====== Profile MMSE - pomiar 2 ====== * Dane: statystyki opisowe (6 cech) + charakteryzacja kształtów roskładu profili (4 cechy: średnia, odchylenie, skośność i kurtoza z gęstości) [[projects:psycho:mmse_probe2_profiles|Wizualizacja profili MMSE]] ===== Płeć ===== ===== Klasyfikacja 2 klasowa ===== * KLasy: przeskalowane wyniki testu < 11.3 * Testy: GM + std + 10x5CV - wszystko poniżej baserate ==== Wizualizacja QPC ==== >> w2=qpctrain(xn,double(c2),'plot','qpc','display','short'); procedure = qpc dataname = data vectors = 43 features = 10 OptMethod = gd learningRate = 0.100000 prototypes = 0 proto lr = 0.000000 eps = 0.001000 start init. = 10 end init = 3 multistart = yes maxIterations = 1000 qpc function = @(wx,p)qpcfunction(x,ci,wx,[],func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 Performing 10 initiations - Gradient based optimization (MultiStart) Sprawdzic dokladniej czy dobrze 5 initiations was killed Finish N = 120 QPC = 0.208580 [1 ] -0.4560 -0.1730 -0.3320 -0.4411 -0.3017 -0.2253 -0.2223 -0.2117 0.3252 -0.3399 Finish N = 125 QPC = 0.207879 [5 ] -0.3491 -0.1533 -0.3375 -0.4421 -0.4247 -0.2325 -0.4004 -0.1394 0.2099 -0.2951 Finish N = 165 QPC = 0.207839 [2 ] -0.2781 -0.0500 -0.3092 -0.4222 -0.3757 -0.3861 -0.3210 -0.1927 0.2781 -0.3722 Finish N = 175 QPC = 0.207835 [6 ] -0.2780 -0.1134 -0.3430 -0.4539 -0.3963 -0.3691 -0.3521 -0.1420 0.2542 -0.2902 Finish N = 180 QPC = 0.207927 [7 ] -0.4938 -0.0749 -0.3447 -0.4402 -0.3056 -0.2249 -0.3799 -0.1363 0.2378 -0.2731 Best: 0.208580 -0.4560 -0.1730 -0.3320 -0.4411 -0.3017 -0.2253 -0.2223 -0.2117 0.3252 -0.3399 ---------------Sumary-------------------------- Initialization 1 was the best N QPC W 0 0.2086 -0.4560 -0.1730 -0.3320 -0.4411 -0.3017 -0.2253 -0.2223 -0.2117 0.3252 -0.3399 ----------------------------------------------- procedure = qpc dataname = data vectors = 43 features = 10 OptMethod = gd learningRate = 0.100000 prototypes = 0 proto lr = 0.000000 eps = 0.001000 start init. = 10 end init = 3 multistart = yes maxIterations = 1000 qpc function = @(wx,p)qpcfunction(x,ci,wx,[],func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 Performing 10 initiations - Gradient based optimization (MultiStart) Sprawdzic dokladniej czy dobrze 7 initiations was killed Finish N = 205 QPC = 0.128676 [2 ] -0.2283 -0.0745 0.1508 0.0456 -0.2454 -0.5509 -0.3700 0.3563 0.1016 0.5288 Finish N = 235 QPC = 0.128780 [7 ] 0.1028 0.0219 -0.2325 -0.1533 0.1983 0.4898 0.2170 -0.4285 -0.1401 -0.6179 Finish N = 520 QPC = 0.065417 [5 ] -0.2907 0.1032 0.2324 -0.4789 -0.3177 -0.1452 0.4339 -0.1645 -0.4864 0.2183 Best: 0.128780 0.1028 0.0219 -0.2325 -0.1533 0.1983 0.4898 0.2170 -0.4285 -0.1401 -0.6179 ---------------Sumary-------------------------- Initialization 7 was the best N QPC W 0 0.1288 0.1028 0.0219 -0.2325 -0.1533 0.1983 0.4898 0.2170 -0.4285 -0.1401 -0.6179 ----------------------------------------------- scaterplot(xn*w2',double(c2)) {{projects:psycho:150123:mmse2_scale_raven_c2_qpc_scatterplot.png?700|}} bar(abs(w2(1,:))) {{projects:psycho:150123:mmse2_scale_raven_c2_w1.png|}}