Spis treści

Unsupervised QPC - Dimensionality Reduction

Wstępne testy na trywialnych danych.

Algorytm

  1. Inicjalizacja prototypów w centach przedziałów utworzonych po zrzutowaniu na w
  2. Dla każdego kierunku uczenie powtarzane kilka razy - wynik z najlepszą wartością indeksu wygrywa

Parametry uczenia

uqpc_parameters = 
                 K: 2
         QPCMethod: 'uqpc2'
  uqpc_initiations: 10
qpc_parameters = 
                     beta: 0.1000
              checkPeriod: 5
               directions: 2
                  display: 'none'
                      eps: 1.0000e-03
                 function: 'gauss'
                  indGmax: []
              initiations: 10
              initWeights: []
               killPeriod: 10
                killRatio: 0.5000
                   lambda: 0.1000
             learningRate: 0.1000
                      log: 'off'
              logFileName: []
            maxIterations: 1000
               multistart: 'no'
                  OptConf: []
                OptMethod: 'gd'
  orthogonalizationMethod: 'projection'
              ortoWeights: []
                     plot: 'none'
                      plr: 0.1000
               prototypes: 2
                QPCMethod: 'uqpc2'
                     save: 'none'
                  savedir: []
            stopCriterium: 2

Gauss2

Data description:
Brak

Scatter plot:

UQPC projections:

K=2
weights =
 -0.5205   -0.4594   -0.7197
 -0.8537    0.2647    0.4485
uqpc =
  0.9358
  0.4931
prototypes =
 -1.7293  -46.0324    1.0000
  1.7227    0.0056    2.0000
K=5
weights =
 -0.3633   -0.2516   -0.8970
 -0.4426   -0.8007    0.4038
uqpc =
  0.7538
  0.4436
prototypes =
 -2.6504   -3.1922    1.0000
 -1.8646   -3.1757    2.0000
 -1.0769   -1.6754    3.0000
 -0.3106   -0.8493    4.0000
  1.5539    1.0189    5.0000

Gauss3a

Data description:
Brak

Scatter plot:

UQPC projections:

K=2
weights =
 -0.8444   -0.3512   -0.4046
  0.5354   -0.5231   -0.6631
uqpc =
  0.8608
  0.7956
prototypes =
 -2.0960   -3.8309    1.0000
  1.6772    0.0761    2.0000
K=3
weights =
 -0.3469   -0.4298   -0.8336
  0.5608   -0.8075    0.1830
uqpc =
  0.8405
  0.7053
prototypes =
 -4.4951   -3.4459    1.0000
 -1.7234   -2.1913    2.0000
  1.5922    0.4108    3.0000
K=4
weights =
 -0.0146   -0.3934   -0.9193
 -0.5575   -0.7600    0.3341
uqpc =
  0.8528
  0.7751
prototypes =
 -5.2141   -4.6549    1.0000
 -3.7137   -3.0096    2.0000
 -1.3728   -1.3748    3.0000
  1.3218    1.3174    4.0000

Gauss3b

Data description:
Brak

Scatter plot:

UQPC projections:

K=2
weights =
 -0.1179   -0.9771   -0.0440   -0.1713
 -0.8924    0.1510   -0.3998   -0.1450
uqpc =
  0.8605
  0.7629
prototypes =
 -1.4600   -1.5977    1.0000
  1.2719    1.5919    2.0000
K=3
weights =
 -0.1885   -0.9120   -0.1398   -0.3364
 -0.7444    0.2196   -0.6253    0.0817
uqpc =
  0.7907
  0.7080
prototypes =
 -2.1989   -3.8671    1.0000
 -1.1507   -1.9515    2.0000
  1.4321    1.5304    3.0000
K=4
weights =
 -0.4880   -0.8049   -0.2409   -0.2365
  0.0233    0.3746   -0.6524   -0.6585
uqpc =
  0.7820
  0.7381
prototypes =
 -2.4014   -3.2536    1.0000
 -1.4535   -2.4752    2.0000
  0.1759   -0.9203    3.0000
  1.7892    1.5070    4.0000
K=5
weights =
 -0.5339   -0.7813   -0.2408   -0.2157
  0.1538    0.2860   -0.7271   -0.6049
uqpc =
  0.7693
  0.5692
prototypes =
 -2.8691   -3.8573    1.0000
 -2.1556   -3.1742    2.0000
 -1.3200   -2.3202    3.0000
  0.1486   -0.8358    4.0000
  1.8375    1.5860    5.0000
K=7
weights =
 -0.2333   -0.8168   -0.4295   -0.3066
 -0.2340    0.2986    0.2037   -0.9025
uqpc =
  0.8034
  0.6387
prototypes =
 -3.4842   -3.7157    1.0000
 -2.7395   -3.3734    2.0000
 -2.0419   -2.6355    3.0000
 -1.4110   -1.8129    4.0000
 -0.7551   -1.1159    5.0000
  0.4314    0.5135    6.0000
  1.8740    2.0020    7.0000

Gauss2n2

Data description:
Brak

Scatter plot:

UQPC projections:

K=2
weights =
 -0.5474   -0.0130   -0.8353   -0.0499
 -0.0678   -0.0190    0.1039   -0.9921
uqpc =
  0.7623
  0.7148
prototypes =
 -2.0850   -2.5750    1.0000
  2.1489    2.3772    2.0000
K=5
weights =
 -0.1464   -0.9726    0.0322   -0.1776
 -0.7847    0.1040   -0.6102   -0.0330
uqpc =
  0.7600
  0.7660
prototypes =
 -4.1275   -3.9336    1.0000
 -3.0375   -2.7567    2.0000
 -1.4518   -1.5515    3.0000
  0.4985    0.0269    4.0000
  2.8644    2.1928    5.0000

Wine

Data description:
Brak

UQPC projections:

K=2
weights =
Columns 1 through 8
 -0.3237    0.0631   -0.1040    0.1697   -0.1642   -0.3865   -0.4025    0.2520
 -0.4015   -0.4233   -0.1920   -0.1199   -0.1831    0.0080    0.1537   -0.1619
Columns 9 through 13
 -0.2569   -0.0573   -0.2132   -0.3961   -0.4221
  0.0569   -0.4799    0.2027    0.3611   -0.3463
uqpc =
  0.6229
  0.4278
prototypes =
 -1.1345   -1.1107    1.0000
  1.6382    1.6810    2.0000
K=5
weights =
Columns 1 through 8
 -0.2767    0.0715   -0.0725    0.1774   -0.2123   -0.4594   -0.3916    0.1295
 -0.3216   -0.4882   -0.0947   -0.0845   -0.0773   -0.0161    0.2164   -0.2873
Columns 9 through 13
 -0.2858   -0.1855   -0.1341   -0.2287   -0.5186
  0.0427   -0.4911    0.2989    0.3718   -0.1898
uqpc =
  0.5949
  0.4078
prototypes =
 -2.5708   -3.0434    1.0000
 -1.6053   -1.6025    2.0000
 -1.1533   -1.0364    3.0000
 -0.4520    1.1089    4.0000
  1.3992    3.5815    5.0000