Instance Selection + C4.5 on Pima Indians Diabetes

# 17/11/2009 23:11

Test description:

Crosvalidation test 10x10
Normalization [-1,1]
Vector Selection
Classification=C45

C45 Configuration:

BinarySplits=False
ConfidenceFactor=0.25
MinNumObj=2
NumFolds=3
ReducedErrorPruning=False
Unpruned=False

Pima Indians Diabetes

Accuracy Compression Rules
mean std. mean std. mean std.
C4.5 73.23 4.11 100.00 0.00 7.71 1.71
EkPs60p1 65.11 :-( 5.21 0.29 :-( 0.00 1.00 :-( 0.00
EkPs60p3 73.72 4.12 0.87 :-( 0.00 2.00 :-( 0.00
EkPs60p5 73.78 4.39 1.45 :-( 0.00 2.07 :-( 0.26
EkPs60p10 73.46 4.25 2.89 :-( 0.00 2.75 :-( 0.64
EkPs10p1 65.11 :-( 5.21 0.29 :-( 0.00 1.00 :-( 0.00
CNN 71.80 5.55 50.66 :-( 1.24 3.89 :-( 1.38
DROP3 71.09 5.72 12.29 :-( 1.50 5.67 :-( 1.91
DROP5 71.59 5.13 17.48 :-( 1.80 5.19 :-( 2.08
ENRBF 70.74 6.23 11.07 :-( 0.87 5.15 :-( 1.34
ENN 74.90 4.41 85.70 :-( 0.73 9.47 1.98
ICF 69.62 7.14 23.06 :-( 1.20 3.73 :-( 1.27
GE 73.53 4.07 94.62 :-( 0.58 7.40 1.61
RNGE 72.31 4.82 60.03 :-( 1.02 4.61 :-( 1.42
RMHC 65.11 :-( 5.21 0.29 :-( 0.00 1.00 :-( 0.00
MC 65.11 :-( 5.21 0.29 :-( 0.00 1.00 :-( 0.00

:-) statistically significant improvement, :-( significant degradation

EkPs60p1 Configuration:

Classifier=C45
PostClassifier=C45
CostTolerance=1E-16
MaxNumCostCalls=300
MaxSimplexIters=200
NumFolds=-1
NumProtoPerClass=1
NumSimplexPoints=60

EkPs60p3 Configuration:

Classifier=C45
PostClassifier=C45
CostTolerance=1E-16
MaxNumCostCalls=300
MaxSimplexIters=200
NumFolds=-1
NumProtoPerClass=3
NumSimplexPoints=60

EkPs60p5 Configuration:

Classifier=C45
PostClassifier=C45
CostTolerance=1E-16
MaxNumCostCalls=300
MaxSimplexIters=200
NumFolds=-1
NumProtoPerClass=5
NumSimplexPoints=60

EkPs60p10 Configuration:

Classifier=C45
PostClassifier=C45
CostTolerance=1E-16
MaxNumCostCalls=300
MaxSimplexIters=200
NumFolds=-1
NumProtoPerClass=10
NumSimplexPoints=60

EkPs10p1 Configuration:

Classifier=C45
PostClassifier=C45
CostTolerance=1E-16
MaxNumCostCalls=300
MaxSimplexIters=200
NumFolds=-1
NumProtoPerClass=1
NumSimplexPoints=60

CNN Configuration:

Classifier=kNN k=3, Metric=Intemi.Metric.SquareEuclidean

DROP3 Configuration:

Classifier=kNN k=3, Metric=Intemi.Metric.SquareEuclidean
Order=EnemyDistance
ENN=True
IncludePruned=True

DROP5 Configuration:

Classifier=kNN k=3, Metric=Intemi.Metric.SquareEuclidean
Order=EnemyDistanceAndReverse
ENN=False
IncludePruned=True

ENRBF Configuration:

Sigma=0.5
Strenght=0.05
RemoveNoise=True
Tolerance=0.95
Metric=Intemi.Metric.SquareEuclidean

ENN Configuration:

Classifier=kNN k=3, Metric=Intemi.Metric.SquareEuclidean
Repeated=False

ICF Configuration:

Metric=Intemi.Metric.SquareEuclidean
Filter=(ENN using kNN k=3)

GE Configuration:

Metric=Intemi.Metric.SquareEuclidean
MeighboursType=Gabriel

RNGE Configuration:

Metric=Intemi.Metric.SquareEuclidean
MeighboursType=Relative

RMHC Configuration:

Classifier=kNN k=1, Metric=Intemi.Metric.SquareEuclidean
Search=randomMutation
Mutations=1000

MC Configuration:

Classifier=kNN k=1, Metric=Intemi.Metric.SquareEuclidean
Search=monteCarlo
Mutations=1000