====== Profile MMSE - pomiar 1 ====== * Dane: statystyki opisowe (6 cech) + charakteryzacja kształtów roskładu profili (4 cechy: średnia, odchylenie, skośność i kurtoza z gęstości) ===== Płeć ===== * Test: GM stand 10x5CV * Nic powyżej baserate (lub chociaż 30% ) ===== Klasyfikacja 2 klasowa ===== * KLasy: przeskalowane wyniki testu < 11.3 * Testy: GM + std + 10x5CV * 58.1%/12.1 SVN gauss c=1.0, bias=0.5 * 55.7%/17.1 kNN k=1 euclid * Reszta ponizej baserate ==== Wizualizacja QPC ==== >> w=qpctrain(xn,c2,'display','short') procedure = qpc dataname = data vectors = 43 features = 10 OptMethod = gd learningRate = 0.100000 prototypes = 0 proto lr = 0.000000 eps = 0.001000 start init. = 10 end init = 3 multistart = yes maxIterations = 1000 qpc function = @(wx,p)qpcfunction(x,ci,wx,[],func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 Performing 10 initiations - Gradient based optimization (MultiStart) Sprawdzic dokladniej czy dobrze 6 initiations was killed Finish N = 220 QPC = 0.088294 [3 ] -0.2625 -0.2240 -0.5884 -0.4564 -0.0720 -0.3458 -0.2978 -0.1616 0.2821 -0.0852 Finish N = 280 QPC = 0.081809 [2 ] -0.2626 -0.2302 0.3327 -0.1507 -0.2403 -0.4847 -0.5708 -0.2200 0.2416 -0.1394 Finish N = 295 QPC = 0.082032 [7 ] -0.3728 -0.2509 0.3371 -0.1551 -0.2610 -0.3071 -0.5174 -0.2834 0.2985 -0.2467 Finish N = 315 QPC = 0.088345 [8 ] -0.2133 -0.2457 -0.5858 -0.4604 -0.1122 -0.3483 -0.3022 -0.1561 0.2857 -0.0886 Best: 0.088345 -0.2133 -0.2457 -0.5858 -0.4604 -0.1122 -0.3483 -0.3022 -0.1561 0.2857 -0.0886 ---------------Sumary-------------------------- Initialization 8 was the best N QPC W 0 0.0883 -0.2133 -0.2457 -0.5858 -0.4604 -0.1122 -0.3483 -0.3022 -0.1561 0.2857 -0.0886 ----------------------------------------------- procedure = qpc dataname = data vectors = 43 features = 10 OptMethod = gd learningRate = 0.100000 prototypes = 0 proto lr = 0.000000 eps = 0.001000 start init. = 10 end init = 3 multistart = yes maxIterations = 1000 qpc function = @(wx,p)qpcfunction(x,ci,wx,[],func) function = @(x)f_gauss(x,parameters.beta) beta = 0.100000 Performing 10 initiations - Gradient based optimization (MultiStart) Sprawdzic dokladniej czy dobrze 6 initiations was killed Finish N = 325 QPC = 0.060643 [8 ] -0.2338 -0.3198 0.3677 -0.4303 -0.0890 -0.3894 0.0253 -0.2643 -0.5001 -0.2063 Finish N = 350 QPC = 0.060591 [7 ] -0.1145 -0.3625 0.3456 -0.4490 -0.1763 -0.4404 0.0713 -0.2678 -0.4229 -0.2319 Finish N = 385 QPC = 0.060768 [3 ] -0.1647 -0.2409 0.3231 -0.4437 -0.0999 -0.5500 -0.0499 -0.2346 -0.4657 -0.1634 Finish N = 430 QPC = 0.060598 [1 ] -0.1338 -0.2715 0.3599 -0.4280 -0.1425 -0.4570 0.0535 -0.2980 -0.4398 -0.2852 Best: 0.060768 -0.1647 -0.2409 0.3231 -0.4437 -0.0999 -0.5500 -0.0499 -0.2346 -0.4657 -0.1634 ---------------Sumary-------------------------- Initialization 3 was the best N QPC W 0 0.0608 -0.1647 -0.2409 0.3231 -0.4437 -0.0999 -0.5500 -0.0499 -0.2346 -0.4657 -0.1634 ----------------------------------------------- {{projects:psycho:150123:mmse1_scale_raven_c2_qpc_scatterplot.png?700|}}