
Constructors are methods that are executed automatically when an
object is created.

In class or structure definitions, constructors look much like other
methods but with two unique characteristics: First, they have the same
name as the class itself. In a class or structure named Date, a

constructor has the name Date. Secondly, constructors have no return
value.

Here‘s that new expression again:

new Date()

The right side of that expression looks like a call to a method named Date
with no arguments. That‘s a constructor. Here‘s a skeleton of a Date

class containing a constructor that initializes the three fields to 1:

class Date
{
 int year, month, day;

 public Date()
 {
 year = 1;
 month = 1;
 day = 1;
 ...
 }
 ...
}

If Date were a regular method, it would have a return type between the
public keyword and the method name.

A constructor with no parameters is known as a parameterless
constructor. And here‘s another difference between classes and
structures: You can‘t declare a parameterless constructor in a structure.

(Again, this prohibition exists primarily to speed up array creation

.NET Book Zero Charles Petzold

Version 1.1 Page 137

involving structure types.) So now you see two ways of initializing fields
in a class, but neither of them works in a structure.

In a class, you can initialize some fields in the declaration statements
and some fields in a constructor:

class Date
{
 int year;
 int month = 4;
 int day = 1;

 public Date()
 {
 year = 1;
 month = 1;
 ...
 }
 ...
}

There‘s really no difference between these two ways of initializing fields.
The constructor that the C# compiler generates (which has the name
.ctor when you examine it in the IL Disassembler) first contains CIL code

that sets the fields in accordance with their declaration statements, and
then CIL code for the C# code you explicitly put in body of the con-

structor. In this odd example, the month field ends up as the value 1.

The constructor is required to be public if you want to allow code external

to the class to create objects. If not, you can define the constructor as
private or just leave off the public modifier.

Besides the parameterless constructor, it‘s also possible to declare

constructors that include parameters. These can be very useful for object
initialization. For example, so far we‘ve been creating an initializing a

Date object like so:

Date dateMoonWalk = new Date();
dateMoonWalk.year = 1969;
dateMoonWalk.month = 7;
dateMoonWalk.day = 20;

With a parametered constructor, you can conceivably do it like this:

Date dateMoonWalk = new Date(1969, 7, 20);

Again, the expression on the right looks like a method call, and it

essentially is. The constructor has three parameters. Without any
consistency checking, it might be defined like this:

class Date
{
 int year, month, day;

.NET Book Zero Charles Petzold

Version 1.1 Page 138

 public Date(int yearInit, int monthInit, int dayInit)
 {
 year = yearInit;
 month = monthInit;
 day = dayInit;
 }
 ...
}

You can declare a parametered constructor in either a class or a
structure.

I gave the three parameters to the constructor slightly different names

than the fields just so there‘s no confusion. You can actually use the
same names, and doing that is usually easier than making up slightly

different names. To distinguish fields from the parameters, you preface
the field names with the keyword this:

class Date
{
 int year, month, day;

 public Date(int year, int month, int day)
 {
 this.year = year;
 this.month = month;
 this.day = day;
 }
 ...
}

Within instance methods in a class or structure, the keyword this refers

to the current object. You can actually preface all references to instance
fields and instance methods with this and a period, but obviously it‘s not

required.

By providing a constructor with multiple parameters in your classes and
structures, you‘re giving programmers who use that class or structure a

convenient way to create objects. However, the multi-parameter
constructor isn‘t quite as safe as forcing programmers to set the fields

explicitly. If all the parameters are the same type, it‘s easy to mix them
up. (On the other hand, someone using the class or structure might
forget to set a field.)

The C# Language Specification, §10.10.4 states, ―If a class contains no
instance constructor declarations, a default instance constructor is

automatically provided.‖

By ―default instance constructor‖ the C# Language Specification is
referring to the default parameterless constructor. We know this is true

because the versions of the Date class and structure in earlier chapters
contained no instance constructor declarations, but they still seemed to

contain a parameterless constructor anyway.

.NET Book Zero Charles Petzold

Version 1.1 Page 139

But this statement from the C# Language Specification has another
profound implication: If you explicitly declare a parametered constructor

in your class, then the default parameterless constructor disappears.
You‘d be able to create a Date object like this:

Date dt = new Date(2007, 3, 5);

But you couldn‘t do it like this:

Date dt = new Date();

You‘d get the compile error ―No overload for method ‗Date‘ takes ‗0‘

arguments.‖ If you declare parametered constructors, you also need to
explicitly include a parameterless constructor if you want objects to be
created using a parameterless constructor. You may not. You may want

to prevent objects from being created with a parameterless constructor.
It‘s your choice.

With structures, it doesn‘t matter if you declare a bunch of constructors
with parameters or not. C# continues to provide a public parameterless
constructor and there‘s nothing you can do to make it go away. The

implication is simple: You can always create an array of a structure type
because structures always have a parameterless constructor.

Parametered constructors are particularly useful when you‘re declaring

an array of initialized objects. Here‘s some code that is certainly explicit
about which fields of which array elements are being set:

Date[] dates = new Date[3];

dates[0] = new Date();
dates[0].year = 2007;
dates[0].month = 2;
dates[0].day = 2;

dates[1] = new Date();
dates[1].year = 2007;
dates[1].month = 8;
dates[1].day = 29;

dates[2] = new Date();
dates[2].year = 2007;
dates[2].month = 10;
dates[2].day = 22

If Date were a structure, the first new expression would be required but
the others would not. But the real concision comes when Date has a

parametered constructor. Each element of the array could be set in a
single statement:

Date[] dates = new Date[3];
dates[0] = new Date(2007, 2, 2);
dates[1] = new Date(2007, 8, 29);
dates[2] = new Date(2007, 10, 22);

.NET Book Zero Charles Petzold

Version 1.1 Page 140

Or the three elements can be initialized during array creation:

Date[] dates = { new Date(2007, 2, 2), new Date(2007, 8, 29),
 new Date(2007, 10, 22) };

What you cannot do in C# is initialize an array by just listing the values
of the fields as you can in C or C++.

The following program contains a parameterless constructor that

initializes the date to 1/1/1, and a constructor with three parameters
that performs extensive consistency checking, which now rather

dominates the code.

ConsistencyChecking.cs
//--
// ConsistencyChecking.cs (c) 2006 by Charles Petzold
//--
using System;

class Date
{
 public int year;
 public int month;
 public int day;

 // Parameterless constructor
 public Date()
 {
 year = 1;
 month = 1;
 day = 1;
 }

 // Parametered constructor
 public Date(int year, int month, int day)
 {
 if (year < 1)
 throw new ArgumentOutOfRangeException("Year");

 if (month < 1 || month > 12)
 throw new ArgumentOutOfRangeException("Month");

 if (day < 1 || day > 31)
 throw new ArgumentOutOfRangeException("Day");

 if (day == 31 && (month == 4 || month == 6 ||
 month == 9 || month == 11))
 throw new ArgumentOutOfRangeException("Day");

 if (month == 2 && day > 29)
 throw new ArgumentOutOfRangeException("Day");

 if (month == 2 && day == 29 && !IsLeapYear(year))
 throw new ArgumentOutOfRangeException("Day");

.NET Book Zero Charles Petzold

Version 1.1 Page 141

 this.year = year;
 this.month = month;
 this.day = day;
 }

 public static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public int DayOfYear()
 {
 return daysCumulative[month - 1] + day +
 (month > 2 && IsLeapYear(year) ? 1 : 0);
 }

 static string[] strMonths = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

 public override string ToString()
 {
 return String.Format("{0} {1} {2}", day,
 strMonths[month - 1], year);
 }
}

class ConsistencyChecking
{
 static void Main()
 {
 Date dateDefault = new Date();

 Console.WriteLine("Default Date: {0}", dateDefault);
 }
}

A constructor has no return value. If a constructor encounters a problem
and can‘t continue, it has little choice but to raise an exception. For this

constructor, I decided that the ArgumentOutOfRangeException seemed to
best describe the problem. To help in diagnosis, I‘ve provided the
exception constructors with arguments indicating whether the year,

month, or day was the primary culprit.

Of course, if you‘re providing a class to other programmers, you‘ll want to

clearly document that a constructor can raise an exception if the input is
not valid.

Notice the constructor‘s use of the IsLeapYear method. If IsLeapYear
were an instance method rather than a static method, the constructor
might still be able to use it, but only with some caution. As you‘ll note,

when the constructor calls IsLeapYear, it has not yet set the year field,

.NET Book Zero Charles Petzold

Version 1.1 Page 142

so an instance version of IsLeapYear would use the value of year when
the object was first allocated from the heap, and that would be 0. Be

very, very cautious when calling instance methods from constructors.

If a class or structure has multiple constructors, they can make use of

each other, but in a very special way. For example, suppose you want to
have an additional Date constructor with just one parameter:

Date dateNewYearsDay = new Date(2008);

You might want this constructor to make a Date object for January 1 of

that year. If you‘d prefer not to duplicate some of the code already in the
three-parameter constructor, you can define this new constructor like
this:

public Date(int year) : this(year, 1, 1)
{
}

Notice the colon following the parameter list. The colon is followed by

something resembling a method call, but with the word this with three
arguments. This actually refers to the three-parameter constructor called

with month and day values of 1. Before executing the body of the one-
parameter constructor (if any), this three-parameter constructor is called.

A call from one constructor to another is called a constructor initializer,
and it‘s the only way one constructor can make direct use of another
constructor. If you need more flexible ways of sharing code among

constructors, you can define some methods (probably static methods) in
the class specifically for common initialization tasks that multiple

constructors need to perform.

I mentioned earlier that the C# compiler generates code that it inserts
into the constructor to initialize instance fields. That generated code is

always executed first in any constructor. Next is the call to the
constructor initializer, followed by the actual code in the body of the
constructor.

If your class contains many constructors, each of the compiled
constructors will contain identical CIL code to set the instance fields to

their initialized values. To avoid this duplicated code, you might want to
not initialize the fields in their declaration statements and instead
initialize them in the parameterless constructor. The parametered

constructors can then execute the code in the parameterless constructor
through a constructor initializer.

The opposite approach makes more sense for the Date class. The
parameterless constructor can use the parametered constructor by
including a constructor initializer:

.NET Book Zero Charles Petzold

Version 1.1 Page 143

public Date() : this(1, 1, 1)
{
}

If you don‘t explicitly provide a constructor initializer, the constructor
calls the parameterless constructor in the base class, which is the class
that your class derives from. (I‘ll discuss this process more in Chapter

18.) In effect, every constructor calls one (and only one) constructor
initializer before executing the code in the body of the constructor.

A class or structure can contain one static constructor, which must have
no parameters. The declaration of the static constructor must include the

static keyword but no other modifier. A static constructor in the Date
class might look like this:

static Date()
{
 ...
}

The code in the static constructor is guaranteed to execute before any
instance constructor, and before any static member in the class is
accessed. Even if you don‘t explicitly include a static constructor, one is

generated in intermediate language to initialize static members, such as
the static arrays in the Date class. In CIL, the static constructor shows

up with the name .cctor. (The instance constructors have the names
.ctor.)

The static constructor is a good place to perform initialization of static
fields if a declaration statement isn‘t quite adequate. I use static
constructors in a WPF program named ClockStrip, the source code of

which is available for downloading from www.charlespetzold.com/wpf.
One of these static constructors accesses the Windows registry to obtain

time-zone information for all the time zones of the world. Another static
constructor assembles a collection of locations and their time zones
around the world.

.NET Book Zero Charles Petzold

Version 1.1 Page 144

Chapter 16. Concepts of Equality

Before continuing with the Date class, it might be useful to explore in

more depth the differences between classes (reference types) and
structures (value types). As you know, C# supports an equality operator

A == B

and an inequality operator:

A != B

The equality operator returns true if the two operands are equal; the
inequality operator returns true if the two operands are not equal. These

operators work with numeric types as well as char, bool, and string.

Every class and structure includes a method named Equals. This method

is defined by the System.Object class as a virtual method:

public virtual bool Equals(object obj)

The method is inherited by all other classes and structures, including
those that you define. You can use Equals with two strings to determine

if they represent the same character string. The comparison is case
sensitive. For example:

string str = "abc";
bool b1 = str.Equals("abc");
bool b2 = str.Equals("Abc");

In this code, b1 is set to true but b2 is set to false. You can also use

Equals with integers:

int i1 = 55, i2 = 55;
bool b3 = i1.Equals(i2);

In this code, b3 is set to true.

Because Equals is inherited by all other classes and structures, it‘s
helpful to see how it works with classes and structures that you define

yourself. Here‘s a little class named PointClass that contains two public
fields named x and y, perhaps to represent a two-dimensional coordinate

point.

PointClass.cs
//---
// PointClass.cs (c) 2006 by Charles Petzold
//---
class PointClass
{
 public int x, y;
}

.NET Book Zero Charles Petzold

Version 1.1 Page 145

And here‘s a structure that defines the same two fields.

PointStruct.cs
//--
// PointStruct.cs (c) 2006 by Charles Petzold
//--
struct PointStruct
{
 public int x, y;
}

The EqualsTest project includes both those files and EqualsText.cs,

shown below. (To add additional source code files to a project in Visual
Studio, just right click the project name in the solution explorer, and

choose Add and then New Item from the menu. Or, pick Add New Item
from the Project menu.)

EqualsTest.cs
//---
// EqualsTest.cs (c) 2006 by Charles Petzold
//---
using System;

class EqualsTest
{
 static void Main()
 {
 PointStruct ps1 = new PointStruct();
 ps1.x = ps1.y = 55;

 PointStruct ps2 = new PointStruct();
 ps2.x = ps2.y = 55;

 PointClass pc1 = new PointClass();
 pc1.x = pc1.y = 55;

 PointClass pc2 = new PointClass();
 pc2.x = pc2.y = 55;

 Console.WriteLine("ps1.Equals(ps2) results in " + ps1.Equals(ps2));
 Console.WriteLine("ps1.Equals(pc1) results in " + ps1.Equals(pc1));
 Console.WriteLine("pc1.Equals(pc2) results in " + pc1.Equals(pc2));
 Console.WriteLine("pc1 == pc2 results in " + (pc1 == pc2));
 // Console.WriteLine("ps1 == ps2 results in " + (ps1 == ps2));
 }
}

The Main method creates two PointStruct objects named ps1 and ps2,

and two PointClass objects named pc1 and pc2, and sets all the fields to
55. It then compares them using the Equals method and (for the two

classes only) the equality operator. Here‘s what the program displays:

.NET Book Zero Charles Petzold

Version 1.1 Page 146

ps1.Equals(ps2) results in True
ps1.Equals(pc1) results in False
pc1.Equals(pc2) results in False
pc1 == pc2 results in False

The first Equals call compares the two structures, and this call returns

true. That should make us happy that two structures with their fields set
to the same value are considered to be equal.

The second Equals call compares one of the structures with one of the
classes, and it returns false. Maybe it just doesn‘t make sense to

compare two objects of different types.

The third Equals call compares the two instances of the PointClass class,
and here is revealed something rather disturbing. Equals returns false,

even though the two objects appear to be identical. Moreover, comparing
the two objects with the equality operator also returns false. Why is this?

A class is a reference type. What are pc1 and pc2 really? They are
references to memory blocks that have been allocated in the heap. The

two objects might contain identical information but they are separate
and distinct. The references are not equal. For that reason, the Equals

method in Object (which PointClass inherits) returns false.

The ValueType class (which is the implicit base class of all structures)
overrides the Equals method, so that‘s the one that applies to all

structures. ValueType implements its own concept of Equals to perform a
different type of comparison that involves the actual fields of the object. If

the two objects are instances of the same structure, and all the fields are
equal, then Equals returns true. This is called a bitwise equality test.

You can use the equality operator with classes, and it returns the same
value as the Equals method. The default equality operator implements

reference equality.

The equality and inequality operators are not implemented for structure
types. If you want a structure to implement the equality and inequality

operators, you‘ll have to define them yourself, as I demonstrate in
Chapter 20.

This different notion of equality also implies a distinction between

reference types and value types that involves their application.
Structures are best suited for creating objects that are somewhat

numeric-like. Two coordinate points with the same x and y values should
certainly be treated as equal.

However, suppose you‘re dealing with objects that represent people. You

define fields to store the person‘s name, birth date, height, and weight. If
two people have the same name, birth date, height, and weight, are they

the same person? Not necessarily, and perhaps the fact that these two
people are represented by two different objects tells you that these are

.NET Book Zero Charles Petzold

Version 1.1 Page 147

actually two separate people. (However, if the two objects had the same
value in the SocialSecurityNumber field, then they probably do represent

the same person and should probably be treated as equal.) Similarly, if
two graphical buttons have the same text, and the same size, and the

same location on the screen, are they equal? Are they the same button?
No. If they‘re two different objects, then they‘re two different buttons, and
one is sitting on top of the other.

Whenever you create a class or structure, you should give some thought
to the concept of equality. If your concept doesn‘t match the default

implementation, then you can override the Equals method. (I‘ll show you
how shortly.) You can also define equality and inequality operators as I‘ll
demonstrate in Chapter 20.

Consider the String class. Because String is a class, the Equals method
and equality operators would normally implement reference equality. But

String overrides this method and the equality operators so they perform
comparisons of the character strings rather than comparisons of the

references. This type of comparison is more valuable to us.

A related difference between classes and structures involves assignment.
Suppose you define two integers like so:

int i1 = 22, i2 = 33;

First you set i1 equal to i2, and then you set i2 to something else:

i1 = i2;
i2 = 55;

What does i1 equal? Obviously 33, the value it obtained when it was
assigned the original value of i2. But sometimes assignment isn‘t quite as

intuitive, because sometimes assignment involves references.

Here‘s another project named AssignmentTest. The AssignmentTest.cs

file is shown below, but this project also makes use of the PointClass.cs
and PointStruct.cs files from the EqualityTest project.

If you‘re typing these files in yourself, you probably don‘t want multiple

copies of the files hanging around. Instead, you want the AssignmentTest
project to have links to the existing files. In Visual Studio, you can right-

click the project name in the solution explorer, and choose Add and
Existing Item from the menu. Or pick Add Existing Item from the Project
menu. Navigate to the EqualityTest directory, pick the files you want

links to, click the arrow next to the OK button, and pick Add As Link.

AssignmentTest.cs
//---
// AssignmentTest.cs (c) 2006 by Charles Petzold
//---
using System;

.NET Book Zero Charles Petzold

Version 1.1 Page 148

class AssignmentTest
{
 static void Main()
 {
 PointStruct ps1 = new PointStruct();
 ps1.x = ps1.y = 22;

 PointStruct ps2 = new PointStruct();
 ps2.x = ps2.y = 33;

 ps1 = ps2;
 ps2.x = ps2.y = 55;

 Console.WriteLine("ps1 is ({0}, {1})", ps1.x, ps1.y);
 Console.WriteLine("ps2 is ({0}, {1})", ps2.x, ps2.y);
 Console.WriteLine("ps1.Equals(ps2) results in " + ps1.Equals(ps2));

 PointClass pc1 = new PointClass();
 pc1.x = pc1.y = 22;

 PointClass pc2 = new PointClass();
 pc2.x = pc2.y = 33;

 pc1 = pc2;
 pc2.x = pc2.y = 55;

 Console.WriteLine("pc1 is ({0}, {1})", pc1.x, pc1.y);
 Console.WriteLine("pc2 is ({0}, {1})", pc2.x, pc2.y);
 Console.WriteLine("pc1.Equals(pc2) results in " + pc1.Equals(pc2));
 Console.WriteLine("pc1 == pc2 results in " + (pc1 == pc2));
 }
}

The first half of Main roughly parallels the example I just showed with

integers, but with two structures named ps1 and ps2. The two fields of
ps1 are first both assigned 22, and the two fields of ps2 get 33. Then ps1

is set to ps2:

ps1 = ps2;

The two fields of ps2 are then assigned 55. What does ps1 equal? Here‘s
what the program reports:

ps1 is (33, 33)
ps2 is (55, 55)
ps1.Equals(ps2) results in False

The two fields of ps1 are both the values obtained when ps1 was

assigned from ps2, rather than the values later set to ps2. The code
works the same as with the integers.

The second half of Main contains parallel code but using PointClass
rather than PointStruct. Two objects named pc1 and pc2 are created and

assigned values, and pc1 is set to pc2:

pc1 = pc2;

.NET Book Zero Charles Petzold

Version 1.1 Page 149

The program then assigns 55 to the two fields of pc2, and displays the
results:

pc1 is (55, 55)
pc2 is (55, 55)
pc1.Equals(pc2) results in True
pc1 == pc2 results in True

What happened here? Why does pc1 have the same values later assigned

to pc2?

A class is a reference type. The pc1 and pc2 variables are references to

memory blocks allocated in the heap. Following the assignment
statement

pc1 = pc2;

both pc1 and pc2 store the same reference, and hence refer to the same
memory block. Whatever you do to the fields of pc1 also affects the fields

of pc2; likewise, any change to the fields of pc2 also affects the fields of
pc1. The pc1 reference equals the pc2 reference, as the program

demonstrates at the end by using the Equals method and equality
operator.

Because PointStruct is a structure, the statement

PointStruct ps1 = new PointStruct();

does not result in any memory allocations from the heap. The ps1
variable is stored on the stack and the new operator simply sets all its

fields equal to 0 or null. In contrast, the statement

PointClass pc1 = new PointClass();

causes a memory allocation from the heap. Similarly,

PointClass pc2 = new PointClass();

requires another memory allocation. Following the assignment statement

pc1 = pc2;

both variables are the same value and refer to the second block of
memory allocated from the heap.

What happens to the first block of memory? It seems to be orphaned,

and in this simple program, it is. All the references to that first block of
memory are now gone. There is no way for the program to get back that

reference. The block therefore becomes eligible for garbage collection. The
system can free the memory block if necessary to obtain more memory
space.

Another related issue involves objects passed to method calls. The
following program also has links to the PointClass.cs and PointStruct.cs
files and defines methods that change the values of the class and

structure fields.

.NET Book Zero Charles Petzold

Version 1.1 Page 150

MethodCallTest.cs
//---
// MethodCallTest.cs (c) 2006 by Charles Petzold
//---
using System;

class MethodCallTest
{
 static void Main()
 {
 PointStruct ps = new PointStruct();
 ps.x = ps.y = 22;

 Console.WriteLine("Before method: ps is ({0}, {1})", ps.x, ps.y);
 ChangeStructure(ps);
 Console.WriteLine("After method: ps is ({0}, {1})", ps.x, ps.y);

 PointClass pc = new PointClass();
 pc.x = pc.y = 22;

 Console.WriteLine("Before method: pc is ({0}, {1})", pc.x, pc.y);
 ChangeClass(pc);
 Console.WriteLine("After method: pc is ({0}, {1})", pc.x, pc.y);
 }
 static void ChangeStructure(PointStruct ps)
 {
 ps.x = ps.y = 33;
 }
 static void ChangeClass(PointClass pc)
 {
 pc.x = pc.y = 33;
 }
}

When exploring arrays, you discovered that methods can change

elements of an array passed to the method. Methods can also change
fields of classes but not fields of structures. The program displays the
results:

Before method: ps is (22, 22)
After method: ps is (22, 22)
Before method: pc is (22, 22)
After method: pc is (33, 33)

When a program passes an object to a method in preparation for a

method call, what happens depends on whether the object is based on a
class or a structure. If the object is a value type, a bitwise copy is made
for use by the method. If the object is a reference type, the reference itself

is copied for use by the method. The method can use this reference to
change any field of the class. These changes affect the original object.

In both cases, the method is always working with a copy. It‘s a bitwise

copy for a value type, and a copy of the reference for a reference type.

.NET Book Zero Charles Petzold

Version 1.1 Page 151

The ChangeClass method in the MethodCallTest program might even
conclude by setting the parameter to null:

static void ChangeClass(PointClass pc)
{
 pc.x = pc.y = 33;
 pc = null;
}

The program will work the same. The original reference stored in Main is
not affected because the method gets a copy of that reference.

Of course, you can write a method that changes the fields of a structure
by defining the parameter with the ref or out keyword. This causes the

structure to be passed by reference rather than value. It actually
improves efficiency for large value types because the entire structure
doesn‘t need to be copied to the stack, only a reference.

Assignment, method calls, and tests for equality all work a little
differently for objects based on structures or classes. Underlying these
differences is an important fact regarding the new operator.

For classes, a call to the new operator is required to create a new
instance of the class. The new operator initiates some very serious

activity. The new operator allocates memory from the heap to store the
object and calls one of the class‘s constructors. This is not something

you want happening arbitrarily, and usually it does not. For example:

PointClass pc1 = new PointClass();
PointClass pc2 = pc1;

There‘s only one new expression in this code, so only one instance of

PointClass is created. Both pc1 and pc2 refer to that single instance. The
following code is much different because it creates two distinct objects:

PointClass pc1 = new PointClass();
PointClass pc2 = new PointClass();

Similarly, a new operation doesn‘t occur when an object is passed to a
method. The method is working with the same object passed to it.

This whole issue becomes crucial when you start working with classes
with constructors that do more than just initialize a few fields. Some
classes have constructors that open disk files in preparation for reading

or writing, for example. You don‘t want the same file reopened if you
happen to pass the object to a method. When working with user interface

objects such as buttons or dialog boxes, you certainly don‘t want new
objects being created when you pass them to a method.

Creating a new instance of a class is often serious business, and that‘s

why it doesn‘t usually happen without you, the programmer, knowing
about it.

.NET Book Zero Charles Petzold

Version 1.1 Page 152

Creating a new instance of a structure is much less serious. This code
involving a structure

PointStruct ps1 = new PointStruct();
PointStruct ps2 = ps1;

is equivalent to code that has two new operators:

PointStruct ps1 = new PointStruct();
PointStruct ps2 = new PointStruct();

These two little blocks of code are equivalent because the parameterless
constructor of a structure only initializes all the structure fields to zero
or null. And it can never do anything else. You aren‘t allowed to initialize

the fields of a structure to non-zero values or write your own
parameterless constructor. That privilege is reserved for classes.

.NET Book Zero Charles Petzold

Version 1.1 Page 153

Chapter 17. Fields and Properties

Classes and structures have several types of members, most notably

fields, methods, constructors, and properties. You‘ve already
encountered several properties in this book, but I haven‘t yet emphasized
how important they‘ve become in the vast scheme of .NET. When C# first

emerged from Microsoft, properties seemed like merely a syntactical
convenience for programmers. In recent years, properties have evolved
into an extremely important feature of the .NET Framework.

Properties have become vitally important mostly because XML has
become important. In recent programming interfaces such as the

Windows Presentation Foundation (WPF), programmers can even use an
XML-based Extensible Application Markup Language (XAML) is defining
layout of windows and controls.

Here‘s a little WPF code:

Button btn = new Button();
btn.Foreground = Brushes.LightSeaGreen;
btn.FontSize = 32;
btn.Content = "Hello, WPF!";

Notice the use of a parameterless constructor followed by code that sets

three properties of the Button class. Here‘s the equivalent in XAML:

<Button Foreground="LightSeaGreen" FontSize="32"
 Content="Hello, WPF!" />

This translation between code and XAML is so easy and straightforward

primarily because Button has a parameterless constructor and defines
properties to set the color, font size, and content. Imagine the translation

mess if Button had only a parametered constructor, and if it had various
methods rather than properties to set its characteristics.

Let‘s put some properties in the Date class. We definitely need something
to fix it, because despite the consistency checks implemented in the
three-parameter constructor of the Date class in Chapter 15, the class is

still not safe from invalid dates. A program using the class can create a
valid date using one of the constructors and then make the date invalid

simply by setting a field or two:

Date dt = new Date(2007, 2, 2);
dt.day = 31;

This is possible because the fields are public. If you don‘t want the fields

in a class to be changed by programs using the class, you should make
them private:

.NET Book Zero Charles Petzold

Version 1.1 Page 154

private int year;
private int month;
private int day;

Because private is the default, you can simply remove the access
modifier entirely:

int year;
int month;
int day;

That solves the invalid date problem, but at a severe cost. Code that

happens to encounter a Date object can‘t even determine what date is
represented by the object! (Well, that‘s not entirely true. Some code could

call ToString and then examine the string that‘s returned to figure out the
date.) A better solution is to make the fields public but also to mark them

as read-only:

public readonly int year;
public readonly int month;
public readonly int day;

The readonly modifier can only be used on fields. Unless you‘re working
with a structure, you can initialize a read-only field in the declaration:

public readonly int year = 1;

You can also set a read-only field in a constructor:

class Date
{
 public readonly int year, month day;

 public Date(int year, int month, int day)
 {
 this.year = year;
 ...
 }
 ...
}

But after the constructor finishes, a read-only field is fixed and cannot be
changed.

Using readonly on the fields essentially makes the Date object
immutable. You set the value at creation, and then you‘re stuck with it.
That‘s not necessarily a bad thing. An immutable object may be exactly

what you need in some cases. The DateTime structure in the .NET
Framework is immutable.

By now you‘ve seen several modifiers you can use with fields and
methods. These modifiers always appear before the type of the field or
the return type of the method, but they can be in any order among

themselves.

.NET Book Zero Charles Petzold

Version 1.1 Page 155

The access modifiers you‘ve seen are public and private. (There are
actually three more access modifiers—protected, internal, and internal
protected.) These five modifiers are mutually exclusive and indicate
whether a field or method is accessible from outside the class (or

structure) or whether its use is restricted to inside the class.

The static modifier indicates that the field or method is associated with

the class (or structure) rather than an instance of the class. You refer to
a static field or method by prefacing it with the class or structure name.
You refer to an instance field or method by prefacing it with an object

name. A static method cannot refer to an instance field in the same class
or structure, and cannot call an instance method.

You can use const to create a constant. It‘s not quite correct to say that a
constant is a field. (The C# Language Specification discusses them in two

separate sections, §10.3 and §10.4. However, in the .NET Framework
class library documentation, constants are listed under the category of
Fields.) As with local constants (that is, constants declared inside of

methods), the value of a constant must be set in the declaration, and it
must be available at compile time. The value of a constant cannot be
changed by code. You cannot use the static keyword with constants, but

constants are inherently static and shared among all instances of the
class. If a constant field is public, you can refer to it from outside the

class by prefacing it with the class name. Math.PI is a constant.

The readonly modifier is valid only with fields. The value of a read-only

field must be set in the declaration or by a constructor. After the
conclusion of the constructor, a read-only field cannot be modified.

The static, const, and readonly modifiers are somewhat related: A
constant has only a single value regardless of the instance, so a constant
is inherently static. A readonly field is generally an instance field, but

after a constructor finishes execution, it becomes similar to a constant in
that it cannot be changed.

There are times when you want to declare a constant, but the value is
not available at compile time. This is the case if you‘re trying to set a
constant using a new expression:

const Date dateSputnik = new Date(1957, 10, 4); // Won’t work!

Expression using new can be executed only at runtime. The C# Language

Specification, §10.4.2.1 has the solution: Use static readonly rather than
const:

static readonly Date dateSputnik = new Date(1957, 10, 4);

However, this guarantees only that dateSputnik cannot be set to another

Date object; it does not guarantee that the Date object referenced by
dateSputnik is immune from being changed itself, unless it defined in

such a way to be immutable.

.NET Book Zero Charles Petzold

Version 1.1 Page 156

You may be happy with immutable Date objects with readonly fields that
cannot be changed after the constructor terminates. But you may want a

Date object that can later change. If so, let‘s pursue a different approach.
Let‘s keep the fields private, but let‘s provide methods in the class that

can access and change the private fields. The methods that change the
private fields can also perform consistency checking and prevent the
creation of invalid dates.

Traditionally, such methods begin with the words Set and Get. Here‘s a
public SetYear method to change the private year field:

public void SetYear(int year)
{
 if (year < 1)
 throw new ArgumentOutOfRangeException("Year");

 this.year = year;
}

The method is public. The field is private. There‘s actually a problem with
this consistency check that I‘ll discuss shortly. For now, I‘m sure you get

the general idea: The Set method can contain code to safeguard against
invalid dates. The GetYear method is quite simple:

public int GetYear()
{
 return year;
}

The two methods are somewhat symmetrical. The SetYear method has a
single int argument and no return value, indicated by the keyword void.

The GetYear method has no argument but returns int. Likewise, you
could also write SetMonth, GetMonth, SetDay, and GetDay methods.

Now you can either create a Date object using the three-parameter
constructor, or you can create a Date object using the parameterless

constructor and then call the Set methods:

Date dateSputnik = new Date();
dateSputnik.SetYear(1957);
dateSputnik.SetMonth(10);
dateSputnik.SetDay(4);

Likewise, you could access the year, month, and day using GetYear,
GetMonth, and GetDay methods.

But like I said, that‘s the traditional approach. When programming in C#
you can instead use properties, which are a little cleaner, a little easier,
and a little prettier.

Like methods and fields and constructors, properties are members of
classes and structures. We‘ve already encountered some properties of the

basic data types. The Length property of the String class indicates the
number of characters in the string. The Array class defines both a Length

.NET Book Zero Charles Petzold

Version 1.1 Page 157

property and a Rank property. All these properties happen to be read-
only, but properties that you declare in your classes and structures don‘t

have to be.

In use, properties look exactly like fields. Here‘s how you might define a

Date object using properties named Year, Month, and Day:

Date dateSputnik = new Date();
dateSputnik.Year = 1957;
dateSputnik.Month = 10;
dateSputnik.Day = 4;

Property names are often capitalized. Just as you can set properties as if

they were fields, you can access properties as if they were fields:

Console.WriteLine("Sputnik was launched in " + dateSputnik.Year);

Both pieces of code are more attractive and readable than the equivalent
code using Set and Get methods.

And yet, properties contain code, so they are just as powerful as Set and
Get methods. For this reason, properties are often called ―smart‖ fields

because they can add a little code (for consistency and validity checks) to
setting and accessing fields. Often a public property is associated with a
private field (sometimes called a ―backing field‖) but that‘s not a

requirement.

Property declarations have a special syntax in C# that distinguishes
them from both methods and fields. Here‘s a declaration of a Year
property that is functionally equivalent to the SetYear and GetYear
methods I showed earlier:

public int Year
{
 set
 {
 if (value < 1)
 throw new ArgumentOutOfRangeException("Year");

 year = value;
 }
 get
 {
 return year;
 }
}

The property declaration begins with an optional access modifier.
Properties are very often public. Properties can also include the static

modifier or any other modifier used with methods. The type of the
property follows. Here it‘s int. That‘s both the type of the argument to the

earlier SetYear method and the return type of the GetYear method. That
symmetry is how both methods can be combined into a single property.

.NET Book Zero Charles Petzold

Version 1.1 Page 158

The name of the property is Year. A left curly bracket follows. That‘s how
the compiler knows it‘s not a method or a field. If Year were a method, it

would be followed by a left parenthesis. If Year were a field, it would be
followed by a comma, equal sign, or semicolon.

Within the outer set of curly brackets are one or two sections (called
accessors) that begin with the words get and set. Often both sections are

present. If only a get accessor is present, the property is read-only. (You
might want to say ―get only‖ or ―gettable‖ instead so everyone knows

you‘re talking about properties.) A property can have only a set accessor,
but that‘s rather rare. The words get and set are not considered C#

keywords because you can use the words as variable names. They have a
special meaning only in this particular place in the property declaration.

Within the body of the property declaration, set and get are both followed

by another set of curly brackets. In the set accessor, the special word
value refers to the value being set to the property; the get accessor must

have a return statement to return a value.

Properties are not actually part of the Common Language Specification

(CLS) nor are they implemented in intermediate language. When you
declare a property named Year, for example, the C# compiler fabricates
methods named set_Year and get_Year that contain the property code. If

you use a language that does not support properties (such as C++), you‘ll
have to refer to properties using these method names. You can‘t have

method names in your C# class that duplicate the names that the
compiler generates. (See the C# Language Specification, §10.2.7.1.) If you

declare a Year property, you can‘t also declare a method named get_Year.

Programmers experienced in .NET have pretty much come to the
conclusion that instance fields should always be private, and that public

access to these private fields should be through public properties that
guard against invalid values. Public properties always have capitalized

names; private fields often have names that begin with lowercase letters,
or perhaps underscores.

I haven‘t shown code yet for the Month and Day properties, partially

because I‘m not happy with the code I showed you for the Year property.
I mentioned it had a problem. Suppose you create a Date object like so:

Date dt = new Date(2008, 2, 29);

That‘s a valid date because 2008 is a leap year. But suppose the Year
property is now set to something else:

dt.Year = 2007;

That‘s now an invalid date, but the Year property as written above didn‘t
catch the problem. Here‘s a better Year property:

.NET Book Zero Charles Petzold

Version 1.1 Page 159

public int Year
{
 set
 {
 if (value < 1 || (!IsLeapYear(value) && Month == 2 &&
 Day == 29))
 throw new ArgumentOutOfRangeException("Year");

 year = value;
 }
 get
 {
 return year;
 }
}

Even with this enhanced Year property, some consistency-checking
problems will persist. Here‘s that leap-day date again:

Date dt = new Date(2008, 2, 29);

Now the program sets three properties to something else:

dt.Year = 2007;
dt.Month = 3;
dt.Day = 1;

The intention is clear from the code that the resultant date is valid, and

yet as soon as the Year property is set, an exception will be raised.
Rearrange the order of the statements and nobody will complain:

dt.Month = 3;
dt.Day = 1;
dt.Year = 2007;

This problem is not solvable. If you want to provide public properties that

allow a program to set a new date, and you want to prevent invalid dates,
some sequences of code won‘t work in the order they‘re written. But the
worst that can be said is that the code is overprotective.

The following file is devoted solely to a class named Date. This is the final
version of Date so it‘s in its own file (named Date.cs) and can be used by

other programs. The class contains Year, Month, and Day properties. I
like to arrange my classes so they begin with private fields, and the
public properties follow. These are followed by constructors and then

methods. Among these methods is a static method named IsConsistent
that all three properties use to prevent the occurrence of invalid dates.

Date.cs
//-------------------------------------
// Date.cs (c) 2006 by Charles Petzold
//-------------------------------------
using System;

.NET Book Zero Charles Petzold

Version 1.1 Page 160

class Date
{
 // Private fields
 int year = 1;
 int month = 1;
 int day = 1;

 // Public properties
 public int Year
 {
 set
 {
 if (!IsConsistent(value, Month, Day))
 throw new ArgumentOutOfRangeException("Year");

 year = value;
 }
 get
 {
 return year;
 }
 }

 public int Month
 {
 set
 {
 if (!IsConsistent(Year, value, Day))
 throw new ArgumentOutOfRangeException("Month = " + value);

 month = value;
 }
 get
 {
 return month;
 }
 }

 public int Day
 {
 set
 {
 if (!IsConsistent(Year, Month, value))
 throw new ArgumentOutOfRangeException("Day");

 day = value;
 }
 get
 {
 return day;
 }
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 161

 // Parameterless constructor
 public Date()
 {
 }

 // Parametered constructor
 public Date(int year, int month, int day)
 {
 Year = year;
 Month = month;
 Day = day;
 }

 // Private method used by the properties
 static bool IsConsistent(int year, int month, int day)
 {
 if (year < 1)
 return false;

 if (month < 1 || month > 12)
 return false;

 if (day < 1 || day > 31)
 return false;

 if (day == 31 && (month == 4 || month == 6 ||
 month == 9 || month == 11))
 return false;

 if (month == 2 && day > 29)
 return false;

 if (month == 2 && day == 29 && !IsLeapYear(year))
 return false;

 return true;
 }

 // Public properties
 public static bool IsLeapYear(int year)
 {
 return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
 }

 static int[] daysCumulative = { 0, 31, 59, 90, 120, 151,
 181, 212, 243, 273, 304, 334 };

 public int DayOfYear()
 {
 return daysCumulative[Month - 1] + Day +
 (Month > 2 && IsLeapYear(Year) ? 1 : 0);
 }

 static string[] strMonths = { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

.NET Book Zero Charles Petzold

Version 1.1 Page 162

 public override string ToString()
 {
 return String.Format("{0} {1} {2}", Day,
 strMonths[Month - 1], Year);
 }
}

Notice that the three-parameter constructor sets the properties rather
than the fields. Even the set accessors of the properties refer to the other

properties rather than access the fields. This is not a requirement.
Methods in a class can use either the class properties or the fields

themselves. But you‘ll see shortly why I like to structure my classes so
that field accesses are kept to a minimum.

Here‘s a simple program to test out the Date class:

PropertyTest.cs
//---
// PropertyTest.cs (c) 2006 by Charles Petzold
//---
using System;

class PropertyTest
{
 static void Main()
 {
 Date dateMoonWalk = new Date();

 dateMoonWalk.Year = 1969;
 dateMoonWalk.Month = 7;
 dateMoonWalk.Day = 20;

 Console.WriteLine("Moon walk: {0}, Day of Year: {1}",
 dateMoonWalk, dateMoonWalk.DayOfYear());
 }
}

Both Date.cs and PropertyTest.cs are part of the PropertyTest project.
You can experiment with other dates to make sure the class is working

as it should. Of course, in a real program, any code that has the
potential of causing Date to raise an exception should be put in a try
block.

Sometimes it‘s not clear whether a particular chunk of code should be a
method or a property. Properties are often considered characteristics of

an object, whereas methods often perform actions. If the object itself is a
noun, a property is an adjective and a method is a verb. If you can

associate the words get and set with a method, you probably want to
make it a property. I‘d be inclined to make DayOfYear a read-only
property, for example. The only real rule is this: If it needs a parameter to

get the value or an extra parameter to set the value, it‘s got to be a
method.

.NET Book Zero Charles Petzold

Version 1.1 Page 163

When we first embarked on the idea of encapsulating a date, we explored
implementing it as a class or a structure. It soon became clear that using

a structure had distinct problems. When an object is created from a
structure using a parameterless constructor, there is no way to initialize

the fields to anything but 0 or null.

Let‘s ask ourselves the question again: How can we implement Date as a
structure and prevent an invalid date when the parameterless

constructor is used to create the object?

Big hint: The get accessor of a property doesn‘t necessarily have to return

simply the value of a field.

The get accessor could return the value of the field plus one. In other

words, the private year, month, and day fields could be zero-based, but
the public Year, Month, and Day properties could be one-based. Here‘s a

revised Year property that uses this technique:

public int Year
{
 set
 {
 if (!IsConsistent(value, Month, Day))
 throw new ArgumentOutOfRangeException("Year");

 year = value - 1;
 }
 get
 {
 return year + 1;
 }
}

The only difference is that the set accessor sets the year field to value

minus one, and the get accessor returns the year field plus one. The
default year field is 0 but the Year property returns 1. Properties provide

a type of buffer around fields so you can make the internals of a class or
structure different from how it looks from outside.

Suppose you wanted to make the days of the month available as a public

property. You could define a public static property of type string array
and simply return the entire array of month names:

public static string[] MonthNames
{
 get
 {
 return strMonths;
 }
}

Then, if a program wanted the abbreviated name for January, for
example, the expression would be Date.MonthNames[0]. It seems as if the
property returns the whole array, but it‘s really only returning a

.NET Book Zero Charles Petzold

Version 1.1 Page 164

reference to the array, which is then indexed by the code accessing the
property. (The DateTimeFormatInfo class in the System.Globalization

namespace has a MonthNames property that returns a string array but
the month names are specific to a particular culture and language.)

It‘s also possible for a class to have a special member called an indexer
that is declared somewhat like a property. An indexer is intended for

classes or structure that store collections of items, so it‘s not quite
appropriate for the Date class.

But just suppose that you have a particular application that for a

particular Date object named dt, for example, it is sometimes convenient
to refer to the property dt.Year as dt[0], and refer to the property dt.Month

as dt[1], and the property dt.Day as dt[2]. You actually want to index the
object as if it were an array.

Here‘s how such an indexer would look:

public int this[int i]
{
 get
 {
 switch (i)
 {
 case 0: return Year;
 case 1: return Month;
 case 2: return Day;
 default: throw ArgumentOutOfRangeException("index = " + i);
 }
 }
}

Notice that the declaration of the indexer begins by resembling a property
named this, which is then followed by square brackets containing the
value of the indexer. As implemented here, this is a read-only indexer,

but you could come up with set logic as well if you wanted.

You can have multiple indexers if the index is a different type. It doesn‘t

have to be an integer. This one lets you specify a text index:

public int this[string str]
{
 get
 {
 switch (str.ToLower())
 {
 case "year": return Year;
 case "month": return Month;
 case "day": return Day;
 default: throw ArgumentOutOfRangeException("index = " + i);
 }
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 165

With an indexer like this, if dt is an object of type Date, then dt["MONTH"]
obtains the month.

In the .NET documentation, indexers often show up as the property
name Item. (In the String class, the name is Chars.) When programming

in C#, you never use that name to refer to indexers. You simply index the
object. As with properties, C# fabricates indexers by creating methods
named get_Item and set_Item.

.NET Book Zero Charles Petzold

Version 1.1 Page 166

Chapter 18. Inheritance

No class is an island. All classes are related to each other in some way.

All classes automatically have methods named ToString and Equals
because these two methods are defined in the class System.Object, a
class also referred to by the C# keyword object. All other classes contain

the ToString and Equals methods because all classes ultimately derive (or
inherit) from System.Object.

Inheritance is one of the primary features of object-oriented program-
ming. When a new class derives from an existing class (or subclasses an

existing class), it inherits all the non-private methods, properties, and
fields declared in the existing class. The new class can then extend the

existing class by adding to or replacing those methods, properties, and
fields. The process is cumulative. A class contains all the non-private
methods, properties, and fields declared in itself and all its ancestor

classes going back to System.Object.

It‘s all about reusing code. Inheritance provides a structured way to

reuse code that‘s already been written, but inheritance also provides a
way to alter or enhance the code in ways that make it more useful or
convenient.

The ability to inherit is one of the big differences between classes and
structures. Structures do not allow inheritance. All structures implicitly
derive from System.ValueType, which itself derives from System.Object.
But you can‘t define a class that inherits from a structure, or define a
structure that inherits from another structure. Once you define a

structure, that‘s the end of the line.

There are many reasons why you‘d want to use inheritance. Suppose you

have a class that‘s fine for most of your requirements, but it needs just a
few little changes. Even if you have access to the source code, you might
not want to change the original class. Maybe the class is working well in

some other application, and you wisely respect the ―if it ain‘t broke don‘t
fix it‖ rule. Or perhaps you don‘t have access to the code. Maybe the
class is available only in compiled form in a dynamic link library.

(Another reason to use inheritance that may seem a bit lame is this:
Suppose you‘re writing a book about object-oriented programming. In the

previous chapter you‘ve just presented a complete class named Date, and
now you‘d like to add a few features to it. Why make the previous class
even longer than it is if you can just derive from it and show the new

features that way?)

.NET Book Zero Charles Petzold

Version 1.1 Page 167

But mostly inheritance is used as an architectural mechanism that
allows programmers to avoid duplicating code. Often a programmer will

see that a particular job requires several classes. With further work and
design, it appears that two of these classes might be able share about 75

percent of their code. It makes sense for one of these classes to inherit
from the other, perhaps replacing a method or two, perhaps adding a
method or two, whatever‘s required. Object-oriented design is an art (and

a science) in itself, and this book will only scratch the surface.

With any luck, programmers who have come before you have used their
skills to create object-oriented libraries that exhibit an intelligent

structure of inheritance. If you‘ll be writing Windows applications using
the Windows Presentation Foundation, you‘ll be working a lot with

controls, which are visual user interface objects such as buttons,
scrollbars, and so forth. These controls are declared in a vast hierarchy
of inheritance, just a little bit of which is shown here:

Control
 ContentControl
 Label
 ButtonBase
 Button
 RepeatButton
 ToggleButton
 CheckBox
 RadioButton
 RangeBase
 ScrollBar
 ProgressBar
 Slider

This format is a standard way of showing inheritance. Each additional
level of indentation shows another level of inheritance. For example,

ContentControl derives from Control, and both Label and ButtonBase
derive from ContentControl. (Not shown is the fact that Control derives

from FrameworkElement, which derives from UIElement, which derives
from Visual, which derives from DependencyObject, which derives from

DispatcherObject, which derives from Object.)

Typically, as classes derive from other classes, they get less generalized
and more specific. The Windows Presentation Foundation lets you

subclass from the existing controls to make them even more specific—for
example, a button that always has red italic text.

In this chapter I‘ll be creating a class named ExtendedDate that derives
from the final Date class shown in the previous chapter.

The simplest subclassing syntax is:

.NET Book Zero Charles Petzold

Version 1.1 Page 168

class ExtendedDate: Date
{
}

The name of the ExtendedDate class is followed by a colon and then the
name of the class that it‘s subclassing, in this case Date. Date is known

as the base class to ExtendedDate. Many programmers put a space
before the colon but it‘s not required. If you don‘t indicate a base class

when you‘re declaring a class, then the class is assumed to derive from
object. A class can inherit from only one other class. Multiple inheri-
tance—a feature of some object-oriented languages in which a class can

inherit from multiple classes—is not supported by C#.

With the simple declaration of ExtendedDate, a new class has been

defined that contains all the non-private methods, properties, and fields
in Date.

What ExtendedDate does not inherit from Date are the constructors.
Constructors are not inherited. I repeat: Constructors are not inherited.

Because the simple ExtendedDate class shown above does not inherit

any of the constructors in Date, C# automatically provides a parameter-
less constructor. This constructor allows you to create an ExtendedDate

object like so:

ExtendedDate exdt = new ExtendedDate();

You can then use the Year, Month, and Day properties that
ExtendedDate inherits from Date. But you cannot use the three-

parameter constructor declared in Date to create an ExtendedDate
object.

If you‘d like to provide a three-parameter constructor in ExtendedDate,
you must explicitly declare it. Once you do that, then C# no longer

automatically provides a parameterless constructor, so you‘ll probably
want to provide one was well. Here‘s a version of ExtendedDate that has
the same constructors as Date:

class ExtendedDate: Date
{
 public ExtendedDate()
 {
 }
 public ExtendedDate(int year, int month, int day)
 {
 Year = year;
 Month = month;
 Day = day;
 }
}

Notice that the three-parameter constructor refers to the three properties
defined by Date. That‘s fine because ExtendedDate has inherited those

.NET Book Zero Charles Petzold

Version 1.1 Page 169

properties. But a better way to declare the three-parameter constructor
in ExtendedDate is for it to make use of the three-paremeter constructor

in Date. This requires a special syntax:

class ExtendedDate: Date
{
 public ExtendedDate()
 {
 }
 public ExtendedDate(int year, int month, int day) :
 base(year, month, day)
 {
 }
}

Notice the colon following the parameter list. This colon is followed by the
keyword base, which refers to the base class of Date. The base keyword

is followed by three arguments in parentheses, so it refers to the three-
parameter constructor in Date. When the three-parameter ExtendedDate

constructor executes, the three-parameter constructor in Date is called
first, and then execution continues with the code in the body of the

ExtendedDate constructor (if any).

I showed you a feature similar to this in Chapter 15 but using the

keyword this rather than base. Collectively, these constructor calls are
called constructor initializers. A constructor initializer causes another

constructor in the same class or the base class to be executed before the
code in the body of the constructor.

Only one constructor initializer is allowed per constructor. If you don‘t

provide one, then one is provided for you that calls the parameterless
constructor in the base class. In other words, you‘ll never need to provide
a constructor initializer of base(). That initializer is generated

automatically if you don‘t provide an alternative.

Imagine a series of classes: Instrument derives from object, and

Woodwind derives from Instrument and Oboe derives from Woodwind. All
these classes have parameterless constructors with no explicit

constructor initializers. When you create an object of type Oboe, the
constructor in Oboe first executes the parameterless constructor in

Woodwind, which first executes the parameterless constructor in
Instrument, which first executes the parameterless constructor in object,

which doesn‘t actually do anything. The final result in this chain of
nested constructor calls is that all the parameterless constructors are
executed beginning with object, then Instrument, then Woodwind, and

finally Oboe. This happens even if you‘re using a constructor in Oboe
with parameters. If that constructor has no explicit constructor

initializer, the parameterless constructors in object, Instrument, and
Woodwind are executed before the constructor code in Oboe.

.NET Book Zero Charles Petzold

Version 1.1 Page 170

In summary, a constructor with no explicit constructor initializer
automatically executes the parameterless constructor in the base class

first. If a constructor includes a constructor initializer (either base or
this) then that constructor is executed. Nothing else happens

automatically.

In particular, a constructor with parameters does not automatically

execute the parameterless constructor in the same class unless you
specifically tell it to with a constructor initializer of this().

Here‘s another way to think of it: Whenever your program creates an
object, the parameterless constructor in System.Object is always
executed first, followed by at least one constructor in every descendent of

object leading up to the class that you‘re using to create the object.

What‘s interesting is that you can never prevent execution of some

constructor in the base class. Think about it: If you want to prevent a
constructor from calling the parameterless constructor in the base class,

you must provide a constructor initializer. If you don‘t want any
constructor in the base class to execute, you must specify a constructor
initializer that uses this rather than base. But you can‘t do that for every

constructor in your class. You‘ll end up with a circular chain of
constructor calls, which by common sense (and the C# Language
Specification, §10.10.1) is prohibited.

It‘s important for some constructor in the base class to always be

executed because that‘s how fields are initialized. Every constructor
actually begins first by setting the values of fields that have been
initialized in their declarations. Then another constructor is executed,

either explicitly (with a constructor initializer) or implicitly with a call to
the parameterless constructor in the base class. If a constructor in the

base class were never called, then the fields in the base class wouldn‘t be
initialized, and that would probably cause problems.

The following program contains the simple definition of ExtendedDate

that declares two constructors that call the corresponding constructor in
the base class.

Inheritance.cs
//--
// Inheritance.cs (c) 2006 by Charles Petzold
//--
using System;

class ExtendedDate : Date
{
 public ExtendedDate()
 {
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 171

 public ExtendedDate(int iYear, int iMonth, int iDay) :
 base(iYear, iMonth, iDay)
 {
 }
}

class Inheritance
{
 static void Main()
 {
 ExtendedDate dateMoonWalk = new ExtendedDate(1969, 7, 20);

 Console.WriteLine("Moon walk: {0}, Day of Year: {1}",
 dateMoonWalk, dateMoonWalk.DayOfYear());
 }
}

Because ExtendedDate derives from Date, the Inheritance project must

include a link to the Date.cs file from the last chapter.

The Date class contains constructors, methods, and properties with

access modifiers of public, and also one method (IsConsistent) and three
fields with no access modifiers, which is the same as an access modifier
of private. The public access modifier allows members of the class to be

accessed from other classes. The private modifier prohibits access
outside the class.

These restrictions also apply to derived classes. The ExtendedDate class
can access the public Year, Month, and Day properties defined by Date,

but has no access to the private year, month, or day fields in Date.

Between the two extremes of public and private is protected. A method,

property, or field declared as protected is accessible in the class in which
it‘s declared (of course) and also in any class that derives from that class.

If Date had a method, property, or field declared as protected, it would
normally not be accessible from outside the Date class, but it would be
accessible to ExtendedDate.

Using public, private, and protected in an intelligent manner takes some
thought and practice. Sometimes beginning programmers want to declare

everything as public so that every class can access everything in every
other class. (Microsoft Visual Basic actually fosters this attitude because

everything is public by default.) But as a rule, classes should have a
minimum of public methods. It‘s much easier to debug a class if other

classes have a limited number of ways to affect it or access it. When
you‘re debugging, you‘re sometimes like a detective solving a crime and
it‘s helpful to say ―The perpetrator could only have entered through this

door or that window.‖ Too many public members violates the concept of
hiding data and prevents the class from being a black box of code.

Declaring something as protected means that you‘re giving some thought

to what may be useful to inherited classes. Often the fact that something

.NET Book Zero Charles Petzold

Version 1.1 Page 172

needs to be protected is revealed only when you actually get down to
coding some methods or properties in the derived class.

The file that follows contains a version of ExtendedDate that does more
than just redefine the constructors. This class includes a new property

named CommonEraDay. This property returns the number of days since
the beginning of the Common Era. The date 1/1/1 has a CommonEraDay

property of 1. The property also has a set accessor. ExtendedDate.cs is
part of a project named CommonEraDayTest, which also requires a link
to the Date.cs file.

ExtendedDate.cs
//---
// ExtendedDate.cs (c) 2006 by Charles Petzold
//---
using System;

class ExtendedDate: Date
{
 // Constructors just execute constructors in base class.
 public ExtendedDate()
 {
 }
 public ExtendedDate(int iYear, int iMonth, int iDay):
 base(iYear, iMonth, iDay)
 {
 }

 // CommonEraDay sets/gets number of days since beginning of common era.
 public int CommonEraDay
 {
 get
 {
 return DaysBeforeYear() + DayOfYear();
 }
 set
 {
 Day = 1; // Prevent any inconsistencies during the calculation.

 // Year calculation if leap years were every four years.
 Year = (int)((value - .125m) / 365.25m) + 1;
 int iDayOfYear = value - DaysBeforeYear();

 // Adjust for leap year anomalies every hundred years.
 if (iDayOfYear > (IsLeapYear(Year) ? 366 : 365))
 {
 iDayOfYear -= IsLeapYear(Year) ? 366 : 365;
 Year++;
 }

 // Find the Month and Day
 for (Month = 12; Month > 0; Month--)
 {

.NET Book Zero Charles Petzold

Version 1.1 Page 173

 if (iDayOfYear >= DayOfYear())
 {
 Day = iDayOfYear - DayOfYear() + 1;
 break;
 }
 }
 }
 }

 // Private method for use by CommonEraDay property.
 int DaysBeforeYear()
 {
 int iYear = Year - 1;

 return (int) (365.25m * iYear) - iYear / 100 + iYear / 400;
 }
}

The code that supports the CommonEraDay property assumes that the
leap year rules we currently observe were in effect from the beginning of

the Common Era. In reality, much of the Western world celebrated leap
years every four years without exception until the introduction of the
Gregorian calendar in 1582. To reorient the calendar to compensate for

the damage caused by the Julian calendar, 10 days were skipped. The
date October 4, 1582 was followed by October 15, 1582. Algorithms that

account for the switch from the Julian calendar to the Gregorian
calendar are truly messy. (See Chapter 5 of Jean Meeus‘s Astronomical
Algorithms, Willmann-Bell, 1991 for a taste of what‘s involved.) My

simplified approach isn‘t quite as bad, but it‘s not perfect. Fortunately, it
doesn‘t conk out until the year 48,702. Don‘t worry if you don‘t quite get

it. The nitty-gritties of the calculation aren‘t really the point of this
exercise.

The CommonEraDayTest project concludes with the CommonEraDay-

Test.cs file, which uses ExtendedDate to calculate a difference between
two dates.

CommonEraDayTest.cs
//---
// CommonEraDayTest.cs (c) 2006 by Charles Petzold
//---
using System;

class CommonEraDayTest
{
 static void Main()
 {
 Console.Write("Enter the year of your birth: ");
 int year = Int32.Parse(Console.ReadLine());

 Console.Write("And the month: ");
 int month = Int32.Parse(Console.ReadLine());

.NET Book Zero Charles Petzold

Version 1.1 Page 174

 Console.Write("And the day: ");
 int day = Int32.Parse(Console.ReadLine());

 ExtendedDate exdtBirthday = new ExtendedDate(year, month, day);
 ExtendedDate exdtMoonWalk = new ExtendedDate(1969, 7, 20);

 int daysElapsed = exdtMoonWalk.CommonEraDay -
 exdtBirthday.CommonEraDay;

 if (daysElapsed > 0)
 Console.WriteLine(
 "You were born {0:N0} days before the moon walk.",
 daysElapsed);

 else if (daysElapsed == 0)
 Console.WriteLine(
 "You were born on the day of the moon walk.");

 else
 Console.WriteLine(
 "You were born {0:N0} days after the moon walk.",
 -daysElapsed);
 }
}

This program calculates the difference between two dates by subtracting

their CommonEraDay properties. Wouldn‘t it be nice just to subtract one
object from the other? That will become a reality in Chapter 20.

.NET Book Zero Charles Petzold

Version 1.1 Page 175

Chapter 19. Virtuality

As you saw in Chapter 16, concepts of equality that might have once

been intuitively clear become somewhat muddied when classes are
involved. Inheritance raises its own issues regarding equality and
assignment. To what extent are classes that are related by inheritance

equivalent to each other?

It turns out that object-oriented languages like C# provides some
interesting features related to inheritance that culminate in the

convenience and versatility of virtual methods.

The most basic of these features involves conversion. In particular C#

provides implicit conversions from any object to any ancestral type. To
explore these conversions, I‘ll use as an example the ExtendedDate class
from the previous chapter. As you‘ll recall, this class derived from the

Date class in Chapter 17, and the Date class implicitly derives from
System.Object, also known by the C# keyword object. Both object and

Date are ancestral types to ExtendedDate.

This code creates an object of type ExtendedDate:

ExtendedDate exdt = new ExtendedDate();

C# provides an implicit conversion from exdt to an object of any ancestral

type. This means that you can assign exdt to an object declared to be of
type Date:

Date dt = exdt;

No new object is created by this statement. The only object we‘re dealing

with was created by the new expression in the preceding statement. That
expression created an object of type ExtendedDate in the heap and

returned a reference to it. Now the dt variable refers to the same object.
This expression returns true:

exdt == dt

C# allows a conversion from type ExtendedDate to type Date for two

reasons:

First, objects of type ExtendedDate and objects of type Date are

references, and all references are the same size. The compiler has
reserved space on the stack for both exdt and dt, and in both cases this
space is sufficient to store a reference. There‘s no practical problem in

copying a reference from one slot on the stack to another.

Secondly, in this particular case, C# allows the conversion because

ExtendedDate derives from Date. In a very real sense, an ExtendedDate

.NET Book Zero Charles Petzold

Version 1.1 Page 176

object qualifies as a Date object because anything a Date object can do,
an ExtendedDate object can also do. For example, this expression is no

problem:

dt.DayOfYear()

Although dt really stores an ExtendedDate object, ExtendedDate has
inherited the DayOfYear method from Date.

But this expression is a problem:

dt.CommonEraDay

Even though in our little example the dt variable is really storing an
ExtendedDate object, and ExtendedDate supports the CommonEraDay

property, the C# compiler will not let this expression pass. The dt
variable is declared as an object of type Date, and the Date class does not

have a CommonEraDay property. C# considers this expression an error.

Assigning an object to a variable of an ancestral type is sometimes

known as upcasting, even though you don‘t need an explicit cast. The
conversion is implicit and always allowed.

Just as you can assign an object of type ExtendedDate to a Date variable,

you can declare a variable of type object and assign an ExtendedDate
object to it:

object obj = exdt;

You can assign any object to this obj variable because every object is

created from a class or structure that derives from object. Every object is
an object.

The obj variable to which we‘ve assigned the ExtendedDate object still
―knows‖ its true nature. That information is part of what‘s stored in the

heap along with the instance fields of the object itself. For example, you
can pass obj to the Console.WriteLine method:

Console.WriteLine(obj);

You‘ll see the date displayed. Console.WriteLine effectively calls the

ToString method of obj, and that‘s valid because System.Object defined
the ToString method to begin with. Date redefined the ToString method to

display the date, and ExtendedDate inherited that redefined ToString
method. That the correct ToString method gets called is part of the

pleasures associated with declaring and overriding virtual methods.
That‘s what this chapter is all about.

Some of the following code may be a little confusing, so I want to

distinguish between a variable‘s declared type and its actual type.
Consider the obj variable that‘s been assigned an instance of the

ExtendedDate class. Its declared type is object but its actual type is
ExtendedDate. A variable‘s declared type never changes, and in my

examples the name of the variable will indicate what that is. A variable‘s

.NET Book Zero Charles Petzold

Version 1.1 Page 177

actual type can change as the variable is assigned different objects.
However, a variable‘s actual type can‘t be just anything. It is always the

declared type or a descendant of its declared type.

C# provides an implicit conversion from any object to any ancestral type.

Going the other way (downcasting, as it‘s called) requires an explicit cast:

ExtendedDate exdt2 = (ExtendedDate) obj;

Even if obj were never assigned an object of type ExtendedDate, the C#
compiler would still allow this cast. Because ExtendedDate is derived

from object, obj could conceivably be storing an object of type Extended-
Date, so the C# compiler awards that cast and assignment statement its

good programming seal of approval.

However, there‘s still runtime to consider. If at runtime obj is not actually
an ExtendedDate object (or an instance of a class derived from Extended-
Date, if such a class existed) then the assignment statement throws an
InvalidCastException.

If the actual type of obj is truly ExtendedDate, then you can cast it and
access a property in a single expression:

((ExtendedDate) obj).CommonEraDay

The double parentheses are needed because casting is a unary operation

and the period is a primary operation that has higher precedence than
the unary operation. Without the parentheses that extend around obj,
the cast would seem to be applied to the value returned from the

CommonEraDay property.

You can also cast obj to a Date object to access a property or call a

method declared in Date:

((Date) obj).DayOfYear()

Calling DayOfYear would also work if you cast obj to ExtendedDate. But
you wouldn‘t be able to cast obj to a class that derives from Extended-
Date (if such a class existed). That cast would fail at runtime, and it
makes sense that it should, because a class that derives from Extended-
Date can do more than ExtendedDate and the actual type of obj is just
ExtendedDate.

If obj isn‘t actually an instance of ExtendedDate (or a class that derives
from ExtendedDate) and you try to cast it to an ExtendedDate object,

you‘ll raise an exception. To avoid raising an exception, you can use the
as operator instead:

ExtendedDate exdt2 = obj as ExtendedDate;

The as operator is similar to casting except that it doesn‘t raise an

exception if obj is not an ExtendedDate object. In that case, the as
operator returns null. (You can‘t use as to cast value types.) Programs

.NET Book Zero Charles Petzold

Version 1.1 Page 178

that use the as operator should be prepared for a null result and check
for it in code:

if (exdt2 != null)
{
 ...
}

It is also possible for a program to determine the actual type of an object

before the program tries to cast it. The System.Object class implements a
method named GetType that is inherited by all classes and structures.

GetType returns an object of type Type. I know that sounds funny, but
the System namespace includes a class named Type, and that‘s what
GetType returns:

Type typeObjVariable = obj.GetType();

The Type class has numerous properties and methods that a program
can use to obtain information about the class of which obj is an instance,
including all its properties, methods, and so forth. GetType will raise a

NullReferenceException if it‘s applied to a null object.

C# also supports an operator named typeof that you can apply to

classes, structures, enumerations, and so forth. You do not use typeof
with objects. Like GetType, the typeof operator returns an object of type

Type:

Type typeExtendedDateClass = typeof(ExtendedDate);

The documentation of the Type class in the .NET Framework says ―A
Type object that represents a type is unique; that is, two Type object

references refer to the same object if and only if they represent the same
type. This allows … for comparison of Type objects using reference

equality.‖ This means that you can use the equality operator with Type
objects. The expression

obj.GetType() == typeof(ExtendedDate)

is true if the actual type of obj is ExtendedDate. If that is so, however,
then the expression

obj.GetType() == typeof(Date)

returns false, despite the fact that ExtendedDate derives from Date and

you can cast obj to a Date object.

Take a moment to nail down the difference between GetType and typeof.
Both return objects of type Type. But GetType is an instance method that
you call for a particular object whereas typeof is a C# operator that you

apply to a type such as a structure or class.

You can also determine whether an object is a particular type using the

is operator. Just as with the as operator, an object always appears on

.NET Book Zero Charles Petzold

Version 1.1 Page 179

the left of the is operator, and a type appears on the right. The
expression

obj is ExtendedDate

returns true if obj is actually an instance of ExtendedDate. One

advantage of is over the comparison involving GetType is that is won‘t
raise an exception if obj is null. It will simply return false. Another

advantage (for most applications) is that it will return true for any class
that ExtendedDate derives from. If obj is actually an instance of

ExtendedDate, this expression also returns true:

obj is Date

The is operator returns true for any type where the object on the left can
be cast to the type on the right.

You can also use the is operator to determine whether the actual type of
the object implements a particular interface. For example, the foreach

statement works with any class that implements the IEnumerable
interface. (To implement an interface means to include all methods that

the interface declares.) If you want to determine if a particular object is
an instance of a class that implements the IEnumerable interface, you
can use the following expression:

obj is IEnumerable

The Sytem.Object class defines several methods that are inherited by

every class and structure. In Chapter 14 you saw how a class can
include a ToString method to provide a text representation of an object.

The ToString method is declared as a virtual method in System.Object:

public virtual string ToString()

To override the ToString method in your own class, you use the override
keyword:

public override string ToString()

Only methods and properties can be declared as virtual. Fields cannot.

Any derived class can override a virtual method or property.

The virtual keyword is used for method and properties that are intended

to be overridden. (Besides ToString you‘ll see in the next chapter how a
class can override the virtual Equals and GetHashCode methods also

declared in System.Object.) You can‘t change a method‘s accessibility
(that is, change the method from public to private) or return type when

you override a virtual method. Any virtual method overridden with
override remains a virtual method for further descendent classes.

There will be times when you‘ll derive a class from an existing class and

you‘ll want to provide a new version of a method or property that is not
declared as virtual. Or maybe you‘ll want to change a method‘s declared

access from protected to public or the other way around. Or perhaps you

.NET Book Zero Charles Petzold

Version 1.1 Page 180

need to change the return type of a method. Any member in a base
class—and that includes fields as well as methods and properties—can

be redefined in a derived class using the keyword new. This is sometimes
known as hiding the base member.

Interestingly enough, the new keyword is not strictly required, but the
compiler will warn you about its omission. The warning is intended to be

helpful, of course. The compiler is trying to prevent you from hiding a
member of the base class inadvertently.

If necessary, methods or properties in a derived class can make use of

overridden methods in the base class by prefacing the method or
property name with the keyword base. (See the SoundEngineer class later

in this chapter for an example.) Of course, a class can reference methods
in its base class that it inherits but does not override simply with the
method name.

The override and new keywords have significantly different effects, as
this short program demonstrates.

InheritedMethods.cs
//---
// InheritedMethods.cs (c) 2006 by Charles Petzold
//---
using System;

class BaseClass
{
 public virtual void VirtualMethod()
 {
 Console.WriteLine("VirtualMethod in BaseClass");
 }
 public void NonVirtualMethod()
 {
 Console.WriteLine("NonVirtualMethod in BaseClass");
 }
}

class DerivedClass : BaseClass
{
 public override void VirtualMethod()
 {
 Console.WriteLine("VirtualMethod in DerivedClass");
 }
 public new void NonVirtualMethod()
 {
 Console.WriteLine("NonVirtualMethod in DerivedClass");
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 181

class InheritedMethods
{
 static void Main()
 {
 DerivedClass dc = new DerivedClass();
 BaseClass bc = dc;

 bc.VirtualMethod();
 bc.NonVirtualMethod();
 }
}

The listing begins with the definition of BaseClass, a class with one

virtual method and one non-virtual method. Both methods simply
display some text indicating what and where they are. DerivedClass

derives from BaseClass and overrides the virtual method with the
override keyword and the non-virtual method with the new keyword. The

Main method creates an instance of DerivedClass and then assigns it to
an object of type BaseClass:

DerivedClass dc = new DerivedClass();
BaseClass bc = dc;

The declared type of bc is BaseClass, but the actual type is DerivedClass.
Next, Main calls the two methods using bc:

bc.VirtualMethod();
bc.NonVirtualMethod();

The results displayed by the program are interesting and reveal most of
what you need to know about virtual methods:

VirtualMethod in DerivedClass
NonVirtualMethod in BaseClass

Despite the fact that the program calls these two methods with a variable
declared as type BaseClass, the actual type of the object is DerivedClass.

Any virtual methods you call will be those in DerivedClass, which is the
actual type. The nonvirtual method is different. The method that‘s called
is based on the declared type, not the actual type.

This characteristic of virtual methods is sometimes called polymorphism,
a word derived from the Greek for ―many forms.‖ Virtual methods take on

many forms as they are overridden in descendent classes.

Suppose dt is an instance of the Date class. Consider the following

method call:

Console.WriteLine(dt);

If you search through the .NET Framework documentation of all the
overloads of Console.WriteLine, you won‘t find one that accepts a Date
argument. How could there be? But there is an overload of WriteLine that

accepts an argument of type object. When you call Console.WriteLine with
an argument of type Date, the C# compiler determines that the WriteLine

.NET Book Zero Charles Petzold

Version 1.1 Page 182

overload that comes closest is the one that has an argument of type
object. It‘s acceptable because implicit casts are allowed from Date to

object.

Somewhere in the body of the WriteLine method (or the String.Format
method that WriteLine uses), the ToString method of the object parameter
gets called. Because the actual type of the parameter is Date, and

because ToString is a virtual method, the version of ToString that gets
executed is the one in the Date class.

The difference between virtual and nonvirtual methods may become
clearer when you consider the role of the compiler. Suppose your

program contains a declaration of an object:

SomeClass someObject;

Or perhaps someObject appears in a parameter list to a method. Later

on, your code contains the following method call:

someObject.SomeMethod();

But there‘s a little problem here. The someObject variable might be an
instance of SomeClass like it‘s declared, or it might be an instance of a

class that derives from SomeClass.

What‘s the compiler to do? (The description that follows is more

conceptual than an accurate account of the compiler‘s actions.) The first
thing it does is examine the declaration of SomeMethod in SomeClass. If

SomeMethod is not part of SomeClass, the compiler examines the class
that SomeClass inherits from, and so forth, until it finds SomeMethod. (If

the compiler never finds SomeMethod, then that‘s a compile error.) Once
the compiler finds SomeMethod, it checks whether the method is virtual;

that is, does it have a virtual modifier or does it have an override modifier
to override a virtual method in an ancestral class? If the method is not
virtual, the compiler has it easy. The compiler knows exactly which

method should be invoked when SomeMethod is called for someObject.
It‘s the one that‘s declared right in SomeClass or the one that SomeClass

inherits. The compiler can match up the code with the precise method
call.

If SomeMethod is a virtual method, however, the compiler has a problem.

The compiler doesn‘t have enough information to figure out which
version of SomeMethod should be invoked. It depends on the actual type

of someObject and, in general, that‘s not known at compile time. The
actual type of someObject is known only when the program is run and

SomeMethod is called. Only at runtime can the correct version of
SomeMethod be invoked. Only at runtime can that call to Tostring in

Console.WriteLine be hooked up to the appropriate ToString method. The
process of hooking up a method call with a virtual method is known as

late binding because it takes place while the program is actually running.

.NET Book Zero Charles Petzold

Version 1.1 Page 183

Virtual methods are an essential part of object-oriented programming.
Without virtual methods, an expression such as

obj.ToString()

would be worthless. But because virtual methods require some

additional overhead at runtime, they shouldn‘t be used indiscriminately.

You‘ll probably want to use virtual methods in situations where you have
a general case, and then variations on that general case, and you want to

use the same property or method names with these variations, but you
want the implementations to be different.

For example, here‘s a general case that contains a virtual method:

class BaseClass
{
 public virtual int DoSomething()
 {
 ...
 }
 ...
}

The first variation derives from BaseClass and overrides the virtual
method:

class FirstVariation: BaseClass
{
 public override int DoSomething()
 {
 ...
 }
 ...
}

The second variation does likewise:

class SecondVariation: BaseClass
{
 public override int DoSomething()
 {
 ...
 }
 ...
}

You can make as many of these descendent classes as you want.

Because FirstVariation and SecondVariation derive from BaseClass,

objects of these types can be converted to objects of type BaseClass
without casting. The implications of this simple fact are astonishing: You

can store objects of type FirstVariation and SecondVariation in an array of
type BaseClass. Or you can pass these objects to a method that has a

BaseClass parameter. Even though you‘re treating these objects as if
they were BaseClass objects, whenever you call DoSomething, the version

.NET Book Zero Charles Petzold

Version 1.1 Page 184

of DoSomething in FirstVariation or SecondVariation will execute. You can
always determine what the actual type of the object is by calling the

GetType method, but you may find it convenient to treat these objects
uniformly without worrying about the actual type. And, you can later

define additional descendents of BaseClass with minimal impact to the
rest of your code.

For a more concrete example, let‘s look at an orchestra that pays its
musicians a flat $100 per performance (public funding of the arts being
what it is). Here‘s a simple class containing a constructor to store the

musician‘s name, a read-only property to obtain the musician‘s name,
and a CalculatePay method that returns the decimal value 100.

Musician.cs
//---
// Musician.cs (c) 2006 by Charles Petzold
//---
class Musician
{
 // Private field
 string strName;

 // Public property
 public string Name
 {
 get
 {
 return strName;
 }
 }

 // Constructor
 public Musician(string strName)
 {
 this.strName = strName;
 }

 // Virtual Method
 public virtual decimal CalculatePay()
 {
 return 100;
 }
}

Notice that CalculatePay is a virtual method. It‘s virtual because not

every musician is paid $100. The harp players, for example, are paid
based on the weight of their harps.

Harp.cs
//-------------------------------------
// Harp.cs (c) 2006 by Charles Petzold
//-------------------------------------

.NET Book Zero Charles Petzold

Version 1.1 Page 185

class Harp: Musician
{
 int weight;

 public Harp(string strName, int weight): base(strName)
 {
 this.weight = weight;
 }
 public override decimal CalculatePay()
 {
 return 1.5m * weight;
 }
}

The Harp class subclasses the Musician class. It declares its own

constructor for both a name and a harp weight and then uses a
constructor initializer to execute the constructor in Musician to store the

harpist‘s name. The Harp class itself stores the weight of the harp. The
new CalculatePay method has an override modifier and implements its

own pay formula.

Violinists are paid a little more than the other musicians, but they‘re also

penalized if they break a string during performance.

Violin.cs
//---------------------------------------
// Violin.cs (c) 2006 by Charles Petzold
//---------------------------------------
class Violin: Musician
{
 int numBrokenStrings;

 public Violin(string strName, int numBrokenStrings): base(strName)
 {
 this.numBrokenStrings = numBrokenStrings;
 }
 public override decimal CalculatePay()
 {
 return 125 - 50 * numBrokenStrings;
 }
}

The French horn is a notoriously difficult instrument, and the players are
paid based on the number of correct notes and flubbed notes.

FrenchHorn.cs
//---
// FrenchHorn.cs (c) 2006 by Charles Petzold
//---
class FrenchHorn: Musician
{
 int numGoodNotes, numFlubbedNotes;

.NET Book Zero Charles Petzold

Version 1.1 Page 186

 public FrenchHorn(string strName, int numGoodNotes, int numFlubbedNotes):
 base(strName)
 {
 this.numGoodNotes = numGoodNotes;
 this.numFlubbedNotes = numFlubbedNotes;
 }
 public override decimal CalculatePay()
 {
 return 1.5m * numGoodNotes + 0.75m * numFlubbedNotes;
 }
}

Somehow the sound engineer has managed to get paid 125 percent of

whatever the generic musician gets paid.

SoundEngineer.cs
//--
// SoundEngineer.cs (c) 2006 by Charles Petzold
//--
class SoundEngineer: Musician
{
 public SoundEngineer(string strName): base(strName)
 {
 }
 public override decimal CalculatePay()
 {
 return 1.25m * base.CalculatePay();
 }
}

Notice the use of the base keyword to reference the CalculatePay method
in the Musician class.

All these classes are part of the PayTheMusicians project, which also

contains the following class with the Main method.

PayTheMusicians.cs
//--
// PayTheMusicians.cs (c) 2006 by Charles Petzold
//--
using System;

class PayTheMusicians
{
 static void Main()
 {
 Musician[] musicians =
 {
 new Musician("Leonard"),
 new Harp("Sam", 62),
 new Violin("Sydney", 0),
 new FrenchHorn("Janet", 46, 23),
 new Musician("Chuck"),
 new Harp("Arien", 78),
 new Violin("Jason", 2),

.NET Book Zero Charles Petzold

Version 1.1 Page 187

 new FrenchHorn("Deirdre", 52, 25),
 new SoundEngineer("Fitz")
 };

 foreach (Musician mus in musicians)
 Console.WriteLine("Pay {0} the amount of {1:C}",
 mus.Name, mus.CalculatePay());
 }
}

The program creates nine objects based on Musician and its descendents,

and stores all these object in an array of type Musician. Despite the fact
that five different classes are involved here, a single array stores them all.

The foreach statement then loops through the array, displaying the
musician‘s name using the Name property and calling the CalculatePay
method. The results reveal that each musician gets paid a correct (if not

quite appropriate) amount:

Pay Leonard the amount of $100.00
Pay Sam the amount of $93.00
Pay Sydney the amount of $125.00
Pay Janet the amount of $86.25
Pay Chuck the amount of $100.00
Pay Arien the amount of $117.00
Pay Jason the amount of $25.00
Pay Deirdre the amount of $96.75
Pay Fitz the amount of $125.00

Obviously there‘s a lot going on behind the scenes here. Without virtual

methods, tailoring calculations like this would probably require a bunch
of if statements or a switch. With virtual methods, we get the same effect

in a much cleaner way. You can easily add alternate pay scales by
declaring new classes that derive from Musician. You don‘t have to touch

the foreach loop or any other code that manipulates objects of type
Musician.

Eventually, all the musicians might have special pay scales, and then

you really won‘t be creating objects of type Musician at all. In that case,
you can use the abstract modifier for the Musician class:

abstract class Musician
{
 ...
}

An abstract class can‘t be instantiated, which means the C# compiler

won‘t allow a new expression involving an abstract class. However, you
can still declare a variable of type Musician, and you can still have an
array of type Musician. Everything else about the program would remain

the same.

If a descendent of Musician doesn‘t override the CalculatePay method, the

descendent ends up with the version of CalculatePay defined in Musician.

.NET Book Zero Charles Petzold

Version 1.1 Page 188

It could be that you want to declare Musician as an abstract class and
also force every descendent of Musician to implement its own

CalculatePay method. In that case, you can also use the abstract
keyword for the CalculatePay method in Musician:

public abstract decimal CalculatePay();

An abstract method (or property) is implicitly virtual. Becaue this method

is never called, it has no body. In such a situation, a call from the
CalculatePay method in a derived class to the base class method (such as

in the SoundEngineer class) would not be allowed.

A real-life example of an abstract class with abstract methods is the

Calendar class used in conjunction with the DateTime structure. I‘ll
discuss this class in Chapter 23.

The opposite of an abstract class is a sealed class. An abstract class

must be subclassed to have any value to a program; a sealed class
cannot be subclassed. Some classes that contain only static fields,

methods, and properties, such as Console, Convert, and Math, are
declared as static classes, which are implicitly sealed. Structures are also
implicitly sealed.

And by now you should understand why inheritance isn‘t allowed for
structures. For just one crazy moment, let‘s suppose you could derive

one structure from another. Let‘s suppose you have MyStruct1 which
defines two integer fields and MyStruct2 that derives from MyStruct1 and

defines two more integer fields. Now declare an instance of MyStruct1:

MyStruct1 ms1 = new MyStruct1();

As you know, ms1 occupies 64 bytes on the stack. Now declare an
instance of MyStruct2:

MyStruct2 ms2 = new MyStruct2();

This instance of MyStruct2 requires 128 bytes on the stack. So what

happens when you take advance of upcasting and assign ms2 to ms1?

ms1 = ms2;

That‘s a legal assignment for classes because it copies a reference from
one variable to another. But such an assignment for structures would
require copying 128 bytes on the stack to an area that can only fit 64

bytes.

And that‘s why inheritance isn‘t allowed for structures.

But that‘s not to imply that upcasting isn‘t allowed for structures….

At the outset of this chapter, I noted that C# allows implicit conversions
of objects to any ancestral type. Because every object ultimately derives

from object, a variable declared as type object can be assigned any object.

.NET Book Zero Charles Petzold

Version 1.1 Page 189

An array of type object can store any object. A method with an object
parameter (such as WriteLine) can be passed any object.

Any object. Even value types such as int, decimal, bool and whatever
structures you declare. For example:

decimal pi = 3.14159m;
object obj = pi;

Is this right? The more you study these two simple (and completely legal)
statements, the stranger they may seem. To store pi, the C# compiler

allocates 16 bytes on the stack. For obj, the C# compiler allocates enough
space on the stack to store a reference. Normally obj would be a reference

to memory allocated from the heap, but the absence of a new expression
here seems to indicate that no heap memory has been allocated.

So how can a reference like obj store a 16-byte decimal?

The answer is a little behind-the-scenes trick known as ―boxing.‖

Whenever a value type is assigned to a variable of type object, memory is
allocated from the heap sufficient to store that value type. In this
example, that‘s 16 bytes for the decimal value plus whatever overhead is

required to store the object‘s type. The decimal value is then copied from
the stack into the heap. That‘s how the obj variable can refer to the

decimal.

At some point you might want to get the object back:

decimal m = (decimal) obj;

The value type is then unboxed. The value is extracted from the heap and

copied back to the stack.

Boxing and unboxing take some time and could affect the performance of

your programs. For that reason, you should be alert and wary of any
code in which you are converting many value types to object.

Here‘s a little test program that reveals the performance hit of boxing. It

contains two methods named AddIntegers and AddObjects, and calls
each of those methods 100,000,000 times with random arguments.

TestBoxingHit.cs
//--
// TestBoxingHit.cs (c) 2006 by Charles Petzold
//--
using System;
using System.Diagnostics;

class TestBoxingHit
{
 static void Main()
 {
 const int reps = 100000000;
 Random rand = new Random();

.NET Book Zero Charles Petzold

Version 1.1 Page 190

 Stopwatch watch = new Stopwatch();

 // Test method that doesn't involve boxing.
 watch.Start();
 for (int i = 0; i < reps; i++)
 AddIntegers(rand.Next(), rand.Next());
 watch.Stop();

 Console.WriteLine("Method call with no boxing: " + watch.Elapsed);

 // Test method with boxing and unboxing.
 watch.Reset();
 watch.Start();
 for (int i = 0; i < reps; i++)
 AddObjects(rand.Next(), rand.Next());
 watch.Stop();

 Console.WriteLine("Method call with boxing and unboxing: " +
 watch.Elapsed);
 }
 static int AddIntegers(int i1, int i2)
 {
 return i1 + i2;
 }
 static int AddObjects(object obj1, object obj2)
 {
 return (int)obj1 + (int)obj2;
 }
}

The AddIntegers method requires no boxing or unboxing. The AddObjects
method requires two boxing operations when the method is called and

two unboxing operations inside the method. On my pokey machine, the
AddIntegers calls takes a total of about 5 seconds, but the AddObjects
calls require about 13 seconds.

If you have a method like AddObjects that has an object parameter and
you‘re passing many value types to that method, consider writing

overloads specifically for those value types. Take a look at WriteLine.
WriteLine has overloads for all the C# basic types besides the version

with the object parameter. Writeline tries to avoid boxing, and you should
as well.

.NET Book Zero Charles Petzold

Version 1.1 Page 191

Chapter 20. Operator Overloading

The CommonEraDay property introduced in the ExtendedDate class in

Chapter 18 provides a way to find the number of days between any two
dates: Just subtract the CommonEraDay properties.

But it might be even more convenient to just subtract one Date object

from another:

int numDays = dateMoonLanding – dateYourBirthday;

That‘s subtraction, but what about addition? Does it make sense to add
two dates? Well, not really. But it makes a whole lot of sense to add a

date and an integer. The calculation would tell you what date was a
certain number of days after a particular date:

dateTenThousandDaysOld = dateYourBirthday + 10000;

This is known as operator overloading, and it‘s a common feature of
object-oriented languages. Any class or structure that you define can

specify how the standard C# operators such as plus and minus are
supposed to work on objects of that type. The String class, for examples,

defines addition as a concatenation operator. (Of course, you‘re not
required to define operators for your classes; operator overloading is

easily abused, so try to come up with a good justification for every
operator you overload.)

The operators that a class or structure can overload are listed in the C#
Language Specification, §7.2.2 and §10.9. The overloadable unary
operators are +, –, !, ~ ++, --, true, and false. The overloadable binary

operators are the arithmetic operators (+, –, *, /, and %), the logical and
bitwise operators (&, |, and ^), the equality operators (== and !=), the

relational operators (<, <=, >, and >=), and the shift operators (<< and
>>). Because the compound assignment operators (such as +=) are
defined in terms of the corresponding binary operators, you get those for

free. You can‘t overload the conditional operators && and ||, but they
will be applicable for your class if you define & and | as well as true and

false. See the C# Language Specification, §7.11.2, for details.

At the end of this chapter I‘ll show you a complete class named
SuperDate that derives from ExtendedDate and defines a bunch of C#

operators, so the examples I‘ll show you will refer to SuperDate objects.

Operator declarations look a lot like method declarations. They always

include the modifiers public and static followed by the keyword operator
followed by the operator itself. For a binary operator like subtraction,

there are two parameters, which are the object to the left of the minus

.NET Book Zero Charles Petzold

Version 1.1 Page 192

sign and the object on the right of the minus sign. At least one of the
parameters must be the same type as the class. For this reason, you

never need a new modifier when declaring an operator that‘s already
declared in an ancestral class. The operands in the two declarations can

never be the same, so they constitute distinct methods. Operators are
never declared as virtual.

Here‘s the definition of the subtraction operator. The two parameters are

objects of type SuperDate and the subtraction operator returns an int:

public static int operator - (SuperDate sdLeft, SuperDate sdRight)
{
 return sdLeft.CommonEraDay - sdRight.CommonEraDay;
}

With an operator like this defined, you‘ll be able to subtract one
SuperDate object from another and get the number of days between the
two dates.

When translating the SuperDate class to Intermediate Language, the C#
compiler fabricates a static method named op_Subtraction that

implements the subtraction operator. This is also the name that you‘ll
see in the .NET Framework class library documentation for classes and

structures that define their own operators. (Look at the documentation
for the System.Decimal structure, for example.)

The Common Language Specification does not require that languages

recognize operations such as plus and minus between non-basic types.
This becomes an issue if you put the SuperDate class in a dynamic link

library where it is accessible by any .NET language. In languages that do
not allow the subtraction operator between arbitrary objects, the
programmer must use the op_Subtraction method instead:

op_Subtraction(sdYourBirthday, sdMoonWalk)

This is not particularly attractive. Moreover, somebody might want to

incorporate the SuperDate class in a scripting language that refers to
operations with common names such as Add and Subtract.

For these reasons, it is recommended that when implementing operator
overloading, you also define static methods named Add, Subtract,
Multiply, Divide, and so forth that also implement these operations. Look
to the Decimal structure for guidance.

To implement these methods, you might first define a static Subtract
method:

public static int Subtract(SuperDate sdLeft, SuperDate sdRight)
{
 return sdLeft.CommonEraDay - sdRight.CommonEraDay;
}

You can then define the subtraction operator in terms of Subtract:

.NET Book Zero Charles Petzold

Version 1.1 Page 193

public static int operator - (SuperDate sdLeft, SuperDate sdRight)
{
 return Subtract(sdLeft, sdRight);
}

Or you can do it the other way around by defining Subtract in terms of

the subtraction operator.

For the addition operator, you might first define an Add method that

adds a SuperDate object and an integer to return another SuperDate
object. Here‘s how the method would look:

public static SuperDate Add(SuperDate sdLeft, int daysRight)
{
 ...
}

This Add method needs to return an object of type SuperDate, so it must
create an object of that type. It sounds a bit odd for a class to create an

object of the class type, but there‘s no problem for a static method to do
so. Here‘s a possible implementation of the Add method:

public static SuperDate Add(SuperDate sdLeft, int daysRight)
{
 SuperDate sdReturn = new SuperDate();
 sdReturn.CommonEraDay = sdLeft.CommonEraDay + daysRight;
 return sdReturn;
}

The method begins by creating an object of type SuperDate and then
setting the object‘s CommonEraDay property to the calculated value of

the addition. The method then returns that object.

The Add method would be even easier if SuperDate had an additional

constructor—one that creates a SuperDate object based on an argument
indicating the common era day:

public SuperDate(int dayCommonEra)
{
 CommonEraDay = dayCommonEra;
}

Now the body of the Add method can be written in one line:

public static SuperDate Add(SuperDate sdLeft, int daysRight)
{
 return new SuperDate(sdLeft.CommonEraDay + daysRight);
}

You can then define the plus operator in terms of the Add method:

public static SuperDate operator + (SuperDate sdLeft, int daysRight)
{
 return Add(sdLeft, daysRight);
}

.NET Book Zero Charles Petzold

Version 1.1 Page 194

Addition between a date and an integer is commutative, of course, but
the C# compiler doesn‘t know that. When you want to define a

commutative operation between two different types, you need two
declarations of the operator to account for commutativity. Here‘s the

second Add method and the second addition operator. Notice that the
second Add method is written in terms of the first one:

public static SuperDate Add(int daysLeft, SuperDate sdRight)
{
 return Add(sdRight, daysLeft);
}
public static SuperDate operator + (int daysLeft, SuperDate sdRight)
{
 return Add(daysLeft, sdRight);
}

Now that you‘ve implemented addition, you might want to reconsider
subtraction. Besides subtracting one date from another, it makes sense

to subtract an integer from a date:

public static SuperDate Subtract(int SuperDate sdLeft, int daysRight)
{
 return new SuperDate(sdLeft.CommonEraDay - daysRight);
}
public static SuperDate operator - (int SuperDate sdLeft, int daysRight)
{
 return Subtract(sdLeft, daysRight);
}

But it doesn‘t make sense to subtract a date from an integer.

You can also declare the two unary increment and decrement operators

for SuperDate. There are no standard names for these operators, so you
can just define the operations directly. Here‘s the increment:

public static SuperDate operator ++ (SuperDate sd)
{
 return new SuperDate(sd.CommonEraDay + 1);
}

The decrement is similar. There‘s a temptation when defining the
increment and decrement to alter the parameter in the body of the

method. Don‘t do it, or the operators won‘t work correctly.

You‘ll probably also want an equality operator. Although equality
operators always return a bool, you still need to indicate the return type:

public static bool operator == (SuperDate sdLeft, superDate sdRight)
{
 return sdLeft.CommonEraDay == sdRight.CommonEraDay;
}

A class that includes a declaration of the equality operator must also
include the inequality operator, which you can define in terms of

equality:

.NET Book Zero Charles Petzold

Version 1.1 Page 195

public static bool operator != (SuperDate sdLeft, superDate sdRight)
{
 return !(sdLeft == sdRight);
}

Similarly, you can declare a relational operator:

public static bool operator < (SuperDate sdLeft, SuperDate sdRight)
{
 return sdLeft.CommonEraDay < sdRight.CommonEraDay;
}

You can then declare the opposite relational operator using logical
negation:

public static bool operator >= (SuperDate sdLeft, SuperDate sdRight)
{
 return !(sdLeft < sdRight);
}

You‘ll want to declare the greater-than operator and the less-than-or-
equal-to operator similarly.

If you declare equality and inequality operators, you‘ll get a warning
message from the C# compiler about your failure to also declare

overrides for the virtual Equals and GetHashCode methods defined in
System.Object. As you‘ll recall from Chapter 16, the Equals method in

System.Object implements reference equality; the Equals method in
System.ValueType (from which all structures derive) implements bitwise

equality, also known as value equality.

Although SuperDate is a class, you want the Equals method to return
true when comparing two days that have the same CommonEraDay

property. The documentation of the Equals method in the System.Object
class indicates that the method must not raise an exception. In

particular, if the argument to Equals is null or not of the correct type,
Equals should simply return false. Here‘s a rather lengthy Equals

method for SuperDate:

public override bool Equals(object obj)
{
 if (obj == null) || GetType() != obj.GetType())
 return false;

 SuperDate sd = (SuperDate) obj;
 return CommonEraDay == sd.CommonEraDay;
}

Here‘s a simpler implementation that makes use of the equality operator
already declared in SuperDate:

public override bool Equals(object obj)
{
 return obj is SuperDate && this == (SuperDate) obj;
}

.NET Book Zero Charles Petzold

Version 1.1 Page 196

If SuperDate were a structure rather than a class, this method would
involve a boxing and unboxing operation, and those are to be avoided.

You can also define an overload of the Equals method whose argument is
explicitly a SuperDate object:

public bool Equals(SuperDate sd)
{
 return this == sd;
}

System.Object also defines a static Equals method where the two

parameters are both of type Object. Again, if SuperDate were a structure
rather than a class, calling that method for two objects of type SuperDate

would involve boxing, so you probably want to supplement that static
method with one that has two explicit SuperDate parameters:

public static bool Equals(SuperDate sd1, SuperDate sd2)
{
 return sd1 == sd2;
}

The other virtual method in System.Object that the C# compiler wants
you to override is GetHashCode, which returns a 32-bit integer. A hash

code is a number that programs can use to assist in storing and
retrieving objects. Two objects that are equal according to the Equals

method must return the same integer from GetHashCode. However,
unequal objects need not return unique hash codes. (It‘s certainly
preferable, but it‘s not required, and it‘s not even possible in the general

case. If the class or structure is capable of more than 232 unique
objects—which is the case for long, double, and decimal—then there are

more unique objects than possible return values of GetHashCode.)

In general, GetHashCode usually performs some kind of operation on the

fields of the class or structure. For example, for a Point structure that
contains integer x and y fields, GetHashCode might return x ^ y. With

the SuperDate object we‘ve lucked out. A SuperDate object can be
represented by a unique integer, which is the CommonEraDay property.

GetHashCode can be implemented as simply as:

public override int GetHashCode()
{
 return CommonEraDay;
}

Do you want implicit or explicit conversion between SuperDate objects

and integers? I‘d shy away from implicit conversion, but explicit
conversion using casting seems reasonable to me. The syntax for

declaring explicit conversions involves the explicit keyword. Here‘s a
method that allows an explicit conversion from a SuperDate to an int:

.NET Book Zero Charles Petzold

Version 1.1 Page 197

public static explicit operator int (SuperDate sd)
{
 return sd.CommonEraDay;
}

Similarly, this declaration allows explicit conversions from integers to

SuperDate objects:

public static explicit operator SuperDate(int dayCommonEra)
{
 return new SuperDate(dayCommonEra);
}

You‘d use the keyword implicit to declare implicit conversions.

Here‘s the SuperDate class containing all the operators I‘ve described in
this chapter.

SuperDate.cs
//--
// SuperDate.cs (c) 2006 by Charles Petzold
//--
using System;

partial class SuperDate: ExtendedDate
{
 // Constructors
 public SuperDate()
 {
 }
 public SuperDate(int year, int mon, int day): base(year, mon, day)
 {
 }
 public SuperDate(int dayCommonEra)
 {
 CommonEraDay = dayCommonEra;
 }

 // Equality operators
 public static bool operator == (SuperDate sdLeft, SuperDate sdRight)
 {
 return sdLeft.CommonEraDay == sdRight.CommonEraDay;
 }
 public static bool operator != (SuperDate sdLeft, SuperDate sdRight)
 {
 return !(sdLeft == sdRight);
 }

 // Relational operators
 public static bool operator < (SuperDate sdLeft, SuperDate sdRight)
 {
 return sdLeft.CommonEraDay < sdRight.CommonEraDay;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 198

 public static bool operator > (SuperDate sdLeft, SuperDate sdRight)
 {
 return sdLeft.CommonEraDay > sdRight.CommonEraDay;
 }
 public static bool operator <= (SuperDate sdLeft, SuperDate sdRight)
 {
 return !(sdLeft > sdRight);
 }
 public static bool operator >= (SuperDate sdLeft, SuperDate sdRight)
 {
 return !(sdLeft < sdRight);
 }

 // Arithmetic operators
 public static SuperDate Add(SuperDate sdLeft, int daysRight)
 {
 return new SuperDate(sdLeft.CommonEraDay + daysRight);
 }
 public static SuperDate operator +(SuperDate sdLeft, int daysRight)
 {
 return Add(sdLeft, daysRight);
 }
 public static SuperDate Add(int daysLeft, SuperDate sdRight)
 {
 return sdRight + daysLeft;
 }
 public static SuperDate operator +(int daysLeft, SuperDate sdRight)
 {
 return Add(sdRight, daysLeft);
 }
 public static int Subtract(SuperDate sdLeft, SuperDate sdRight)
 {
 return sdLeft.CommonEraDay - sdRight.CommonEraDay;
 }
 public static int operator -(SuperDate sdLeft, SuperDate sdRight)
 {
 return Subtract(sdLeft, sdRight);
 }
 public static SuperDate Subtract(SuperDate sdLeft, int daysRight)
 {
 return new SuperDate(sdLeft.CommonEraDay - daysRight);
 }
 public static SuperDate operator -(SuperDate sdLeft, int daysRight)
 {
 return Subtract(sdLeft, daysRight);
 }

 // Unary operators
 public static SuperDate operator ++ (SuperDate sd)
 {
 return new SuperDate(sd.CommonEraDay + 1);
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 199

 public static SuperDate operator -- (SuperDate sd)
 {
 return new SuperDate(sd.CommonEraDay - 1);
 }

 // Explicit casts
 public static explicit operator int (SuperDate sd)
 {
 return sd.CommonEraDay;
 }
 public static explicit operator SuperDate (int daysCommonEra)
 {
 return new SuperDate(daysCommonEra);
 }

 // Overrides of methods in System.Object
 public override bool Equals(object obj)
 {
 return obj is SuperDate && this == (SuperDate) obj;
 }
 public override int GetHashCode()
 {
 return CommonEraDay;
 }
}

The following OperatorTest program is similar to the CommonEraTest

program in the last chapter, but it uses a few of the operators declared in
SuperDate. OperatorTest compares and subtracts the objects directly.

OperatorTest.cs
//---
// OperatorTest.cs (c) 2006 by Charles Petzold
//---
using System;

class OperatorTest
{
 static void Main()
 {
 Console.Write("Enter the year of your birth: ");
 int iYear = Int32.Parse(Console.ReadLine());

 Console.Write("And the month: ");
 int iMonth = Int32.Parse(Console.ReadLine());

 Console.Write("And the day: ");
 int iDay = Int32.Parse(Console.ReadLine());

 SuperDate sdBirthday = new SuperDate(iYear, iMonth, iDay);
 SuperDate sdMoonWalk = new SuperDate(1969, 7, 20);

.NET Book Zero Charles Petzold

Version 1.1 Page 200

 if (sdBirthday > sdMoonWalk)
 Console.WriteLine(
 "You were born {0:N0} days after the moon walk.",
 sdBirthday - sdMoonWalk);

 else if (sdBirthday == sdMoonWalk)
 Console.WriteLine(
 "You were born on the day of the moon walk.");

 else
 Console.WriteLine(
 "You were born {0:N0} days before the moon walk.",
 sdMoonWalk - sdBirthday);
 }
}

The OperatorTest project must contain SuperDate.cs as well as links to
Date.cs and ExtendedDate.cs. Obviously the program doesn‘t perform an
exhaustive test of all the operators in the SuperDate class, but it‘s a

start.

You might have noticed the partial keyword at the very beginning of the

definition of SuperDate. That keyword indicates that the SuperDate class
might be more than just this one file. Parts of the SuperDate class might

be defined in other files. For this chapter, however, SuperDate actually is
just this one file. You‘re allowed to use the partial keyword when the

entire class is present.

Why am I suddenly introducting the partial keyword when I don‘t need

it? The problem is this:

In the past several chapters I‘ve been using the Date, ExtendedDate, and
SuperDate classes to demonstrate not only inheritance, but other aspects

of object-oriented programming. Over the course of these chapters, I
progressively added methods, constructors, properties, and operators to

these classes. It was very convenient to use inheritance to break up the
material into separate classes. Without inheritance, the size and contents
of the overall class would have been too much to tackle in one big

chapter.

In the real world, inheritance is not often used to restrict the size of a

class to something short enough to be discussed in the chapter of a
book. In fact, you‘d probably use a structure rather than a class to
represent a date. (If I were to do it over again, the only field in my Date

structure would be a zero-based Common Era day.) Structures are more
closely associated with objects that have particular numeric values;

therefore operating overloading is much more common in structures than
in classes.

.NET Book Zero Charles Petzold

Version 1.1 Page 201

Structures cannot be inherited, and that‘s actually an advantage when
the structure contains operator declarations. Operators in classes can be

problematic when the class is inherited.

For example, suppose you define another class named HyperDate that

inherits from SuperDate:

class HyperDate: SuperDate
{
 // Nothing here yet.
}

In a program, you declare a HyperDate object like this:

HyperDate hdSputnik = new HyperDate(1957, 10, 4);

HyperDate inherits all the methods and operations declared in

SuperDate, but some of them are no longer quite as easy to use. Try this:

HyperDate hd = hdSputnik + 7; // Won’t work!

The statement makes use of the addition operator declared in SuperDate.
The appropriate overload has two parameters, a SuperDate object and an

integer. Passing a HyperDate object to the addition operator in SuperDate
is no problem because a HyperDate can be implicitly converted to a

SuperDate. The problem is the return value, which is assigned to the
HyperDate object. The return value of the addition operator is a

SuperDate, and there is no implicit or explicit conversion from a
SuperDate object to a HyperDate. To make such a statement work,

HyperDate would have to declare its own addition operator.

And that‘s why the next chapter will not define a HyperDate class. But

the next chapter will build on SuperDate and add another interesting
feature.

.NET Book Zero Charles Petzold

Version 1.1 Page 202

Chapter 21. Interfaces

Suppose you have an array of SuperDate objects from the previous

chapter and you want to sort them. You could write a sorting algorithm
yourself (which would certainly be a good exercise) or you can use one of
the static Sort methods of the Array class. But to use Sort, the elements

of the array must implement the IComparable interface.

What does it mean to ―implement the IComparable interface‖?

IComparable is defined in the System namespace, probably as simply as
this:

public interface IComparable
{
 int CompareTo(object obj);
}

It starts off looking like a class or structure named IComparable, except
that instead of class or struct the keyword interface appears. Then there‘s

a method named CompareTo that has an object parameter and returns
an int, but the method has no body.

Interfaces are entirely overhead! They contain no code. All interfaces
defined in the .NET Framework begin with a capital I, but that‘s just a

convention. You can name your own interfaces anything you like.

An interface is generally a collection of methods without bodies, although

interfaces can also contain other types of members such as properties
(which must also have empty bodies). The IComparable interface has a
single method named CompareTo that returns an int. The documentation

of CompareTo provides a set of rules:

o If the instance is less than the parameter, CompareTo returns a

negative number.

o If the instance is equal to the parameter, CompareTo returns 0.

o If the instance is greater than the parameter, CompareTo returns a
positive number.

o If the parameter is null, CompareTo returns a positive number.

o If the parameter is the wrong type, CompareTo throws an

ArgumentException.

You‘ll notice that all the basic numeric types and the String class

implement the IComparable interface.

To make SuperDate implement the IComparable interface, you start at
the very top of the SuperDate class declaration and list IComparable

.NET Book Zero Charles Petzold

Version 1.1 Page 203

along with ExtendedDate, which is the class that SuperDate inherits
from:

class SuperDate: ExtendedDate, IComparable

A class can derive from only one other class, but a class (or structure)

can implement multiple interfaces, which must be separated by commas.

A class that implements an interface must include all the methods in

that interface. To implement the IComparable interface, SuperDate must
declare a CompareTo method in accordance with the rules listed earlier.

Here‘s a file named SuperDate2.cs that contains a partial class definition
of SuperDate that implements the IComparable interface by including the
CompareTo method.

SuperDate2.cs
//---
// SuperDate2.cs (c) 2006 by Charles Petzold
//---
using System;

partial class SuperDate : ExtendedDate, IComparable
{
 public int CompareTo(object obj)
 {
 if (obj == null)
 return 1;

 if (!(obj is SuperDate))
 throw new ArgumentException();

 return this - (SuperDate)obj;
 }
}

This file is intended to supplement the partial SuperDate class definition

in the SuperDate.cs file from the last chapter.

One reason for implementing IComparable is to easily sort arrays using

the static Array.Sort method. Because arrays can contain any type of
object, Sort needs some way to determine if one element of the array is
less than, equal to, or greater than another element. Sort can‘t figure that

out on its own. For that reason, Sort requires that its argument be an
array whose elements implement the IComparable interface. What the

Sort method really wants is to call CompareTo on the elements of the
array. That‘s the only way Sort knows how to sort an array of objects it‘s

not familiar with.

Let‘s try it out. The following program contains an array of famous

composers alphabetized by last name. A corresponding array of
SuperDate objects contains the birth dates of these composers. The

program sorts the arrays by birth date and displays the results.

.NET Book Zero Charles Petzold

Version 1.1 Page 204

The DateSorting project includes SuperDate2.cs and DateSorting.cs and
has links to Date.cs, ExtendedDate.cs, and SuperDate.cs.

DateSorting.cs
//---
// DateSorting.cs (c) 2006 by Charles Pezold
//---
using System;

class DateSorting
{
 static void Main()
 {
 string[] strComposers =
 {
 "John Adams", "Johann Sebastian Bach",
 "Bela Bartok", "Ludwig van Beethoven",
 "Hector Berlioz", "Pierre Boulez",
 "Johannes Brahms", "Benjamin Britten",
 "Aaron Copland", "Claude Debussy",
 "Philip Glass", "George Frideric Handel",
 "Franz Joseph Haydn", "Gustav Mahler",
 "Claudio Monteverdi", "Wolfgang Amadeus Mozart",
 "Sergei Prokofiev", "Steve Reich",
 "Franz Schubert", "Igor Stravinsky",
 "Richard Wagner", "Anton Webern"
 };
 SuperDate[] sdBirthDates =
 {
 new SuperDate(1947, 2, 15), new SuperDate(1685, 3, 21),
 new SuperDate(1881, 3, 25), new SuperDate(1770, 12, 17),
 new SuperDate(1803, 12, 11), new SuperDate(1925, 3, 26),
 new SuperDate(1833, 5, 7), new SuperDate(1913, 11, 22),
 new SuperDate(1900, 11, 14), new SuperDate(1862, 8, 22),
 new SuperDate(1937, 1, 31), new SuperDate(1685, 2, 23),
 new SuperDate(1732, 3, 31), new SuperDate(1860, 7, 7),
 new SuperDate(1567, 5, 15), new SuperDate(1756, 1, 27),
 new SuperDate(1891, 4, 23), new SuperDate(1936, 10, 3),
 new SuperDate(1797, 1, 31), new SuperDate(1882, 6, 17),
 new SuperDate(1813, 5, 22), new SuperDate(1883, 12, 3)
 };

 Array.Sort(sdBirthDates, strComposers);

 for (int i = 0; i < strComposers.Length; i++)
 Console.WriteLine("{0} was born on {1}.",
 strComposers[i], sdBirthDates[i]);
 }
}

The Array class contains many overloads of the static Sort method. The
simplest version simply sorts a single array, which is not quite good
enough for this program. We need the second simplest sort, which has

two array arguments. The Sort method rearranges both arrays in the

.NET Book Zero Charles Petzold

Version 1.1 Page 205

same way based on a sort of the elements in the first array. When two
arrays are used in such a way, the elements of the first array are

sometimes referred to as keys. Here‘s the result:

Claudio Monteverdi was born on 15 May 1567.
George Frideric Handel was born on 23 Feb 1685.
Johann Sebastian Bach was born on 21 Mar 1685.
Franz Joseph Haydn was born on 31 Mar 1732.
Wolfgang Amadeus Mozart was born on 27 Jan 1756.
Ludwig van Beethoven was born on 17 Dec 1770.
Franz Schubert was born on 31 Jan 1797.
Hector Berlioz was born on 11 Dec 1803.
Richard Wagner was born on 22 May 1813.
Johannes Brahms was born on 7 May 1833.
Gustav Mahler was born on 7 Jul 1860.
Claude Debussy was born on 22 Aug 1862.
Bela Bartok was born on 25 Mar 1881.
Igor Stravinsky was born on 17 Jun 1882.
Anton Webern was born on 3 Dec 1883.
Sergei Prokofiev was born on 23 Apr 1891.
Aaron Copland was born on 14 Nov 1900.
Benjamin Britten was born on 22 Nov 1913.
Pierre Boulez was born on 26 Mar 1925.
Steve Reich was born on 3 Oct 1936.
Philip Glass was born on 31 Jan 1937.
John Adams was born on 15 Feb 1947.

Try swapping the order of the arguments to the Array.Sort method like
this:

Array.Sort(strComposers, sdBirthDates);

Recompile and run the program. The String class also implements the

IComparable interface, and now the composers are sorted by name, albeit
by the first name rather than the last name.

To sort by last name, you‘ll probably want a class or structure (named
Name, for example), which has two String properties named FirstName

and LastName, and which also implements the IComparable interface.
The CompareTo method in Name would make use of the CompareTo
method of the LastName property.

If you‘re using .NET 2.0 or later, you‘ll also notice that besides the
IComparable interface, the documentation also lists something called the

―IComparable Generic Interface.‖ I‘ll discuss generics in Chapter 27.

.NET Book Zero Charles Petzold

Version 1.1 Page 206

Chapter 22. Interoperability

There may come a time when you‘re writing a .NET class and you need

something that‘s provided by the Windows application programming
interface (API) but which isn‘t available in any .NET class. Or, maybe you
have a bunch of dynamic link libraries (DLLs) that weren‘t written in

.NET but which you‘d like to use in your .NET programs.

The example I‘m going to show you in this chapter does not fit into any of

those categories, but it will demonstrate anyway using platform invoke
(sometimes appreviated PInvoke), which lets you get at Win32 API

functions from your .NET programs.

Although you can use interoperability from any C# program, generally
you‘ll want to tuck the code away in a class and provide a ―wrapper‖ for

it. In this example, I‘m going to extend SuperDate once again and provide
a static method named Today that returns a SuperDate object for today‘s

date. The .NET DateTime structure provides a static property named Now
that provides this information but I‘m going to ignore that and instead
call the Win32 GetSystemTime function, passing to it a SYSTEMTIME

structure.

Many of the classes you use for interoperability are defined in the

System.Runtime.InteropServices namespace, so you‘ll probably want a
using directive for that namespace.

The GetSystemTime function is defined in C syntax in the Win32
documentation like this:

void GetSystemTime(LPSYSTEMTIME lpSystemTime);

The single argument is a pointer to a SYSTEMTIME structure. The

SYSTEMTIME structure is defined in C syntax like this:

typedef struct _SYSTEMTIME
{
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

The WORD type definition is a 16-bit unsigned integer. The first step is to

define a class or structure that resembles this C structure, but using C#
syntax. Here‘s a possibility:

.NET Book Zero Charles Petzold

Version 1.1 Page 207

[StructLayout(LayoutKind.Sequential)]
class SystemTime
{
 public ushort wYear;
 public ushort wMonth;
 public ushort wDayOfWeek;
 public ushort wDay;
 public ushort wHour;
 public ushort wMinute;
 public ushort wSecond;
 public ushort wMilliseconds;
}

I‘ve kept the same field names but made them ushort and public. I made
this a class rather than a structure with a name of SystemTime. Before

the class definition is some information in square brackets. This is
known as an attribute. Attributes are information you can attach to a

type or member of a type. The information is stored as metadata along
with the compiled code.

StructLayoutAttribute is a class defined in the System.Runtime.Interop-
Services namespace and is used to describe how the fields of the class or
structure should be interpreted. You could supply LayoutKind.Explicit
and then give byte offsets for all the fields.

Your code also needs a declaration of the Win32 function you need to

call, in this case GetSystemTime:

[DllImport("kernel32.dll")]
static extern void GetSystemTime(SystemTime st);

Notice the extern keyword, which means that it‘s external to the program.

The attribute indicates the dynamic link library in which the function is
stored.

Here‘s a partial SuperDate class that contains a static method named
Today that calls GetSystemTime.

SuperDate3.cs
//---
// SuperDate3.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Runtime.InteropServices;

partial class SuperDate
{
 [StructLayout(LayoutKind.Sequential)]
 class SystemTime
 {
 public ushort wYear;
 public ushort wMonth;
 public ushort wDayOfWeek;
 public ushort wDay;

.NET Book Zero Charles Petzold

Version 1.1 Page 208

 public ushort wHour;
 public ushort wMinute;
 public ushort wSecond;
 public ushort wMilliseconds;
 }

 [DllImport("kernel32.dll")]
 static extern void GetSystemTime(SystemTime st);

 public static SuperDate Today()
 {
 SystemTime systime = new SystemTime();
 GetSystemTime(systime);
 return new SuperDate(systime.wYear, systime.wMonth, systime.wDay);
 }
}

The Today method creates a new object of type SystemTime, calls the

Win32 GetSystemTime function, and then creates a SuperDate object
from fields of the SystemTime class.

Here‘s a program that uses this static method to display today‘s date.

GetTodaysDate.cs
//--
// GetTodaysDate.cs (c) 2006 by Charles Petzold
//--
using System;

class GetTodaysDate
{
 static void Main()
 {
 SuperDate sdToday = SuperDate.Today();
 Console.WriteLine("Today's date is " + sdToday);
 }
}

The GetTodaysDate project also includes the previous SuperDate files,

ExtendedDate.cs, and Date.cs.

In SuperDate3.cs, you can alternatively define SystemTime as a structure

rather than a class:

struct SystemTime

In that case, you want to pass a reference to the structure to the
GetSystemTime function:

static extern void GetSystemTime(out SystemTime st);

Notice the use of the out keyword, which means that a reference is

passed to the function, but the object doesn‘t have to be initialized first.
The first two statements of Today could then be:

SystemTime systime;
GetSystemTime(out systime);

.NET Book Zero Charles Petzold

Version 1.1 Page 209

If you need help defining signatures for Win32 structures and function
calls for use with PInvoke, you‘ll be pleased to know that there‘s a Wiki

that contains much useful information:

http://www.pinvoke.net

Now that you‘ve seen how you can implement your own class to store
dates, let‘s examine how the designers of the .NET Framework did it.

http://www.pinvoke.net/

.NET Book Zero Charles Petzold

Version 1.1 Page 210

Chapter 23. Dates and Times

Throughout the .NET Framework, a particular moment in time is

represented by an object of type DateTime, a structure defined in the
System namespace. You generally create an object of type DateTime in
one of two ways. You can use one of the constructors of DateTime to

create an object representing a particular date and time, or you can use
one of three properties (Now, UtcNow, and Today) to create a DateTime

object representing the current time or date.

Here‘s one of the DateTime constructors:

DateTime dt = new DateTime(2007, 8, 29, 15, 30, 0);

The six arguments of the constructor are the year, month, date, hour,

minute, and second. This constructor specifies a time and date of 3:30
PM on August 29, 2007.

DateTime constructors are also defined to specify just the year, month,

and day, or to include milliseconds along with the time.

The year argument can range from 1 through 9999, the month can range

from 1 through 12, the day can range from 1 to 31, the hour can range
from 0 through 23, the minute and second arguments can range from 0
through 59, and the milliseconds argument can range from 0 through

999. Anything outside these ranges raises an ArgumentOutOfRange-
Exception.

The DateTime structure defines two static read-only fields of type
DateTime named MinValue (representing midnight on January 1 in the

year 1) and MaxValue (one millisecond prior to midnight on January 1 in
the year 10,000). If you create a DateTime object with a parameterless

constructor, it will represent a date and time equal to
DateTime.MinValue.

The DateTime constructor also throws an exception if the combination of
year, month, and day arguments isn‘t consistent. A month argument of 2
and a day of 29 is acceptable only for a leap year. The DateTime

structure uses leap year rules associated with the Gregorian calendar,
which was instituted by Pope Gregory XIII in 1582 and eventually

adopted worldwide in the years and centuries that followed. In the
Gregorian calendar, a year is a leap year if it is divisible by 4 but not
divisible by 100 unless it is divisible by 400. The year 1900 was not a

leap year, but the year 2000 was.

The calendar in effect prior to the adaptation of the Gregorian calendar is

now known as the Julian calendar, which was introduced during the

.NET Book Zero Charles Petzold

Version 1.1 Page 211

reign of Julius Caesar. Leap years were celebrated every four years
without exception. The DateTime constructor observes Gregorian leap

year rules even for years preceding the invention of the Gregorian
calendar. There is no way to use DateTime to specify years prior to the

Common Era.

DateTime defines nine get-only properties of type Int32 that indicate the

date and time represented by the DateTime object. These properties are
named Year, Month, Day, Hour, Minute, Second, Millisecond, DayOfWeek

(with values ranging from 0 for Sunday through 6 for Saturday), and
DayOfYear (which values ranging from 1 through 366).

Let me emphasize that these properties are get-only. Once created, a

DateTime object is immutable.

DateTime includes three static properties that let you create an object of

type DateTime representing the current date and time. The Now property
creates a DateTime object with the current local date and time:

DateTime dtLocal = DateTime.Now;

The static Today property creates a DateTime object with the current

local date but with the Hour, Minute, Second, and Millisecond properties
all set to zero:

DateTime dateToday = DateTime.Today;

This code is equivalent to:

DateTime dateToday = DateTime.Now.Date;

The Date instance property creates a new DateTime object based on an

existing DateTime object but with the Hour, Minute, Second, and
Millisecond properties set to zero.

The static UtcNow property returns a DateTime property for the current
date and time in Coordinated Universal Time (UTC):

DateTime dtUtc = DateTime.UtcNow;

As you know, governments around the world have defined numerous
time zones so that local time is calculated as hour or half-hour offsets

from UTC, which is basically what was once called Greenwich Mean Time
(GMT).

Greenwich, England, has played an important role in the evolution of
time standards because it is the site of the Royal Greenwich Observatory
(RGO), which was founded in 1675 to develop techniques of astronomical

navigation for ships at sea. In the 1760s, the observatory began
publishing nautical almanacs that for convenience placed the prime
meridian (the line of 0° longitude) at Greenwich. This system of

meridians was eventually agreed upon as a world standard in 1884,
although the French continued to use Paris as the prime meridian until

1911.

.NET Book Zero Charles Petzold

Version 1.1 Page 212

Greenwich Mean Time began in 1833 when the observatory started
dropping a ball that was visible to ships in the Thames every day at 1:00

p.m. In the 1840s, GMT was declared the standard time for all of Great
Britain to replace various time zones that had developed over the years.

These days, the use of the term Coordinated Universal Time is
considered more scientifically correct than Greenwich Mean Time.
Coordinated Universal Time is abbreviated UTC as something of a

compromise between the English word order—which would imply the
abbreviation CUT—and the French Temps Universel Coordonné, which

would have the abbreviation TUC. By international agreement since
1972, UTC is the same all of the world.

The length of a UTC second is based on an atomic standard rather than

astronomical observations. Because the rotation of the earth has been
gradually slowing down, occasionally it is necessary to adjust UTC to
keep it in sync with astronomical solar time. This is done with the

introduction of leap seconds.

The system date and time that Windows maintains is UTC rather than

local time, and these days that time is usually set (and automatically
corrected) from an Internet time server. Windows also maintains a
current time zone, which the user sets from the Date/Time properties

dialog opened from the Control Panel or by double-clicking the time on
the Windows taskbar. Whenever a Windows application requires a local

time, that time is calculated from UTC based on the current time zone.
Maintaining the system time in UTC rather than local time (as was once
the case) makes it easier for Windows to adjust for changes in time zone

or daylight saving time.

Daylight saving time is that quaint custom observed in many locales of
changing the clocks twice a year. The principle behind it is simple: As the

summer solstice approaches, the sun is rising earlier and setting later, so
it‘s no big deal to get out of bed a little earlier and enjoy even more sun in

the evening. Some countries observe daylight saving time and some don‘t
and those that observe it frequently begin and end it on different dates.
Even within some countries, notably the United State, daylight saving

time is implemented inconsistently, sometimes even within the same
state. The Date/Time properties dialog lets a user specify whether
Windows is to automatically adjust for daylight saving time.

In .NET 1.X, there was nothing in the DateTime structure that implied
whether a particular DateTime object represented UTC or local time. A

program using this structure had to keep track of that particular
information itself.

In .NET 2.0, a new get-only property was introduced in the DateTime
structure named Kind, of type DateTimeKind, an enumeration that

contains the three members Unspecified, Local, and Utc.

.NET Book Zero Charles Petzold

Version 1.1 Page 213

If you create a DateTime object using the static Now or Today properties,
the Kind property will equal DateTimeKind.Local. In contrast, the static

DateTime.UtcNow property returns a DateTime object with the Kind
property set to DateTimeKind.Utc.

If you create a DateTime object using the constructor shown above:

DateTime dt = new DateTime(2007, 8, 29, 15, 30, 0);

then the Kind property is set to DateTimeKind.Unspecified. However,
.NET 2.0 also introduced additional constructors that let you specify the

kind of time:

DateTime dtLocal = new DateTime(2007, 8, 29, 15, 30, 0,
 DateTimeKind.Local);

This DateTime object will have a Kind property of DateTimeKind.Local.

DateTime defines two instance methods named ToLocalTime and
ToUniversalTime that convert between UTC and local time. For example:

DateTime dtUtc = dtLocal.ToUniversalTime();

The ToLocalTime and ToUniversalTime methods examine the Kind

property of the DateTime object and do not perform a conversion if the
time is already of the desired kind. For example, consider the following

code:

DateTime dtNew = dt.ToLocalTime();

If the Kind property of dt equals DateTimeKind.Unspecified or DateTime-
Kind.Utc, then the ToLocalTime method returns a local time under the

assumption that dt represents a Utc time. However, if the Kind property
of dt is DateTimeKind.Local, then ToLocalTime returns the same time as

encoded in dt.

Like all the properties of DateTime, the Kind property is get-only. If you

need to change the Kind property of a particular DateTime object, you
can use the static SpecifyKind method to create a new DateTime object:

DateTime dtLocal = DateTime.SpecifyKind(dt, DateTimeKind.Local);

Tick Counts

Another way of representing date and time is by a number of 100-
nanosecond clock ticks. Internally, the DateTime structure stores the

date and time as the number of ticks since midnight, January 1, of the
Common Era year 1. This value can be obtained from the get-only Ticks
property of type long.

For a DateTime object representing midnight on the date January 1,
2001, the Ticks property returns the value 631,139,040,000,000,000.

There are 10,000 ticks in a millisecond, 10,000,000 ticks in a second,
600,000,000 ticks in a minute, 36,000,000,000 ticks in an hour, and

.NET Book Zero Charles Petzold

Version 1.1 Page 214

864,000,000,000 ticks in a day. That means that 730,485 days have
elapsed in those 2000 years, for an average of 365.2425 days per year.

The value of 365.2425 days per year is correct for the Gregorian
calendar. Most years have 365 days. An extra day every four year add

0.25 to the average days per year. Excluding an extra day every 100
years lessens the average days per year by 0.01. Including an extra day
every 400 years increases the average days per year by 0.0025. In other

words,

365 + ¼ - 1/100 + 1/400 = 365.2425

The DateTime structure defines a constructor that lets you create a
DateTime object from the number of ticks since the date 1/1/1. An

additional constructor includes a DateTimeKind argument.

DateTime Calculations and TimeSpan

The DateTime structure contains a number of methods and overloaded
operators that let you perform calculations on dates and times. The

comparison operators (==, !=, <, >, <=, and >=) are all valid for DateTime
objects. Addition and subtraction are also supported.

If you subtract one DateTime object from another, the result is an object

of type TimeSpan:

TimeSpan ts = dt1 – dt2;

TimeSpan is another structure defined in the System namespace that
represents an elapsed time in units of 100-nanoseconds, which are the

same units as the Ticks property of DateTime. TimeSpan also has a Ticks
property, and a constructor that accepts an argument in units of 100-

nanoseconds.

The Ticks properties in DateTime and TimeSpan may seem similar, but

it‘s important to keep them distinct. The Ticks property of DateTime is
always the number of 100-nanosecond intervals since January 1, 1 C.E.
A TimeSpan object represents a period of elapsed time, so the Ticks

property of is the number of 100-nanoseconds between two points in
time. The following expression, which involves an implicit TimeSpan

object on the right side of the equality operator, always returns true:

dt.Ticks == (dt – DateTime.MinValue).Ticks

The Ticks property of a TimeSpan object can be negative; the Ticks
property of DateTime is always non-negative.

TimeSpan defines several constructors that let you specify a certain
number of days, hours, minutes, seconds, and milliseconds. For

example, the following constructor returns a TimeSpan object
representing a duration of 40 days, 30 hours, 20 minutes, and 10
seconds:

.NET Book Zero Charles Petzold

Version 1.1 Page 215

TimeSpan ts = new TimeSpan(40, 30, 20, 10);

There are no TimeSpan constructors involving months or years because
months and years don‘t have a fixed number of days. The values in the
TimeSpan constructors indicate a certain number of days, a number of

hours, and so forth. They aren‘t restricted like the values in the DateTime
constructors, and they can be negative. The following statement is

perfectly legal:

TimeSpan ts = new TimeSpan(4000, –3000, –2000, 1000);

TimeSpan defines ten get-only properties besides Ticks. Regardless of the
arguments passed to TimeSpan object, the Days property is a whole

number of days. The Hours property ranges from 0 through 23; the
Minutes and Seconds properties range from 0 through 59, and the

Milliseconds property ranges from 0 through 999.

The remaining five TimeSpan properties are all of type double and provide

the TimeSpan object in whatever units you want. The properties are
named TotalDays, TotalHours, TotalMinutes, TotalSeconds, and
TotalMilliseconds. The values are calculated by dividing the Ticks

property by constant fields named TicksPerDay, TicksPerHour, and so
forth.

Calendars Around the World

Four DateTime constructors have arguments of type Calendar, for

example:

new DateTime(year, month, day, cal);

The final argument is of type Calendar and indicates how the year,
month, and day arguments are to be interpreted. Constructors without

the Calendar argument are assumed to refer to dates in the Gregorian
calendar. These other constructors allow the arguments to refer to dates

in other calendars.

Calendar is an abstract class defined in the System.Globalization

namespace, which also includes classes that derive from Calendar:

Object
 Calendar
 EastAsianLunisolarCalendar
 GregorianCalendar
 HebrewCalendar
 HijriCalendar
 JapaneseCalendar
 JulianCalendar
 KoreanCalendar
 PersianCalendar
 TaiwanCalendar

.NET Book Zero Charles Petzold

Version 1.1 Page 216

 ThaiBuddhistCalendar
 UmAlQuraCalendar

When you include a Calendar object as the last argument to the
DateTime constructor, different consistency rules are applicable. For

example,

new DateTime(1900, 2, 29)

generates an exception because 1900 isn‘t a leap year in the Gregorian
calendar. However,

new DateTime(1900, 2, 29, new JulianCalendar())

doesn‘t cause an exception because in the Julian calendar every year
divisible by 4 is a leap year.

Moveover, if you actually create that DateTime object using the
JulianCalendar object and then look at the individual properties of the

DateTime structure, you‘ll find that Month equals 3 (March) and Day
equals 13. The Year, Month, and Day properties of the DateTime

structure always represent dates in the Gregorian calendar. The
constructor effectively converts a date in a particular calendar into a tick
count; the DateTime properties convert from that tick count to dates in

the Gregorian calendar.

The original adoption of the Gregorian calendar caused the date after

October 4, 1582 to be October 15, 1582, effectively skipping 10 days. If
you call

new DateTime(1582, 10, 5, new JulianCalendar())

the resultant Month property of the DateTime object will be 10 and the

Day property will indeed by 15.

It gets more interesting. Suppose you call

new DateTime(5762, 5, 20, new HebrewCalendar())

That‘s the 20th day in the month of Shevat in the year 5762 of the
Hebrew calendar. The resultant DateTime structure has a Year property

of 2002, and Month and Day properties both equal to 2. Basically what
you have here is a conversion from the Hebrew calendar to the Gregorian

calendar. When the last argument to the DateTime constructor is a
HebrewCalendar object, the Month argument can be set to 13 in some

years.

Similarly, you can specify a date in the Islamic calendar:

new DateTime(1422, 11, 20, new HijriCalendar())

That‘s the 20th day of the month of Dhu‘l-Qa‘dah in the year 1422. Again,
the resultant DateTime structure has a Year property of 2002 and Month

and Day properties both equal to 2.

.NET Book Zero Charles Petzold

Version 1.1 Page 217

To convert from a Gregorian date to another calendar, you need to create
an instance of the particular calendar, for example,

HebrewCalendar hebrewcal = new HebrewCalendar();
HijriCalendar hijrical = new HijriCalendar();

You‘ll also need a DateTime object:

DateTime dt = new DateTime(2002, 2, 2);

To convert this Gregorian date into a date in the Hebrew or Islamic
calendar, call the GetYear, GetMonth, and GetDayOfMonth methods

defined by Calendar and inherited by HebrewCalendar and HijriCalendar,
passing to them the DateTime object to be converted. For example, the

expression

hijrical.GetYear(dt)

returns 1422.

A Readable Rendition

Some of the most important methods in DateTime are those that format
the date and time into human-readable form. The DateTime formatting

includes the user‘s preferred cultural settings, including separators and
month names and day-of-the-week names in the user‘s language.

When displaying dates and times, you generally want formatting to be

culturally specific. However, sometimes that‘s undesirable. Sometimes
dates and times must be embedded in documents that must be viewed

by people in multiple cultures or merged with similar documents. In this
case, a program should use a consistent date and time format, perhaps
in accordance with some international standard. In the jargon of the

.NET Framework, such formats are said to be culture-invariant.

The ToString method define by DateTime has a no-argument version, of

course, but also overloads that accept a formatting string, or an instance
of a class that implements the IFormatProvider interface, or both. For

formatting DateTime objects, the appropriate class that implements
IFormatProvider is DateTimeFormatInfo, which is in the System.-
Globalization namespace. DateTimeFormatInfo has two static properties
named CurrentInfo and InvariantInfo that returns instances of DateTime-
FormatInfo.

The following program show combinations of formatting strings and
DateTimeFormatInfo objects to format the current date and time.

DateAndTimeFormatting.cs
//--
// DateAndTimeFormatting.cs (c) 2006 by Charles Petzold
//--
using System;
using System.Globalization;

.NET Book Zero Charles Petzold

Version 1.1 Page 218

class DateAndTimeFormatting
{
 static DateTime dt = DateTime.Now;

 static void Main()
 {
 ShowFormatting(DateTimeFormatInfo.InvariantInfo, "InvariantInfo");
 ShowFormatting(DateTimeFormatInfo.CurrentInfo, "CurrentInfo");
 }
 static void ShowFormatting(DateTimeFormatInfo format, string strLabel)
 {
 Console.WriteLine(strLabel);
 Console.WriteLine(new string('-', strLabel.Length));

 string[] strFormats = {"d", "D", "f", "F", "g", "G", "m",
 "r", "s", "t", "T", "u", "U", "y" };

 foreach (string strFormat in strFormats)
 Console.WriteLine("{0}: {1}", strFormat,
 dt.ToString(strFormat, format));
 Console.WriteLine();
 }
}

Notice the strFormats array in the ShowFormatting method. That array
contains the formatting strings you can use in the ToString method. (You

can use those same letters in the placeholders in the formatting string of
Console.WriteLine.) The program first shows the formatting for

DateTimeFormatInfo.InvariantInfo:

InvariantInfo

d: 12/02/2006
D: Saturday, 02 December 2006
f: Saturday, 02 December 2006 16:48
F: Saturday, 02 December 2006 16:48:43
g: 12/02/2006 16:48
G: 12/02/2006 16:48:43
m: December 02
r: Sat, 02 Dec 2006 16:48:43 GMT
s: 2006-12-02T16:48:43
t: 16:48
T: 16:48:43
u: 2006-12-02 16:48:43Z
U: Saturday, 02 December 2006 21:48:43
y: 2006 December

I have my regional settings set for American English, so the following

formatting is shown for DateTimeFormatInfo.CurrentInfo:

CurrentInfo

d: 12/2/2006
D: Saturday, December 02, 2006

.NET Book Zero Charles Petzold

Version 1.1 Page 219

f: Saturday, December 02, 2006 4:48 PM
F: Saturday, December 02, 2006 4:48:43 PM
g: 12/2/2006 4:48 PM
G: 12/2/2006 4:48:43 PM
m: December 02
r: Sat, 02 Dec 2006 16:48:43 GMT
s: 2006-12-02T16:48:43
t: 4:48 PM
T: 4:48:43 PM
u: 2006-12-02 16:48:43Z
U: Saturday, December 02, 2006 9:48:43 PM
y: December, 2006

The letters are mnemonics of sorts:

Letter Mnemonic

d Date

f Full

g General

m month/day

r RFC

s sortable

t time

u universal

y year/month

When the uppercase and lowercase letters produce different result (such
as d and D)the uppercase letter produces a longer string. For the r, R, s,

or u formatting strings, the results are the same regardless of the second
argument to ToString. (You can also define your own formatting.)

The ToString method with a null or an absent formatting string argument
is the same as G. ToString without a DateTimeFormatInfo argument is the

same as DateTimeFormatInfo.CurrentInfo.

Using r or R results in the RFC 1123 format. (RFC stands for Request for

Comments. RFCs are documentations of Internet standards and are
obtainable from many sources, including the Web site of the Internet
Engineering Task Force, http://www.ietf.org.) The s format is known as

ISO 8601 format, and is intended to be universal and easily sortable. The
T in the center is known as a time designator and separates the date and

time. Dates that begin with months or days of the month can‘t be sorted
quite as easily. The u format is similar to s except that the time

designator is missing and the string ends with a Z. In military and radio
circles, UTC is sometimes known as Zulu time, Zulu being used to

represent Z, and Z referring to zero degrees of longitude.

http://www.ietf.org/

.NET Book Zero Charles Petzold

Version 1.1 Page 220

The U format option performs a conversion to UTC if the DateTime value
is a local time.

The DateTime structure has four other convenient culture-specific
formatting methods:

o ToShortDateString is equivalent to d formatting.

o ToLongDateString is equivalent to D formatting.

o ToShortTimeString is equivalent to t formatting.

o ToLongTimeString is equivalent to T formatting.

Now go into your Regional Options dialog and change the locale to
France. The InvariantInfo formatting is the same, but the CurrentInfo

results are demonstrably different:

CurrentInfo

d: 02/12/2006
D: samedi 2 décembre 2006
f: samedi 2 décembre 2006 17:07
F: samedi 2 décembre 2006 17:07:24
g: 02/12/2006 17:07
G: 02/12/2006 17:07:24
m: 2 décembre
r: Sat, 02 Dec 2006 17:07:24 GMT
s: 2006-12-02T17:07:24
t: 17:07
T: 17:07:24
u: 2006-12-02 17:07:24Z
U: samedi 2 décembre 2006 22:07:24
y: décembre 2006

.NET Book Zero Charles Petzold

Version 1.1 Page 221

Chapter 24. Events and Delegates

Suppose you have a scenario with two classes with the names of A and

B. Class A has the job of getting information and delivering it to class B.
How do you do it?

One approach might be to have class B periodically check a Boolean

property in class A named GotNewInformation. If GotNewInformation is
true, then class B can call the method in A named GetInformation. This is

a technique known as polling, and it‘s considered rather wasteful in
terms of resources.

A better approach would be for class A to call a particular method in B,
named perhaps TheNewStuffIsReady. But that means that class B is

required to have a method named TheNewStuffIsReady whenever it
needs to interact with class A. Perhaps there are other activities B needs

to do with A that don‘t involve this transfer of information.

A mechanism for dealing with scenarios such as these is built into .NET

and is known as the event. The event is a type-safe mechanism
essentially for defining call-back functions. It is considered type-safe
because the call-back function must have a specific signature defined by

a delegate.

In this scenario, class A would define an event, and class B would define

a method to function as an event handler. Class B registers this event
handler with class A‘s event, and then class A effectively calls that event

handler whenever it has new information that might be of interest to
class B.

Let‘s look at the different parts: Class A would define a public event
member as simply as this:

public event EventHandler InformationAlert;

The name of this event is InformationAlert. It is associated with a delegate

named EventHandler, which is defined in the .NET Framework. Look in
the System namespace, and you‘ll see EventHandler defined like so:

public delegate void EventHandler(Object sender, EventArgs e);

EventArgs is a class defined in the System namespace, and it is the base

class for many derived classes that are used in connection with events.

The delegate defines a signature for an event handler that is associated
with the InformationAlert event. Class B declares a method to function as

an event handler like this:

.NET Book Zero Charles Petzold

Version 1.1 Page 222

void MyInformationAlertHandler(object sender, EventArgs e)
{
 // process the event
}

Class B can name this event handler whatever it wants, but it must have

the same return type (void, in this case) and the same parameters as the
EventHandler delegate. Although naming the EventArgs parameter e has

become common, you can really name it whatever you want. (I prefer
args myself.)

Now B has a method that is suitable for handling event notifications from
A. Class B must also register the event handler with A. I‘ll assume here

that a is an instance of the A class created by class B. B ―installs‖ or
―registers‖ the event handler with a special syntax like this:

a.InformationAlert += new EventHandler(MyInformationAlertHandler);

The instance of the class that defined the event is followed by a period
and the event name, and then the compound assignment operator,

followed by the delegate constructor and the name of the event handler.

Now, whenever class A has new information, it ―raises‖ or ―fires‖ the

InformationAlert event with code like this:

if (InformationAlert != null)
 InformationAlert(this, new EventArgs());

InformationAlert will be null if there aren‘t any event handlers registered

with this event. If there are registered event handlers (and there could be
more than one), class A effectively calls all those event handlers with the

statement that follows. The two parameters that follow InformationAlert
become the two parameters to the event handlers. The first is the object
firing the event, and the second is an instance of type EventArgs. (If more

information must be delivered to the event handler, then a class that
derives from EventArgs would be used instead, and a different delegate

would be associated with the event.)

When class A fires the InformationAlert event, then the MyInformation-
AlertHandler method in class B is called.

At any time, class B can unregister the event handler using code like

this:

a.InformationAlert -= new EventHandler(MyInformationAlertHandler);

Notice this time that the compound assignment operator is for
subtraction.

In .NET 2.0, the syntax for registering and unregistering event handlers

was simplified somewhat. Rather than registering an event handler like
this

a.InformationAlert += new EventHandler(MyInformationAlertHandler);

.NET Book Zero Charles Petzold

Version 1.1 Page 223

you can now just use the method name:

a.InformationAlert += MyInformationAlertHandler;

Of course, MyInformationAlertHandler must still be defined in accordance
with the EventHandler delegate.

Events aren‘t used much in character-mode programming, but they‘re
used extensively in graphical interfaces. The keyboard, the mouse, all

types of controls and menus—everything generates events, and event
handling is one of the necessary skills in programming for graphical
interfaces.

Regardless, let‘s try to put an event handler in a character-mode
program. The class I‘ve chosen is the Timer class from the System.Timers

namespace. The Timer class serves to periodically notify a class when a
period time of elapsed. It does this with an event handler defined like so:

public event ElapsedEventHandler Elapsed;

The event is named Elapsed, and it is associated with a delegate named

ElapsedEventHandler and defined in the System.Timers namespace like
so:

public delegate void ElapsedEventHandler(Object sender,
 ElapsedEventArgs e)

The ElapsedEventArgs class is also defined in System.Timers, and defines
a SignalTime property, which is the DateTime object when the event was

raised.

Here‘s a program that creates an object of type Timer and installs an
event handler to be notified every second. This program requires a

reference to the System.dll assembly.

SetTimer.cs
//---
// SetTimer.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Timers;

class SetTimer
{
 static void Main()
 {
 Timer tmr = new Timer();
 tmr.Elapsed += TimerTickHandler;
 tmr.Interval = 1000;
 tmr.Enabled = true;

 Console.ReadLine();
 tmr.Elapsed -= TimerTickHandler;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 224

 static void TimerTickHandler(object sender, ElapsedEventArgs args)
 {
 Console.Write("\r{0} ", args.SignalTime.ToLongTimeString());
 }
}

The Main method creates an object of type Timer, and installs a handler
for the Elapsed event. The TimerTickHandler method is defined in

accordance with the ElapsedEventHandler delegate. The Interval is set for
1 second, and the timer is enabled.

At this point, TimerTickHandler is called every second by the Timer
object. If this method needed to, it could get access to the Timer object

raising the event by casting the sender parameter to a Timer object. But
this handler just uses the SignalTime property of the ElapsedEventArgs

parameter to display the current time. The use of a carriage return
makes the new time overwrite the old time.

When the user presses the Enter key, the Console.ReadLine method

returns and the program terminates. Uninstalling the event handler is
not strictly necessary here, but it can‘t hurt.

Beginning in .NET 2.0, it is possible to define anonymous methods for
use with events. Rather than declaring a method for the event handler,
you put the event handling code in the statement where you normally

install the handler. Here‘s a demonstration of this technique.

SetTimerWithAnonymousMethod.cs
//--
// SetTimerWithAnonymousMethod.cs (c) 2006 by Charles Petzold
//--
using System;
using System.Timers;

class SetTimer
{
 static void Main()
 {
 Timer tmr = new Timer();
 tmr.Elapsed += delegate(object sender, ElapsedEventArgs args)
 {
 Console.Write("\r{0} ", args.SignalTime.ToLongTimeString());
 };
 tmr.Interval = 1000;
 tmr.Enabled = true;

 Console.ReadLine();
 }
}

The compound assignment statement is followed by the keyword delegate

and the parameters of the delegate in parentheses. Curly brackets
delimit the body of the anonymous method.

.NET Book Zero Charles Petzold

Version 1.1 Page 225

If you don‘t need the parameters to the event handler, you can simplify
this even more:

tmr.Elapsed += delegate
{
 Console.Write("\r{0} ", DateTime.Now.ToLongTimeString());
};

Now the code uses the static DateTime.Now property to obtain the

current time rather than the SignalTime property of ElapsedEventArgs,
so the two parameters to the method can be eliminated.

Although anonymous methods are sometimes convenient, they‘re not the

most aesthetically attractive feature of the C# language and can be tricky
to use when they access local variables of the method in which they

appear.

.NET Book Zero Charles Petzold

Version 1.1 Page 226

Chapter 25. Files and Streams

The System.IO namespace provides essential support for file input and

output of both binary files and text files. However, if those text files you
need to read and write are actually XML files, then you‘ll probably be
happier using higher-level classes in the System.Xml namespace.

For the C programmer whose main arsenal of file I/O tools consists of
library functions such as fopen, fread, fwrite, and fprintf, the System.IO

namespace can seem excessively convoluted and complex. This chapter
is intended to guide you through System.IO so that you can get a sense

of the important classes and the rationale for its complexity. There are
some shortcuts for reading entire files, but I won‘t show them to you
until the very end of the chapter.

This chapter takes a rather roundabout path through System.IO that
might not at first seem to be entirely rational, so let me summarize here:

The first file I/O class I‘ll describe is FileStream, which lets you read and
write bytes or arrays of bytes. This is the lowest level file I/O you‘ll
probably want to perform.

Next I‘ll cover classes that read and write text files and streams. These
classes are StreamReader and StreamWriter, and some related files.

Then I‘ll get back to binary files with BinaryReader and BinaryWriter. I
discuss these classes after the text I/O classes because they incorporate

reading and writing strings as well as other C# data types.

Then it‘s time to attack the file system and directories with classes like
Environment, Path, DirectoryInfo, Directory, FileInfo, and File.

Finally, I‘ll show how the File class offers some higher-level methods for
working with whole files.

Overview of Streams

The .NET Framework distinguishes between files and streams. A file is a

collection of data stored on a disk with a name and (often) a directory
path. When you open a file for reading or writing, it becomes a stream. A

stream is something on which you can perform read and write
operations. But streams encompass more than just open disk files. Data
coming over a network is a stream, and you can also create a stream in

memory. In a console application, keyboard input and text output are
also streams.

.NET Book Zero Charles Petzold

Version 1.1 Page 227

Stream is an abstract class defined in the System.IO namespace. This
class hierarchy shows the most important classes that derive from

Stream.

Object
 MarshalByRefObject
 Stream (abstract)
 BufferedStream
 FileStream
 MemoryStream
 NetworkStream

In general, a stream is an object that lets you read bytes, write bytes,

and seek to a particular location. However, not all streams let you
perform all these operations. The Stream class defines four bool
properties named CanRead, CanWrite, CanSeek, and CanTimeout.

If CanRead is true, you can call ReadByte on the Stream object to read a
single byte, or Read to read multiple bytes into a byte array.

If CanWrite is true, you can call WriteByte to write a single byte to the
stream, or Write to write multiple bytes from a byte array. The Flush

method writes any buffered output to the stream.

If CanSeek is true (which is the case for a stream based on a file) you can

use the Length property to obtain the length of the stream, and you can
use the Position property to obtain the current position or set the current

position. Both properties are of type long. You can also use the Seek
method with an offset combined with a member of the SeekOrigin

enumeration (Begin, Current, or End).

If both CanWrite and CanSeek are true, you can call the SetLength

method to set a new length of the stream.

If CanTimeout is true (which can be the case for a network stream), then
the ReadTimeout and WriteTimeout properties let you obtain or specify

the timeout values.

You can use the BeginRead, EndRead, BeginWrite, and EndWrite

methods to read or write the stream asynchronously.

The Close method closes the stream.

The FileStream Class

The FileStream class derives from Stream and performs the most

rudimentary file I/O. If you want to restrict yourself to learning just one
class in the System.IO namespace, this is the one you‘ll need.

To open an existing file, or create a new file, you create an object of type
FileStream using one of the constructors that begins with a string
argument indicating the filename. Other constructors let you open files

.NET Book Zero Charles Petzold

Version 1.1 Page 228

based on operating system file handles; these are useful for interfacing
with existing code.

For pure .NET programs, however, the simplest constructor requires two
arguments, which results in opening a file for both reading and writing.

The first argument is the filename, and the second argument is a
member of the FileMode enumeration:

Member Value Caveats

FileMode.CreateNew 1 Fails if file exists.

FileMode.Create 2 Delete file contents if file already exists

FileMode.Open 3 Fails if file does not exist

FileMode.OpenOrCreate 4 Creates new file if file does not exist

FileMode.Truncate 5 Fails if file does not exist; deletes

contents of file

FileMode.Append 6 Fails if file is opened for reading; creates

new file if file does not exist; seeks to
end of file

The constructor fails by raising an exception such as IOException or
FileNotFoundException. Almost always you should call the FileStream

constructor in a try block to gracefully recover from any problems
regarding the presumed existence or non-existence of the file.

In addition to the required two constructor arguments, you can supply a

third argument, which is a member of the FileAccess enumeration:

Member Value Description

FileAccess.Read 1 Fails for FileMode.CreateNew,
FileMode.Create, FileMode.Truncate, or

FileMode.Append

FileAccess.Write 2 Fails if file is read-only

FileAccess.ReadWrite 3 Fails for FileMode.Append or if file is read-

only

There‘s only one case where a FileAccess argument is required: when you

open a file with FileMode.Append, the constructor fails if the file is
opened for reading. Because files are opened for reading and writing by
default, the following constructor always fails:

new FileStream(strFileName, FileMode.Append)

To use FileMode.Append, you must include an argument of

FileAccess.Write:

new FileStream(strFileName, FileMode.Append, FileAccess.Write)

.NET Book Zero Charles Petzold

Version 1.1 Page 229

Unless you specify a FileShare argument, the file is open for exclusive
use by your process. No other process (or the same process) can open the

same file. Moreover, if any other process already has the file open and
you don‘t specify a FileShare argument, the FileStream constructor will

fail. The FileShare argument lets you be more specific about the sharing:

Member Value Description

FileShare.None 0 Allow other processes no access to the file;
default

FileShare.Read 1 Allow other processes to read the file

FileShare.Write 2 Allow other processes to write to the file

FileShare.ReadWrite 3 Allow other processes full access to the file

When you only need to read from a file, it‘s common to allow other
processes to read from it as well; in other words, FileAccess.Read should
usually be accompanied by FileShare.Read. This courtesy goes both

ways: if another process has a file open with FileAccess.Read and
FileShare.Read, your process won‘t be able to open it unless you specify

both flags as well. The FileStream class defines Lock and Unlock methods
for accessing shared files.

Once you open a file using one of the FileStream constructors, you have
access to the properties and methods defined by the Stream class that I

described above. The CanRead and CanWrite properties will depend on
the FileAccess value you specified.

The CanSeek property is always true for open files, which means that the
Length and Position properties are valid. The Length property is read-

only; the Position property is read/write. Both properties are of type long,
which means they allow file sizes of up to 9 terabytes (9 × 109 bytes).

You can set the Position property to seek to any point in the file. For

example, you can seek to the 100th byte in the file

fs.Position = 100;

You can seek to the end of the file (for appending, perhaps)

fs.Position = fs.Length;

The Seek method is similar to the file-seeking functions in C. The
SeekOrigin enumeration (with values of Begin, Current, and End) indicate

where the offset argument is measured from.

You can read individual bytes with ReadByte or multiple bytes into an

array with Read. Both return int values, but with different meanings:
ReadByte normally returns the next byte from the file cast to an int
without sign extension. For example, the bytes 0xFF becomes the integer

.NET Book Zero Charles Petzold

Version 1.1 Page 230

0x000000FF or 255. A return value of –1 indicates an attempt to read
past the end of the file.

The Read method requires an array of type byte:

byte[] buffer = new byte[1000];
fs.Read(buffer, 0, buffer.Length);

The second argument is an offset into the buffer, and the third argument

is the number of bytes to read. Read returns the number of bytes
actually read, which for files is the same as the third argument to Read

unless it‘s gotten to the end of the file. A return value of 0 indicates that
there are no more bytes to be read. For other types of streams, Read can

return a value less than the third argument, but always at least 1 unless
the entire stream has been read.

The WriteByte and Write methods are similar.

Despite what may or may not happen as a result of garbage collection on
the FileStream object, you should always explicitly call the Close method

for any files you open.

FileStream is an excellent choice for a traditional hex-dump program.

HexDump.cs
//--
// HexDump.cs (c) 2006 by Charles Petzold
//--
using System;
using System.IO;

class HexDump
{
 public static int Main(string[] strArgs)
 {
 if (strArgs.Length > 0)
 {
 foreach (string strFileName in strArgs)
 DumpFile(strFileName);
 }
 else
 {
 string strFileName;

 do
 {
 Console.Write("Enter filename (or Enter to end): ");
 strFileName = Console.ReadLine();
 if (strFileName.Length > 0)
 DumpFile(strFileName);
 }
 while (strFileName.Length > 0);
 }
 return 0;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 231

 protected static void DumpFile(string strFileName)
 {
 FileStream fs;

 try
 {
 fs = new FileStream(strFileName, FileMode.Open,
 FileAccess.Read, FileShare.Read);
 }
 catch (Exception exc)
 {
 Console.WriteLine("HexDump: {0}", exc.Message);
 return;
 }
 Console.WriteLine(strFileName);
 DumpStream(fs);
 fs.Close();
 }
 static void DumpStream(Stream stream)
 {
 byte[] buffer = new byte[16];
 long addr = 0;
 int count;

 while ((count = stream.Read(buffer, 0, 16)) > 0)
 {
 Console.WriteLine(ComposeLine(addr, buffer, count));
 addr += 16;
 }
 }
 static string ComposeLine(long addr, byte[] buffer, int count)
 {
 string str = String.Format("{0:X4}-{1:X4} ",
 (uint)addr / 65536, (ushort)addr);

 for (int i = 0; i < 16; i++)
 {
 str += (i < count) ?
 String.Format("{0:X2}", buffer[i]) : " ";
 str += (i == 7 && count > 7) ? "-" : " ";
 }
 str += " ";

 for (int i = 0; i < 16; i++)
 {
 char ch = (i < count) ? Convert.ToChar(buffer[i]) : ' ';
 str += Char.IsControl(ch) ? "." : ch.ToString();
 }
 return str;
 }
}

This program uses the version of Main that has a single argument, which

is an array of strings, each of which is a command-line argument to the
program. Unlike the Main function in C, the Main method in C# doesn‘t

.NET Book Zero Charles Petzold

Version 1.1 Page 232

include an argument count and also doesn‘t include the program name
among the arguments. Wildcards are not automatically expanded. (I‘ll get

to that job later in this chapter.) If there are no arguments, then the
program requests a filename. If you‘re running the program from Visual

Studio, then hexdump.exe will work as an argument.

Once HexDump successfully opens each file, the program uses the Read
method to read 16-byte chunks from the file, and then HexDump‘s

ComposeLine method displays them.

Although FileStream is the most essential class in System.IO for reading

and writing files, for most cases it will prove to be inadequate. The
problem is that C# is not nearly as flexible as C in casting. For example,

a C programmer might read a series of bytes into an array, and then use
pointers into this array to cast them into other data types. You can‘t do
this in C#, and you‘d probably need to manually assemble other data

types from their constituent bytes.

So, unless reading and writing arrays of bytes is entirely satisfactory to
you, you probably can‘t limit your knowledge of file I/O to the FileStream

class. You‘ll probably use StreamReader and StreamWriter for reading
and writing text files, and BinaryReader and BinaryWriter for reading and

writing binary files of types other than byte arrays.

Text File I/O

Certainly one important type of file is the text file, which consists entirely
of lines of text separated by end-of-line markers. The System.IO

namespace has specific classes to read and write text files. Here‘s the
class hierarchy:

Object
 MarshalByRefObject
 TextReader (abstract)
 StreamReader
 StringReader
 TextWriter (abstract)
 StreamWriter
 StringWriter
 …

Although these classes are not descended from Stream, they certainly

make use of the Stream class.

The two classes I‘m going to focus on here are StreamReader and

StreamWriter, which are designed for reading and writing text files or text
streams. The two other non-abstract classes are StringReader and
StringWriter, which are not strictly file I/O classes, but use similar

methods to read to and write from strings. I‘ll discuss these classes
towards the end of the next chapter.

.NET Book Zero Charles Petzold

Version 1.1 Page 233

Text may seem to be a very simple form of data storage, but in recent
years text has assumed a layer of complexity as a result of the increased

use of Unicode. Although the C# char and string data types store text as
Unicode characters, in most cases you probably do not want to write text

as 16-bit characters, particularly if programs reading the files are
expecting to encounter ASCII or one of the more efficient encodings of
Unicode.

Fortunately, the StreamWriter class lets you have control over how the
Unicode strings in your C# program are converted for storage in a file.

You assert this control via classes defined in the System.Text namespace.
Similarly, StreamReader lets your program read text files in various

formats and convert the text from the files to Unicode strings in your
program.

Let‘s look at StreamWriter first. You use this class to write to new or

existing text files. StreamWriter has four constructors that let you specify
a filename:

new StreamWriter(string filename)
new StreamWriter(string filename, bool append)
new StreamWriter(string filename, bool append, Encoding enc)
new StreamWriter(string filename, bool append, Encoding enc, int size)

These constructors open a file for writing, probably using a FileStream

constructor. By default, if the file exists its contents will be destroyed.
Set the second argument to true to avoid that. The size argument is a
buffer size.

Three other StreamWriter constructors use an existing Stream object:

new StreamWriter(Stream strm)
new StreamWriter(Stream strm, Encoding enc)
new StreamWriter(Stream strm, Encoding enc, int size)

If you use a constructor without an Encoding argument, the resultant

StreamWriter object will not store strings to the file in a Unicode format
with two bytes per character. Nor will it convert your strings to ASCII.
Instead, the StreamWriter uses a popular encoding format known as

UTF-8.

If you want to specify an Encoding argument, you need an object of type

Encoding, which is a class defined in the System.Text namespace. It‘s
easiest (and in most cases, sufficient) to use one of the static properties

of the Encoding class to obtain this object:

Encoding.Default
Encoding.Unicode
Encoding.BigEndianUnicode
Encoding.UTF8
Encoding.UTF7
Encoding.ASCII

.NET Book Zero Charles Petzold

Version 1.1 Page 234

The Encoding argument to StreamWriter can also be an instance of one of
the classes in System.Text that derive from Encoding, which are

ASCIIEncoding, UnicodeEncoding, UTF7Encoding, and UTF8Encoding. The
constructors for these classes often have a few options, so you may want

to check them out if the static properties aren‘t doing precisely what you
want.

When you specify an encoding of Encoding.Unicode, each character is
written to the file in two bytes with the least significant byte first, in
accordance with the so-called little-endian architecture of Intel

microprocessors. The file or stream begins with the bytes 0xFF and
0xFE, which correspond to the Unicode character 0xFEFF, which is

defined in the Unicode standard as the byte order mark (BOM).

An encoding of Encoding.BigEndianUnicode stores the most significant
bytes of each character first. The file or stream begins with the bytes

0xFE and 0xFF, which also correspond to the Unicode character 0xFEFF.
The Unicode character 0xFFFE is intentially undefined so that

applications can determine the byte ordering of a Unicode file from its
first two bytes.

(Readers unsure whether little-endian or big-endian microprocessor

architectures are superior should consult Jonathan Swift‘s Gulliver’s
Travels, Part I, Chapter 4.)

If you want to store strings in Unicode but you don‘t want the byte order
marks emitted, you can instead obtain an Encoding argument for the

StreamWriter constructor by creating an object of type UnicodeEncoding:

new UnicodeEncoding(isBigEndian, includeByteOrderMark)

Set the two Boolean arguments accordingly.

UTF-8 is a character encoding designed to represent Unicode characters
without using any zero bytes (and hence, to be C and UNIX friendly). UTF

stands for UCS Transformation Format. UCS stands for Universal
Character Set, which is another name for ISO 10646, a character-

encoding standard with which Unicode is compatible.

In UTF-8, each Unicode character is translated to a sequence of 1 to 6

non-zero bytes. Unicode characters in the ASCII range (0x000 through
0x007F) are translated directly to single-byte values. Thus, Unicode
strings that contain only ASCII are translated to ASCII files. UTF-8 is

documented in RFC 2279. (RFC stands for Request for Comments. RFCs
are documentations of Internet standards and are obtainable from many
sources, including the Web site of the Internet Engineering Task Force,

http://www.ietf.org.)

When you specify Encoding.UTF8, the StreamWriter class converts the

Unicode text strings to UTF-8. In addition, it writes the three bytes 0xEF,

http://www.ietf.org/

.NET Book Zero Charles Petzold

Version 1.1 Page 235

0xBB, and 0xBF to the beginning of the file or stream. These bytes are
the Unicode BOM converted to UTF-8.

If you want to use UTF-8 encoding but you don‘t want those three bytes
emitted, don‘t use Encoding.UTF8. Use Encoding.Default instead or one of

the constructors that don‘t have an Encoding argument. These options
also provide UTF-8 encoding, but the three identification bytes are not
emitted.

Alternatively, you can create an object of type UTF8Encoding and pass
that object as the argument to StreamWriter. Use

new UTF8Encoding()

or

new UTF8Encoding(false)

to suppress the three bytes, and use

new UTF8Encoding(true)

to emit the identification bytes.

UTF-7 is documented in RFC 2152. Unicode characters are translated to
a sequence of bytes that always have a high bit of 0. UTF-7 is intended
for environments in which only 7-bit values can be used, such as e-mail.

Use Encoding.UTF7 in the StreamWriter constructor for UTF-7 encoding.
No identification bytes are involved with UTF-7.

When you specify an encoding of Encoding.ASCII, the resultant file or
stream contains only ASCII characters, that is, characters in the range

0x00 through 0x7F. Any Unicode character not in this range is converted
to a question mark (ASCII code 0x3F). This is the only encoding in which
data is actually lost.

Another important option is a text file that contains only characters from
the Windows ANSI character set (characters 0x00 through 0xFF) in a
one-byte-per-character format. You can't use Encoding.ASCII because

characters 0x80 through 0xFF will be replaced by question marks. And
you can't use Encoding.UTF8 because characters 0x80 through 0xFF will

be written to the file as a pair of bytes. In such a case you need to obtain
an Encoding object using the static GetEncoding method of the Encoding

class with an argument of 1252 (the code page identifier for the Windows
character set). This is the argument you pass to the StreamWriter
constructor:

Encoding.GetEncoding(1252)

The StreamWriter class has a few handy properties. The get-only
BaseStream property returns either the Stream object you used to create
the StreamWriter object, or the Stream object that the StreamWriter class

created based on the filename you supplied. If the base stream supports

.NET Book Zero Charles Petzold

Version 1.1 Page 236

seeking, you can use that object to perform seeking operations on the
stream.

The Encoding property of StreamWriter is the Encoding object you
specified in the constructor, or a UTF8Encoding object otherwise. Setting

the AutoFlush property to true performs a flush of the buffer after every
write.

The NewLine property is inherited from TextWriter. By default, it‘s the
string ―\r\n‖ (carriage return and line feed), but you can change it to
―\n‖ instead. Anything else, and the files won‘t be properly readable by

StreamReader objects.

The versatility of the StreamWriter class becomes apparent when you

look at the multitude of Write and WriteLine methods that the class
inherits from TextWriter. These methods parallel those in the Console

class but instead write text to a file. The WriteLine methods end with
writing a newline character; the Write methods do not. Also included are

versions with formatting strings. The StreamWriter method also inherits
Flush and Close methods from TextWriter.

Here‘s a little program that appends text to the same file every time you
run the program. You‘ll find the file in the same directory as the
StreamWriterDemo.exe file.

StreamWriterDemo.cs
//--
// StreamWriterDemo.csn (c) 2006 by Charles Petzold
//--
using System;
using System.IO;

class StreamWriterDemo
{
 public static void Main()
 {
 StreamWriter sw = new StreamWriter("StreamWriterDemo.txt", true);

 sw.WriteLine("You ran the StreamWriterDemo program on {0}",
 DateTime.Now);

 sw.Close();
 }
}

Notice the true argument to the constructor, indicating that the existing

file will be appended. The Unicode string in the WriteLine statement are
converted to UTF-8, but the program doesn‘t use any non-ASCII
characters, so the file will appear to be ASCII.

The StreamReader class is for reading text files or streams. Here are file
constructors for opening a text file for reading:

.NET Book Zero Charles Petzold

Version 1.1 Page 237

new StreamWriter(string filename);
new StreamWriter(string filename, Encoding enc);
new StreamWriter(string filename, bool detect);
new StreamWriter(string filename, Encoding enc, bool detect);
new StreamWriter(string filename, Encoding enc, bool detect, int size);

An additional set of five constructors create a StreamReader object based
on an existing stream:

new StreamWriter(Stream strm);
new StreamWriter(Stream strm, Encoding enc);
new StreamWriter(Stream strm, bool detect);
new StreamWriter(Stream strm, Encoding enc, bool detect);
new StreamWriter(Stream strm, Encoding enc, bool detect, int size);

If you set the detect argument to true, the constructor will attempt to
determine the encoding of the file from the first two or three bytes. Or
you can specify the encoding explicitly. If you set detect to true and also

specify an encoding, the constructor will use the specified encoding only
if it can‘t detect the encoding of the file. (For example, ASCII and UTF-7

can‘t be differentiated by inspection because they don‘t begin with a BOM
and both contain only bytes in the range 0x00 to 0x7F.)

The StreamReader class contains get-only properties BaseStream and

CurrentEncoding. The latter property may change between the time the
object is constructed and the first read operation performed on the file

because the object obtains knowledge of the identification bytes only
after the first read.

You can read a text file character-by-character using the Peek and Read
methods defined by StreamReader. Both return the next character in the

stream or –1 if the end of the stream has been reached. You must
explicitly cast the return value to a char if the return value is not –1. Or,
you can read multiple characters into an array of type char. This Read

overload returns the number of characters read into the array or 0 if the
end of the stream has been reached.

It is more common with text files to read entire lines rather than
individual characters. The ReadLine method reads the next line up to the

next end-of-line marker, and strips the end-of-line characters from the
resultant string. The method returns a zero-length character string if the
line of text contains only an end-of-line marker; the method returns null
if the end of the stream has been reached.

ReadToEnd returns everything from the current position to the end of the

file. The method returns null if the end of the stream has been reached.

Here‘s a program that asks you for a URI of an HTML file (or other text

file) on the Web. (An HTTP prefix must be included.) It obtains a Stream
for that file using some boilerplate code involving the WebRequest and
WebResponse classes. It then constructs a StreamReader object from

.NET Book Zero Charles Petzold

Version 1.1 Page 238

that stream, uses ReadLine to read each line, and then displays each line
using Console.WriteLine with a line number.

HtmlDump.cs
//---
// HtmlDump.cs (c) 2006 by Charles Petzold
//---
using System;
using System.IO;
using System.Net;

class HtmlDump
{
 public static void Main()
 {
 Console.Write("Enter a URI: ");
 string strUri = Console.ReadLine();

 if (strUri.Length == 0)
 return;

 WebRequest webreq;
 WebResponse webres;

 try
 {
 webreq = WebRequest.Create(strUri);
 webres = webreq.GetResponse();
 }
 catch (Exception exc)
 {
 Console.WriteLine("HtmlDump: {0}", exc.Message);
 return;
 }

 if (webres.ContentType.Substring(0, 4) != "text")
 {
 Console.WriteLine("HtmlDump: URI must be a text type.");
 return;
 }

 Stream stream = webres.GetResponseStream();
 StreamReader strrdr = new StreamReader(stream);
 string strLine;
 int line = 1;

 while ((strLine = strrdr.ReadLine()) != null)
 Console.WriteLine("{0:D5}: {1}", line++, strLine);

 stream.Close();
 return;
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 239

 Binary File I/O

Any file that‘s not a text file is a binary file. I‘ve already discussed the
FileStream class, which lets you read and write files in bytes and byte
arrays. But most binary files consist of other data types. Unless you want

to write code that constructs and deconstructs integers and other types
from their constituent bytes, you‘ll want to take advantage of the

BinaryReader and BinaryWriter classes, both of which are derived from
Object:

Object
 BinaryReader
 BinaryWriter

For both classes, the constructors require a Stream object. (This is later
available from the get-only BaseStream property.) Optionally, you can

also include an Encoding argument in the constructor for use if the file
contains embedded strings.

The BinaryWriter class includes 18 overloads of the Write method.
Sixteen of these overloads have just one argument, which is an object of
type bool, byte, sbyte, byte[], char, char[], string, short, ushort, int, uint,
long, ulong, float, double, or decimal.

These Write methods do not store any information about the type of the

data. Each type uses as many bytes as necessary. For example, a float is
stored in 4 bytes. A bool requires 1 byte. The sizes of arrays are not

stored. A 256-element byte array is stored in 256 bytes.

Strings stored in the file are preceded by the byte length stored as a 7-bit

encoded integer. (The 7-bit integer encoding uses as many bytes as
necessary to store an integer in 7-bit chunks. The first byte of storage is
the lowest 7 bits of the integer, and so forth. The high bit of each byte is

1 if there are more bytes. The BinaryWriter class includes a protected
method named Write7BitEncodedInt that performs this encoding.)

In addition, two Write methods let you write multiple bytes or characters
from a byte or char array. The BinaryWriter class includes a Seek

method, a Flush method, and a Close method that closes the underlying
stream that the BinaryWriter is based on.

The BinaryReader class has individual methods to read all the various
types: ReadBoolean, ReadByte, ReadBytes (for an array), ReadSByte, and

so forth. These methods throw an exception of type EndOfStream-
Exception if the end of the stream has been reached.

In most cases, your program will have an intimate knowledge of a binary
form it‘s accessing, so it can normally avoid end-of-stream conditions.
However, for maximum protection, you should put your read statements

in try blocks in case you encounter a corrupted file.

.NET Book Zero Charles Petzold

Version 1.1 Page 240

The PeekChar and Read methods return the next char in the file. UTF-8
encoding is assumed if you don‘t specify an encoding in the constructor.

The methods return –1 if the end of the stream has been reached.

The Environment Class

The Environment class in the System namespace has a method named
GetLogicalDrives that returns a string array of all the drives on the user‘s

system in the form ―A:\‖, ―C:\‖, and so forth. In .NET 2.0, this method
became pretty much obsolete with the introduction of the DriveInfo class

in the System.IO namespace.

You can create an object of type DriveInfo using a constructor whose

argument is a drive letter:

DriveInfo info = new DriveInfo("C");

However, you‘ll probably have more use for the static GetDrives method
that returns an array of DriveInfo objects, one for each drive on the

system:

DriveInfo[] infos = DriveInfo.GetDrives();

The DriveType property of DriveInfo is a member of the DriveType

enumeration, which has members like Removable, Fixed, and CDRom.
The DriveInfo class has other properties, most of which are demonstrated

by this little program that displays information about all the drives on
your system.

GetMyDrives.cs
//--
// GetMyDrives.cs (c) 2006 by Charles Petzold
//--
using System;
using System.IO;

class GetMyDrives
{
 static void Main()
 {
 DriveInfo[] infos = DriveInfo.GetDrives();

 foreach (DriveInfo info in infos)
 {
 Console.Write("{0} {1}, ", info.Name, info.DriveType);

 if (info.IsReady)
 Console.WriteLine("Label: {0}, Format: {1}, Size: {2:N0}",
 info.VolumeLabel, info.DriveFormat,
 info.TotalSize);
 else
 Console.WriteLine("Not ready");
 }
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 241

}

Notice that the program checks the IsReady property before attempting
to display information that requires the system to access the drive.
Without that check, some of the properties could raise exceptions if the

drive is not ready. On the system I‘m using as I write this, the program
displays the following information:

A:\ Removable, Not ready
C:\ Fixed, Label: Windows XP Pro, Format: NTFS, Size: 52,427,898,880
D:\ Fixed, Label: Available, Format: NTFS, Size: 52,427,898,880
E:\ Removable, Not ready
F:\ CDRom, Not ready
G:\ CDRom, Not ready
H:\ Fixed, Label: Windows Vista, Format: NTFS, Size: 32,570,863,616
I:\ Removable, Label: BOOKS, Format: FAT, Size: 1,041,989,632

The Fixed drives are all partitions on a single hard drive. The second

CDRom drive is actually a DVD drive, although DriveInfo doesn‘t
distinguish that. The A drive is a largely unused floppy drive, of course;
the E drive is a built-in Iomega Zip drive (also largely unused these days),

and I is a USB flash drive, and one of my most valuable possessions.

The static Environment.GetFolderPath method was demonstrated in

Chapter 5 to display the current user‘s actual directory corresponding to
the alias My Documents. The argument to GetFolderPath is a member of

the Environment.SpecialFolder enumeration. For My Documents, the
enumeration member is Personal.

This SpecialFolder enumeration is rather odd in that it is defined within
the Environment class. Instead of calling GetFolderPath like this

Environment.GetFolderPath(SpecialFolder.Personal) // Won't work!

you need to preface SpecialFolder with the class in which it‘s defined:

Environment.GetFolderPath(Environment.SpecialFolder.Personal)

Fortunately, this type of organization of classes and enumerations is
rare.

The following program uses the static Enum.GetValues method to obtain
an array of all the members of the Environment.SpecialFolder
enumeration in an array. It then uses foreach to loop through the array
and display the directory associated with each member of the

enumeration.

ShowSpecialFolders.cs
//---
// ShowSpecialFolders.cs (c) 2006 by Charles Petzold
//---
using System;

.NET Book Zero Charles Petzold

Version 1.1 Page 242

class ShowSpecialFolders
{
 static void Main()
 {
 Environment.SpecialFolder[] folders = (Environment.SpecialFolder[])
 Enum.GetValues(typeof(Environment.SpecialFolder));

 foreach (Environment.SpecialFolder folder in folders)
 Console.WriteLine("{0}: {1}", folder,
 Environment.GetFolderPath(folder));
 }
}

The Environment class has a get-only SystemDirectory property that
returns the same directory as GetFolderPath with the Environment.-
SpecialFolder.System argument.

The static Environment.CurrentDirectory property lets a program obtain or

set the current drive and directory for the application. When setting the
directory, you can use a relative directory path, including the ―..‖ string

to indicate the parent directory. To change to the root directory of
another drive, use the drive letter like so:

Environment.CurrentDirectory = "D:\\";

File and Path Name Parsing

Sometimes you need to parse and scan filenames and path names. Your

program may have a fully qualified filename and you may need just the
directory or the drive.

The Path class defined in the System.IO namespace consists solely of
static methods and static read-only fields that ease jobs like this.

Several static methods of the Path class accept a path name argument in
the form of a string and return information about it:

o Path.IsPathRooted tells you if the path name begins with a drive or

a backslash.

o Path.HasExtension tells you if the filename has an extension.

o Path.GetFileName returns just the filename part of the file path.

o Path.GetFileNameWithoutExtension returns the filename without

the extension.

o Path.GetExtension returns just the filename extension.

o Path.GetDirectoryName returns just the directory path of the file
path.

o Path.GetFullPath possibly prepends the current drive and directory
to the file path.

o Path.GetPathRoot obtains the initial drive or backslash (if any).

.NET Book Zero Charles Petzold

Version 1.1 Page 243

None of these methods require that the path or file actually exist. They‘re
really just performing some string parsing and manipulation, possibly in

combination with the current drive and directory.

The Path.Combine method has two arguments. The method combines a

path name (the first argument) with a path and/or filename (the second
argument). Use Path.Combine rather than string concatenation for this
job. Otherwise, you have to worry about whether a backslash is at the

end of the first argument or the beginning of the second.

The Path.ChangeExtension method also has two arguments: a path name

or filename, and a new extension, including a period. Set the second
argument to null to remove an extension.

Three methods return appropriate directories for storing temporary data.
The TempPath returns a directory name, and both GetTempFileName and
GetRandomFileName return fully qualified unique filenames.

The read-only fields of the Path class store characters used in file and
path names.

Parallel Classes

Another common file I/O job is obtaining lists of all files and

subdirectories in a particular directory. Historically, this job has always
been a bit awkward. The standard libraries associated with the C

programming language didn‘t include such a facility, probably because
UNIX directory lists were text files that programs could directly access
and parse.

Four classes provide you with information about files and directories:
Directory, File, DirectoryInfo, and FileInfo:

Object
 Directory
 File
 MarshalByRefObject
 FileSystemInfo (abstract)

 DirectoryInfo
 FileInfo

The Directory and File classes are declared as static, meaning they

contain only static methods. In contrast, DirectoryInfo and FileInfo
contain no static properties or methods. You must create an object of

type DirectoryInfo or FileInfo to use these classes.

As the names suggest, both Directory and DirectoryInfo provide similar

methods, except that the Directory methods are static and require an
argument that is a directory name. The DirectoryInfo properties and

methods are not static; the constructor argument indicates the directory
name to which the properties and methods apply.

.NET Book Zero Charles Petzold

Version 1.1 Page 244

Similarly, the File and FileInfo classes provide similar methods, except
that you indicate a particular filename in the static File methods and you

create an instance of FileInfo by specifying a filename in the FileInfo
constructor.

If you need information about a particular file, you may wonder whether
it‘s best to use File or FileInfo (or similarly for directories, whether to use

Directory or DirectoryInfo). If you need only one item of information, it‘s
probably easiest to use the static classes. But if you need multiple items,

it makes more sense to create an object of type FileInfo or DirectoryInfo
and then use the instance properties and methods. But don‘t feel
pressured to use one class in preference to the other.

Working with Directories

To use any of the properties or methods of the DirectoryInfo class, you

need a DirectoryInfo object. One way you obtain such an object is by
using the DirectoryInfo constructor:

DirectoryInfo dirinfo = new DirectoryInfo(strPath);

The directory doesn‘t have to exist. Indeed, if you want to create a new

directory, creating an object of type DirectoryInfo is a first step.

After creating an object of type DirectoryInfo, you can determine whether

the directory exists with the Exists property. Even if the directory does
not exist, you can obtain information about it as if it did exist, such as

the Name (just the subdirectory), FullName (the fully-qualified directory),
and Extension, if any. The Parent and Root properties both return objects

of type DirectoryInfo.

A few of the properties in DirectoryInfo are also duplicated as static

methods in the Directory class. These are Exists, GetDirectoryRoot, and
GetParent.

You can create a DirectoryInfo object based on a directory that doesn‘t

exist. You can then create that directory on the disk by calling the Create
method. You can also call CreateSubdirectory on the directory:

DirectoryInfo subdir = dirinfo.CreateSubdirectory(strSubPath);

CreateSubdirectory returns another DirectoryInfo object with information

about the new directory. If the indicated directory already exists, no
exception is thrown. The directory name used to create the DirectoryInfo

object (or passed to the CreateSubdirectory method) can contain multiple
levels of directory names.

If the directory doesn‘t exist when you create the DirectoryInfo object and
then you call Create, the Exists property won‘t suddenly become true.

You must call the Refresh method to refresh the DirectoryInfo
information.

.NET Book Zero Charles Petzold

Version 1.1 Page 245

The Directory class also has a static method to create a new directory.

Both Directory and DirectoryInfo have methods named Delete to remove a

directory. Both classes have overloads of Delete that let you specify a bool
argument that indicates whether you want the deletion to include all files

and subdirectories as well. Otherwise, the directory must be empty or an
exception will be thrown.

DirectoryInfo has four read-write properties that let you obtain the
Attributes, CreationTime, LastAccessTime, and LastWriteTime of the

directory. (Except for Attributes, these properties are duplicated by static
methods in the Directory class.) The Attributes property is a bitwise

combination of members of the FileAttributes enumeration. Each member
of this enumeration has a fairly familiar name like ReadOnly, Hidden,
System, Directory, Archive and so forth, and the numerical value of each

member is a power of two. You‘ll want to use the bitwise AND operator to
test whether a bit is set. If dirinfo is an object of type DirectoryInfo, then

the following expression is non-zero:

dirinfo.Attributes & FileAttributes.Directory

You can move a directory and its contents to another location on the
same disk with the MoveTo method of DirectoryInfo or the static

Directory.Move method.

The remaining methods of Directory and DirectoryInfo I want to discuss

here all obtain an array of files or subdirectories in a directory, or only
those files or directories that match a specified pattern using wildcards
(question marks and asterisks).

The static methods of the Directory class all return arrays of strings.
Directory.GetDirectories requires a directory path and an optional search

pattern and returns an array of all subdirectories in the specified
directory. Similarly, Directory.GetFiles returns an array of files in the

directory. Directory.GetFileSystemEntries returns subdirectories and files.
This last method has limited use. Because all you get is an array of
strings, you probably won‘t be able to immediately tell which is a

subdirectory and which is a file.

The DirectoryInfo class has similar instance methods. However, these

methods do not return arrays of strings. The GetDirectories method
returns an array of DirectoryInfo objects:

DirectoryInfo[] subdirs = GetDirectories();

Similarly, the GetFiles method returns an array of FileInfo objects, and

the GetFileSystemInfos method returns an array of FileSystemInfo
objects. This last method returns both subdirectories and files, but you

can immediately tell which is which by examining the FileAttributes.-
Directory bit in the Attributes property.

.NET Book Zero Charles Petzold

Version 1.1 Page 246

These methods allow us to enhance the HexDump program shown earlier
so that it works with wildcard file specifications. Here‘s

WildCardHexDump.

WildCardHexDump.cs
//--
// WildCardHexDump.cs © 2001 by Charles Petzold
//--
using System;
using System.IO;

class WildCardHexDump: HexDump
{
 public new static int Main(string[] strArgs)
 {
 if (strArgs.Length > 0)
 {
 foreach (string strFileName in strArgs)
 ExpandWildCard(strFileName);
 }
 else
 {
 string strFileName;

 do
 {
 Console.Write("Enter filename (or Enter to end): ");
 strFileName = Console.ReadLine();
 if (strFileName.Length > 0)
 ExpandWildCard(strFileName);
 }
 while (strFileName.Length > 0);
 }
 return 0;
 }
 static void ExpandWildCard(string strWildCard)
 {
 string[] strFiles;

 try
 {
 strFiles = Directory.GetFiles(strWildCard);
 }
 catch
 {
 try
 {
 string strDir = Path.GetDirectoryName(strWildCard);
 string strFile = Path.GetFileName(strWildCard);

 if (strDir == null || strDir.Length == 0)
 strDir = ".";

.NET Book Zero Charles Petzold

Version 1.1 Page 247

 strFiles = Directory.GetFiles(strDir, strFile);
 }
 catch
 {
 Console.WriteLine(strWildCard + ": No Files found!");
 return;
 }
 }
 if (strFiles.Length == 0)
 Console.WriteLine(strWildCard + ": No files found!");

 foreach(string strFile in strFiles)
 DumpFile(strFile);
 }
}

The WildCardHexDump class derives from the HexDump class, so the
project requires a link to HexDump.cs. Because WildCardHexDump has

its own Main method, the method requires a new keyword to avoid a
warning message from the C# compiler. Also, you need to indicate to the
C# compiler which Main method is the actual entry point to the program.

You do this by bringing up the Project Properties page in Visual Studio,
selecting the Application tab at the left, and in the Startup Object drop-

down, selecting WildCardHexDump.

Besides normal wildcards, I wanted to be able to specify just a directory

name as an argument. For example, I wanted C:\ to be the equivalent of
C:*.*. The ExpandWildCard method begins by attempting to obtain all
the files for the particular argument with a call to Directory.GetFiles. This

call will work if strWildCard specifies only a directory. Otherwise, it
throws an exception, and that‘s why it‘s in a try block. The catch block

assumes that the command-line argument has path and filename
components, and it obtains these components using the static Get-
DirectoryName and GetFileName methods of Path. However, the GetFiles
method of Directory doesn‘t want a first argument that is null or an

empty string. Before calling GetFiles, the program avoids that problem by
setting the path name to ―.‖, which indicates the current directory.

File Manipulation and Information

Like the Directory and DirectoryInfo classes, the File and FileInfo classes

are very similar and share a great deal of functionality. Like the Directory
class, the File class is static and consists entirely of static methods. The

first argument to every method is a string that indicates a filename. The
FileInfo class inherits from FileSystemInfo. You create an object of type
FileInfo based on a filename that could include a full or relative directory

path:

FileInfo fileinfo = new FileInfo(strFileName);

.NET Book Zero Charles Petzold

Version 1.1 Page 248

The file doesn‘t have to exist. You can determine whether the file exists
and obtain some other information about the file using read-only

properties Exists, Name, FullName, Extension, DirectoryName (which
returns a string), Directory (which returns a DirectoryInfo object), and

Length. Only the Exists property is duplicated by a method in the File
class.

FileInfo has gettable and settable properties Attributes, CreationTime,
LastAccessTime, and LastWriteTime. These properties are duplicated by

static methods in the File class.

The CopyTo, MoveTo, and Delete methods of FileInfo are duplicated by

Copy, Move, and Delete methods in File.

The File class also contains a collection of methods that create new files
or open existing files. These methods are handy if you‘ve obtained an

array of FileInfo objects from a GetFiles call on a DirectoryInfo object and
you want to poke your nose into each and every file.

If fileinfo is an object of type FileInfo, the following methods all return
open FileStream objects. In these calls, mode is a member of the FileMode

enumeration, access is a member of the FileAccess enumeration, and
share is a member of the FileShare enumeration.

FileStream fstream = fileinfo.Create();
FileStream fstream = fileinfo.Open(mode);
FileStream fstream = fileinfo.Open(mode, access);
FileStream fstream = fileinfo.Open(mode, access, share);
FileStream fstream = fileinfo.OpenRead();
FileStream fstream = fileinfo.OpenWrite();

The following methods create or open text files:

StreamWriter writer = fileinfo.CreateText();
StreamWriter writer = fileinfo.AppendText();
StreamReader reader = fileinfo.OpenText();

The File class has similar static methods, each of which requires a file-

name as its first argument. However, these static methods don‘t provide
any real advantage over using the appropriate constructors of the File-
Stream, StreamReader, or StreamWriter classes. Indeed, the very
presence of these static methods in the File class was one of the aspects

of the entire System.IO namespace I initially found the most confusing. It
didn‘t (and still doesn‘t) make sense to use a class like File merely to
obtain an object of type FileStream so that you can then use FileStream

properties and methods. It‘s easier to stick to a single class if that‘s
sufficient for your purposes.

.NET Book Zero Charles Petzold

Version 1.1 Page 249

File Class Shortcuts

However, in .NET 2.0 some additional static methods were added to the
File class that make a whole lot of sense. These methods let you open,
read from (or write to), and close a file, all in one statement.

Here are static methods that read entire files:

byte[] buffer = File.ReadAllBytes(strPathName);
string strFile = File.ReadAllText(strPathName);
string[] strLines = File.ReadAllLines(strPathName);

The two methods that read text files also let you specify an optional
Encoding argument.

In the following methods, buffer is a byte array and lines is a string array.

File.WriteAllBytes(strPathName, buffer);
File.WriteAllText(strPathname, strFileText);
File.AppendAllText(strPathName, strAppendText);
File.WriteAllLines(strPathName, lines);

The three methods that involve text files let you specify an optional
Encoding argument.

If you have a need to replace an entire file and, in the process, make the

existing file into a backup copy, you‘ll also want to explore the
File.Replace method, also new in .NET 2.0.

.NET Book Zero Charles Petzold

Version 1.1 Page 250

Chapter 26. String Theory

Once a C# string is created, neither the length nor the individual

characters that make up the string can be changed. A C# string is thus
said to be immutable. Whenever you need to change a string in some
way, you must create another string. Many members of the String class

create new strings based on existing strings. Many methods and
properties throughout the .NET Framework create and return strings.

You may wonder if there‘s a performance penalty associated with
frequent re-creation of String objects. Consider the following program,

which uses the addition compound assignment operator in 10,000
string-appending operations to construct a large string.

StringAppend.cs
//---
// StringAppend.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Diagnostics;

class StringAppend
{
 const int iterations = 10000;

 public static void Main()
 {
 Stopwatch watch = new Stopwatch();
 string str = String.Empty;

 watch.Start();

 for (int i = 0; i < iterations; i++)
 str += "abcdefghijklmnopqurstuvxyz\r\n";

 watch.Stop();
 Console.WriteLine(watch.ElapsedMilliseconds);
 }
}

The program uses the Stopwatch class from the System.Diagnostics

namespace to calculate an elapsed time. The stopwatch is started before
the for loop, stopped afterwards, and then the elapsed time in
milliseconds is displayed. (The Stopwatch class requires a reference to

the System.dll assembly.)

Each string-appending operation causes a new string object to be

created, which requires another memory allocation. Each previous string

.NET Book Zero Charles Petzold

Version 1.1 Page 251

is marked for garbage collection. How fast this program runs depends on
how fast your machine is. My pokey machine requires about 8 seconds.

A better solution in this case is the appropriately named StringBuilder
class, defined in the System.Text namespace. Unlike the string main-

tained by the String class, the string maintained by StringBuilder can be
altered. StringBuilder dynamically reallocates the memory used for the

string. Whenever the size of the string is about to exceed the size of the
memory buffer, the buffer is doubled in size. To convert a StringBuilder
object to a String object, call the ToString method.

Here‘s a revised version of the program using StringBuilder.

StringBuilderAppend.cs
//--
// StringBuilderAppend.cs (c) 2006 by Charles Petzold
//--
using System;
using System.Diagnostics;
using System.Text;

class StringBuilderAppend
{
 const int iterations = 10000;

 public static void Main()
 {
 StringBuilder builder = new StringBuilder();
 Stopwatch watch = new Stopwatch();
 watch.Start();

 for (int i = 0; i < iterations; i++)
 builder.Append("abcdefghijklmnopqurstuvxyz\r\n");

 string str = builder.ToString();
 watch.Stop();
 Console.WriteLine(watch.ElapsedMilliseconds);
 }
}

You‘ll probably find that this program does its work a thousand times
faster than the previous program. On my machine, it required 4

milliseconds.

Another efficient approach is to use the StringWriter class defined in the
System.IO namespace. As I indicated in Chapter 25, both StringWriter
and StreamWriter (which you use for writing to text files) derive from the
abstract TextWriter class. Like StringBuilder, StringWriter assembles a

composite string. The big advantage with StringWriter is that you can use
the whole array of Write and WriteLine methods defined in the TextWriter
class. Here‘s a sample program that performs the same task as the
previous two programs but using a StringWriter object.

.NET Book Zero Charles Petzold

Version 1.1 Page 252

StringWriterAppend.cs
//---
// StringWriterAppend.cs (c) 2006 by Charles Petzold
//---
using System;
using System.Diagnostics;
using System.IO;

class StringWriterAppend
{
 const int iterations = 10000;

 public static void Main()
 {
 StringWriter writer = new StringWriter();
 Stopwatch watch = new Stopwatch();
 watch.Start();

 for (int i = 0; i < iterations; i++)
 writer.WriteLine("abcdefghijklmnopqurstuvxyz");

 string str = writer.ToString();
 watch.Stop();
 Console.WriteLine(watch.ElapsedMilliseconds);
 }
}

The speed of this program is comparable to StringBuilderAppend.

There‘s a lesson in all this. As operating systems, programming
languages, class libraries, and frameworks provide an ever increasingly
higher level of abstraction, we programmers can sometimes lose sight of

all the mechanisms going on beneath the surface. What looks like a
simple addition in code can actually involve many layers of low-level

activity.

.NET Book Zero Charles Petzold

Version 1.1 Page 253

Chapter 27. Generics

C# generics were introduced with C# 2.0, and use a syntax that is

similar to the C++ template. Generics help make classes more versatile
by letting them be customized for different data types. In certain
circumstances, generics preserve strong typing in places where it might

otherwise have to be abandoned.

Suppose you‘re designing a two-dimensional graphics programming
system, and you want the programmer using your system to express

coordinate points in two different ways. You want integer coordinates for
performance, but floating-point coordinates for precision.

You might start out designing two different classes. Here‘s an extremely
early version of the IntegerPoint class:

class IntegerPoint
{
 public int X;
 public int Y;

 public double DistanceTo(IntegerPoint pt)
 {
 return Math.Sqrt((X - pt.X) * (X - pt.X) +
 (Y - pt.Y) * (Y - pt.Y));
 }
}

Of course, you know that eventually you‘ll have public properties named
X and Y, and private fields named, perhaps, x and y, and you‘ll want

constructors, and probably other properties and methods. But this is
how you start. Notice that the DistanceTo method has a parameter of

another IntegerPoint object and calculates the distance between the two
points using the Pythagorean Theorem

You also create a class named DoublePoint:

class DoublePoint
{
 public double X;
 public double Y;

 public double DistanceTo(DoublePoint pt)
 {
 return Math.Sqrt((X - pt.X) * (X - pt.X) +
 (Y - pt.Y) * (Y - pt.Y));
 }
}

.NET Book Zero Charles Petzold

Version 1.1 Page 254

In this class the two fields are declared as type double, and the
parameter to DistanceTo is a DoublePoint.

Even at this stage, you know that these two classes are going to be pretty
similar except for the data types, and you‘d prefer not to duplicate a lot

of code. The solution is to make a generic Point class:

class Point<T>
{
 public T X;
 public T Y;

 public double DistanceTo(Point<T> pt)
 {
 ...
 }
}

To make a generic class, you follow the name of the class with angle
brackets enclosing a placeholder that is commonly named T for ―type,‖

although you can name it whatever you want. This is called a type
parameter. Notice that the two fields are now of type T, and the

parameter to the DistanceTo method is an object of type Point<T>.
However, the return value from DistanceTo is still a double because that‘s

the return value from the Math.Sqrt method used for the calculation.
(You can also define generic structures and generic interfaces.)

To declare a Point object where the coordinates are integers, you use:

Point<int> pti;

In declaring objects of the generic Point class you must follow the class
name with an actual type in angle brackets, in this case int. You can also

supply a new expression because the class has a default parameterless
constructor:

Point<int> pti = new Point<int>();

The class name with the type in angle brackets is part of the new

expression as well. In this case, the fields of the pti object are of type int,
and you can assign these fields integer values:

pti.X = 26;
pti.Y = 14;

You can declare a Point object where the coordinates are double values
using:

Point<double> ptd;

Now the type of the X and Y fields are double, and you can assign the
fields double values:

ptd.X = 13.25;
ptd.Y = 3E-1;

.NET Book Zero Charles Petzold

Version 1.1 Page 255

You can even declare a Point object where the coordinates are object
values:

Point<object> pto;

Of course, it‘s not clear at all what exactly this means.

I haven‘t yet shown you the body of the DistanceTo method in the generic
Point class, because therein is a big problem. The DistanceTo method

requires that values of X and Y be subtracted from each other. What is
the type of X and Y? Well, it‘s whatever type goes in the angle brackets

when an object of the generic Point class is declared. It could be int. It
could be double. It could be DateTime. It could be FileStream. It could be

object. Do all these types support the subtraction operator? No, they do
not, and that‘s why the C# compiler will not allow you to write a

DistanceTo method like this:

public double DistanceTo(Point<T> pt) // Won't work!
{
 return Math.Sqrt((X - pt.X) * (X - pt.X) +
 (Y - pt.Y) * (Y - pt.Y));
}

If X and Y can be any type, then this code is syntactically incorrect,
because it cannot be executed for any arbitrary type.

Because the argument to the Math.Sqrt method is of type double, you
might consider casting X and Y to type double in this method. That won‘t

work either, because you can‘t cast an arbitrary object to double. But
you‘re on the right track.

To help solve problems such as these, C# generics support constraints,
which restrict the class to certain types. The constraints use the where

keyword. For example, you can restrict the type parameter to
SomeBaseClass and all classes that derive from SomeBaseClass with the
following syntax:

class Point<T> where T: SomeBaseClass

You can restrict the type parameter to value types using

class Point<T> where T: struct

Or you can use the word class to restrict the type parameter to reference

types. You can even require that the type parameter have a parameter-
less constructor:

class Point<T> where T: new()

Or you can constrain the type parameter to a class that has a

parameterless constructor:

class Point<T> where T: class, new()

None of these solve our problem. For example, there is no constraint that
lets you indicate that the type supports the subtraction operator.

.NET Book Zero Charles Petzold

Version 1.1 Page 256

However, you can indicate that T implements a particular interface (or
multiple interfaces), and this is the feature that‘s going to come to our

rescue. Take a look at the IConvertible interface defined in the System
namespace. Classes or structures that implement this interface must

support a bunch of methods for converting to the basic types, and in
particular, ToDouble. All the basic types—and some other types as well—

implement the IConvertible interface.

The generic Point class can include an IConvertible constraint like so:

class Point<T> where T:IConvertible

Now the compiler knows that any object of type T has a method named

ToDouble, and you can write the DistanceTo method like this:

public double DistanceTo(Point<T> pt)
{
 return Math.Sqrt(Math.Pow(X.ToDouble(fmt) - pt.X.ToDouble(fmt), 2) +
 Math.Pow(Y.ToDouble(fmt) - pt.Y.ToDouble(fmt), 2));
}

The fmt argument to the ToDouble methods must be an object of a type
that implements the IFormatProvider interface, and in this case on object

of type NumberFormatInfo is suitable, such as
NumberFormatInfo.CurrentInfo.

And here is the generic Point class.

Point.cs
//--------------------------------------
// Point.cs (c) 2006 by Charles Petzold
//--------------------------------------
using System;
using System.Globalization;

class Point<T> where T:IConvertible
{
 public T X;
 public T Y;
 NumberFormatInfo fmt = NumberFormatInfo.CurrentInfo;

 // Parameterless Constructor
 public Point()
 {
 X = default(T);
 Y = default(T);
 }

 // Two-Parameter Constructor
 public Point(T x, T y)
 {
 X = x;
 Y = y;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 257

 public double DistanceTo(Point<T> pt)
 {
 return Math.Sqrt(Math.Pow(X.ToDouble(fmt) - pt.X.ToDouble(fmt), 2) +
 Math.Pow(Y.ToDouble(fmt) - pt.Y.ToDouble(fmt), 2));
 }
}

I‘ve also added a parameterless constructor and a two-parameter

constructor to show you what those look like. The parameterless
constructor really wants to set the two fields to zero, but it cannot.

Instead, it uses a default operator that sets value types to their zero
values and reference types to null.

The Point.cs file is part of the GenericPoints projects, which also includes
the following file to test out the generic Point class.

GenericPoints.cs
//--
// GenericPoints.cs (c) 2006 by Charles Petzold
//--
using System;

class GenericPoints
{
 static void Main()
 {
 // Points based on integers
 Point<int> pti1 = new Point<int>();
 Point<int> pti2 = new Point<int>(5, 3);

 Console.WriteLine(pti1.DistanceTo(pti2));

 // Points based on doubles
 Point<double> ptd1 = new Point<double>(13.5, 15);
 Point<double> ptd2 = new Point<double>(3.54, 5E-1);

 Console.WriteLine(ptd2.DistanceTo(ptd1));

 // Points based on strings
 Point<string> pts1 = new Point<string>("34", "27");
 Point<string> pts2 = new Point<string>("0", "0");

 Console.WriteLine(pts1.DistanceTo(pts2));
 }
}

The program creates two objects of type Point<int>, two objects of type

Point<double>, and—amazingly enough—two objects of type
Point<string>. Yes, the String class also implements the IConvertible

interface, and includes a method named ToDouble that undoubtedly calls
Double.Parse. You can also declare objects of type Point<DateTime>

because DateTime implements IConvertible as well. But Point<Object>
won‘t work.

.NET Book Zero Charles Petzold

Version 1.1 Page 258

Where generics had the biggest impact in the .NET Framework is with
the System.Collections namespace. With .NET 2.0, that namespace has

been largely superseded by the System.Collection.Generic namespace,
which includes generic versions of Queue, Stack, Dictionary, SortedList,
and List (which is the generic version of ArrayList). These versions
provide type safety that the non-generic versions do not, and are now

preferred for most applications.

For example, if you need to maintain a collection of DateTime objects,

and you can‘t use an array because the number you‘ll eventually need
cannot be determined, you can use a generic List class:

List<DateTime> lst = new List<DateTime>();

All the methods such as Add will require that the parameter be of type
DateTime, and the indexer is also of type DateTime.

As generic classes such as Dictionary demonstrate, it is possible to have
multiple types in a generic class definition:

public class Dictionary<TKey, TValue>

Dictionary implements many interfaces, including IDictionary<TKey,
TValue>.

.NET Book Zero Charles Petzold

Version 1.1 Page 259

Chapter 28. Nullable Types

Classes are reference types and structures are value types. An instance

of any class can take on a null value, but an instance of a structure
cannot.

For many applications, this distinction (and the resultant limitation)

works just fine. But sometimes it would be nice to have just a little bit
more information to accompany our value types.

For example, suppose our database application calls a method named
Fish to fish something out of a database. The item can‘t be found, so the
Fish method returns null. The null value basically means ―it‘s not there‖

or ―I can‘t find it.‖ This scheme works fine if the Fish method is searching
for an instance of a class. But suppose the Fish method is looking for an

instance of a value type, perhaps a DateTime satisfying particular
criteria. The Fish method can‘t return null because DateTime is a

structure. The best it can do is return some pre-defined DateTime value
that represents the case where ―it‘s not there,‖ perhaps DateTime.Min-
Value or DateTime.MaxValue.

Another example: You‘re accessing some XML where a Count attribute is

normally set to an integer. However, the Count attribute is optional, and
its absence means that the Count is ―not applicable‖ for this particular

case. How do you store the value of Count in your program? You can‘t
just make it an int because you‘re not taking account of the ―not

applicable‖ case. You might create a bool named CountIsApplicable, but it
would be even nicer having the ―not applicable‖ case somehow stored in

the same variable as the Count itself.

This is the rationale behind ―nullable‖ types, which were implemented in
.NET 2.0. Any value type—int, bool, DateTime, or any structure that you

define—can be made into a ―nullable,‖ and here‘s where it gets bit
confusing: When a value type is made into a nullable, it actually doesn’t
mean that the object can have a null value. It only seems to have that
capability when you‘re coding in C#. In actuality, the value type is merely

associated with a bool that indicates if the value is present or if ―it‘s not
there.‖ Syntactically, the ―it‘s not there‖ case is treated in C# as a null.
This will all become more evident as we probe deeper into nullable types.

Nullable types have already been put to use: In the Windows
Presentation Foundation, the IsChecked property of the CheckBox control

is a nullable bool, which means that it can be true, false, or null. The null
value indicates the ―indeterminate‖ state for a tri-state CheckBox.

.NET Book Zero Charles Petzold

Version 1.1 Page 260

I also found a nullable type to be convenient when I was writing my WPF
book. I wanted to represent birthdates and death dates as DateTime

objects, but I also wanted a way to indicate that someone was still alive. I
used a nullable DateTime for the death date, where a null value basically

means ―non-applicable.‖

The implementation of nullable types in .NET 2.0 and C# required
changes to three areas:

o A Nullable generic structure was added to the System namespace.

o C# needed to recognize nullable types in some cases.

o The CLR needed to recognize nullable types for boxing.

I will cover these changes in the order I listed them, which I think is the

clearest approach, although the initial syntax may look a bit clunky.

I am not privy to the internals of .NET, but I am fairly confident that the
core functionality of the Nullable generic structure looks something like

this:

public struct Nullable<T> where T : struct // Pure supposition
{
 T value;
 bool hasValue;

 // Constructor
 public Nullable(T value)
 {
 this.value = value;
 hasValue = true;
 }

 // Read-Only Properties
 public bool HasValue
 {
 get { return hasValue; }
 }
 public T Value
 {
 get
 {
 if (!HasValue)
 throw new InvalidOperationException(
 "Nullable object must have a value");
 return value;
 }
 }
 ...
}

Notice that the underlying type is restricted to value types. The Nullable
generic structure has a default empty parameterless constructor, of

.NET Book Zero Charles Petzold

Version 1.1 Page 261

course, as well as a parametered constructor. It has two public read-only
properties named HasValue and Value.

Let‘s create an object of type nullable DateTime using the parameterless
constructor:

Nullable<DateTime> ndt = new Nullable<DateTime>();

I‘ve named this variable ndt to stand for ―nullable DateTime.‖ Because

the parameterless constructor is used here, the hasValue field has its
default value of false, and HasValue also returns false. Any attempt to

access the Value parameter raises an InvalidOperationException.

Now let‘s use the other constructor. If we‘re creating a nullable DateTime,

the constructor requires a DateTime argument:

Nullable<DateTime> ndt = new Nullable<DateTime>(DateTime.Now);

Now ndt.HasValue equals true, and ndt.Value returns an object of type
DateTime. If you‘re writing code that must deal with an object of type

nullable DateTime, you might write code that looks something like this:

if (ndt.HasValue)
 Console.WriteLine(ndt.Value.Year);
else
 Console.WriteLine("Year not available");

Or, you might want to extract the actual DateTime object from the
nullable DateTime object and then use that:

if (ndt.HasValue)
{
 DateTime dt = ndt.Value;
 Console.WriteLine(dt.Year);
 ...
}

The Nullable generic structure also defines an implicit cast and an
explicit cast to ease some of the syntax:

public struct Nullable<T> where T : struct // Pure supposition
{
 ...

 public static implicit operator Nullable<T>(T value)
 {
 return new Nullable<T>(value);
 }
 public static explicit operator T(Nullable<T> value)
 {
 return value.Value;
 }

 ...
}

.NET Book Zero Charles Petzold

Version 1.1 Page 262

The implicit cast allows you to set an object of a nullable type directly
from the underlying type. In the example of the nullable DateTime, you

can do this:

ndt = DateTime.Now;

Going the other way is more problematic:

DateTime dt = ndt; // Won’t work!

There is no implicit cast for assigning a nullable DateTime to a DateTime,
and it‘s easy to see why: The assignment won‘t work if ndt.HasValue is

false. When assigning a nullable to a non-nullable, an explicit cast is
required:

DateTime dt = (DateTime) ndt;

Now the programmer‘s intention is clear, and it is assumed the

programmer knows what she‘s doing. If ndt.HasValue is, in fact, false,
the statement will raise an InvalidOperationException when the Value

property is accessed in code for the explicit cast.

The Nullable structure also has two versions of a method named
GetValueOrDefault that may be handy in some cases. Like the Value

property, this method returns an object of the underlying type, but it
does not raise an exception if HasValue is false. Instead, it returns the

default value of the underlying type.

For example:

DateTime dt = ndt.GetValueOrDefault();

If ndt.HasValue is true, the method returns ndt.Value. Otherwise, the

method returns a new instance of DateTime created with a parameterless
constructor, which is DateTime.MinValue.

An overload of the GetValueOrDefault method lets you specify the value
returned if the object is null. For example:

DateTime dt = ndt.GetValueOrDefault(new DateTime(1900, 1, 1));

Now if ndt.HasValue is false, dt is set to the date January 1, 1900.

I suspect that GetValueOrDefault is implemented something like this:

public struct Nullable<T> where T : struct // Pure supposition
{
 ...

 public T GetValueOrDefault()
 {
 return HasValue ? Value : new T();
 }
 public T GetValueOrDefault(T defaultValue)
 {
 return HasValue ? Value : defaultValue;
 }

.NET Book Zero Charles Petzold

Version 1.1 Page 263

 ...
}

You probably want to be able to pass an instance of a nullable to
ToString and have something reasonable happen. You can do that

because the Nullable generic structure overrides ToString. GetHashCode
is also overridden:

public struct Nullable<T> where T : struct // Pure supposition
{
 ...

 public override string ToString()
 {
 return HasValue ? Value.ToString() : "";
 }
 public override int GetHashCode()
 {
 return HasValue ? Value.GetHashCode() : 0;
 }

 ...
}

Notice that the expression

ndt.ToString()

is perfectly valid but the expression

ndt.ToString("D") // No good!

is not. Nor is:

ndt.ToLongDateString() // No good!

If you want to use anything but the default parameterless ToString
method, you need to access the Value property:

ndt.Value.ToString("D")
ndt.Value.ToLongDateString()

The Nullable structure also overrides the Equals method. Two objects of

the same nullable type are considered equal only if their HasValue
properties are equal, and if HasValue is true, if their Value properties are
equal:

public struct Nullable<T> where T : struct // Pure supposition
{
 ...
 public override bool Equals(object obj)
 {
 if (obj.GetType() != GetType())
 return false;

 Nullable<T> nt = (Nullable<T>)obj;

.NET Book Zero Charles Petzold

Version 1.1 Page 264

 if (nt.HasValue != HasValue)
 return false;

 return HasValue && Value.Equals(nt.Value);
 }
}

And that‘s the end of my re-creation of the generic Nullable structure,

and at this point you might wonder why it‘s named Nullable. Have you
seen any null keywords around? Nullable is a structure, and no instance

of a structure can be null, and the underlying type of Nullable is also a
structure.

So where does null come into the picture?

That‘s what the C# compiler adds to the equation. I don‘t know exactly

how much C# gets involved with nullable types, but if you do some
experimentation and look at the CIL, you‘ll see for yourself that an
assignment statement like

Nullable<DateTime> ndt = null;

generates the same CIL as:

Nullable<DateTime> ndt = new Nullable<DateTime>();

The object really isn‘t being set to null! It‘s merely being recreated so its

HasValue property returns false. Similarly, C# treats the expression

ndt == null

as if you really used the code

!ndt.HasValue

and similarly for code where you use not-equals and null. Basically, the
C# compiler lets you treat the condition where HasValue is null as if the

object itself were null. Even though it obviously isn‘t.

The C# compiler also fiddles with less-than and greater-than

comparisons by generating code that calls GetValueOrDefault on both
objects. (But if either but not both of the operands have HasValue

properties of false, any less-than or greater-than comparison returns
false.)

The C# compiler also simplifies the syntax for defining a nullable type.
Rather than

Nullable<DateTime> ndt;

you can use the alias:

DateTime? ndt;

You don‘t need to use any of the constructors, properties, and methods
provided by the Nullable class, and you can instead use simplified C#

syntax instead. This statement defines a nullable bool and sets it to null:

.NET Book Zero Charles Petzold

Version 1.1 Page 265

bool? nb = null;

Or you can set it to a non-null value:

bool? nb = true;

Or you can set it from a non-nullable bool:

bool? nb = IsEnabled;

You can test the object against null, and you can use it in expressions
with casting:

if (nb != null)
{
 if ((bool)nb)
 {
 ... // true case
 }
 else
 {
 ... // false case
 }
}

Notice that you can put a nullable bool in an if statement directly:

if (nb) // Won’t work!

A new operator has been added to C# to help work with nullable types.
This is the null coalescing operator, which consists of a pair of question

marks. Suppose ndt is a nullable DateTime object. You can assign an
object of type DateTime like this:

DateTime dt = ndt ?? new DateTime(2007, 1, 1);

If ndt is not null, then dt is set to ndt.Value. Otherwise, ndt is set to a

DateTime object of January 1, 2007.

Besides the Nullable generic structure, the System class also contains a

Nullable class. This is a static class that you can use to compare two
objects based on nullable types, and it also has a static method named

GetUnderlyingType that you can use in connection with reflection.

At first it was believed that nullable types could be implemented without
any changes to the Common Language Runtime. But that proved not to

be the case. Suppose you have a nullable int:

int? ni;

And then there‘s code that might set ni to a value or might set it to null,
and then ni is cast to an object of type object:

object obj = ni;

Or perhaps this casting happens when ni is passed to a method

bool IsNull = TestForNull(ni);

and the method is defined with an argument of type object:

.NET Book Zero Charles Petzold

Version 1.1 Page 266

bool TestForNull(object obj)
{
 return obj == null;
}

In either case, a boxing operation occurs, and the way the CLR works,

boxed value types are never null. So even if ni is set to null, when it‘s cast
to obj, obj is non-null.

As you might imagine, this behavior was considered undesirable, so the
CLR was changed. Now when an instance of a nullable type is cast to an
object of type object, and the HasValue property is false, the object of

type object will be null.

