Constrained LVQ - Porownanie klasyfikatorów - Test 10CV

Dataset QPC/LVQ1 PCA/LVQ1 LVQ1 SVM kNN MLP
vec feat cl acc. std. #P std. #K std. acc. std. #P std. #K std. acc. std. #K acc. std. #SV std. acc. std. #K std. acc. std. #N
Appendicities 106 7 2 86.1 8.5 1.0 0.0 2.5 1.2 82.2 7.4 1.0 0.0 3.1 1.4 86.6 6.8 2 86.7 10.8 31.4 2.9 84.0 6.1 4.8 1.7 87.6 9.3 0
Australian 690 14 2 86.1 4.1 1.0 0.0 2.0 0.0 86.1 4.1 1.0 0.0 2.0 0.0 85.6 4.6 2 84.9 1.6 206.1 4.6 85.1 2.9 8.2 1.9 87.0 5.6 1
BitSymmetry 2 1000 20 2 87.3 4.2 1.2 0.4 3.5 1.0 78.1 11.4 1.8 0.7 5.3 1.7 75.7 4.3 12 98.0 1.4 296.5 7.8 89.3 2.6 5.8 6.2 96.7 2.4 2
BitSymetry15 100 15 2 82.0 11.7 1.0 0.0 3.0 0.0 53.0 14.9 2.0 0.8 4.3 2.3 68.0 12.5 18 75.0 13.5 80.0 8.4 72.0 14.7 2.5 2.7 85.0 10.8 2
BitSymetry20 100 20 2 81.0 7.0 1.0 0.0 3.0 0.0 58.0 9.8 1.9 0.8 4.2 1.3 59.0 15.8 8 70.0 14.2 84.7 6.9 68.0 11.3 2.9 2.8 76.0 15.1 2
Breast Cancer W. 683 9 2 96.2 1.8 1.0 0.0 2.0 0.0 96.2 2.1 1.0 0.0 2.0 0.0 96.5 2.5 2 96.6 1.7 51.1 3.1 97.1 1.4 5.6 2.1 96.6 1.4 0
Czerniak (trs) 250 14 4 85.7 6.2 1.0 0.0 4.0 0.0 70.8 9.0 1.7 0.6 4.3 0.6 76.8 7.2 4 85.2 5.7 240.3 23.0 86.0 7.4 1.0 0.0 96.0 2.7 4
Glass 214 9 6 60.4 10.3 1.1 0.3 4.5 0.9 58.9 7.3 1.4 0.6 4.0 0.5 66.3 10.5 7 64.9 6.2 283.6 17.6 68.8 9.2 1.4 0.8 69.2 10.4 7
Heart 270 13 2 78.9 8.5 1.0 0.0 2.0 0.0 80.7 9.0 1.0 0.0 2.0 0.0 82.2 8.6 2 81.5 9.1 101.5 7.0 78.5 7.6 8.5 1.2 82.6 6.8 0
Ionosphere 200 34 2 78.4 8.0 1.0 0.0 3.1 0.7 75.5 8.5 1.1 0.3 3.5 0.8 81.9 7.0 4 93.5 4.7 61.0 4.1 84.0 7.7 1.2 0.6 89.4 8.1 3
Iris 150 4 3 96.0 4.4 1.0 0.0 3.0 0.0 94.7 4.0 1.0 0.0 3.0 0.0 97.3 3.3 3 96.7 4.7 39.6 5.5 94.5 6.9 5.8 3.1 94.7 8.2 0
L. Breast 277 9 2 72.6 4.4 1.0 0.0 2.0 0.0 74.0 6.9 1.0 0.0 2.1 0.3 74.7 6.0 3 73.3 9.6 143.6 4.5 73.7 5.5 6.9 2.7 75.8 5.6 2
Led500 500 7 10 58.5 8.0 1.1 0.3 9.6 0.5 45.5 8.6 1.5 0.7 8.2 1.1 72.0 5.1 10 65.2 5.5 664.1 18.1 71.2 6.6 8.5 0.8 70.8 7.5 0
Parity 10 1024 10 2 96.1 3.9 1.0 0.0 6.8 0.4 97.6 0.8 1.0 0.0 7.5 0.7 51.3 4.9 8 44.2 5.7 921.2 1.0 80.7 3.4 20.0 0.0 97.6 1.3 8
Parity 8 256 8 2 94.5 5.0 1.0 0.0 6.3 0.6 96.9 3.8 1.0 0.0 6.7 0.5 52.0 8.0 9 35.4 11.9 119.3 1.7 100.0 17.0 0.0 0.0 96.1 4.8 10
Voting 435 16 2 95.2 3.5 1.0 0.0 2.0 0.0 90.6 5.5 1.3 0.5 2.5 0.9 93.8 2.7 5 95.9 2.4 57.0 10.6 93.3 3.2 4.6 2.5 94.0 3.5 0
Wine 178 13 3 96.0 5.7 1.9 0.3 3.1 0.3 94.9 4.7 2.0 0.0 3.0 0.0 97.7 2.8 4 96.6 2.9 63.7 8.0 95.0 4.1 6.2 3.5 98.3 2.7 0
 Breast Cancer Wisconsin and L. Breast data without vectors with missing values
 #P number of projections (hidden nodes)
 #K number of prototypes (output nodes) or number of nearest neighbours (kNN)
 #SV number of support vectors
 #N number of hidden nodes (MLP)

MLP Szczegółowe wyniki
LVQ Szczegółowe wyniki
MLP Matlab Toolbox
SNNS na binarnych

MLP porownanie rozbierznosci wynikow
MLP Szczegółowe wyniki (z kara)

Test

10 CV, stratified
Data transformation: normalization

QPC/LVQ

Network parameters (Matlab)

 Method            lvq+qpc
 Initialization    5
 LVQ learnign rate 0.010000
 Attraction force  0.050000
 Max. projections  5
 K range           2 10 20 
 Attraction step   100
 Precision (eps)   0.030000

QPC parameters (default)

 
 lrate    = 0.1;       % learning rate
 maxiter  = 1000;      % MAX number of iterations
 init     = 5;         % number of initializations
 function = gauss;     %
 width    = 0.1;       % function width
 eps      = 0.001;     % precision

PCA/LVQ

Network parameters (Matlab)

 Method            lvq+pca
 Initialization    5
 LVQ learnign rate 0.010000
 Attraction force  0.050000
 Max. projections  5
 K range           2 10 20 
 Attraction step   10
 Precision (eps)   0.030000

LVQ1

 Initialization    5
 LVQ learnign rate 0.010000
 K range           2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 Precision (eps)   0.010000

SVM

Ghost Miner 3.0 beta5 (21-05-2004)

Gaussian kernel
Auto C & Bias (5CV, stratified)

MLP

C++ implementation

 
 transfer function : sigmoid
 optimization      : back propagation
 initiations       : 10
 hidden nodes      : from 0 to 20 

kNN

Ghost Miner 3.0 beta5 (21-05-2004)

 Auto K (5CV, stratified)
 Euclidean distance measure
 Max K=10