>> w=qpctrain(x,sex,'plot','qpc','display','short') procedure = qpc dataname = data vectors = 43 features = 18 OptMethod = gd learningRate = 0.100000 prototypes = 0 proto lr = 0.000000 eps = 0.001000 start init. = 10 end init = 3 multistart = yes maxIterations = 1000 qpc function = @(wx,p)qpcfunction(x,ci,wx,[],func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 Performing 10 initiations - Gradient based optimization (MultiStart) Initialization 7 was the best QPC W 0.1407 -0.0610 -0.3720 -0.0549 0.0928 -0.3889 -0.1171 -0.2340 0.2090 -0.4526 -0.2194 0.0225 0.1967 -0.2217 -0.2602 -0.0588 0.0048 -0.4011 -0.0981 Initialization 1 was the best QPC W 0.1722 0.0116 -0.3085 -0.2951 0.1922 0.0427 -0.0071 -0.0002 0.2227 0.3176 -0.0118 -0.2655 -0.5617 -0.2525 -0.2163 -0.1833 0.0171 -0.1770 -0.2576 -----------------------------------------------
>> bgraph(x*w(1,:)',sex,'labels',{'F','M'})
>> scaterplot(x*w',sex,'labels',{'F','M'})
>> bar(w(1,:))
Do poprawki w dane niepoprawne!
w2=qpctrain(x,y) Columns 1 through 13 -0.0249 -0.3698 0.1600 0.1945 -0.4369 -0.0992 -0.0704 -0.0648 -0.1939 -0.2658 -0.4138 -0.0841 -0.3087 0.0943 -0.1567 -0.3461 0.0129 -0.0332 -0.0622 -0.0284 -0.2094 0.0890 -0.2581 -0.1387 -0.0162 0.1340 Columns 14 through 18 -0.1321 0.2038 -0.3028 -0.1533 0.1825 -0.3923 -0.4241 0.0668 -0.2750 -0.5207 scaterplot(x*w2',y,'labels',{'F','M'})
bar(w2(1,:));
wp=qpctrain_proto(x,sex,'display','short','prototypes',10); procedure = proto dataname = data vectors = 43 features = 18 OptMethod = gd learningRate = 0.100000 prototypes = 2 proto lr = 0.100000 eps = 0.001000 start init. = 10 end init = 3 multistart = no maxIterations = 1000 qpc function = @(wx,p)qpcfunction_dt(x,ci,wx,p,func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 ---------------Sumary-------------------------- Initialization 1 was the best N QPC W 0 0.3684 0.1588 -0.2728 -0.2091 0.0229 -0.2330 -0.4201 -0.2694 0.2895 -0.3135 0.2957 -0.2428 0.1705 0.1866 -0.0747 0.0811 0.1172 -0.2520 -0.2665 ----------------------------------------------- procedure = proto dataname = data vectors = 43 features = 18 OptMethod = gd learningRate = 0.100000 prototypes = 2 proto lr = 0.100000 eps = 0.001000 start init. = 10 end init = 3 multistart = no maxIterations = 1000 qpc function = @(wx,p)qpcfunction_dt(x,ci,wx,p,func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 ---------------Sumary-------------------------- Initialization 8 was the best N QPC W 0 0.3485 -0.1843 -0.3654 0.1899 0.1058 -0.3556 0.1592 -0.0685 0.1587 -0.2727 -0.4180 0.3167 0.0428 -0.2293 -0.0986 0.1989 -0.0137 -0.3471 0.1729 -----------------------------------------------
scaterplot(x*wp',sex,'labels',{'F','M'})
bar(wp(1,:))