CNN Convolutional Neural Networks

CNN

- Convolutional Neural Networks (CNN, ConvNet) wariant MLP inspirowany biologicznie, gdzie mnożenie macierzy wag i sygnału wejściowego zastąpione jest operacją splotu
- rzadka reprezentacja, współdzielone wagi, pooling
- zdolne do generalizacji sygnału posiadającego relacje przestrzenne, odporne na przestrzenne transformacje sygnału (skalowanie, obrót, przesunięcie):
 - 1D sygnały czasowe
 - 2D obrazy
 - 3D fMRI, video, obrazy RGB
 - sygnały wielokanałowe

Splot

$$(x \star w)(t) = \int x(a)w(t-a)da$$

- wynikiem jest funkcja, np. uśredniona wartość x(x)
 względem wszystkich pozycji w(a) jeśliw spełnia wymagania gęstości prawdopodobieństwa
- W terminologii CNN:

x - sygnał wejściowy

w - kernel (filtr), wagi połączeń neuronu

wartości wyjściowe tworzą mapę cech (feature map)

$$s(i) = \sum_{m} x(m)w(i-m)$$

• w sieciach CNN w niezerowe tylko w organicznym obszarze (pole recepcyjne)

Splot 2D

$$s(i,j) = \sum_{l} \sum_{m} w(l,m) \cdot x(i+l,j+m)$$

Filtry graficzne 2D - przykłady

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	S.
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	C?
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	C

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Sieci Neronowe

Pola recepcyjne i mapy cech

- Pole recepcyjne obszar "widziany" przez neuron (rozmiar filtra)
- wyjście neuronu: splot sygnału i liniowego filtra, ewentualny wyraz wolny (bias) i nieliniowa funkca wyjściowa (ReLU, tanh), generują mapę cech (feature map)

$$s(i,j) = \sigma \left(b + \sum_{l} \sum_{m} w(l,m) \cdot x(i+l,j+m) \right)$$

Pola recepcyjne i mapy cech

 Warstwa zawierająca N neuronów (filtrów) tworzy N map (objętość, tensor n wymiarowy)

 Przy przetwarzaniu obrazów sygnał wejściowy to tensor 3D (kanał, szerokość, wysokość), w zastosowaniu rozszerzony do 4D o wymiar związany z rozmiarem mini-batcha

$$s(i, j, k) = \sum_{lmn} x(l, j + m, k + n)w(i, l, m, n)$$

7

• tensor wyjściowy warstwy zawierającej N filtrów (N, M_X, M_y) , gdzie $M_{X \text{ Sie}} M_{\text{yerond}} \infty$ zmiary mapy wyjściowej

Typowa architektura CNN

Przykłady filtrów

Rozmiar mapy cech

- Warstwa zawierająca N neuronów (filtrów) tworzy N map (objętość, tensor n wymiarowy)
- Rozmiar mapy wyjściowej (*M_x*, *M_y*) zależy od:

$$M_{i}^{n} = \frac{M_{i}^{n-1} - K_{i}^{n} + 2P_{i}^{n}}{S_{i}^{n}} + 1$$

- rozmiar filtra (K_x, k_y) (szerokość i długość)
- przesunięcie (*stride*) (*S_x*, *S_y*) w każdym z wymiarów, np. splot 2D

$$s(i,j,k) = \sum_{lmn} x(l,j \times S + m, k \times S + n)w(i,l,m,n)$$

sposób uwzględnienia wartości brzegowych (zero padding), P_i
 wielkość rozszerzenia brzegu w wymiarze i

Sieci Neronowe

Stride

- redukcja wymiaru zmniejszenie wymogów obliczeniowych i pamięciowych
- zmniejszenie rozdzielczości sygnału
- kosztem mniej dokładnej reprezentacji

Zero padding

valid zero padding - rozmiar kolejnych map maleje w kolejnych warstwach

- ogranicza to możliwość budowania głębokich sieci i wymusza stosowanie małych filtrów
- sygnał wejściowy na brzegach ma mniejszy wpływ na sygnał wyjściowy

Zero padding

same zero padding - brzegi wypełnione dodatkowymi wartościami (zerami) aby zapewniać odtworzenie wymiaru sygnału wejściowego

- pozwala budować bardzo głębokie sieci o dowolnych wielkościach filtrów $M_i^n = \lceil \frac{M_i^{n-1}}{S_i} \rceil$
- sygnał wejściowy na brzegach ma mniejszy wpływ na sygnał wyjściowy

Właściwości CNN

- rzadka reprezentacja rozmiar filtra jest dużo mniejszy od rozmiaru sygnału wejściowego, pojedyncze wejście oddziałuje tylko na grupę neuronów
- współdzielenie parametrów warstwa splotowa może być widziana jako w pełni połączona warstwa ze współdzielonymi wagami (dużo mniejsza liczba parametrów w stosunku do MLP)
- równoważność względem przesunięcia sygnału ta sama cecha znajdująca się w różnych miejscach obrazu będzie aktywowała ten sam filtr
- możliwość użycia sygnału wejściowego o zmiennym rozmiarze - większy obraz wejściowy wygeneruje większe mapy, w przypadku MLP zwiększenie rozmiaru wektora wejściowego wymaga rozbudowy architektury

Rzadka reprezentacja

pojedyncze wejście aktywuje tylko grupę neuronów w małym obszarze wyjście neuronu zależne od małego obszaru sygnału wejściowego

MLP: mnożenie macierzy $O(m \times n)$ parametrów CNN: warstwa splotowa $O(k \times n)$, gdzie $k \ll m$

Źródło grafiki: Gooffellow, 2016 [?]

Efektywne pole recepcyjne

• Efektywne pole recepcyjne - obszar sygnału wejściowego pokryty przez neurony w wyższych warstwach, rośnie z głębokością

- stride, pooling i dilation (rozrzedzony splot) dodatkowo zwiększają efektywne pole recepcyjne
- pomimo rzadkich połączeń sieć jest w stanie w ten sposób modelować złożone zależności

Współdzielenie wag

- ta sama waga jest używana przy przetwarzaniu każdego punktu wejściowego
- pojedynczy filtr pozwala wykryć tę samą cechę w różnych położeniach obrazu wejściowego (*equivariance to translation*)

Rzadkie połączenia i współdzielenie wag

Przykład: wykrywanie krawędzi dla obrazu $n \times n$ w poziomie

- MLP: mnożenie pełnej macierzy $n^2 \times n^2 = n^4$
- CNN: splot filtrem 1x2 (2 wagi) wymaga n² × 3 operacji (2 mnożenia i dodawanie)
- splot drastycznie bardziej wydajny w mapowaniu powtarzających się relacji w małych, lokalnych rejonach sygnału wejściowego

Źródło grafiki: Gooffellow, 2016 [?]

Równowazność przy przesunięciu

- przesunięcie sygnału wejściowego powoduje identyczne przesunięcie sygnału wyjściowego na mapie cech
- własność pożądana w rozpoznawaniu obrazów, gdzie lokalne cechy (np. krawędzie) mogą wystąpić w każdym miejscu na obrazie
- współdzielenie wag dla całego wejścia nie zawsze jest pożądane (różne filtry w różnych obszarach obrazu), np. rozpoznawanie twarzy ze zdjęć paszportowych, posiadają charakterystyczne cechy występujące wyłącznie w określonych rejonach sygnału wejściowego
- splot nie jest niezmienniczy względem zmiany skali lub obrotu obrazu, osiąga się to poprzez rozszerzenie zbioru treningowego o przypadki zdeformowane (szum, skalowanie, obrót, zmiana kontrastu, etc..)

Pooling

- typowa warstwa w sieciach CNN:
 - liniowa aktywacja (splot)
 - detekcja (nieliniowość np. ReLU)
 - funkcja redukcji (pooling) "uogólnienie" wartości sąsiadujących wyjść
- **Max pooling** maksimum z pewnego podobszaru (*winner takes all*)

- redukcja wymiarowości przesunięcie filtra typowo równe jego wielkości (maksimum z rozłącznych obszarów)
- inne podejścia: avg. pooling (średnia z sąsiedztwa), norm pooling (norma z sąsiadujących wyjść), ważona średnia od centrum, niektóre architekturwerezygnują z tej warstwy

Pooling względem obrazu wejściowego

Pooling zapewnia niezmienniczość względem drobnego przesunięcia obrazu wejściowego

Pooling względem map cech

Redukcja względem wyjść różnych splotów umożliwia wprowadzenie do modelu niezmienniczości względem pewnych transformacji sygnału wejściowego (np. obrotu)

Źródło grafiki: Gooffellow, 2016 [?]

LeNet5 (LeCun 1998)

klasyfikacja cyfr pisanych ręcznie (odczytywanie czeków) MNIST

trening: 60k cyfr, 250 osób, test: 10k cyfr

A Full Convolutional Neural Network (LeNet)

[™] LeNet-5, convolutional neural networks

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, november 1998

Sieci Neronowe

LeNet-5

Layer	kernels	size	output	connections	parameters
Input			1x32x32		
C1	6	5x5	6x28x28	122304	156
S2		2x2	6x14x14	5880	12
C3	16	5x5	16×10×10	151600	1516
S4		2x2	16x5x5	2000	32
C5	120	5x5	120×1×1		48120
F6	84		84x1x1		
Output	10		10×1×1		

LeNet-5 połaczenia S2-C3

Mapy C3 zależą wyłącznie od wybranych map S2

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	Х				Х	Х	Х			Х	Х	Х	Х		Х	Х
1	Х	Х				Х	Х	Х			Х	Х	Х	Х		Х
2	Х	Х	Х				Х	Х	Х			Х		Х	Х	Х
3		Х	Х	Х			Х	Х	Х	Х			Х		Х	Х
4			Х	Х	Х			Х	Х	Х	Х		Х	Х		Х
5				х	х	х			х	Х	Х	х		х	х	\mathbf{X}

- redukcja liczby połączeń
- przełamanie symetrii sieci różne sygnały wejściowe pozwalają uzyskać różnorodne (być może komplementarne) zestawy detektorów cech

Przykład wizualizacji aktywacji sieci

Wizualizacja sieci splotowej

LeNet-5 błędy klasyfikacji

4 8 7 5 5-53 7 6 3 7 2-57 8 5-53 9-5 9->4 2->0 6->1 3->5 3->2 9->5 6->0 6->0 6->0 6->0 6->0 6->0 6->8 4 7 9 4 7 9 4 9 9 9 4->6 7->3 9->4 4->6 2->7 9->7 4->3 9->4 9->4 9->4 **7 4 6 5 6 6 5 8 8 9** 8-57 **4**-52 **8**-54 **3**-55 **8**-54 **6**-55 **8**-55 **3**-58 **3**-58 **9**-58 1->5 9->8 6->3 0->2 6->5 9->5 0->7 1->6 4->9 2-> 2 8 4 7 7 6 9 6 6 5 2->8 8->5 4->9 7->2 7->2 6->5 9->7 6->1 5->6 4->9 2->8

LeNet-5 porównanie z innymi metodami

Sieci Neronowe

LeNet-5 odporność na szum, zniekształcenia i nietypowe przypadki

ImageNet

● ☞ CNNs Architectures used on ImageNet

AlexNet (A. Krizhevsky, 2012)

- Zwycięzca ^{IIII} ImageNet w 2012 z poprawnością 15.3% (poprawa z 26%)
- 1.2M obrazów, 1000 klas

- architektura wzorowana LeNet5 ale głebsza (8 warstw) i więcej filtrów na warstwę (11x11, 5x5, 3x3)
- sekwencje warstw splotowych z jednostkami ReLU
- regularyzacja: dropout, L2, rozszerzanie danych, normalizacja wyjść wybranych warstsw
- SGD z momentem, 20 epok, 6 dni treningu (2x NVIDIA

A. Krizhevsky, 1 Gutsky 580. 31 GB, 1 GPC WS) as 60 Mn parametrów ional Neural Networks, 2012

AlexNet	Layer	kernels	size	stride	output
	Input				224x224x3
	C1 + LRN	96	11×11	4x4	
	MaxPooling		3x3	2x2	55x55x96
	C2 + LRN	256	5x5		
	MaxPooling		3x3	2x2	27x27x256
	C3	384	3x3		13x13x384
	C4	384	3x3		13×13×384
	C5	256	3x3		
	MaxPooling		3x3	2x2	13x13x256
	F6 + dropout(p = 0.5)	4096			
	F7 + dropout(p = 0.5)	4096			
	Output softmax	1000			

AlexNet

5 najsilniejszych odpowiedzi

obraz wejściowy i 6 najbliższych wzorców względem odległości Euklidesowej wektora pobudzeń ostatniej warstwy ukrytej

- Porównanie szybkości zbieżności 4 warstwowej sieci splotowej z jednostkami ReLU i tanh na danych ImageNet
- Zastosowanie ReLU do kilkukrotnego przyspieszenia zbieżności
- Inicjalizacja: wagi z rozkładu Gaussa N(0, 0.01), obciążenia (bias) b = 1, stąd większość ReLU aktywnych na początku treningu

Dropout

Droopout (Srivastava et al., 2014) dla każdego wzorca treningowego z prawdopodobieństwem *p* "wyrzuca" jednostki (zeruje ich aktywacje), odrzycoone jednostki nie biorą udziału w treningu

Rys: I ResNet, AlexNet, VGGNet, Inception: Understanding various architectures of Convolutional Networks by Koustubh Sinhal

Sieci Neronowe

Dropout

- W czasie ewaluacji dropout jest wyłączany (p = 1)
- Każdy krok uczenia odbywa się ze zmienioną losowo architekturą sieci ale wagi są współdzielone,
- Dla n jednostek mamy 2ⁿ możliwych architektur, trening w mini-batchu uśrednia gradient względem różnych , wylosowanych sieci
- Przeciwdziała powstawaniu złożonych relacji pomiędzy wieloma neuronami, stąd pojedynczy neuron jest zmuszony wykrywać bardziej wartościowe cechy, niezależne od wpływu innych neuronów
- Wolniejsza zbieżność (AlexNet 2 x wolniej) ale silnie zapobiega przeuczeniu

Local response normalization

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2} \right)^{\beta}$$

dla kanału i oraz pikseli w pozycji x, y

- normalizacja wartość wyjściowych ReLU
- $k = 2, n = 5, \alpha = 10^{-4}, \beta = 0.75$ dobrane heurystycznie ze zbioru walidacyjnego
- realizuje normalizację jasności dla *n* sąsiadujących kolejnych
- w AlexNet poprawa o 1.4% (top 1) oraz 1.2% (top 5)

Dodatkowa regularyzacja

Data augumentation

- przesunięcie i odbicia: losowanie obrazków 224x224 z 256x256, zwiększenie zbioru 2048 razy niezbędne do uniknięcia przeuczenia przy tak dużej sieci
- losowa modyfikacja intensywności kanałów RGB
- porawa ponad 1% (top 1, top 5)

MaxPooling z nakrywaniem

- kernel 3x3, stride 2x2
- poprawa 0.4% (top 1) i 0.3% (top 5) względem próbkowania bez nakrywania (kernel 2x2)
- obserwacja: AlexNet rzadziej ulegał przeuczeniu

Zastosowanie 2 rdzeni GPU pozwoliło na szkolenie sieci o większej liczbie filtrów co zaowocowało poprawą 1.7% (top-1) oraz 1.2% (top-5) w porównaniu z mniejsza sieci na 1 rdzeniu

Filtry w pierwszej warstwie

96 filtrów pierwszej warstwy spłotowej, osobne kolumny warstw spłotowych uczą się wykrywania innego typu relacji, obserwowane przy każdym treningu _{Sieci Neronowe} ₃₉

VGGNet (Simonyan and Zisserman, 2014)

- bloki warstw splotowych + max pooling
- wielkość map zmniejszana o połowę po każdym bloku
- ilość filtrów zwiększana 2 krotnie po każdym bloku

ConvNet Configuration										
A .	A A-LRN B C D E									
11 weight	11 weight	13 weight	16 weight	16 weight	19 wright					
layers	layers	layers	layers	layers	layers					
input (224 × 224 RGB image)										
com/3-64	conv3-64	conv3-64 conv3-64 conv3-64 conv3-64 co								
	LRN	com3-64	conv3-64	conv3-64	corrv3-64					
	maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	corv3-128	conv3-128	conv3-128					
		map	pool							
com/3-256	com/3-256	conv3-256	corn/3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	corn/3-256	conv3-256	conv3-256					
			conv1-256	com/3-256	conv3-256					
					com/3-256					
		map	pool							
corev3-512	conv3-512	conv3-512	corn/3-512	conv3-512	conv3-512					
corw3-512	conv3-512	conv3-512	cortv3-512	conv3-512	conv3-512					
			conv1-512	com/3-512	conv3-512					
					com3-512					
		map	pool							
corn/3-512	conv3-512	conv3-512	corn/3-512	conv3-512	conv3-512					
core/3-512	conv3-512	conv3-512	cortv3-512	conv3-512	conv3-512					
			conv1-512	com3-512	conv3-512					
					com3-512					
		max	pool							
FC-4096										
FC-4096										
FC-1000										
soft-max.										

VGGNet

- zamiast dużych filtrów (11x11, 7x7, 5x5) stosuje we wszystkich warstwach filtry 3x3 zwiększając ich efektywne pola recepcyjne sekwencjami warstw splotowych
- małe filtry 3x3 zdolne do wykrycia bardziej subtelnych relacji w obrazach
- zwiększenie głębokości pozwala trenować bardziej złożone cechy
- stride=1, brak utraty informacji, gęsta konwolucja
- kilka architektur od 11 do 19 warstw (VGG16, VGG19)
- 138M parametrów
- trening 2-3 tygodnie (4x GPU), duże wymagania pamięciowe i obliczeniowe

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv technical report, 2014

GoogLeNet/Inception

Inception module

- mały stosunek rozmiaru mapy do ilości filtrów, np. 128 filtrów 3x3 i 32 filtry 5x5
- równoległe sploty o różnej wielkości filtrów 1x1, 3x3, 5x5 detektory cech o różnej skali
- każdy większy filtr poprzedzony splotem 1x1 w celu redukcji liczby parametrów (redukcja liczby kanałów do 1)

Redukcja złożoności splotem 1x1

liczba operacji $(14 \times 14 \times 48) \times (5 \times 5 \times 480) = 112.9M$

liczba operacji $(14 \times 14 \times 16) \times (1 \times 1 \times 480) + (14 \times 14 \times 48) \times (5 \times 5 \times 16) =$ 1.5M + 3.8M = 5.3M

Rys: 🕼 Review: GoogLeNet (Inception v1)— Winner of ILSVRC 2014 (Image Classification) by Sik-Ho Tsang

Global average pooling

Globalne uśrednienie względem kanałów (global average pooling) zamiast pełnej połączonej warstwy za ostatnią warstwą splotową

$7\times7\times1024\times1024=51.3M$

- Warstwy w pełni połączone zawierają najwięcej parametrów (w AlexNet 90% parametrów) w sieci
- global average pooling: 0 wag, uśrednienie wartości dla poszczególnych kanałów

Rys: ** Review: GoogleNetppoplawanpoplawiności (top-lasoi @:6% Sik-Ho Tsang

GoogLeNet/Inception

- 22 warstwy
- warstwy przewężające (bottlenetk) dodatkowo redukują złożoność sieci
- kilka wyjść softmax
- poprawność 93.3% top-5 na ImageNet, dużo szybszy w treningu of VGG

ResNet (Residual Neural Network, Kaiming He et. al 2015)

Bloki ze skrótami (residual module)

Figure 2. Residual learning: a building block.

- "sktóry" łączą wejścia bloku z wyjściem poprzez odwzorowanie jednostkowe
- przejścia "skrótowe" pomagają uczyć bardzo głębokie sieci (152 warstwy)
- zapobiegają zanikaniu gradientu (sygnał może być propagowany skrótami)

Sieci Neronowe

ResNet

- wiele bloków zawierających sploty 1x1, 3x3, 1x1
- regularyzacja: batch normalization

Batch normalization

Batch normalization (loffe, 2015) normalizuje wejścia $x_i^{(k)}$ warstwy względem wartości średniej $\mu^{(k)}$ i wariancji $\sigma^{(k)}$ wzdłuż wymiaru k dla mini pakietu

$$y_i^{(k)} = \gamma^{(k)} \hat{x}_i^{(k)} + \beta^{(k)}$$

gdzie γ i β podlegają adaptacji w czasie treningu Czynnik normalizujący każde wejście

$$\hat{x}_{i}^{(k)} = \frac{x_{i}^{(k)} - \mu_{B}^{(k)}}{\sqrt{\sigma_{B}^{(k)^{2}} + \epsilon}}$$

średnia i odchylenie dla minipakietu o rozmiarze m

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x_i, \qquad \sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$

loffe, Sergey; Szegedy, Christian (2015). I⁺Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift".

Sieci Neronowe

Batch normalization

- przyśpiesza trening, poprawia stabilność treningu oraz polepsza generalizację
- rozwiązuje problem przesunięcia kowariancji gdy zmienia się wyjście warstwy poprzedniej wówczas warstwa następna musi dopasować się do nowego rozkładu danych
- można stosować większe kroki uczenia bez obawy znikającego lub eksplodującego gradientu
- większa odporność na wpływ różnorakiej specjalizacji i metod treningu
- wygładza powierzchnię błędu (Santurkar, 2018)