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Convex sets

A subset of an a�ne space is called convex, if any line segment between points of the set is contained
in it. Points, which cannot be realised as internal points of a line segment are called extremal points.

A compact, convex set is a convex hull of its extremal points, i.e. any point of the set can be
expressed as a convex combination of its extremal points (Krein-Milman theorem). The Caratheodory
theorem says, that any such a combination can be realised by a number of points less than dimension
of the containing a�ne space plus one.

Postulates of quantum mechanics and classical probability cal-

culus

In the probability calculus the central role plays the triple: (X,F , µ) - probability space, σ-algebra of
its subsetsbe measure - a function countably-additive on disjoint subsets from F such that µ(X) = 1
(normalised). A measurable function between probability spaces f : (X,FX)→ (Y,FY ) is a function
such that ∀A ∈ FY f−1(A) ∈ FX .

Since now we will focus of �nite dimensional case #X = n < ∞ i F = 2X . We will consider
quantum mechanics in a �nite-dimensional Hilbert space and probability calculus in a probability
space of �nite cardinality.

States, observables, probabilities of results and expected values

Classically if one has a �nite σ-algebra of sets, then an arbitrary probability measure (a state) can
be represented by a vector |p〉 of their values on elementary events. Such a vector has non-negative
components summing to 1. The set of states is an n− 1 dimensional simplex ∆n−1 = {(p1, . . . , pn) ∈
Rn

+ :
∑

i pi = 1}. Extremal points of set of states are pure states - attaining value 1 for an elementary
event.

Any function f : X → R is now measurable and it is possible to represent it as a covector 〈f | of
its values.

The expected value is calculated as Ep(f) = 〈f |p〉.

Probability of measuring a value x of the measurable function f is a measure (de�ned by a state)
of preimage of this value: p(x) = µ(f−1(x)) =

∑
i:fi=x

pi.

In Quantum mechanics states are represented by positive-semide�nite operators of unit trace
(density operators). Extremal points of the set of states are rank-one states, i.e. projectors onto
vectors in the Hilbert space (more precisely: onto one-dimensional subspaces). One ure state is
represented by a set of unit vectors in the Hilbert space di�ering by a phase. The set of states is the
complex projective space CP d−1.

Measurable quantities in quantum mechanics are represented by hermitian operators. Possible
results of measurement of such quantities are eigenvalues of the corresponding operators.

The expected value of the obsevable F in a state ρ is calculated as Tr(ρF ).

4



Probability of obtaining an eigenvalue fi when measuring a quantity f is equal: Tr(ρPi), where
Pi is a projector onto eigenspace related to the eigenvalue fi.

Composite systems

A composite σ-algebra of two events is a cartesian product of σ-algebras, among all joint distributions
we distinguish independent distributions de�ned by a products p1 × p2 of marginal distributions:
p1 =

∑
j pij, p2 =

∑
i pij.

The Hilbert space of the composite system is a tensor product of Hilbert spaces of subsystems.

The marginals (states of subsystems) are de�ned by partial traces:

[ρA]ij =
∑
k

ρik,jk matrix of traces of blocks (1)

[ρB]ij =
∑
k

ρki,kj sum of diagonal blocks. (2)

If subsystems are independent, the state of the system is a tensor product of subsystems: ρ = ρA⊗ρB.

Classical and Quantum Channels

Mappings between probability distributions are called information channels and are (in case of �nite
σ-algebras) reprezented by stochastic matrices, i.e. of non-negative entries and columns summing to
1.

Quantum channel are positive maps (P), i.e. linear maps between operartor algebras, preserving
positivity of operators. A stonger condition must hold: The map I ⊗ Λ has to be positive for all
dimensions of ancilla. In this way we formulate the condition of complete positivity (CP), which is
easier to solve. The Choi theorem states, that any completely positive map is of the form (Krauss
form):

ρ 7→
∑
i

AiρA
†
i , (3)

Moreover, a channel should preserve the trace (CPTP). It induce the following condition on the
Krauss operators: ∑

i

A†iAi = I (4)

Exercise 1 Prove cyclicity of trace.

Measurements

A projective measurement of a measureable function f is a map from the set of measurement results
into the set of projectors (characteristic functions) χAi for a splitting of the probability space into
disjoint subsets, f−measurable (elements of σf ). Probability of obtaining the i-th result is equal
µ(Ai) =

∫
Ω
χAidµ. The state after measurement is: χAiµ/µ(Ai).
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A generalised measurement of a measurable function f is a map from the set of measurement
results into the set of non-negative, f -measurable functions mi, summing to 1 (hence their vectors
of values can be interpreted as columns of a stochastic matrix). The generalised measurement takes
into account the measurement error - supports of functions mi overlap. The probability of the i-th
result is

∫
midµ = 〈mi|µ〉.

Post-measurement states are de�ned by sub-stochastic matrices Ki summing to a stochastic
matrix: Ki |µ〉 / 〈1|Ki |µ〉. One has: 〈mi| = 〈1|Ki.

In QM, a projective measurement of an observable F is a map from the set of measurement
results into a decomposition of the idetity operator IH to a set of projectors {Pi} commuting with
F . The images of projectors are sums of invariant subspaces of F (F -measurability of projectors).
Probability of obtaining the i-th result is Tr(ρPi), and the post-measurement state: PiρPi/Tr(ρPi).

In QM, a generalised measurement is given by a set {Λi} of subchannels summing to a chan-
nel. The probability of obtaining the i-th result is Tr(Λi(ρ)). The post-measurement state is
Λi(ρ)/Tr(Λi(ρ)).

If we are interested only in the probability of a result, then using cyclicity of trace and linearity
one has:

Tr(Λi(ρ)) = Tr(
∑
j

A
(i)
j ρA

(i)†
j ) =

∑
j

Tr(A
(i)
j ρA

(i)†
j ) =

∑
j

Tr(A
(i)†
j A

(i)
j ρ) = Tr(

∑
j

A
(i)†
j A

(i)
j ρ) = Tr(Miρ),

where Mi are now positive-semide�nite operators summing to I.

Let us check, what happens to the formulas of quantum mechanics, if we restrict ourselves to
diagonal observables and states. Then on the diagonals we have the possible values of experiments and
their probabilities. The formula for the expected value becomes the classical formula. The formulas
for partial traces becomes formulas for marginal distributions. The formulas for probabilities of
measurement results and post-mesurement states becomes classical.

Each hermitian matrix is diagonal in some orthonormal basis. These bases (eigenbases) are the
same (can be the same if there is a degeneracy) i� the matrices commute. If all observables in a
system commute, we won't observe quantum e�ects.

Postulates of Quantum Mechanics

To any classical system we prescribe a certain phase spaceX and to any quantum system we prescribe
a certain complex Hilbert space H. Quantum mechanics is a non-commutative generalisation of
classical statistical mechanics and as such is a linear theory.
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Postulate of quantum
mechanics

Classical analog

Algebra of observables and space of states
1.1 algebra of
obserwables

B(H) L∞(X)

1.2 space of states BT (H) L∞(X)∗

1.3 pure states ρ = |ψ〉 〈ψ| ρ = δ(x, x0)
1.4 space of states of a
composite system

B(H1)⊗ B(H2) ∼= B(H1 ⊗H2) L∞(X1)∗⊗L∞(X2)∗ ∼= L∞(X1×X2)∗

1.5 states of subsystems ρ1 = Tr2ρ ρ1 =
∫
X2
dρ

Projective (ideal) measurement of an observable A

2.1 measuring
instrument

mapping of the set of results w
into identity decomposition
into a �nite sum of orthogonal
projectors: ai → Pi

mapping of the set of results w info
�nite decomposition of X into
disjoint subsets ai → Ai

Pi is sum of projectors onto
eigenvectors of A (more
general: a spectral measure of
a subset of the spectrum of A)

any level set is contained in exactly
one Ai (each Ai is σA-measurable)

2.2 probability of
obtaining result ai

Tr(ρPi) ρ(Ai)

2.3 state after
measurement with a
result ai

PiρPi/TrρPi ρ|Ai/ρ(Ai)

Dynamics of a closed system (preserving pure states)
3.1 evolution generator arbitrary observable H arbitrary observable H
3.2 evolution equation i~∂tρ = [H, ρ] ∂tρ = {H, ρ}
3.3 dynamical group unitary transformations simplectomor�sms

Observe, that evolution maps pure states into pure states. If we denote a pure state ρ(t) as
|ψ(t)〉 〈ψ(t)|, then the vector ψ(t) (called a vector state) is governed be the equation:

i~∂tψ = Hψ

known as Schrödinger equation. Classicaly: Hamilton equation.

Exercise 2 Prove, that for a hermitian matrix H the matrix exp
(
− i

~Ht
)
is unitary.
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Bloch Ball

Quantum states of a two-level quantum system are represented by semipositive de�nite 2×2 trace-one
hermitian matrices. Any such a matrix an be written as:

ρ =
1

2

[
1 + z x− iy
x+ iy 1− z

]
. (5)

Semipositive-de�niteness condition can be expressed as x2 + y2 + z2 ≤ 1 - one gets a ball equation.
This ball is called Bloch ball. On the boundary (on the Bloch sphere) lay rank-1 states - pure states.
A trace-1 and rank-1 hermitian operator is a projector on a 1-dimensional subspace spanned by a
certain vector ψ. If the vector ψ is normalised, one can write down the projector as |ψ〉 〈ψ|. This
vector is called a state vector and is de�ned up to a phase.

The set of state vectors is sphere S3. The set of pure states is sphere S2. Any pure state is related
to a set of state vectors di�ering by a phase - to a sphere S1. The sphere S3 is then a �bre bundle
over a base space S2 with the �bre S1:

S3
S1

−−−−→ S2 (6)

The above �bre is called the �rst Hopf �bration. It is not a trivial bundle (S3 6= S1× S2). We prove
it showing, that there exists no global projection on S1, so that it is not possible to prescribe to every
point on the sphere a �state vector of a canonical phase� and �deviation from the canonical phase�
continuously on the whole Bloch sphere.

Exercise 3 Introduce a spherical coordinate system θ, φ on a Bloch sphere. Show, that it is not
possible to prescribe a state vector to a point on the Bloch sphere continuously.

Space of matrices over C is equipped in a natural (Hilbert-Schmidt) inner product:

〈A|B〉HS = TrA†B (7)

Exercise 4 Show, that the HS inner product is invariant with respect to the action of unitary
group.

Corollary: The HS norm of a hermitian matrix is the euclidean norm of its spectrum.

Exercise 5 Show, that HS inner product of two density matrices given by Bloch-ball coordinates
~r1 = [x1, y1, z1], ~r2 = [x2, y2, z2] is given by 1

2
+ 1

2
~r1 · ~r2.

Exercise 6 Show, that a pair of projectors onto orthogonal subspaces is related to a pair of an-
tipodal points on the Bloch sphere.

Exercise 7 Characterise the topology of the set of the states of all decompositions of C2 into a
direct sum of two orthogonal subspaces.

A spectral decomposition of a hermitian matrix is �nding its decomposition into a linear combination
of projectors onto orthogonal subspaces. In case of a trace-one semipositive de�nite matrix it will be a
convex combination. Graphically, a spectral decomposition in the Bloch ball means to �nd a diameter
passing through the given point, its common points with the Blosh sphere and the coe�cients of the
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combination. The decomposition is unique for all points except the point in the origin, which is a
normalised identity and have the same form in any orthonormal basis.

Observe, that if we release the requirement of orthogonality of projectors in the decomposition, any
density matrix can be decomposed in in�nitely many ways as a combination of two projectors - one
can draw in�nitely many chords passing through a point in the Ball. More generally:

Exercise 8 Show, that if density matrix has two decompositions: ρ =
∑

i αi |φi〉 〈φi| =
∑

i βi |ψi〉 〈ψi|,
then

√
βiψi =

∑
j aji
√
αiφj, and aji are entries of a rectangular matrix A with property A · A† = I.

If H is a diagonal matrix, a solution of the Schrödinger equation

i~∂tΨ = HΨ (8)

is

Ψ(t) = exp(− i
~
Ht)Ψ(0) =

[
exp(− i

~E0t)Ψ0(0)
exp(− i

~E1t)Ψ1(0)

]
. (9)

It is a uniform rotation of the Bloch ball around axis z. In case of general H, it will be a uniform
rotation around the diameter spanned by projectors onto eigenvectors of H.

A non-informing measurement of an observable given by projectors P1, P2 in the spectral decom-
position is related to a projection of the state onto the diameter spanned by P1 and P2. If the
measurement is informing, than there happens a collapse to either P1 or P2 with probabilities pro-
portional to lengths of line segments in the decompositions.

P1

P2

1
2
I

ρ

ρn−inf

p1

p2

Figure 1: Projective measurement: non-informing (projection on the diameter) and informing (col-
lapse) in the Bloch ball. Picture plane is de�ned by measuement projectors and the measured state.
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Uncertainty principle

A consequence of non-commutativity of observables is the uncertainty principle. If uncertainty of a
certain observable in a certain state is 0, then the state has to be an eigenstate of the observable.
For any other observable, non-commuting with the former one, the state is not an eigenstate and the
uncertainty won't be 0.

In the information-theoretical approach, the uncertainty for a pair A,B of observables we express as
a sum of entopies of distribution of results for both observables in a given state. It's lower bound
depends only on relations between their eigenbases. We have the following:

Theorem (Maasen - U�nk) Let p and q be probability distributions of measurement results of
observables A and B respectively in a certain state ρ. The sum of their entropies is lower-bounded
by a state-independent quantity:

H(p) +H(q) ≥ − log max
ij
|〈ai|bj〉|2, (10)

where {ai}, {bi} are eigenbases of A and B respectively.

Observe, that one common eigenvector is enough, to make the lowerbound 0. In such case it is tight
- choosing a projector onto the common eigenvector as a state, both entropies are zero, hence one
can be sure about results of both observables simultaneously.

Exercise 9 Let A i B b¦ observables in C2, and β be the angle between diameters of Bloch ball
representing their eigenbases.

� Find the MU lowerbound for a sum of entropies of probability distributions of measurements of
observables.

� Find a lowerbound for a sum of entropies of probability distributions of measurements of ob-
servables.for a given state and �nd its minimum.

� Show, that the lowerbound is higher (better) than the MU lowerbound.

import numpy as np

from scipy.optimize import minimize

def H(p):

""" binary Shannon entropy of prob. distr. {p,1-p}"""

res = -(p*np.log(p)+(1-p)*np.log(1-p))/np.log (2)

res = res * (p < 1) * (p > 0) + 0 * (p == 0) + 0 * (p == 1) # to handle 0log0

return res

def sum_of_uncertainties(beta ,alpha ):

""" For two projective measurements of Bloch coordinates:

{[sin(beta/2),0,cos(beta /2)], [-sin(beta/2),0,-cos(beta /2)]}

{[-sin(beta/2),0,cos(beta /2)], [sin(beta/2),0,-cos(beta /2)]}

and state: [sin(alpha),0,cos(alpha )]

calculates H(p) + H(q), where p and q are prob. distr. of first and second PM respectively

"""

return H((1+np.cos(beta/2-alpha ))/2) + H((1+np.cos(beta /2+ alpha ))/2)

@np.vectorize

def alpha_opt(beta):

""" For given beta (parameter describing non -commutativity of PMs), returns value of alpha

(state parameter) minimising the function sum_of_uncertainties """

f = lambda alpha: sum_of_uncertainties(beta , alpha)

res = min(( minimize(f, np.random.rand ()*np.pi/2) for _ in range (5)), key = lambda res: res.fun)

res = np.abs(res.x) % np.pi
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if res > np.pi/2: res = np.pi - res

return res

import matplotlib.pyplot as plt

beta = np.linspace(0,np.pi ,101) # range of beta

aa = alpha_opt(beta) # corresponding optimal alphas

# plot optimal alpha in function of beta

plt.plot(beta ,aa,'.', label = r'optimal angle $\alpha$ ')

plt.legend ()

plt.xlabel(r'$\beta$')

plt.show()

# plot minimal sum_of_uncertainties in comparison to Maasen -Uffink bound.

plt.plot(beta ,sum_of_uncertainties(beta ,aa),label=r'sum of uncertainties for optimal $\alpha$ ')

plt.plot(beta ,-np.log(np.maximum(np.cos(beta /2)**2 ,np.sin(beta /2)**2))/ np.log(2),

label='Maasen -Uffink lower bound')

plt.legend ()

plt.xlabel(r'$\beta$')

plt.show()

MUBs

Two bases {ei} and {fi} in Cd are called unbiased, if ∀i, j| 〈i|j〉 |2 = 1
d
. A set of pairwise unbiased

bases is called mutually unbiased bases. Such a set can contain at most d + 1 bases. We are able to
construct such sets when d is a power of prime.

In case when d is prime, the construction goes as follows: Using matrices:

X =


1

1
. . .

1

 , Z =


1

ω
. . .

ωd−1


we construct matrices XαZβ of projective representation of the Weyl group. There are d2 of them,
and there is of course Id of them. For the remaining d2− 1 matrices we �nd eigenbases. It turns out,
that there is (d + 1) such bases, and each of them is the eigenbasis for (d− 1) matrices. Obviously,
the matrix (Id) is diagonal in each of them.

In d = 3 the construction goes as follows:
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β = 0 β = 1 β = 2

α = 0

 1 0 0
0 1 0
0 0 1

  1 0 0
0 ω 0
0 0 ω∗

  1 0 0
0 ω∗ 0
0 0 ω



α = 1

 0 1 0
0 0 1
1 0 0

  0 1 0
0 0 ω
ω∗ 0 0

  0 1 0
0 0 ω∗

ω 0 0



α = 2

 0 0 1
1 0 0
0 1 0

  0 0 1
ω 0 0
0 ω∗ 0

  0 0 1
ω∗ 0 0
0 ω 0



• basis:


 1

0
0

 ,
 0

1
0

 ,
 0

0
1


• basis:


 1

1
1

 ,
 1

ω
ω∗

 ,
 1
ω∗

ω


• basis:


 ω∗

1
1

 ,
 1
ω∗

1

 ,
 1

1
ω∗


• basis:


 ω

1
1

 ,
 1
ω
1

 ,
 1

1
ω


While d is prime, the projective representation of the Weyl group one can treat as a two-dimensional
linear space over the �eld Zd (denoted by Z2

d). It turns out, that elements Xα1Zβ1 and Xα2Zβ2

commute (up to a phase), if and only if α1β2 − α2β1 = 0 mod d i.e. when belongs to the same
1-dimensional subspace. Set of eigenbases of elements is hence isomorphic to the set of lines in Z2

d,
hence with the space ZdP 1.

In case of qubit the construction leads to eigenbases of matrices σz, σx i σy ∼ σxσz. In the Bloch
ball these bases are pair of projectors laying on axes of coordinates:

z

x

y

In d = 2, measuring an observables which eigenbases are the subsequent bases from the MUB set,
we obtain three expected values equal to coordinates x, y, and z coordinates of the measured state
in the Bloch ball.

In higher dimensions the situation is similar - subspaces of operators diagonal in bases from a MUB
set are mutually orthogonal, hence any state projects orthogonally on these (d+ 1) subspaces. Prob-
abilities of di�erent results of a projective measurement in the given basis lets to reconstruct the
value of projection onto a given subspace.

Random access codes Let our task be to encode values of three bits into one qubit, to maximise
a probability of correct reconstruction of the value of one of the encoded bits, chosen with equal
probabilities.
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values of input bits
x1, x2, x3

preparation
- encoding in
a qubit state

specifying a bit
to be retrieved

measurement
for x2

measurement
for x1

measurement
for x3

reconstructed
value of x2

reconstructed
value of x1

reconstructed
value of x3

j

ρi1,i2,i3 ∈ S(C2)

i1, i2, i3

j = 2j = 1 j = 3

Classically, the maximal probability of a proper reconstruction is equal 2/3 (one qubit encoded, the
remaining guessed at random). In quantum case we encode the state of three bits into eight qubit
states with coordinates [±1/

√
3,±1/

√
3,±1/

√
3] in the Bloch ball. Depending on j (the number

of qubit to be retrieved) we perform a projective measurement in one of MUBs. The probability
of correct reconstruction of the value of the choseb bit is (1 + 1/

√
3)/2 ≈ 0.7887. Using quantum

resource we observe a gain in comparison to using classical resources.

Quantum channels

Maps mapping semipositive de�nite matrices to semipositive de�nite matrices are called positive
maps (P). Looking for a general form of a map mapping states to states one should pose a more
restrictive condition: A map I ⊗ Λ acting on product states η ⊗ ρ should be positive as well for all
possible dimensions of the additional subsystem. In this way we de�ne the complete positivity (CP)
condition, which is easier to solve. The Choi theorem says, that any completely positive map is of
the form (Krauss form):

ρ 7→
∑
i

AiρA
†
i (11)

We have met maps of the above form already writing down classical channel in the matrix represen-
tation. Then the phases (in the polar decomposition) of matrices Ai di�ered by a cyclic permutation.
Releasing the bases gives a CP, trace-preserving map. It turns out, that it is already a most general
form of a quantum channel.

We can ask, when two channels given in their Krauss forms represents the same channel. A stacking
technique, i.e. writing down an n × n matrix as a vector of n2 coe�cients built from rows of the
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matrix transposing each of them turns out to be useful here:

ρ =
∑
ij

ρij |ei〉 〈ej|
stacking

−−−−−−→ ~ρ =
∑
ij

ρij |ei〉 ⊗ |ej〉 (12)

Sandwiching ρ by A and B is then related to the following mapping of the vector ~ρ:

AρB−−−−−−→A⊗BT ~ρ (13)

In this representation the channel action can be written as

~ρ 7→
∑
i

Ai ⊗ A∗i ~ρ (14)

The channel is uniquely determined by a matrix
∑

iAi ⊗A∗i , to check if two Krauss representations
relate to the same channel, one has to compare the resulting matrices.

Exercise 10 Show, that two representations of a channel
∑

iAiρA
†
i and∑

iBiρB
†
i are equivalent ⇐⇒ Bi =

∑
j UijAj, where U is a unitary matrix (use the fact, that

AXB = (BT ⊗ A) ~X).

One can rewrite a matrix
∑

iA
∗
i ⊗Ai as

∑
i
~A∗i ⊗ ~Ai, what give a vector of n4 entries. One can now

�lay� the �rst term in the tensor produt to get a matrix
∑

i
~A†i ⊗ ~Ai =

∑
i

∣∣∣ ~Ai〉〈 ~Ai∣∣∣. The minimal

length of a channel representation is the rank of the matrix
∑

i

∣∣∣ ~Ai〉〈 ~Ai∣∣∣. One can see that if for

~Ai one chooses eigenvectors of
∑

i

∣∣∣ ~Ai〉〈 ~Ai∣∣∣, then one gets a Krauss representation of the channel

where all matrices Ai are orthogonal in the HS inner product.

CQ and QC channels

A channel, which maps an arbitrary density matrix to diagonal matrix in a �xed basis (reducing a
non-commutative case to a commuting one) is called a quantum-classical channel.

Exercise 11 Show, that a quantum-classical channel is of the form:

ρ 7→
∑
j

Tr(ρMj) |j〉 〈j| , dla
∑
j

Mj = I. (15)

Observe, that this is a POVM measurement - the most general linear map prescribing a probability
measure to a density matrix.

Channel, which maps diagonal matrices into density matrices (a restriction of a quantum channel to
a commuting subalgebra) is called a classical-quantum channel:

ρ 7→
∑
i

〈i| ρ |i〉 ρi (16)

such a channel is called preparation.

If {Mj} commute, or if {ρi} commute, then one gets a classical-classical channel.
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Qubit channels

Qubit channels are linear maps mapping Bloch ball into itself. The only surjective (so invertible)
channels are rotations around an certain axis - they are represented by a sandwiching ρ by unitary
matrices. An image of any channel will be an ellipsoid contained in the Bloch ball.

Exercise 12 Which classical channels are invertible?

Next class of channels, already not invertible are random unitary channels, when unitary rotations
from a set are applied to a state according to a probability distribution.

Exercise 13 Find an image of the channel (bit �ip channel):

ρ 7→ pρ+ (1− p)σxρσ†x

Exercise 14 What is a Krauss representation of a channel, which performs scaling of Bloch ball
in directions x, y leaving the z direction unchanged (phase �ip channel)?

Exercise 15 What is the representation of a channel, which scales the Bloch ball uniformly (de-
polarising channel)?

All random unitary channels are unital (bistochastic). The opposite implication holds only for qubit.

An amplitude damping channel is represented by an isotropic shrinking of the Bloch ball towards its
north pole. If the system is a two-level atom with a �xed photon emision probability per time unit,
then change of a state of such system in a time interval will be represented by the amplitude damping
channel.

Exercise 16 Find a Krauss representation of a amplitude damping channel. Find the general case
of falling onto the Gibbs state.

Exercise 17 How one can parametrise and characterise all qubit channels?

Exercise 18 Show, that the set of qubit channels is 12-dimensional. What these dimensions are
related to? How many dimensions has the set of unital channels?
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Composite systems

Schmidt decomposition Let us perform an operation inverse to the stacking operation. A vector
Ψ w Cd1 ⊗ Cd2 can be written as a matrix A of a size d2 × d1. We can apply a singular value
decomposition theorem to this matrix:

A = UΛV †, (17)

where U and V are unitary, and Λ is positive and diagonal (in general rectangular). In other words:

A =
∑
i

λi |ui〉 〈vi| , (18)

for orthonormal sets {ui} ∈ Cd2 i {vi} ∈ Cd1 . Hence the vector Ψ can be written as
∑

i λivi⊗ui. We
have proven in this way the Schmidt decomposition theorem. The numbers λi are called Schmidt
coe�cients of the vector Ψ.

Warning: There is no simple analog of Schmidt decomposition for a state of a system composed of
more than two subsystems.

Separable and entangled states If a vector Ψ is a product vector, then the state |Ψ〉 〈Ψ| is called
a pure separable state. A pure state, which is not separable is called entagled state. In case of mixed
states, a state is separable it can be decomposed into a convex combination of pure separable states.
If it is not possible, the state is entangled. The de�nition applies to arbitrary number of subsystems.
Problem of determining the separability of a state is a hard task, we will focus on it in the further
parts of the lecture.

Partial trae of a pure state Considering partial traces of a vector Ψ of a Schmidt decompostion∑
i λivi⊗ui we get: ρ1 =

∑
i λ

2
i |vi〉 〈vi| and ρ1 = λ2

i

∑
i |ui〉 〈ui|. Despite having maximal information

about the state of the whole (it is in a pure state), we do not have full information about the parts
(they are in mixed states). Such a phenomenon is absent in the commutative theory.

Dilation theorems

Theorem: Any density matrix of a d-level quantum system can be represented as a partial trace of
a pure state of a composed system. Such a pure state is called a puri�cation of the state ρ.

Exercise 19 What is the freedom of choice of the state of the composed system being a puri�cation
of a given state of a asubsystem?

Theorem: Any quantum channel can be written as ρ 7→ Tr1(Uη ⊗ ρU †).

Proof: Let us take η = |e1〉 〈e1| and let Uij denote the ij-th block of the matrix U . Then Tr1(Uη ⊗
ρU †) =

∑
i Ui1ρU

†
i1, hence it is in the Krauss form. To proof the opposite implication one has to prove

that the matrix having its �rst column of blocks given can be ful�lled to a whole unitary matrix,
under a certain assumption.

Exercise 20 Assume, that we have given the �rst column of blocks of a certain matrix. When it
is possible to add a missing part to get a unitary matrix?
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We can describe in on a picture as follows:

|0〉

ρ ε(ρ)
U

for the same U we can exchange the roles of subsystems. Then we will get so-called channel comple-
mentary to ε.

Exercise 21 Show, that the amplitude damping channel:

A1 =

[
1 0
0
√

1− γ

]
, A2 =

[
0
√
γ

0 0

]
can be realised as:

|0〉

ρ ε(ρ)

exp iθσy

where γ = sin2 θ.

A generalised measurement (POVM) is given by the formula (15), if we are interested only in the
probability measure of the output. If in turn we are interested as well in what happens to the system
after measurement, we get:

ρ
pi=Tr

(
ρ
∑
j X

(i)†
j X

(i)
j

)
−−−−−−−−−−−−→

∑
j X

(i)
j ρX

(i)†
j

Tr
(
ρ
∑

j X
(i)†
j X

(i)
j

) , ∑
ij

X
(i)†
j X

(i)
j = I (19)

If we are interested only in the probabilities, we pass to the formula (15) by substitution: Mi =∑
j X

(i)†
j X

(i)
j

Theorem: Every generalised measurement on ρ can be realised as a projective measurement of the
system with an additional system attached, after a period of common evolution.

Proof: Similarly as in the previous proof we start from the state |e1〉 〈e1| ⊗ ρ, but the basis of the
attched system is indexed by all pairs ij. The measurement basis consists of projectors |eij〉 〈eij|,
but after measurement a postselection happens causing glueing the results with the same i.

We can describe it on a picture as follows:

η

ρ
U
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POVM Theory

Distinguishing quantum states - Hellstrøm theory Assume, that a source produces two states
ρ1 and ρ2 with probabilities p1 and p2 respectively. Our task is to construct a two-valued POVM,
for which the probability of the orrect answer will be maximal.

Two-valued POVM is of the form {A, I − A}, dla 0 ≤ A ≤ I. We look for the maximum of the
expression Tr(Ap1ρ1) + Tr((I − A)p2ρ2) = p2 + Tr(A(p1ρ1 − p2ρ2)). We can see, that A should be a
projector onto a direct sum of eigenspaces of p1ρ1 − p2ρ2 related to positive eigenvalues.

If p1ρ1 ≥ p2ρ2, then A = I - it is optimal just to bet on 1 without performing any mesurement.

The matrix p1ρ1−p2ρ2 is called Helstrøm matrix. Probability of obtaining the proper result is equal:

psuccess =
1

2
(1 + ||p1ρ1 − p2ρ2||1) , (20)

where || · ||1 is the trace norm - the sum of absolute values of eigenvalues.

Exercise 22 Derive formula for probability of successful distinguish of two pure states sent with
arbitrary probabilities, in terms of p1 − p2 and | 〈Ψ1|Ψ2〉 |2.
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Exercise 23 Find a POVM with 3 outcomes: 1,2,? which detects non-orthogonal states (appearing
with probabilities p1 and p2) without error (i.e. if outcome 1 or 2 appear, we can be sure, that a
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corresponding input value has been sent) minimising probability of the outcome �?�. Derive formula
for the minimal p?.

Ans.

p? =


p1 + |〈Ψ1|Ψ2〉|2p2 if p2|〈Ψ1|Ψ2〉|2 ≥ p1

p2 + |〈Ψ1|Ψ2〉|2p1 if p1|〈Ψ1|Ψ2〉|2 ≥ p2

2|〈Ψ1|Ψ2〉|
√
p1p2 else
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Operations on photon polarisation

An electromagnetic wave propagating along the z-axis can have two polarisations - the horizontal
and the vertical one or be a combination of these basic polarisations:

eiωt
[

1
0

]
− horizontal polarisation eiωt

[
0
1

]
− vertical polarization

eiωt
[

1
1

]
− 45°polarisation eiωt

[
1
−1

]
− - 45°polarisation

eiωt
[

1
i

]
− anti-clockwise polarisation eiωt

[
1
−i

]
− clockwise polarisation

For polarisation th wave amplitude and phase plays no role, so the set of all possible polarisations is
again a sphere S2 (so-called Poincaré sphere).

y

x

z

Photon energy is a squared norm of the electric �eld. From the energy conservation principle follows,
that any optical element transforming a state of a photon conserving its energy must be a unitary
operator. Similarly, an operator acting on two-photon states must be a U(4) operation. Unitary
operations acting on the Hilbert space of n qubits are called gates, in analogy to classical n-bit gates.
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We will consider the following optical elements:

Twisting polarisation plane by an angle α (gate eiασy):[
cosα sinα
− sinα cosα

]
(21)

Polarising beam splitter, transmits the horizontal polarisation and re�ects the vertical polarisation.
Matrix in the basis xh, xv, yh, yv:


1 · · ·
· · · 1
· · 1 ·
· 1 · ·

 (22)

This is a two-qubit gate CNOT (controlled NOT ). The polarisation qubit is the control qubit and
the path qubit is the controlled qubit.

Analise the setting on the picture:

−φ

−θ − π/2

π/2

π

π/2

[
α
β

]

p2

1

p1

[
0
0

]
2

[
0
0

]
4

[
0
0

]
3
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[
α
β

]
0

0

0

−θ − π
2

−φ

−π

π
2

−π
2

[
α sin θ
β sinφ

]
0[

α cos θ
β cosφ

]
0

CNOT CNOT

CNOT

CNOT

CNOT



α
β
0
0
0
0
0
0


7−→



α
0
0
β
0
0
0
0


7−→



−α sin θ
α cos θ
−β sinφ
β cosφ

0
0
0
0


7−→



−α sin θ
0

−β sinφ
0
0

α cos θ
0

β cosφ


7−→



α sin θ
0
0

β sinφ
−α cos θ

0
0

β cosφ


7−→



α sin θ
β sinφ

0
0

−α cos θ
β cosφ

0
0



Ψ =

[
α
β

]
, p1 = Tr

([
cos2 θ 0

0 cos2 φ

]
|Ψ〉 〈Ψ|

)
p2 = Tr

([
sin2 θ 0

0 sin2 φ

]
|Ψ〉 〈Ψ|

)
,

Exercise 24 The above setting realises two-outcome one-qubit POVM with diagonal elements.
How to realise arbitrary one-qubit POVM using this setting and one-qubit gates?

One-qubit gates

Theorem: Any d-ary logic gate can be realised as a composition of NAND gates.

Twierdzenie: Any U(n) operation can be realised as a composition of one-qubit gates and the
CNOT gate.

Exercise 25 Show that there exists no universal NOT gate for qubit.

A retarding plate oriented in the standard basis h, v (or squeezing an optical �bre in the horizontal
direction) introducing a phase di�erence δ is given by the matrix:[

eiδ/2 0
0 e−iδ/2

]
(23)

Exercise 26 Show, that any one-qubit gate an be realised as three squeezing of an optical �bre in
directions 0◦, 45◦, 0◦.
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No cloning, broadcasting, BB84

No cloning and broadcasting

Let us try to construct an operation, which gets on the �rst input a �xed vector of the empty register
ψ and a vector state φ on the second input and produces on the output the vector φ ⊗ φ. Let us
consider, that the operation acts for two states:

U(φ1 ⊗ ψ) = φ1 ⊗ φ1

U(φ2 ⊗ ψ) = φ2 ⊗ φ2.

This operation should be unitary and hence we can see, that the state vectors φ1, φ2 have to be
orthogonal. The cloning machine is possible only for a set of orthogonal pure states. Such a set of
pure states, for which cloning is valid, determines completely the cloning machine. It is of the form:
measure in the orthogonal basis and basing on the result prepare two copies. Convex combinations
of cloned statees are not cloned, but broadcasted - we get a mixed state of many copies with proper
marginal states, but correlated. The broadcasting structures appear in the mechanism of �quantum
darwinism� - emerging the objective reality for a quantum object.

Exercise 27 Can adding an auxiliary Hilbert space can be helpful in constructing a cloning ma-
chine: U : |i〉 ⊗ |0〉 ⊗ |0〉 → |i〉 ⊗ |i〉 ⊗ |Xi〉 ?

The same restriction applies to classical states - all pure states can be cloned (while they are mutually
orthogonal), but mixed states annot be cloned, but only broadcasted.

Although, we can try to �nd a cloning machine performing the task in an approximate way, min-
imising the cloning error (maximal or average).

The above observation can be rephrased as follows: assuming, that we have a channel of one output
and two outputs Φ1,2 : B(Hin) → B(Hout1) ⊗ B(Hout1). We can always trace o� one of the outputs
and obtain the marginal channels Φ1 i Φ2. Non-existence of a cloning machine means, that there
exists no such a channel, having identity channels as both its marginals.

BB84

In the BB84 protocol the parties A and B want to establish a common bit key, not known to third
parties. The protocol lets to �nd a common key and be sure, that no one else has an information
about it.

The A party tosses at random a sequence of values 0,1 of subsequent bits and a sequence of bases
from the set

{|0〉, |1〉}, { 1√
2

(|0〉+ |1〉), 1√
2

(|0〉 − |1〉)},

encodes the i-th bit in the i-th basis and send it to B. The party B tosses at random for each bit
one of the basis from the above set and perform a measurement in the tossed basis. After sending
all the bits, the party A informs publicly about the sequence of the bases used. The party B replies,
which of its bases agreed with the bases of A. Bits measured in non-agreeing bases are removed and
both parties have the same sequence of bits.
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Let us assume now, that an eavesdropper enters the track and perform a measurement in one of the
bases and next prepare a qubit in a state of the basis in agreement with the result of measurement.
The eavesdropper guess the basis property for half of the bits on average - then it reads the proper
value without disturbing it. The other half of the bits is measured in basis not agreed with the
sender and then it reads a proper value with probability 1/2 and among these bits only 1/2 will
have unchanged value when measured by the receiver. It means, that 1/4 of the sent bits will be
eavesdropped incorrectly but also that 1/4 of the bits read by the sender will have a changed value.
Sacri�cing a part of sent bits lets for detection of the eavesdropper.

If the photon source of the A party is far from one-photon (encodes a bit in many photons), then
the eavesdropper can put a beam spliiter into the track and it will be hard to detect (the party B
cannot count photons). The beam-splitter will let a part of photons through and another part will
be written in a quantum memory (for example will translate a photon state into a two-level atom
state). Next, after revealing the bases and the information, which bits are abandoned and which are
not, the eavesdropper perform measurements and obtain the key.

Non-kolmogorovness of Quantum Mechanics

CHSH inequality

Consider now four random variables A1, A2, B1, B2 de�ned on a probability space Ω and taking values
±1. Observe, that a bound A1B1 +A1B2 +A2B1−A2B2 ≤ 2 holds for any point in the Ω (in a given
point x one has either B1(x) = B2(x) or B1(x) = −B2(x)). Taking the average on gets

−2 ≤ E(A1B1) + E(A1B2) + E(A2B1)− E(A2B2) ≤ 2. (24)

Assume, that we have a source of pairs of spin-1/2 particles, which disperse in opposite directions
and then are measured at the same time in theo distinct laboratories. Each laboratory (A and B)
chooses at rendom one of two spin directions (1 or 2) and performs a measurement. The measurement
of a spin i in a laboratory C is a random variable Ci. Variables A1, A2, B1, B2 should satisfy the
inequality (24). Let us see what will happen, if the measured observables are Â1 = σz, Â2 = σx, B̂1 =
(σx + σz)/

√
2, B̂2 = (σz − σx)/

√
2, and the source produces a pure state represented by a vector

|Ψ〉 = (|00〉+ |11〉)/
√

2.

Exercise 28 Show that the CHSH inequality is not broken in separable states.

In quantum mechanics the LHS of the inequality cannot exceed the value 2
√

2 (Tsirelson's bound).

Let us now assume, that the only bound for correlations is, that they cannot carry information, i.e.
if one party measures observable A and the other party measures one of two values B or B′, then
the marginal distribution p(a) cannot depend on the observable choosen on by the other party:

∀B
∑
b

P (a, b|A,B) = P (a|A) (25)

Else, there a instantaneous transfer of information between parties would be possible. If only non-
signaling condition constraints the correlations, then LHS of the CHSH inequality can reach the value
4.
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Exercise 29 Assume, that

p(ab|AB) =


1
2

1
2

1
2

0
0 0 0 1

2

0 0 0 1
2

1
2

1
2

1
2

0

 (26)

Show, that such a matrix of conditional probabilities does not transfer information. What is the value
of the LHS of the CHSH inequality for this matrix? How the matrix should be modi�ed, to obtain a
matrix where information transfer is possible?

The Bell inequalities are derived under the assumption of existence of a common probability space
for all random variables, what is one of the axioms of the classical probability theory (Komogorov
axioms). Violating Bell inequalities in quantum mechanics shows, that the quantum theory does not
satisfy Kolmogorov axioms - is nonkolmogorovian.

Teleportation

Assume, that parties A and B share a pure entangled state of two qubits represented by a vector
1√
2

(|00〉+ |11〉) and the party A possess a qubit in a state α |0〉+ β |1〉. A performs on two possesed
qubits a joint measurement in the magical basis :

1√
2

(|00〉+ |11〉)

1√
2

(|00〉 − |11〉)

1√
2

(|01〉+ |10〉)

1√
2

(|01〉 − |10〉)

With equal probabilities, after the measurement, the state of qubit possesed by B will be:

α |0〉+ β |1〉
α |0〉 − β |1〉
α |1〉+ β |0〉
α |1〉 − β |0〉

A informs about obtained result of measurement to B (sending 2 bits), who applying a proper initary
transformation transforms the state of the possesed qubit to the initial state of qubit possesed by
A. The entangled state shared between A and B is destroyed and A possess now two qubits in an
entangled state represented by one of the vectors from the magical basis. To send one qubit one has
to spend two bits and one pair in a maximally entangled state.

Exercise 30 Show, that states from the magical basis of two qubits can be transformed to each
other by a local unitary transformation.

Exercise 31 How the magical basis of two qutrits looks like? How to teleport a qutrit state using
a maximally entangled state of two qutrits?
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Exercise 32 How to teleport a qutrit state using two pairs of entangled qubits?

If we try to teleport a state using a pair in a pure state, not maximally entangled, then we get a
transmission error, not possible to correct.

Exercise 33 Let the receiver and the sender share a pair in the pure state γ |00〉 + δ |11〉, where
γ ≥ δ. Construct a POVM, which with the maximal probability will transform the post-measurement
(unnormalised) state αγ |00〉 + βδ |11〉) to the input state : (α |00〉 + β |11〉)/

√
2. What is the value

of the maximal probability? Repear the calculations for other post-measurement states. What is the
total probability of a correct teleportation?

Measures and criteria of entanglement

Entanglement measures

LOCC The LOCC operations are operations on states of composed system, where we can use local
unitary operations and classical communication. An operation to be performed on a local subsystem
can be conditioned by a result of measurement on an other subsystem, and vice-versa. We can in this
way sequentially send results of local measurements and use these values to condition local operations
performed on a state. This class is hard to characterise. Any well-de�ned measure of entanglement
should be monotonic w.r. to LOCC, i.e. after performing such an operation, the considered measure
of entanglement cannot grow.

Destilation and formation of entanglement Assume, that there exists a distillation protocol
(a LOCC operation), which lets from N copies of non-maximally entangled states to createM copies
of maximally entangled states:

ρ⊗N
Distilation−−−−−−→
←−−−−−−
Formation

(
|00〉+ |11〉√

2

)⊗M
⊗ ... (27)

For a given N let us maximise the ratio M/N over all possible LOCC protocols, and then go with
N →∞. The obtained number is a measure of �quality� (from the point of view of applications) of
entanglement of the input state, called entanglement of distilation (EOD).

On the other side, one can ask how many pairs M of maximally entangled states one has to use to
create N copies of a given state. We minimise the ratio M/N over all possible LOCC protocols and
we go with N →∞. The obtained number is called entanglement of formation (EOF).

For two-particle pure state, EOF is equal to EOD and both measures are equal to von Neumann
entropy of a partial trace (Shannon entropy of the spectrum of the state). It is the only properly
de�ned entanglement measure for pure states. For mixed states there is no uniquely de�ned measure
of entanglement and EOD ≤ EOF. There exists entangled states from which it is not possible to
distill pure maximally entangled states. Such entanglement is called bound entanglement.

In the special case of two qubits there exists a formula for EOF of a state. Let us de�ne for a state a
quantity concurrence by the formula: C(ρ) = max{0, 2λmax − 1}, where λmax denotes the maximal
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eigenvalue of a hermitian matrix:
√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√
ρ. For all states this number is in the

range [0, 1]. It means, that the pair of numbers:

1 +
√

1− C(ρ)2

2
,

1−
√

1− C(ρ)2

2
(28)

is a probability distribution. The EOF of ρ is the Shannon entropy of this distribution:

EOF =
1 +

√
1− C(ρ)2

2
log2

1 +
√

1− C(ρ)2

2
+

1−
√

1− C(ρ)2

2
log2

1−
√

1− C(ρ)2

2
. (29)

Another measure of entanglement is negativity : N (ρ) = 1
2
(||ρΓ||1 − 1) (where || · ||1 denotes trace

norm and ρΓ is ρ after partial transposition) and logarithmic negativity : EN(ρ) = log2 ||ρΓ||1. The
last one is the lower bound for EOD.

Partial transposition criterion

If a state is separable, then its partial transposition (I⊗T )ρ is semi-positive de�nite. States detected
by the partial transposition are called NPT (negative partial transposition).

Exercise 34 Show, that partial transposition criterion detect all pure entangled states.

In dimensions 2×2, 2×3, 3×2 partial transposition detect all entangled states. In higher dimensions
there exist entangled (mixed) states with positive partial transposition (PPT).

Exercise 35 Find the subset of separable states in the simplex of states diagonal in the Bell basis
of two qubits.

PPT entanglement PPT (of positive partial transposition) entangled states we will �nd already
for two qutrits. One can construct an example of such states using unextendible product bases
(UPB): Construct a regular pentagon on the plane R2 centered at 0. To the vectors pointing to its
vertices let's add a z-component of such value that any two vectors pointing to non-neighbouring
vertices are orthogonal. We will obtain a set of vectors in R3 ⊂ C3. Now let us consider a set of 5
vectors in C2 ⊗ C3 ⊃ {ψi ⊗ ψ2i}. Let us observe, that there exists no product vector orthogonal to
all of them, hence the orthogonal complement of the subspace spanned by them is a 4-dimensional
subspace containing no non-zero product vector ⇒ the normalised projector onto this subspace is
an entangled state. This state is invariant under the action of partial transposition, hence is a PPT
entangled state.

LOCC operations preserve the positivity of the partial transposition. It follows, that from a PPT
entangled state no maximally entangled pairs can be distilled. Entanglement of a PPT state is a
bound entanglement. The following conditions hold:
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inequalities
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Positive maps criterion

The partial transposition criterion is an important, but a special case of positive maps criterion.

If Λ is a positive map, then for a product state ρ⊗ σ, (I ⊗ Λ)(ρ⊗ σ) is a positive operator as well.
Hence this property holds for all separable states. We know, that if Λ is not completely positive,
then (I ⊗ Λ) is not positive, i.e. acting on a certain state will give a non-positive operator. In this
way it detects an entanglement in the state. The Horodecki's theorem says, that for any entangled
state there exists a positive map detecting it.

One could detect entanglement in a state if all positive maps were known. It is a hard task. En
example of P, not CP map is the transposition. For subsystems dimensions 2 × 2 and 2 × 3 trans-
position is (up to composition with a positive map an addition of a CP map) the only positive, not
CP map:

Φ : B(Cd1)→ B(Cd1). d1d2 ≤ 6⇒

(
Φ ∈ P ⇐⇒ Φ(ρ) =

∑
i

Aiρ
TA†i +

∑
i

BiρB
†
i

)
(30)

An example of a P, not CP map not originating in transposition, is the Choi map, de�ned in the
standart basis:

CH(|ei〉 〈ei|) = |ei〉 〈ei|+ |ei+1〉 〈ei+1|
CH(|ei〉 〈ej|) = − |ei〉 〈ej| , dla i 6= j (31)

This map is able to detect PPT entangled states.

Exercise 36 Find the map dual to the Choi map

The realignment criterion

Another important entanglement criterion os the realignment or cross-norm criterion. In this criterion
we construct a new matrix: R(ρ)ij,kl = ρik,jl. We calculate the trace norm of this matrix (sum of
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its singular values). It cannot exceed 1 for a separable state. Equivalently, we calculate the sum of
square roots of eigenvalues of the Gramm matrix of blocks of density matrix.

Proof: It is easy to check, that for a pure separable state the norm is equal 1. Norm is a convex
functional (triangle inequality), hence for a mixed separable state the norm should be ≤ 1 �

Exercise 37 For two-parameter family of trace-one operators:

ρ =
1

3(1 + a+ b)



1 · · · 1 · · · 1
· a · · · · · · ·
· · b · · · · · ·
· · · b · · · · ·
1 · · · 1 · · · 1
· · · · · a · · ·
· · · · · · a · ·
· · · · · · · b ·
1 · · · 1 · · · 1


(32)

Draw on the ab-plane the areas of:

1. states

2. NPT states

3. states detected by the Choi map

4. states detected by the map dual to the Choi map

5. states detected by the realignment criterion

We have shown, that if a < 1 or b < 1, then the state is entangled. In this family we can show, that
the remaining states (if a ≥ 1 and b ≥ 1) are separable. Let us act on the state ρ with an operation
D ⊗D∗, where D is a diagonal unitary matrix:

D =

 eiφ0 · ·
· eiφ1 ·
· · eiφ2

 (33)

and next integrate the above expression over the angles φ0, φ1, φ2. Let us denote such operation on
a state ρ as Φ:

Φ(ρ) =

∫
D ⊗D∗ρ(D ⊗D∗)†dφ0dφ1dφ2 (34)

Such a map preserves entries on diagonal and the o�-diagonal entries in places where there is 1 in
the formula (32), and the rest of the entries are zeroed (hence it is a projector). Moreover, for a
separable ρ, Φ(ρ) will be separable. Observe, that the state (32) can be obtained by acting with the
map Φ on the the same state but having all zeros replaced by ones. Such state (being a sum of a
diagonal matrix and a projector on a product vector) is separable.
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Entanglement witnesses

To a map Λ : B(Cd1)→ B(Cd2) one can prescribe an observable W ∈ B(Cd1 ⊗ Cd2) by the formula:

W = (Id1 ⊗ Λ) |Ψ〉 〈Ψ| , (35)

where Ψ = 1√
d1
〈
∑

i |ii〉〉). This map maps completely positive maps to semi-positive operators, and
positive maps to maps semi-positive on product vectors. P but no CP maps are mapped to so-called
entangled witnesses - observables having non-negative expected value in separable states but negative
in certain entangled states. To detect all the states detected by Λ one needs the whole orbit (of local
unitary group) of entanglement witnesses.

The above map is invertible and is called Jamioªkowski isomorphism.

Exercise 38 Show, that the CHSH inequality can be reformulated as the condition for positivity
of the expected value of an entanglement witness.

Exercise 39 Find witnesses related to the Choi map and the dual Choi map.

If a map Φ detects a state ρ, then in general the related witness will not detect this state. We �nd
a witness detecting a given entangled state in the following way: if (I ⊗ Φ)ρ 6≥ 0, then this matrix
possess a negative eigenvalue. Let us take a vector φ from the related eigensubspace. We have:
〈φ| (I ⊗Φ)ρ |φ〉 = 〈Pφ|(I ⊗ Φ)ρ〉HS < 0. One should take as an entanglement witness the observable
W = I ⊗ Φ#Pφ, where Φ# denotes conjugation in the space of operators.

An entanglement witness is an observable acting in the Hilbert space of a system composed of two
spatialy separated subsystems. To be measured, it should be decomposed into e sum of tensor
products of local observables. Measuring procedure is similar to measuring the CHSH inequality
(which is a special case of entanglement witness).

Exercise 40 For a witness related to the Choi map �nd a decomposition into a sum of tensor
products of local observables.

Set of states in higher dimensions and the Gurvits ball

The set of states of qubit is a ball of a radius 1/
√

2 around the maximally mixed state. In arbirtary
dimension, a ball circumscribed on the set of states has a radius

√
(d− 1)/d, and a ball inscribed

has a radius 1/
√
d(d− 1). In dimension 2 these balls coincide and the set of states is itself a ball.

In higher dimensions its boundary lays between spheres. One can prove, that the ball inscribed in
the set of states contains only separable states. This ball is called the Gurvits ball. Any ball around
the maximally mixed state of a bigger radius will already contain entangled states.
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Quantum algorithms

Classical Shor algorithm

Let us consider an exponential function ax from Z to a number �eld ZN . We call a rank of an element
a period of this fucntion, i.e. the smallest positive number r such, that:

ar mod N = 1

One of the three possibilities can take place:

� 2 6 |r

� 2 |r ∧ ar/2 mod N = −1

� 2 |r ∧ ar/2 mod N 6= −1

We are interested in the last case. Let us introduce a notation x = ar/2. While x2 mod N = 1, hence
x2−1 = (x+ 1)(x−1) mod N = 0, it means that the product is divisible by N . None of the factors
is divisible by N - the �rst because r is the rank of a, not r/2, the second from the assumption that
the third case takes place. Hence N is a composite number, and we can �nd its factor calculating
NWD(x+ 1, N) (algorithm is e�ective).

Success depend on choice of a. It turns out, that the probability of tossing such an a (that the third
case in the list holds) is equal to 1 − 2−m ≥ 3/4, where m is the numer of prime factors in the
decomposition. Probability of not �nding decreases exponentially with the number of tries. It is a
probabilistic algorithm. Summarising, its steps go as follows:

1. Toss a randomly from the range {1, N − 1}. If NWD(a,N) 6= 1, we have found a factor,
otherwise we go further.

2. Determine the rank of a

3. If r is odd or ar/2 mod N = −1, return to the point 2, otherwise go further

4. factor is NWD(ar/2, N).

Quantum Shor algorithm

Classical Shor algorithm, despite simple implementation and fast decreasing probability of failure,
has no practical meaning. The di�culty is hidden in the time consumption of determining the rank
of an element. We improve this step of the algorithm calculating it by a quantum computer.

We need a quantum register in which we are able to write the number N2, hence of the length K,
where N2 < Q = 2K . The Hilbert space of the input register has to be at least N -dimensional
(register of the length dlog2Ne). The initial state of the both registers is |0〉 ⊗ |0〉.

We perform a discrete Fourier transform on the input register

UF : |q〉 7→ 1√
Q

Q−1∑
q′=0

exp(2πiq′q/Q) |q′〉 . (36)
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The input register contains now an equal superposition of all basis states and the output register
remains unchanged: 1√

Q

∑Q−1
q=0 |q〉 ⊗ |0〉 . Now we perform on both registers the function |q〉 ⊗ |0〉 →

|q〉 ⊗ |aq mod N〉 and obtain 1√
Q

∑Q−1
q=0 |q〉 ⊗ |aq mod N〉.

Next we perform the Fourier transform on the input register:
Q−1

∑Q−1
q=0

∑Q−1
q′=0 exp(2πiqq′/Q) |q〉 ⊗

∣∣aq′ mod N
〉
and then a measurement in the standard (com-

putational) basis. The probability of obtaining the result q0 is equal:

p(q0) =
1

Q2

∑
q

∑
q′

exp(2πiq0q
′/Q) exp(−2πiq0q/Q) 〈f(q)|f(q′)〉 (37)

The scalar product is equal to 1 if q − q′ is a multiplicity of r and 0 otherwise. Hence we obtain:

p(q0) =
1

Q2

r−1∑
j=0

bQ−1−j
r
c∑

µ=0

bQ−1−j
r
c∑

ν=0

exp(2πiq0(µr + j)/Q) exp(−2πiq0(νr + j)/Q)

=
1

Q2

r−1∑
j=0

∣∣∣∣∣∣
bQ−1−j

r
c∑

µ=0

exp(2πiq0µr/Q)

∣∣∣∣∣∣
2

=

(Q mod r) sin2
(
πq0r

(
bQ−1

r
c+ 1

)
/Q
)

+ (r −Q mod r) sin2
(
πq0rbQ−1

r
c/Q

)
Q2 sin (πq0r/Q)

The function has a peak if q0r/Q ∈ Z:

Measuring the �rst register gives (with high probability) a certain number y, such that y/Q is close
to a multiplicity of 1/r. There exists a Istnieje metoda uªamków ªa«cuchowych, która pozwala z
wyniku jednego pomiaru odzyska¢ r.
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Exponential function One realises an exponential function by power by squaring algorithm:

...
. . . . . .

x 7→ x2

mod N
· · · . . .

...

x 7→ x2

mod N

1

· · ·

...

x 7→
xy modN
if c==1 else

x
c

x1

x2

xQ

y1 y2 yQ · · ·

...

x 7→
xy modN
if c==1 else

x
c

x1

x2

xQ

y1 y2 yQ

· · ·

· · ·

...

x 7→
xy modN
if c==1 else

x
c

x1

x2

xQ

y1 y2 yQ

...
· · ·

b
as
e

ex
p
on
en
t

The circuit is composed of two types of gates. Gates in the upper row realises squaring modulo N .
Gates in the lower row multiply their input registers (the left and the up) modulo N if the control
bit (on the bottom) is set to 1 and release the the left register to the output otherwise. Observe,
that there are 2Q− 1 gates, hence the number of operations grows linearly with the bit length of the
exponent (logarithmically with its size).

Fourier transform Performing the Fourier transform is multiplying the input vector by a matrix
of the entries exp (2πi · kl/Q) /Q. Observe, that calculating yk one gets:

yk =
1

Q

Q−1∑
l=0

exp (2πi · kl/Q)xl =
1

2

1

Q/2

Q/2−1∑
k=0

exp (2πi · kl/(Q/2))x2k

+
1

2

1

Q/2
exp(2πi · k/Q)

Q/2−1∑
k=0

exp (2πi · kl/(Q/2))x2k+1 (38)

- performing one multiplication we reduce the problem to calculation of two Fourier transforms in
dimension Q/2. (remember, that Q = 2K , hence the above step we will continue till Q = 1). In each
step we perform Q multiplications, using the results of Fourier transforms from the previous step.
There are K = log2Q steps. The whole procedure requires performing Q log2Q multiplications, not
Q2, as for a general matrix.

33



Let us rewrite the formula (36) using the binary representation k =
∑

l kl2
l of the number q′:

|j〉 7→2−K/2
1∑

k1=0

· · ·
1∑

kK=0

exp

(
2πi

2K
j

K−1∑
l=0

kl2
l

)
|kK−1 . . . k0〉

=2−K/2
1∑

k1=0

· · ·
1∑

kK=0

K−1⊗
l=0

exp
(
2πi2l−Kjkl

)
|kl〉

=2−K/2
K−1⊗
l=0

(
1∑

kl=0

exp
(
2πi2l−Kjkl

)
|kl〉

)
= 2−K/2

K−1⊗
l=0

(
|0〉+ exp

(
2πi2l−Kj

)
|1〉
)

(39)

The number 2l−Kj in the exponent is a rational number, using the binary expansion j =
∑K−1

ν=0 jν2
ν

of j one can rewrite its fractional part (the only relevant part of phase) as 0.jK−l−1 . . . j1 and �nally
obtain:

|j〉 7→|0〉+ exp (2πi0.jK−1 . . . j0) |1〉√
2

⊗ |0〉+ exp (2πi0.jK−2 . . . j0) |1〉√
2

⊗ · · ·⊗

|0〉+ exp (2πi0.j0) |1〉√
2

(40)

Les us de�ne the qubit gate Rk as

Rk =

[
1 0

0 e2πi2−k

]
(41)

One can de�ne its variant CRk - two-qubit gate:

CRk =


1

1
1

e2πi2−k

 (42)

Observe, that the vector (|0〉+ exp (πijK−1) |1〉)/
√

2 is obtained by acting the Hadamard gate on the
vector |jK−1〉:

H =
1√
2

[
1 1
1 −1

]
(43)

Phase shift by a factor exp (2πi · 0.jK−1jK−2 . . . j0) can be written as a sequence of gates CR2 ·
CR3 . . . CRK controlled by bits from K−2-nd do 0-th acting on a vector (|0〉+exp (πijK−1) |1〉)/

√
2.

H

CR2H

CR3CR2H

CRKCR2H

|j0〉

|j1〉

|j2〉

...

|jK〉 · · ·

· · ·

· · ·

· · ·
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NMR Computer

One of the implementations of a quantum computer operating on . 10 qubits ai an NMR computer.
Qubits are spins 1/2 of atom nuclei in a molecule. Operations are performed on a macroscopic sample
of ∼ 1020 molecules. Because of that the measurements that we perform give us immediately the
mean value of an observable in a mixed state. Such measurement does not destroy the state and
non-commuting observables can be measured simultaneously.

A sample is placed is a strong magnetic �eld ∼ 10T along the z axis, which orients the nuclear
spins. For each nucleus the equation ~γB0 = ~ω0 de�nes the Larmor frequency, depending on the
gyromagnetic coe�cient γ, which is di�erent for di�erent nuclei:

nucleus H C F P N
γ [MHz/T] 42.6 10.7 40.0 17.4 3.1

Larmor frequencies of nuclei in a molecule can have an additional contribution from chemical shifts -
interaction of nuclear spins with electronic angular momentum (if two atoms pass over to each other
under an action of the symmetry group of the particle, will have the same value of the chemical
shift). For B0 ∼ 10T , energy of thermal vibrations is 4-5 orders of magnitude higher than energy of
the spin in the magnetic �eld.

We also apply an alternating magnetic �eld long the x axis and using it we operate on the states of
nuclei. The second coil in the same direction is for reading.

In a molecule as qubits one can treat this nuclei which will be separately addressable by magnetic
�eld pulses, i.e. these, which have their resonant frequencies separated from other nuclear spins
frequencies (the more such a frequency is separated, the less time τ is necessary to perform an
operation). In such a way we construct one-qubit operations. many-qubit operations are operations
generated by the free evolution Hamiltonian, which depends on the strength J of coupling between
nuclei. This time has to be long enough, to treat coupling between nuclei as negligible. It leads to
the condition:

δω0 �
1

τ
� J/~ (44)

The decoherence scale has to be greater than J/~. It gives some hints, which molecules are appro-
priate for calculations and how many atoms we can use. Molecules used in calculations include:

� 2 qubits: chloroform (qubits: H nd C)

� 3 qubits: trichloroethylene (qubits: H ND C)
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� 4 qubits: alanine (qubits: 1 × H and 3 × C)

� 7 qubits: crotonic acid (qubits: 2 × H, 4 × C, 1 × H3)

� 12 qubits + qutrit: histidine (qubits: 3 × H, 3 × N, 6 × C, two indistinguishable hydrogen
atoms establish a singlet and a qutrit)

(carbon 12C has zero nuclear spin, in all the above molecules we have to have carbon 13C atoms).

Hamiltonian of nuclear spins in the molecule is

H =
~
2

∑
i

ωiσ
(i)
z +

∑
i<j

Jij
∑
k

σ
(i)
k ⊗ σ

(j)
k , (45)

where σ
(i)
k denotes

⊗n
i=1 I z I on the k-th place changed to σk.

During the steering impulse of the length τ and angular velocity ωrf one qubit is addressed, and at
the time the nuclei coupling is negligible. The Hamiltonian of a single spin is of the form:

H(t) = −~ωz
1

2
σz + ~ωx cos(ωrf t− φ)

1

2
σx (46)

Lets pass to the interaction picture ρ(t)→ ρR(t) = U †R(t)ρ(t)UR(t), gdzie UR(t) = exp(iωzt
1
2
σz):

HR(t) = U †RHUR − i~U
†
RU̇R = ~/2

[
0 ωxe

−iω0t cos(φ− ωrf t)
ωxe

iω0t cos(φ− ωrf t) 0

]
(47)
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If a frequency of the steering signal is equal to the Larmor frequency, then the Hamiltonian in the
interaction picture is of the form:

HR =
1

2
~ωx(cosφσx + sinφσy) (48)

Terms oscillating with angular velocity 2ω0 have been omitted, because at the impulse duration they
averages to 0 (RWA).

For two non-interacting spins the Hamiltonian is of the form:

H = −~ωz1
1

2
σz ⊗ I − ~ωz2

1

2
I ⊗ σz + J12

∑
k

σk ⊗ σk

+Bx,1 cos(ωrf1t− φ1)(γ1
1

2
σx ⊗ I + γ2I ⊗

1

2
σx)

+Bx,2 cos(ωrf2t− φ2)(γ1
1

2
σx ⊗ I + γ2I ⊗

1

2
σx) (49)

we pass to the interaction picture by the transformation UR = exp(iωz1t
1
2
σz) ⊗ exp(iωz2t

1
2
σz). In

the considered time scale (∆ωxτ � 1) terms oscillating with angular velocity ∆ωx averages and the
Hamiltonian will take the form:

HR =
1

4
J12σz ⊗ σz +

1

2
ωx,1(cosφ1σx ⊗ I + sinφ1σy ⊗ I)

+
1

2
ωx,2(cosφ2I ⊗ σx + sinφ2I ⊗ σy),

where ωx,i = 1
2
γiBx,i. For many qubits the Hamiltonian in the interaction picture has the form:

HR =
1

4

∑
i<j

Jijσ
(i)
z ⊗ σ(j)

z +
1

2

∑
i

ωx,i(cosφiσ
(i)
x + sinφiσ

(i)
y ) (50)

One-qubit gates We have two-parameter family of operations from SU(2):

e
i
2
θ(cosφσx+sinφσy) =

[
cos θ

2
−i sin θ

2
e−iφ

−i sin θ
2
eiφ cos θ

2

]
(51)

We cannot implement in this way a rotation around z axis, but one can obtain it composing the bove
operations:

e−iασz/2 = e−i
π
4
σxe−iα

1
2
σyei

π
4
σx (52)

Choosing phases and duration times of steering impulses one can perform any SU(2) operation on
each qubit separately.

Two-qubit gates Any many-qubit operation one can perform using CNOT gates. To realise a
CNOT gate one has to add to the free evolution the couplings between all pairs of qubits except the
one we are interested in. We realise it by the refocusing technique. Since now let us assume, that we
have one coupling σz ⊗ σz.
Exercise 41 Show, that:

exp
(
−iπ

4
σz ⊗ I

)
exp

(
i
π

4
I ⊗ σz

)
exp

(
−iπ

4
I ⊗ σx

)

exp
(
−iπ

4
σz ⊗ σz

)
exp

(
−iπ

4
I ⊗ σy

)
= exp

(
−iπ

4

)
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

 ∼ CNOT
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Exercise 42 Show, that:

I ⊗ exp(−iπ
4
σx) · exp

(
−iπ

4
σz ⊗ I

)
exp

(
i
π

4
I ⊗ σz

)
exp

(
−i π

2k+1
I ⊗ σx

)
exp

(
−iπ

4
σz ⊗ σz

)

exp
(
−i π

2k+1
I ⊗ σy

)
I ⊗ exp(i

π

4
σx) = exp

(
−iπ

4

)
1 0 0 0
0 1 0 0

0 0 eiπ/2
k

0

0 0 0 e−iπ/2
k

 ∼ CRk

E�ective pure states As we have mentioned, even for very strong �elds and moderately low
temperatures, the thermal state of a nuclear spin is close to the maximally mixed state. We do not
enhance its purity, but we rewrite it in the form (1− ε)ρmax + ε|Ψ〉〈Ψ|. The maximally mixed state
is invariant with respect to all operations and gives the equal background level at the measurement.

38



Quntum tomography and estimation theory

SIC POVMs

There exist d2 lines in Cd where the angles between lines in each pair are equal. It is maximal
cardinality of a set of such lines and it is assumed (Zauner conjecture), that such a set exists for any
d. One can provide a construction till dimension 21 and a number of higher dimensions, numerically
till 151 and few higher.

Projectors on such vectors sums to dId, and the HS products of two distinct projectors are always
equal. For qubit, the projectors form a regular tetrahedron inscribed in Bloch sphere:

z

x

y

Exercise 43 Find matrices of the above projectors

Answer

[
1 0
0 0

]
1

3

[
1
√

2√
2 2

]
1

3

[
1

√
2ei

2π
3√

2ei
−2π
3 2

]
1

3

[
1

√
2e−i

2π
3√

2ei
2π
3 2

]

Such projectors sums to 2I2 (dId in general case). Scaling them by a factor 1
2
, we get a POVM called

SIC POVM (symmetric, informationally complete).

This POVM gives four outcomes, let us denote them oznaczmy je by 0, . . . , 3. Measuring a density
matrix ρ = 1

2
(I + xσx + yσy + zσz) we get the following probabilities of outcomes:

p0

p1

p2

p3

 =
1

4
1 +

1

12


0 0 3

2
√

2 0 −1

−
√

2
√

6 −1

−
√

2 −
√

6 −1


 x
y
z

 (53)

Observe, that the columns of the above matrix are orthogonal to each other. The above formula is an
isometric embedding of the Bloch ball into a three-dimensional simplex of four-outcome probability
distributions.

Exercise 44 Find the formulas for x, y, z.

Estimation of distribution parameters

A result of a length-n series of K-outcome measurements is a n-tuple of K numbers, summing to one
and denoting probabilities of obtaining the subsequent outcomes. They are estimators of the real
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measurements - the parameters of the probability distribution. We would like to know, how well this
estimators estimate the probability distribution parameters.

The probability distribution in the simplex of distribution parameters, under the condition that a
given series of outcomes has been obtained, where cardinalities of sets of subsequent outcomes are
ni, is equal:

P (p1, p2, . . . , pK) ∼
K∏
i=1

pnii (54)

(up to a normalising factor expressed by Γ functions) This function attains its maximum, as we
expect in the point ~pmax = 1

n
~n, but the expected values of distribution parameters are: E(pi) = ni+1

n+K
.

The elements of covariance matrix are:

V ar(pi) =
(ni + 1)(n+K − ni − 1)

(n+K)2(n+K + 1)
(55)

Cov(pi, pj) = − (ni + 1)(nj + 1)

(n+K)2(n+K + 1)
(56)

this distribution is known as the Dirichlet distribution. Using the above formulas one can control the
covariance matrix of state parameters obtained in the tomography process.

40


