QPC + LVQ1 - Test 10CV

Dataset Model
vec feat acc. std. #P std. #K std.
Appendicities 106 7 86.09 8.45 1.00 0.00 2.50 1.20
Australian 690 14 86.08 4.14 1.00 0.00 2.00 0.00
Bitsymetry15 100 15 82.00 11.66 1.00 0.00 3.00 0.00
Bitsymetry20 100 20 81.00 7.00 1.00 0.00 3.00 0.00
Breast Cancer W. (nomis) 683 9 96.20 1.75 1.00 0.00 2.00 0.00
Czerniak (trs) 250 14 85.67 6.22 1.00 0.00 4.00 0.00
Glass 214 9 60.37 10.34 1.10 0.30 4.50 0.92
Heart 270 13 78.89 8.45 1.00 0.00 2.00 0.00
Ionosphere 200 34 78.44 7.97 1.00 0.00 3.10 0.70
Iris 150 4 96.00 4.42 1.00 0.00 3.00 0.00
L. Breast (nomis) 277 9 72.55 4.38 1.00 0.00 2.00 0.00
Led500 500 7 58.45 8.05 1.10 0.30 9.60 0.49
Parity-10 1024 10 96.09 3.85 1.00 0.00 6.80 0.40
Parity-8 256 8 94.52 4.97 1.00 0.00 6.30 0.64
Voting 435 16 95.15 3.50 1.00 0.00 2.00 0.00
Wine 178 13 96.04 5.67 1.90 0.30 3.10 0.30

Network parameters

 Method            lvq+qpc
 Initialization    5
 LVQ learnign rate 0.010000
 Attraction force  0.050000
 Max. projections  5
 K range           2 10 20 
 Attraction step   100
 Precision (eps)   0.030000

QPC parameters (default)

 
 lrate    = 0.1;       % learning rate
 maxiter  = 1000;      % MAX number of iterations
 init     = 5;         % number of initializations
 function = gauss;     %
 width    = 0.1;       % function width
 eps      = 0.001;     %
Dataset QPC/LVQ1 SVM MLP 1-NN
vec feat acc. std. #P std. # K std. acc. std. acc. std. acc. std.
Appendicities 106 7 85.40 1.51 1.00 0.00 2.74 0.49
Australian 690 14 84.86 0.43 1.00 0.00 2.00 0.00
Brest 683 9
Breast (Wisconsin) 683 9
Czerniak-trs 250 14
Glass 214 9
Heart 270 13
Ionosphere 200 34
Iris 150 4

Marek 2009/03/17 15:58