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Abstract
In a recent study of radiative reactions in the He+(2S) + H2(X

1Σ+
g ; v=0, j) collisions at subther-

mal energies [F. Mruga la and W. P. Kraemer, J. Chem. Phys. 138, 104315 (2005)], a model was

developed that describes rigorously translational, vibrational, and rotational nuclear motions of the

reactant system and approximately, through a negative-imaginary-valued optical potential, the global

effect of spontaneous emission — the quenching of the He+ ions. The model is applied here to describe

the quenching in collisions with D2 molecules. The collisions on the 3-dimensional complex molecu-

lar+optical potential surface are treated within the close-coupling approach. The coupled equations in

the atom-diatom translational coordinate, previously formulated and solved in the standard diabatic

basis, are transformed here to a ro-vibrational adiabatic representation. The transformed equations

are solved with the help of the log-derivative propagation scheme combined with the Smooth-Variable-

Discretization technique to account for the pertinent nonadiabatic couplings. Due to faster conver-

gence with respect to the adiabatic basis size, the present implementation of the close-coupling to

the He++D2 (H2) collisions is about 10 times more efficient computationally. The calculations are

carried out for the He+ + ortho-D2 and He+ + para-D2 systems in the energy ranges from 10−6 up

to 44.6 meV above the respective lowest, v=0 j=0 and j=1, thresholds. Above 1400 resonances in

these ranges are found and characterized in terms of their energy positions and widths, dissociative

and radiative. Most of the resonances show up as sharp peaks in the reaction yield functions (the

characteristics equivalent to but more convenient than cross-sections). By averaging these functions

with appropriate energy distributions, the rate constants for the quenching of the He+ ions from mix-

tures with equilibrium and normal D2 gases (k and knrm) are determined as functions of temperature

(T ) in the range up 100 K. The values of k (knrm), in the unit of 10−15 cm3s−1, are: 0.39 (0.41) in

the T=0 limit, 49.7 (43.9) at the maximum near 20 K, and 33.6 (33.5) at 100 K. Using results of the

previous study, effects of the H→D substitution on the reaction rate are resolved and demonstrated

to be qualitatively different in ultracold (T<0.1 mK) and subthermal (T>10 K) ranges. In the first

range, the rate constants k (knrm) become smaller, by factors of 0.86 (0.57) at 0 K. In the subthermal

range, the isotopic substitution enhances the rate constants by factors of 1.2−1.5 in the mixtures

with normal population of ortho- and para- components and by somewhat smaller factors (maximally

1.37) — in the fully equilibrium mixtures. This enhancement is entirely due to a larger number of

rotational Feshbach resonances contributing to the reaction in the heavier system.
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A. THEORY

The theory has been described in detail in papers on the radiative reactions in the He++H2

system, Refs. 1–3. Application to the He++D2 system does not require any essential modifica-
tion. Still, some definitions and formulas need to be quoted in order to present comprehensibly
the results of the application. Moreover, a refinement in the practical implementation of the
theory has been achieved which seems worthy of a description here. More specifically, exploited
in the present work is the 3D optical potential model of spontaneous emission in atom+diatom
systems, proposed in Ref. 3. The model is implemented using close-coupling approximation in
a ro-vibrational adiabatic representation.

The ‘trad’ (total radiative) reaction in the He++D2 gas mixture of temperature T is de-
scribed by the rate equation

− d

dt
nHe+ = k(T )nD2 nHe+ (1)

in which n denotes the number density of the subscribed species and k(T ) is the rate constant
(function). Collisions with ortho-D2 and para-D2 components (nuclear spin values I=0, 2 and
I=1, respectively) make two separate contributions to the rate constant,

k(T ) =
∑

c=p(ara),o(rtho)

kc(T ) (2)

and each contribution kc is an infinite sum of terms coming from partial-wave resolution of
stationary scattering states of the colliding pair He++c-D2,

kc(T ) =
∑

J

∑

p=1,−1

(2J+1) kc(T ; J, p) . (3)

J is the total angular momentum quantum number and p — the spectroscopic parity. The
total angular momentum accounts for rotations of c-D2 and for rotations of He+ relative to
c-D2. The quantum numbers describing these rotations are denoted with j and l, where j
may take only even (odd) values for c=o (p) and values of l allowed for given J and p are:
lmin, lmin+2, . . . , lmax with lmin=|J−j|+1−p

2
and lmax=J+j− 1−p

2
.

The partial rate constant kc(T ; J, p) is obtained through appropriate averaging,

kc(T ; J, p) =

∫

dE P c(E, T )
∂

∂E
Rc(E; J, p) , (4)

of the energy differential rate function

∂

∂E
Rc(E; J, p) =

1

2π~
ptrad, c(E; J, p)

in which ptrad, c(E; J, p), called the partial reaction yield function4, is the probability sum of
all radiative transitions possible in the He++c-D2 collisions with definite J and p values at a
given total energy E. The energy E is the sum of energy of relative translational motion and of
vibration-rotation energy (εvj) of the c-D2 subunit. Thus, the function ptrad, c(E; J, p) accounts
for transitions from all the states |E, J, p; v j l〉 (with J and p fixed) which are related to open
v j channels in collisions at the energy E,

ptrad, c(E; J, p)=
∑

v

∑

j(c)

ptradvj (E; J, p) Θ(E−εvj) with ptradvj (E; J, p)=
∑

l

ptradvjl (E; J, p) , (5)

where j(c) denotes values of definite parity, even (odd) for c=o (p), Θ is the Heaviside step
function, and the sum

∑

l

is over every second value from the range [lmin(J, j, p), lmax(J, j, p)].



The energy density of states of the colliding system is highly non-uniform; numerous quasi-
bound states of the complex He+−c-D2 (rotational Feshbach or shape resonances) are formed.
This is reflected in the energy dependence of the partial yield functions; they become sums of
two distinct terms

ptrad,c(E; J, p) = ptrad,cbck (E; J, p) +
∑

n

Γtrad,Jp
n ΓJp

n

(E−Eres,Jp
n )2 + (Γtrad,Jp

n +ΓJp
n )2/4

. (6)

The term ptrad,cbck (E; J, p), varying slowly with E, describes radiative transitions from ‘flat’ con-
tinuum, and the sum of Lorentz functions describes transitions from the resonances. The
radiative transitions from a given resonance (n, J, p) are accounted for through the parameter
(radiative width) Γtrad,Jp

n and transitions back to the He+ and D2 fragments — through the
dissociative width ΓJp

n .
Upon inserting Eqs. (4) and (5) into Eq. (3) and rearranging the involved summations and

integration, the following concise formula is obtained for the rate constants functions kc(T )

kc(T ) =
1

2π~

∫

dE P c(E, T ) ptrad,c(E) , (7)

where ptrad,c(E) is the total radiative reaction yield4 in the He++c-D2 collisions at the energy
E,

ptrad,c(E) =
∑

p

∑

J

(2J+1) ptrad,c(E; J, p) =
∑

v

∑

j(c)

ptradvj (E) . (8)

ptradvj (E) defined by the second equality and Eq. (5) describes the part of the reaction yield
which comes from the initial vj state of the D2 reactants. Correspondingly, the rate constants
kc(T ) can be resolved into components kc

vj(T ) and kc
vj(T ; J, p) being the averages (7) of the

yield functions ptrad,cvj (E) and ptrad,cvj (E; J, p), respectively.

The population factor P c(E, T ) in Eq. (4) and (7) appropriate for the He++D2 gas at
thermal equilibrium is

P c(E, T ) =
gc

Z(T )

( 2π~2

µkBT

)3/2

exp(−E/kBT ) , (9)

where Z(T )=
∑

c

gcZc(T ) with gc=6 (3) for c=o (p),

Zo(T ) =
∑

v

∑

j even

(2j+1) exp(−εvj/kBT ) and Zp(T ) = . . .
∑

j odd

. . . ,

µ is the reduced mass of the He++D2 system, and kB is the Boltzmann constant.
Of interest is also the rate constant function k(T ) for the quenching of the He+ ions from

mixtures with ‘normal’ deuterium gas characterized by fixed go:gp (i.e. non-equilibrium) rela-
tive concentration of ortho- and para- components. For such mixtures, the averaging (4) should
be done with the population factor

P c
nrm(E, T ) =

gc

go+gp
cP (E, T ) , (10)

where cP (E, T ) describes mixtures with pure c-component of D2 and differs from the factor of
Eq. (9) by that 1/Zc(T ) appears in place of gc/Z(T ).

To distinguish between the different kinds of mixtures, the symbols kc
nrm and ck are intro-

duced for the rate constant obtained when the factor P c in Eq. (4) is replaced with P c
nrm and

cP , respectively.



3D OPTICAL POTENTIAL MODEL

The model serves the determination of the partial yield functions ptrad(E; J, p) (the index ‘c’ is
hereafter omitted) and consists in using the Hamiltonian

optH(r,R) = H(r,R) + optV (r, R, θ) (11)

which describes rigorously the translational, vibrational, and rotational nuclear motions of the
He++D2 system and approximately, through the optical potential optV , the global effect of
spontaneous emission, i.e. the quenching of the He+ ions. r and R are the Jacobi vectors
which join, respectively, the deuterons and the center-of-mass of the deuterons with the He
nucleus, r and R denote the lengths of these vectors and θ — the angle between them. The
reagent system moves on the potential energy surface (PES) of the first excited electronic state
of [HeHH]+, and the quenching process consists in transitions to the continuity of ro-vibro-
translational states on the ground electronic state of [HeHH]+. The PESes of the initial and

final electronic states are denoted hereafter by V
A

and V
X

, respectively. The radiative A→X
transitions are mediated by electric-dipole vector d(r,R). This vector obviously enters the
optical potential

optV (r, R, θ) = − ı

2

4

3c3~3
d2(r, R, θ) [∆V (r, R, θ)]3 . (12)

The second essential constituent of this potential, due to which it becomes local, is the average,
coordinate dependent energy of emitted photons, denoted here by ∆V (r, R, θ). The state-to-
state calculations of Ref. 3 on the RCT and RA reactions in the He++H2 system suggested the
following prescription to model this quantity

∆V (r, R, θ) = V
A

(r, R, θ) − V
A

(r, R→∞) − V
X

(r, R, θ)+∆E , (13)

where ∆E=74209 cm−1 is the separation between the thresholds He++D2(v=0, j=0) and
He+D+

2 (v′=0, j′=0). The value of ∆E is smaller by 298 cm−1 than the value for He++H2

which accounts for the smaller difference between the zero-point energies of D2 and D+
2 .

Let optSJp

No×No

(E) denote the S-matrix which characterizes (the asymptotic behavior of)

the partial scattering states of the Hamiltonian optH at energy E. Elements of the matrix,
[optSJp(E)]α′,α, give probability amplitudes of transitions between open α=(vjl) states. The
probabilities do not add to No i.e. optSJp in not unitary, because of the presence of the optical
potential. Thus, the required summarized radiative transition probability is

ptrad(E; J, p) = Tr
[

I− (optSJp)† optSJp(E)
]

. (14)

Because of smallness of the optical potential, the distorted-wave (DW) approximation can
be used

optSJp(E) ≈ SJp(E) − 2πı 〈Ψ(−)JMp(E)| optV |Ψ(+)JMp(E)〉 . (15)

Here Ψ
(±)JMp

1×No

(E):=
{

|E(±)
JMp, (vjl)i〉, i=1, . . . , No

}

is the vector of partial, energy-normalized

scattering states of the molecular Hamiltonian H , the subscripts (±) denote the out
in -going-wave

type of the states, M is the quantum number of the total angular momentum projection on
space-fixed z-axis, and SJp(E) is the related, unitary scattering matrix.
The resulting DW approximation to the function ptrad(E; J, p) is

ptrad,DW(E; J, p) = 4πıTr 〈Ψ(+)JMp(E)|optV |Ψ(+)JMp(E)〉 . (16)

As well-known10,11, the DW approximation may become formally inapplicable at resonances.
Molecular interactions responsible for dissociative decay of a resonance may become comparable



in strength or even (much) smaller than the interactions causing the radiative transitions.
However, this fact can easily be circumvented in practice, as originally indicated in Ref. 10.
It appears that accurate values of the resonance parameters (Eres, Γ, Γtrad) can be extracted
from profiles in ptrad,DW(E; J, p) even when the profiles themselves are evidently too high (an
explicit demonstration is provided in Ref. 3). So, taking these parameters, the proper resonance
profiles, i.e. the Lorentzians that appear in ptrad(E; J, p), Eq. (6), can be formed for the use in
the temperature averaging, Eq. (4). If Lorentzian of a given resonance (n, Jp) is not too broad,
the contribution to the partial rate constant kc(T ; J, p) can be approximated as12

kresn(T ; J, p) ≈ 1

~
P c(Eres

n , T ) Γtrad,Jp
n

ΓJp
n

Γtrad,Jp
n +ΓJp

n

. (17)

In the Close-Coupling Body-Fixed diabatic representation , the Hamiltonian
optH(r,R) takes the form

optHJp(R) = HJp(R) − ı
2
optWJp(R) with HJp(R) = − ~

2

2µ
I d2

dR2 + WJp(R) , (18)

where the bold-faced letters denote N×N matrices: I is the unit matrix, WJp(R) and
optWJp(R) are symmetric molecular and optical potential coupling matrices. Elements of the
matrices are labeled by composite index β=(v, j, λ) where λ denotes the absolute value of the
quantum number of projection of the angular momentum J (and j) on the axis Z aligned with
the vector R. Expressions for elements of the matrix WJp(R), originally given in Ref. 8, are
listed in numerous papers. Here this matrix is constructed with application of the dimension-
ality reducing approximation which is described in Sec.IV of Ref. 1. Formula for elements of
the matrix optWJp(R) valid when the approximation d2≈d2Z is acceptable, was given in Ref. 3,
Eqs. (31)-(33). Complete version of this formula, accounting for the second component of the
dipole vector in the three-nuclei plane, is given in Appendix 1.

The respective representation of scattering functions Ψ
(+)JMp(E; r,R) is given by the matrix

of radial functions F
(+)Jp

N×No

(E;R) which satisfies the coupled equations

[EI−HJp(R)]F
(+)Jp(E;R)=0 (19)

and appropriate boundary conditions at R=0 and at R=R∞ (→∞), namely, F
(+)Jp(E; 0)=0 and

UJp, T F
(+)Jp(E;R∞)UJp=O− Jp(E;R∞)−O+ Jp(E;R∞)SJp(E) with O±Jp built of the spher-

ical Riccati-Hankel functions. UJp denotes transformation from the body-fixed to the space-
fixed (SF) reference frame (details in Ref. 1).
Formula (16) becomes expressed in terms of integrals over R-coordinate

ptrad,DW(E; J, p) = 2π Tr 〈F(+)Jp(E)| optWJp|F(+)Jp(E)〉 . (20)

The CC-BF-diabatic representation is used for the following its features:

(i) it well displays the character of motion in the He+−D2 and He+−H2 complexes (cf.
Figs. A3-A5, A7 in Ref. 3). The index β=(v, j, λ) of the row of leading components of

the radial function matrix F
(+)Jp(E;R)UJp at E≈Eres,Jp

n gives three quantum numbers,
denoted as vr, b, and k, which characterize approximately the vibrational and rotational
motion of the diatom within the complex in state (n, J, p). The fourth approximate
quantum number, vR, describes atom-diatom vibrations. Thus, the formal index n,
enumerating only the quasi-bound states, can be replaced with the informative label
(vr b k vR).

(ii) it allows for the dimensionality reducing approximation mentioned at the beginning of
this section (exclusion of components with λ-value larger than a specified λmax).



Close-Coupling Space-Fixed adiabatic representation

The representation is constructed with the help of orthogonal transformation TJp(R) which
diagonalizes the coupling matrix WJp(R) of the Hamiltonian H in the CC-BF-diabatic repre-
sentation,

[TJp(R)]T WJp(R)TJp(R) = eJp(R) . (21)

The resulting ro-vibrational adiabatic potentials, on the diagonal of eJp(R), are labeled by
three numbers v, , and l which correlate with the quantum numbers v, j, and l, respectively,
since at large R’s the diagonalization becomes equivalent to rotation of the body-fixed reference
frame back to the space-fixed frame.

Obviously, non-adiabatic couplings

AJp(R) = [TJp(R)]T d
dR

TJp(R) and BJp(R) = [TJp(R)]T d2

dR2T
Jp(R)

appear in the respective matrix form of H ,

aH
Jp(R) = − ~2

2µ

[

I d2

dR2 + 2AJp(R) d
dR

+ BJp(R)
]

+ eJp(R) . (22)

The reason for introducing this ro-vibrational adiabatic representation is the expectation that
the dimension of the matrix aH

Jp(R) may substantially be reduced when solving the respective

coupled equations for radial components of the scattering functions Ψ
(+)JMp(E; r,R),

[

EI− aH
Jp(R)

]

M×M
f
(+)Jp(E;R)=0 , (23)

and accurate values of the partial yield functions ptrad,DW(E; J, p) will be obtained as

ptrad,DW(E; J, p) = 2π Tr 〈f (+)Jp(E)| optvJp| f (+)Jp(E)〉 (24)

with
optvJp(R)= [TJp(R)]T

M×N

optW
N×N

(R) TJp

N×M
(R) .

If not resorting to the DW approximation, one may expect to obtain accurate yield func-
tions ptrad(E; J, p) from solutions of the equations with the truncated Hamiltonian matrix
[opt

a
HJp(R)

]

M×M
,

{[

EI− aH
Jp(R)

]

M×M
+ ı

2
optvJp(R)

}

optf
(+)Jp(E;R)=0 . (25)

Obviously, having to solve smaller sets of (M) coupled equations in the adiabatic representa-
tion instead of the original (N) coupled equations in the diabatic representation would not yet
guarantee any substantial computational savings. Sharp structures due to avoided-crossings
of the adiabatic potentials occur in the non-adiabatic couplings, see Fig. A2, and very small
step size would be needed to pass them through in the course of solving the coupled equations.
However, one has now at choice the Smooth-Variable Discretization (SVD) technique13,14. This
technique avoids the usual difficulties with strongly localized non-adiabatic couplings though
requires somewhat bigger amount of information on input. Namely, it requires that overlap-
ping integrals between the adiabatic basis functions at neighboring R-points of a grid covering
the range R0(≈0) − R∞(→∞) be available. This information is available here in terms of the
matrices

OJp

M×M
(R;R) = [TJp(R)]T TJp

N×M
(R) . (26)



Appendix 1: CC-BF-diabatic representation of the 3D optical potential

for spontaneous emission in atom+diatom systems

The potential is represented by skew-Hermitian matrix optV(R)= ı
2
optWJp(R) whose elements

are:

[opt
WJp(R)

]

β̃,β
= δλ̃,λ

1
∑

Λ=−1

[opt
W

λp
Λ (R)

]

ṽ̃,vj
(27)

with optW
λp
Λ (R) =

4

3c3~3
[dλp

Λ (R)]T [∆Vλ+Λ(R)]3 dλp
Λ (R) , (28)

where
[

d
λp
Λ (R)

]

ṽ̃; vj
= fλ

Λ(p)
∑

L

〈ṽ̃|DL|Λ|(r, R)|vj〉
r
gλLΛ(̃, j) , (29)

gλLΛ(̃, j) = (−1)L
[(L+|Λ|)!

(L−|Λ|)!
]1/2

C(j L ̃;λΛ λ+Λ)C(̃ L j; 000) , (30)

fλ
0 (p) = 1 except for f 0

0 (−1)=0 ,

fλ
±1(p) =

{

1+p
2

for λ=0,∓1 ,

1√
2

for λ 6=0,∓1 ,
(31)

and
[

∆Vλ(R)
]

ṽ̃; vj
=

∑

L

〈ṽ̃|∆VL(r, R)|vj〉
r
gλL0(̃, j) . (32)

The functions DL|Λ|(r, R) for |Λ|=0, 1 come from the expansions into the Legendre functions
of the two components of the transition dipole vector in the three-nuclei plane,

dZ(r, R, θ)=
∑

L

DL0(r, R)PL(cos θ) and dX(r, R, θ)=
∑

L

DL1(r, R)P 1
L(cos θ) ,

and the functions ∆VL(r, R) come from the Legendre polynomial expansion of the coordinate
dependent average photon emission energy ∆V (r, R, θ), Eq. (13). The symbol C(. . . ; . . .) de-
notes Clebsh-Gordan coefficient.
It is worthy of noting that elements of the matrix optWJp(R) do not actually depend on the
quantum number J .



He++D2 versus He++H2

Fig. A1. Hamiltonian matrices in CC-BF-diabatic representation
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This figure illustrates: (i) the overall shape of diagonal and off-diagonal elements of the two coupling

matrices W and opt
W of the CC-BF-diabatic representation of the Hamiltonian optH , and (ii) how the

particular elements of the matrices that describe the He++D2 system differ from those describing the

lighter (≈1.5 times) He++H2 system. Two features of the optical potential elements should be noted: (i)

they all decline rapidly, the diagonal ones — by a factor of ∼70 within the short R-interval of 2 - 3.5 Å,

and (ii) they hardly change upon the isotopic substitution.



He++D2 versus He++H2

Fig. A2. Hamiltonian matrices in CC-SF-adiabatic representation
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This figure should give a feeling of how discouraging the idea of using the CC-SF-adiabatic representation

would be if the arising non-adiabatic couplings had to be explicitly dealt with.



B. CALCULATIONS

In the calculations on dynamics of the ‘trad’ reaction in the He++D2 collisions exactly the same
electronic structure input was used as in the previous calculations3 for the He++H2 system,

namely, the PESes V
A

(r, R, θ) and V
X

(r, R, θ) and the transition dipole function dZ(r, R, θ)
from Ref. 5.
The following were the consecutive steps of the calculations:

1. The determination of positions (Eres) and dissociative widths (Γ) of quasi-bound of the
complexes He+−o-D2 and He+−p-D2 in the energy range up to ∼360 cm−1 above their
lowest dissociation thresholds, v=0 j=0 (E=ε00=0) and j=1 (E=ε01=59.7 cm−1), respec-
tively. The life-time matrix analysis15,16 was the main approach exploited. Altogether,
about 1400 quasi-bound states have been found. The widths Γ of about 1280 of them
are in the range 5×10−8 − 2 cm−1.

2. The determination of radiative widths (Γtrad) of the quasi-bound states. The procedure
applied was that described in Ref. 3 (Part C of Supplementary Material). Except for
cases of very sharp resonances (Γ≪0.05 cm−1), the procedure requires the determination
of respective resonance profiles in the functions ptrad(E; Jp). The profiles were determined
for above 540 resonances for which ∼0.05<Γ<2 cm−1.

3. The determination of background parts of the yield functions, ptrad,cbck (E; J, p). This meant
in practice a subtraction of sharp resonance features from the functions ptrad,c(E; J, p)
which were generated at grids of ∼60−∼80 energy points covering the range 10−8− 360
cm−1 above the respective lowest threshold. The functions ptrad,cbck (E; J, p) were determined
for Je=0−32 and Jf=1−32 (28) for c=p (o) (altogether 126 functions).

4. The integration of the total yield functions ptrad,c(E) multiplied by the appropriate pop-
ulations factors to determine finally the rate constants kc in the temperature range
1µ − 100K. Except for a few cases, mostly in the cold range, the integration over the
peaks in the resonance parts of the yield functions, ptrad,cres (E), was done analytically.

Because of denser spectrum of resonances and larger number of partial waves contributing, the
task of determining the rate constant functions for the He++D2 system required significantly
larger computational work than in the He++H2 case. Of much help in completing this task
was the fact that a more efficient method could be exploited. The method is presented below.



Smooth-Variable-Discretization log-derivative method

for evaluation of free-free integrals

Precisely, the algorithm to be presented here generates two quantities which concern/involve
the solution of the following boundary-value problem

[

I d2

dR2 +2A(R) d
dR

+B(R) + b(E;R)
]

Ψ(E;R) = 0I , (33)

Ψ(E;R0≈0)=0I , Ψ(E;R∞)=I . (34)

The quantities are:

L(E;R∞):=[ d
dR

Ψ(E;R∞)][Ψ(E;R∞)]−1+A(R∞)

and J(E;R∞) :=

R∞
∫

R0

ΨT (E;R)κ(R)Ψ(E;R) dR . (35)

All bold-faced symbols denote here M×M matrices. The matrices within the square brackets
in Eq. (33) come from the operator

[

EI − aH
Jp(R)

]

M×M
of Eq. (23) multiplied by 2µ

~2
. Thus,

b(E;R):=2µ
~2

[EI − e(R)] is a diagonal matrix, and the non-adiabatic coupling matrices have
the following properties: AT= −A, and

B= d
dR

A+A2+∆ with ∆:= − d
dR

TT d
dR

T
N×M

+ATA .

In the integral J, the ‘transition matrix’ κ(R) is assumed to be symmetric, κT=κ.
The formulas of the algorithm are:

z−1
0 = 0I , u0=

h2

3
κ0 , (36)

ul = OT
l−1,l z

−1
l−1 ul−1 z

−1
l−1Ol−1,l +

{

h2

48
qlκlql

2h2

3
κl

for l=1, 3, . . . , 2L−1 ,

for l=2, 4, . . . , 2L ,
(37)

zl = −OT
l−1,l z

−1
l−1Ol−1,l +

{

−6I + ql

2I− 2h2

3
bl

for l=1, 3, . . . , 2L−1 ,

for l=2, 4, . . . , 2L ,
(38)

L = (z2L−I+h2

3
b2L)/h , (39)

J = (u2L − h2

3
κ2L)/h , (40)

where ql = [1
8
I + h2

48
bl]

−1 , (41)

bl=b(Rl) , κl=κ(Rl) , Ol−1,l=O(Rl−1;Rl) ,

Rl=R0+lh , and R2L=R∞ .

The algorithm closely resembles the version of the log-derivative method17 of Johnson which
was proposed in Ref. 18 for equations in quasi-diabatic representations. The only differences
are: (i) the overlaps O stand in place of the first-derivative-coupling-removing transformations
and (ii) the term ∆ of the coupling matrix B does not explicitly appear in the SVD version.
Actually, the two (the SVD and the quasi-diabatic) algorithms become equivalent in the M=N
limit, meaning here the limit of completeness of the adiabatic basis, ∆=0.



It is worthy of stressing at this point that the SVD algorithm is correct irrespective of degree
of completeness of the adiabatic basis, for any M≤N , i.e. when the absent term ∆ may play a
non-negligible role. [This not always is true for algorithms which exploit the popular diabatic-
by-sector technique of dealing with non-adiabatic couplings, cf . Ref. 19]. The statement relies
on the fact that formulas (36)-(41) lead, in the h→0 limit, to correct differential equations for
the matrices L(E;R∞) and J(E;R∞) as functions of R∞ (renamed here to R),

d
dR

L(E;R) = −b(R) −∆(R) − L2(E;R) + AT(R)L(E;R) + L(E;R)A(R) , (42)

d
dR

J(E;R) = κ(R) +
[

AT(R) − L(E;R)
]

J(E;R) + J(E;R)
[

A(R) − L(E;R)
]

. (43)

Namely, the term ∆ appears, as it should, in the equation for the matrix L.
When the boundary R∞ is placed sufficiently far away from the origin R0≈0, so that

A(R∞)≈0, the matrix L obtained from the algorithm becomes the ordinary log-derivative
matrix which, in the standard way, can be converted to the scattering matrix S. The integral
J, evaluated with the optical potential optv inserted for κ, will give then the integral occurring
in Eq. (24) upon the following operation

〈f (+)

(E)| optv| f (+)

(E)〉 = [. . .]† J(E;R∞) [O−(E;R∞)−O+(E;R∞)S(E)] . (44)

Analogously, the integral J evaluated with κ=I can be converted to the matrix

2π~〈f (+)|P[R0,R∞]| f
(+)〉 (with P[R0,R∞] denoting projector on the indicated interval of R-

coordinate) which is one of two essential constituent of the life-time matrix, cf. the description
of the life-time analysis in Ref. 16 and of the sojourn-time analysis in Ref. 3 (Part A of Sup-
plementary Material).

Formulas of the algorithm concerning the matrix L can also be used to calculate the proba-
bilities ptrad from the coupled equations accounting ‘exactly’ for the optical potential, Eq. (25).
Nothing but the replacement bl−→bl+ı µ

~2
optvl is needed to adapt the formulas to this purpose.

An illustration of performance of the SVD log-derivative algorithm in the determination of
the probabilities ptrad,DW and of the resonance parameters Eres, Γ, and Γtrad is given in Fig. B1.
The features exposed are:

• the convergence of the results with the SF-adiabatic basis size, how much truncated the
basis may be compared to the size of the BF-diabatic basis used to its construction,

• the convergence with the step size, how it compares with the convergence of the ‘diabatic’
version of the algorithm20. [The ‘diabatic’ version can be recovered from formulas (36)-
(41) by using W(Rl) instead of e(Rl) in the construction of bl, inserting optW(Rl) instead
of optv(Rl) for κl, and setting all O’s to I.]

In the performed calculations on the ‘trad’ reaction in the He++D2 collisions, the SF-
adiabatic bases were truncated typically by factors slightly larger than two. Due to the pos-
sibility of using step sizes practically the same as in the diabatic algorithm the computations
could be speeded up about ten times.



CC-SF-adiabatic versus CC-BF-diabatic representation

Fig. B1. Convergence properties of the SVD-log-derivative method
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basis versus errors due to decrease of

the BF-diabatic basis size. The ‘com-

plete’ adiabatic basis is constructed

from Nref BF-diabatic basis functions.

The diabatic basis of a decreased size

N<Nref is obtained by eliminating

functions which correspond to highest

closed channels.

Parameters of exemplary non-sharp resonance ex-

tracted from respective profile in the function

ptrad,DW(E; Je). Errors due to the use in the calcu-

lations of the profile of truncated SF-adiabatic and

BF-diabatic bases.

All ‘SF-adia’ results presented here and in the panels

of first and third rows have been obtained using the

same step size (h=0.01Å) as used in the calculations

of ‘BF-dia’ results with the ‘diabatic’ version of the

algorithm.

Parameters Eres and Γ of exemplary

sharp resonance extracted from

respective profile in the trace of the

life-time matrix.

Convergence with the size of the

SF-adiabatic and BF-diabatic bases.

Below: Convergence with the step

size (h) in the SVD and in the dia-

batic log-derivative algorithms. ‘exc’

denotes result yielded by a given al-

gorithm and a given size (M) of the

respective basis when the step size

h=0.01Å is used.

Generally, errors of results generated

with the SVD algorithm behave the

same as errors of the diabatic ver-

sion, i.e. they scale like C×h4 with

nearly the same scaling factor C. A

departure from this behavior may oc-

cur if the adiabatic basis is truncated

too drastically (here from N=132 to

M=22).



C. RESULTS

He+−D2 versus He+−H2 complex

FIGURES

C1. Energies of J=0 bound states. Location on PES of first excited electronic of [HeHH]+.

C2. Structure of energy levels of bound and quasi-bound states associated with v=0 j=0 − 5
thresholds. J=k levels.

C3. Dissociative versus radiative widths of predissociating states (rotational Feshbach reso-
nances).

C4. Radiative widths of rotational (J) levels in selected vibrational states [vr=0 vθ=b−k vR] k

TABLES

I. He+−o-D2. Energies, dissociative and radiative widths of ‘vibrational’ (J=k) states below
v=0 j=0, 2, 4 thresholds.

II. Same as in I for levels of He+−p-D2 below v=0 j=1, 3, 5 thresholds.

III. He+−o-D2. Energies, dissociative and radiative widths of rotational (J≥k) states asso-
ciated with v=0 j=2 threshold in the range from v=0 j=0 up to j=3 threshold (includes
280 resonances).

IV. Same as in III for states associated with v=0 j=4 threshold (includes 196 resonances).

V. Same as in III for states associated with v=0 j=0 (30 shape resonances).

VI. He+−p-D2. Energies, dissociative and radiative widths of rotational states associated
with v=0 j=3 threshold in the range from v=0 j=1 up to j=3 threshold (543 resonances).

VII. Same as in VI for states associated with v=0 j=5 threshold (100 resonances).

VIII. Same as in VI for states associated with v=0 j=1 (75 shape resonances).

Radiative decay of He+ from mixtures with D2 and from mixtures with H2

FIGURES

C5. Yield functions for the radiative reaction in collisions with c-D2 and c-H2 for c=o,p.

a.-c. Partial yield functions ptrad,c(E; J, p), i.e. probability sums of radiative transitions
from partial (J=0−30) continuum states of the He++c-D2 systems, as functions of
energy in the 10−5—360 cm−1 range above the respective lowest threshold.

d.-e. Total yield functions ptrad,c(E). Resonance and background parts. Validity of cap-
ture model.

C6. Rate constants of radiative decay from mixtures with pure ortho- or para- D2 or H2.

a. Partial rate constants in low temperature range, T<1 K.
b. Feshbach resonance contributions to total rate constants at T s up to 100 K.

C7. Rate constants of radiative decay from mixtures with equilibrium and normal H2 and D2

as functions of temperature in the 1µK – 100 K range.

a. Contributions of transitions involving ortho- and para-H2( D2).
b. Feshbach-resonance versus background and shape-resonance contributions.
c. D2/H2 isotope effects in cold and subthermal ranges.

TABLES

IX. Rate constants functions plotted in Fig. C7a at selected temperature values.



He+−D2 versus He+−H2

Fig. C1. Energies of bound J=0 states
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1D cuts of the PES of the first excited electronic state of the [HeH2]+ system5 through

the minimum, r∗=0.748Å, R∗=2.3872Å (thick line), and the saddle point at θ=0, π:

r∗=0.7421Å, R∗=2.8484Å. The double arrow shows the barrier to linearity, of 995 cm−1.

The thresholds He++a2(v=0 j=0) for a=H and a=D (at which zero of the energy E is

placed) lie, respectively, 3350.8 and 2730.0 cm−1 above the minimum of the PES. The en-

ergy levels of bound J=0 states of the complexes He+−H2(I=0) and He+−D2(I=0, 2) are

drawn with solid lines, of the complexes He+−H2(I=1) and He+−D2(I=1) — with dashed

lines. The zero-point energies of He+−H2 and He+−D2 are 2533.7 and 1831.0 cm−1, re-

spectively.



He+−D2 vs He+−H2

Fig. C2. Energies of b k vR J=k p=1 states

associated with He++a2(v=0, j) thresholds (a=D,H) for j=0−5
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He+−D2 vs He+−H2

Fig. C3. Predissociating states associated with j=2, 4 thresholds

Dissociative and radiative widths
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Shown are only states in the energy range from 0 to 178

cm−1 (≈ε02 of D2) as they have the largest impact on the

low temperature rate constants of the ‘trad’ reaction, es-

pecially in mixtures with equilibrium D2 or H2. In the

specified range, there are 45 predissociating states of the

He+−H2 complex, all shown in the three upper panels, and

above 250 states of the He+−D2 complex, 202 of them are

shown in the four lower panels. The widths Γ of low ly-

ing resonances may have a significant impact on the rate

constant values when they are comparable to or incompa-

rably smaller than the widths Γtrad, cf. Eq. (17). It is

therefore worthy of noting that the lowest lying state of

the He+−D2 complex, (b k vR Jp)=(4 2 0 5e), is character-

ized by the width ratio Γ/(Γtrad+Γ)≈0.33, see Table IV.

In the case of the lowest state of the He+−H2 complex,

(2 2 2 5e), this ratio is ≈0.96, see Table I in Ref. 3.



He+−D2 vs He+−H2

Fig. C4. Radiative widths of rotational (J) levels

in selected vibrational states [vr=0 vθ=b−k vR] k
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Shown are the widths Γtrad of all quasi-bound J levels of the selected vibrational states of the He+−H2

and He+−D2 complexes which lie no higher than the threshold ε02(=354.03 cm−1) and ε03(=357.1 cm−1),

respectively. In cases of states assigned with k=0, shown are also the widths Γtrad of bound rotational

levels (open circles).

The radiative widths of the states of the two complexes show qualitatively the same correlations with the

quantum numbers assigned to the states.



As to quantitative differences, one should note first that disturbances due to state mixing are more

numerous in the He+−D2 complex. Because of them, exploitation of simple fitting formulas in the

analysis of the widths becomes problematic. In Ref. 3, the following formula was used to describe the J

dependence of the widths of He+−H2,

Γrad(J) ≈ Υ−
2

∑

m=1

γm[J(J+1)−k2]m .
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The parameters Υ, γ1, and γ2 obtained from fitting the formula

to the calculated widths were reasonably smooth functions of

the numbers vR, vθ, and k. Attempts to fit this formula to the

widths of He+−D2 did not give parameters of similar quality,

except for the largest parameter, Υ.

Figure next to this text provides a comparison of parameters

Υ and γ1 obtained for the widths Γtrad of J levels in the

states [0 0 vR] k=0 of He+−D2 and He+−H2. The parameter

Υ as function of the number vR of the states of He+−D2 is

slightly larger at vR=0 and decreases less rapidly with vR

growing than the function Υ(vR) for He+−H2. The values of

the parameter γ1 pertaining to He+−D2 are in turn smaller

by a factor which is close (at the lowest vR’s, at least) to the

reduced mass ratio µ
He+−D2

/µ
He+−H2

(=1.497).

Fig. C4a. Radiative widths of lowest rotational levels (J=k)

of groups k in different vibrational states [vr=0 vθ=b−k vR]
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As abscissa values of the symbols in the figure

shown are the binding energies of the (bound)

ro-vibrational states assigned with b=0, 1 or

the ‘quasi-binding’ energies of the (quasi-bound)

states with b>1.

Functions of states assigned with b and J=k,

their largest radial components, are supported

mainly by the potentials W Jp
v=0 j=b λ=k;0kk(R).

The shapes of these potentials for He++D2 (the

well depths) do not differ much from the shapes

of the potentials for He++H2, cf. Fig. A1. Therefore, the fact that a given state [0 vθ vR] J=k has larger

binding energy in He+−D2 means that function of this state is squeezed to a smaller interval of smaller

R-values than the respective function for He+−H2. Together with the properties of the optical potential

pointed out in the comment to Fiq. A1, this explains what is seen here: the widths Γrad(J=k)≈Υ of the

corresponding vibrational states of the two complexes lie nearly on the same smooth curve.



Radiative decay of He+ ions from gas mixtures

with D2 or H2 molecules

Fig. C5a. Partial yield functions ptrad,c(E; J, p)
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The functions are plotted here for several low-

est Je-value states of the He++c-a2 systems with

a=D, H and c=ortho, para in the energy ranges

from 10−5 to 20 cm−1 above the respective low-

est threshold, j=0 (left panel) or j=1. In these

ranges, only one channel, v=0 j with j=0 or j=1,

is open in the He++c-a2 collisions; so,

ptrad(E; Jp)=ptrad0 j (E; Jp) ,

cf. Eq. (5).

Exposed are: (see also Figs. B6-B7 in Ref. 3)

• Wigner’s threshold law,

ptrad0j (E; Jp) ∼
E≪Ecbr

lmin

Ctrad
lmin(Jp,j)×(E−ε0j)

lmin+
1
2 with lmin(Jp, j)=|J−j|+1−p

2 , (45)

where Ecbr
l(Jp,j) with l≥1 denotes the value of the adiabatic potential eJ

p

v=0l
(R) at the top of the

centrifugal barrier in it. (The correlation: →j and l→l for R→∞ is exploited hereafter). In the

cases of lmin(Je, j)=0, the value Ecbr
lmin(Je+1,j) should be used in the above formula. The heights

Ecbr
l(Jp,j)−ε0j of the barriers for j=0, 1 and for several lowest Js are shown by the positions of the

sticks on the lower x-axes of the panels. The barriers are obviously lower in the heavier system.

The factors Ctrad
lmin

for He++o-D2 are seen to be larger than their counterparts for He++p-H2.

Above the j=1 threshold, the relations become more complicated.

• the lowest lying resonances of the He+−D2 and He+−H2 complexes. The vertical labels are the

quantum numbers of the resonances, (b k vR J). The label in square brackets (the lower panel)

concerns a bound state. The near-threshold shape resonances and bound states have a significant

impact on the values of the factors Ctrad
lmin(Jp,j).

• the qualitative difference in the behavior of the functions ptrad0j (E; Jp) in the E-ranges well-below

and -above the respective centrifugal barrier tops. Functions for given j and different Js reach the

same plateau above the barriers.

A reservation: The behavior of the functions ptrad0j (E; Jp) presented here is only qualitatively correct at collision

energies E−ε0,j=0,1 below ∼2 cm−1. The long-range interactions which would become influential at these

energies are suppressed in the PES used in the calculations5. On the other hand, due to this defect a more

detailed analysis of the H−→D substitution effects becomes possible. Namely, validity of expansion (47) for

any lmin can be exploited.



. . . in the near-threshold regions

From formulas (24) and (44), the following expressions can be obtained for the factors Ctrad
lmin(Jp,j),

Ctrad
lmin(Jp,j) =

(2µ

~2

)lmin+
1
2 atradlmin

[(2lmin+1)!!]2
with atradlmin

=
4µ

~2
btradlmin

and btradlmin(Jp,j) =
[

1− almin

R2lmin+1
∞

]2

R2lmin+2
∞ Jlmin(Jp,j)(ε0j ;R∞)

= lim
R∞→∞

R2lmin+2
∞ Jlmin(ε0j ;R∞) , (46)

where the factor almin comes from the formula for near-threshold behavior of v=0jlmin-diagonal element of the

matrix S
Jp

[SJp(E)]0jlmin;0jlmin ≈ 1 − 2ı
almin

(2lmin+1)!!(2lmin−1)!!

[2µ

~2
(E−ε0j)

]lmin+
1
2

, (47)

and Jlmin(Jp,j)(ε0j ;R∞) denotes the respective v=0  lmin-diagonal element of the matrix J(E;R∞) of the free-

free integrals from the SVD-log-derivative method at E−ε0j→0+. The existence of the limit written in Eq. (46)

can be checked with the help of the differential equation (43), by integrating it analytically after the following

simplifications: (i) only the single element [J(E;R)]0 lmin;0 lmin
is retained, (ii) the optical potential term (κ)

is ignored as negligible at large R’s, and (iii) the element [L(E;R)]0 lmin;0 lmin
is approximated with lmin+1

R —

the logarithmic derivative of the Riccati-Bessel function jlmin(kR) in the k→0 limit. The factor atradlmin
, having

dimension of length2lmin+1, is the optical-potential counterpart of the factor almin — the scattering length in

the molecular potential when lmin=0.

In table below, the factors Ctrad
lmin(Jp,j) for Jp=0−3 above the v=0 j=0, 1 thresholds are listed together with

the related factors btradlmin
, almin, and the centrifugal barrier heights Ecbr

lmin
−ε0j . Cases most strongly affected by

near-threshold states of the He+−a2 complexes for a=D,H are marked with asterisk. The state which affects

a given marked Ctrad
lmin(Jp,j) has the label (b k vR Jp) with b=j, k=J+j−lmin+(1−p)/2

2 , vR=9 (10) and 7 (8) near

the j=0 (1) threshold for a=D and a=H, respectively. It is a shape resonance (a virtual state) if almin>0≪0

(almin=0≪0) or a weakly bound state if almin≫0. The sign and magnitude of entries in the ‘almin ’ columns

are consistent with the fact that the sequence of states of the He+−D2 complex (1 1 10 Jp) for Je,f=1−3

crosses the j=1 threshold just above Jf=2 while the sequence of states (1 1 8 Jp=1−3) of He+−H2 crosses

this threshold between J=1 and J=2. Mainly because of this difference the ratio of the factor Ctrad
lmin(Jp,1) for

He+−D2 to its counterpart for He+−H2, varies so widely between the different Jp cases, from 0.1 for Je=2 to

above 1500 for Jf=2.

He++D2 He++H2

lmin(Jp, j) Ctrad
lmin

♮♯ btradlmin

† almin
‡ Ecbr

lmin
−ε♯♭0j Ctrad

lmin

♮♯a btradlmin

† almin
‡ Ecbr

lmin
−ε♯♭0j

0 (0 , 0) 1.36 (−5) 51.0 (−10) +21.6 8.65 (−6) 59.3 (−10) +21.3

1 (1e, 0) 2.73 (−4) 27.6 (−6) +12.7 (3) 0.023 1.16 (−4) 32.2 (−6) +13.0 (3) 0.037

2 (2e, 0) 1.44 (−3) 10.9 (−2) +19.3 (6) 0.089 6.56 (−4) 20.4 (−2) +26.4 (6) 0.147

3 (3e, 0) ∗5.86 (−3) 65.3 (+1) −81.7 (9) 0.214 1.44 (−4) 98.7 −31.5 (9) 0.359

1 (0 , 1) 9.78 (−5) 98.8 (−7) −60.3 0.184 1.31 (−5) 36.2 (−7) +30.9 (4) 0.212

0 (1e, 1) 1.51 (−5) 56.4 (−10) +33.6 1.43 (−5) 97.9 (−10) +33.2

1 (2e, 1) 4.44 (−3) 44.9 (−5) +10.4 (4) 0.023 ∗4.52 (−2) 12.5 (−3) −42.6 (4) 0.038

2 (3e, 1) 1.26 (−3) 95.3 (−3) −35.2 (6) 0.091 1.49 (−4) 46.3 (−3) −18.4 (6) 0.151

1 (1f , 1) 6.88 (−4) 69.5 (−6) +44.7 (3) 0.021 5.29 (−4) 14.6 (−5) +57.0 (3) 0.034

2 (2f , 1) ∗3.68 27.9 (+1) +22.4 (8) 0.080 ∗2.19 (−3) 68.1 (−2) −95.8 (6) 0.131

3 (3f , 1) 8.73 (−4) 97.2 −50.9 (9) 0.190 6.94 (−5) 47.5 −29.1 (9) 0.317

♮ in units of E−(lmin+
1
2 ). ♯ E in cm−1. † in bohr(2lmin+3)×hartree. ‡ in bohr(2lmin+1).

♭ ε00=0, ε01=59.74 and 118.37 cm−1 for D2 and H2, respectively. a these values are slightly more accurate

than those given in Ref. 3 (Fig. B6).



Fig. C5b. . . . above the centrifugal barriers
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Exemplary functions ptrad,c(E; Jp) for He++c-D2 for c=o (left panel) and c=p in the energy ranges

extending above the first excited threshold, j=2 and j=3, respectively. Demonstrated are:

• the resolutions of the functions into the resonance and background parts,

• the behavior of the background parts

ptrad,cbck (E; Jp)=
∑

j(c)

p
trad(bck)
0j (E; Jp) Θ(E−ε0j) .

Clearly seen are j+1 different plateaus in the functions p
trad(bck)
0j (E, Je) and j plateaus in the

functions p
trad(bck)
0j (E, Jf ) for j=1−3, evidently associated with the contributing l-components,

cf. Eq. (5). The background can approximately be described with the formula

ptrad,cbck (E; Jp) ≈ ptrad
∑

j(c)

min(j,J)
∑

λ= 1−p

2

Θ(E−Ecbr
l(Jp,j,λ)) , (48)

where l(Jp, j, λ)=J+j+1−p
2 −2λ and ptrad≈5×10−6. (Though λ serves here only enumerating the

l’s allowed for given J , j, and p, it actually is the angular momentum projection quantum number

of the BF-diabatic representation, see Fig. A2.)

Fig. C5c. . . . background parts
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Plotted here are all functions ptrad,cbck (E; Jp) determined for He+ + c−D2 in the present calculations and

functions for He++p-H2 from Ref. 3. Some wider resonance profiles near the centrifugal barrier tops

are left in the background parts. This was considered appropriate for assuring accuracy in the thermal

averaging, Eq. (4).



Fig. C5d. Total yield functions ptrad,c(E)
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The functions are shown here only in halves of the energy ranges scanned in the calculations.

The crosses mark peaks due to sharp shape resonances.



Fig. C5e. . . . background parts
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The functions ptrad,cbck (E) plotted with the green and black lines are obtained by summing up, according to

Eq. (8), the partial functions ptrad,cbck (E, Jp) shown in Fig. C5c. The light-blue lines represent the classical

counterparts of the functions ptrad,obck (E) for He++o-D2 and ptrad,pbck (E) for He++p-H2 in the E-ranges

below the ε02 threshold, at 179 and 354 cm−1, respectively, above ε00=0. They are obtained as

ptradclass(E) =
2µE

~2π
σtrad
class(E)

from the classical cross-sections for the ‘trad’ reaction in the two systems,

σtrad
class(E) = 2π

bmax(E)
∫

0

bdb ptradclass(E, b) with ptradclass(E, b) = 2

∞
∫

Rtrn

A(R) dR
{

2[E−Eb2/R2−V (R)]/µ
}1/2

and the matrix elements [WJ=0(R)]000;000 and 1
~

[optW(R)]000;000 inserted for V (R) and A(R), re-

spectively. b is the impact parameter and Rtrn is the turning point in the effective potential

Veff(R;E, b)=V (R)+Eb2/R2 at the energy E. bmax(E) is the value of b for which the second turn-

ing point appears at a given E at the top of barrier in Veff . The probabilities ptradclass(E, b) for b>bmax,

depending on the values of A(R) at R’s outside the third turning point, are assumed totally negligible.

For b<bmax(E) in turn,

ptradclass(E, b) ≈ ptrad and ptradclass(E) ≈ ptrad
2µE

~2π
σcpt(E) , (49)

where σcpt is the capture cross-section22,

σcpt(E) := π b2max(E) ≈ ζ√
E

. (50)

As an extension of this capture model to energies E>ε0j for j>0, one gets the function,

ptrad,ccpt (E) = ξ
∑

j(c)

(2j+1)
√

E−ε0j Θ(E−ε0j) with ξ=ptrad
2µ

~2π
ζ . (51)

This function is plotted with the blue dotted line for each He++c-a2 system shown in the figure. The

values of the parameters involved are collected in table below.

He++D2 He++H2
He++D2

He++H2

ζ ♭ 10.46 10.47 ≈1

ptrad 4.82 (−6) 3.95 (−6) ≈
(

µHe++D2

µHe++H2

)
1
2

ξ ♮ 1.18 (−1) 6.47 (−2) ≈
(

µHe++D2

µHe++H2

)
3
2

♭in bohr2× hartree1/2, ♮ in hartree−1/2



More details on application of the capture model

In order to justify the approximation ptrad,cbck (E)≈ptrad,ccpt (E) one starts with inserting Eq. (48) into Eq. (5)

and, assuming large number of Js contributing, one replaces

∑

J

(2J+1)

min(j,J)
∑

λ= 1−p

2

Θ(E−Ecbr
l(Jp,j,λ)) with

j
∑

λ= 1−p

2

∫ lmax(E,j,λ,p)

0

dl (2l+1) .

Next, in analogy to Eq. (49), one introduces the capture cross-sections σcpt
jλp,

∫ lmax(E,j,λ,p)

0

dl (2l+1) =
2µ

π~2
(E−ε0j)σ

cpt
jλp(E−ε0j) ,

getting the following expression

ptrad,cbck (E) ≈ ptrad
2µ

π~2

∑

j(c)

Θ(E−ε0j) (E−ε0j)

[

∑

p=±1

j
∑

λ= 1−p

2

σcpt
jλp(E−ε0j)

]

. (52)

The cross-sections σcpt
jλp(E−ε0j) are obtained as functions of the kinetic energy in the v=0 j channel by

interpolating between values at E=Ecbr
l(Jp,j,λ) for l’s corresponding to fixed numbers j, λ, and p, and

changing J , which are defined by the equality

~
2

2µ

l(Jp, j, λ)[l(Jp, j, λ)+1]

[Rcbr
l(Jp,j,λ)]

2
=

1

π

(Ecbr
l(Jp,j,λ)−ε0j) × σcpt

jλp(Ecbr
l(Jp,j,λ)−ε0j)

[Rcbr
l(Jp,j,λ)]

2
.

As previously, Rcbr
l(Jp,j,λ) and Ecbr

l(Jp,j,λ) denote coordinates of the top point of the centrifugal barrier in the

adiabatic potential eJ
p

v=0l
(R) with l=J++ 1−p

2 −2λ. In the case of j=0 channel, however, the barrier top

points in the diabatic potentials [WJ(R)]000;000 are used. The cross-section σcpt
001(E−ε00) obtained in this

way appears practically indistinguishable from σcpt(E) determined from the classical effective potentials.

An inspection of the cross-sections σcpt
jλp(E−ε0j) for j=0, 1, 2 channels plotted in the figure below provides

a rationale for the final step of the derivation, i.e. for converting rhs of Eq. (52) to the form (51).
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The relevant observations are:

∑

p=±1

j
∑

λ= 1−p

2

σcpt
jλp(E−ε0j) ≈ (2j+1)σcpt

001(E−ε0j) ,

σcpt
001(E−ε0j) ≈ ζ×(E−ε0j)

−1/2 .

Actually, the latter relation is well satisfied at energies (E−ε0j)>∼7 cm−1. Deviations from linearity of

the lines in the plots are visible at smaller energies. They reflect the inaccuracy of the asymptotic part of

the PES used in the calculations (see the comment below Fig. C5a). The cross-sections σcpt
001 for He++H2

(the open circles in the left panel) come from Fig. B7a of Ref. 3. The factor in the label of that figure is

incorrect. It should be as here: 2 ∗ 10−3.



Radiative decay of He+ ions from gas mixtures

with pure ortho- or para- D2 or H2

Fig. C6a. Partial rate constant functions ck0j(T, J
p)

in low temperature range, T<1 K

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1e-7  1e-6  1e-5  1e-4  0.001  0.01  0.1

ck
00ra

d (T
,J

p ) 
* 

10
15

  /
s-1

cm
3

T /K

He+ + o-D2
He+ + p-H2

1 1 2 2 3

J=0
1
2
3

total

 1e-4

 0.001

 0.01

 0.1

 1

 10

 100

 1e-7  1e-6  1e-5  1e-4  0.001  0.01  0.1

ck
01

(T
,J

p ) 
* 

10
15

  /
s-1

cm
3

T /K

He+ + p-D2
He+ + o-H2

lf=1 1 2 2 3

Jp=1e

2e

0
3e

1f

2f

3f

total

The functions plotted, ck0j(T, J
p) for j=0, 1 and c=p,o, have been obtained from the probability (yield)

functions ptrad0j (E; Jp) shown in Fig. C5a as

ck0j(T, J
p) =

1

2π~

∫

dE cP (E, T ) ptrad0j (E; Jp) Θ(E−ε0j)

with the population factor cP (E, T ) defined below Eq. (10). Exposed is the threshold behavior,

ck0j(T, J
p) ∼

T≪(Ecbr
lmin

−ε0j)/kB

1

2j+1
Ktrad

lmin(Jp,j) (kBT )lmin , (53)

where Ktrad
lmin(Jp,j)=

4π

~

(

µ

~2

)lmin btradlmin

(2lmin+1)!!
.

The values of (Ecbr
lmin(Jp,j)−ε0j)/kB are shown by the sticks on the T axes for all Js shown in the left

panel (j=0) and for Jf ’s shown in the right panel.

. . . and ‘total’ rate constants ck0j(T )

ck0j(T ) =
∑

p

∑

J

(2J+1) ck0j(T, J
p)

At kBT well-below the respective first excited threshold, these rates become truly total, i.e.,

ck00(T ) ≈
T≪

ε02
kB

ck(T )=
∑

jeven

ck0j(T ) and ck01(T ) ≈
T≪

ε03−ε01
kB

ck(T )=
∑

jodd

ck0j(T )

for c=o (p) and c=p (o) of He++c-a2 with a=D (H), respectively. At T=0, only one partial rate

ck0j(T, J
p), with Je=j, contributes to ck0j(T ),

ck0j(T=0) = Ktrad
0(j,j) =

4π

~
btrad0(j,j) . (54)

The values of ck00(0) and ck01(0) for the mixtures with c-D2 and c-H2 are compared in table below.

He++c-D2 He++c-H2

ok00(0)=ok(0)♭ pk01(0)=pk(0) pk00(0)=pk(0) ok01(0)=ok(0)

3.923 4.343 4.565 7.534

♭ all entries in 10−16 cm3s−1.



Fig. C6b. Rate constants ck(T ) at T≤100 K
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In the left panel, the Feshbach resonance contributions are shown with the tiny lines. The red lines, solid

and broken, represent contributions of 463 (b=4 and b=2 p=1) and 770 (b=3, 5) resonances to the rates

ok(T ) and pk(T ), respectively, for the mixtures with o-D2 and p-D2, the black solid and broken lines

— contributions of 165 (b=2) and 144 (b=3) resonances to the rates pk(T ) and ok(T ), respectively, for

He++c-H2 mixtures with c=p,o. In the inset, these contributions are shown in per cent. Additionally

shown are the largest individual Feshbach resonance contributions to the function ok(T ) for He++o-D2

and pk(T ) for He+−p-H2, brought by the (b k vR Jp)=(4 2 0 5e) and the (2 2 2 5e) resonance, respectively.

An explanation why the latter is so much larger than the former is given in Table IV and Fig. C3.

In the right panel, the Feshbach resonance contributions to the rate constants functions for the four

He++c-a2 mixtures, with a=D,H and c=o,p, are shown as differences between the ‘total’ and ‘bck+shpe’

curves indicated by the vertical double arrows.

shape resonance contributions

These contributions dominate in the low temperature range, ∼1 mK — ∼0.2 K. A couple of resonances

of this kind, shown in Fig. C5a, lie closer to the respective lowest threshold than any Feshbach resonance.

In particular, the large peak in the function ok(T ) for the He++o-H2 mixture at ∼0.008 K is entirely

due to the (1 1 8 2e) resonance. The rapid growth of the function ok(T ) for the He++o-D2 mixture,

starting at ∼0.01 K, and the broad maximum at ∼0.2 K are due to the (0 0 9 3e) resonance. However, the

increase of the function pk(T ) for He++p-D2 starting at ∼1 mK and the broad feature at ∼10 mK are

not resonance effects; they should be attributed to the weakly bound state (1 1 10 2f), see the analysis

below Fig. C5a. At higher temperatures, certainly above 10 K, the contributions of shape resonances

(of 80, 65, 14, and 47 such resonances formed with o-D2, p-D2, p-H2, and o-H2, respectively) become

overwhelmed by the Feshbach resonance contributions. Above 20 K, they become also smaller than the

background contributions.

continuum state (background) contributions

At very low temperatures, T<10−5 K, the functions ckbck(T ) are constant and equal to the respective

values of ck(0) listed in the table on the previous page. At T s above 10 K these functions become

constant again but here their values are nearly the same, no matter whether they concern the mixture

with o-D2, p-D2, p-H2, or o-H2. This feature is a consequence of validity of the capture model. Indeed,

upon averaging of the yield functions of Eq. (51) with the population factors cP (E, T ) one gets

ckbck(T ) ≈ ktradcpt =
π~2√

2

ξ

µ3/2
. (55)

The values of ktradcpt that result from this formula for the quenching reaction in the mixtures with D2 and

with H2 differ as little as 7.23 and 7.29×10−15 cm3s−1.



. . . Feshbach resonance contributions
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Here, the Feshbach resonance contributions to the functions ck(T ) are shown separately from the ‘bck+shpe’

contributions. Apart from the total values of ckres(Fesh)(T ) (thick solid lines) shown are also parts brought

by resonances belonging to different groups (b k vR). The following facts should be noted:

(i) About one third of the entire ‘res(Fesh)’ contribution in the He++o-D2 system comes from b=4

resonances, especially from their (4 2 0) and (4 3 0) groups. In the He++p-D2 system, resonances from

two b=5 groups, (5 4 0) and (5 5 0), might be expected important considering their positions relative

to the v=0 j=1 threshold, cf. Fig. C2, and their relatively large widths Γtrad, cf. Tables VI-VII.

However, the widths Γ of these resonances are so small that the factors Γ/(Γtrad+Γ) standing in

Eq. (17) make their actual contributions almost negligible.

(ii) The b=4 and b=5 resonances in the He++H2 system can totally be ignored as contributors to the ‘trad’

reaction rates at temperatures below 100 K. Indeed, no b=5 resonance and only five b=4 resonances of

this system lie in the relevant energy ranges, i.e. closer than ∼350 cm−1 to the respective, v=0 j=1 or

j=0, threshold. The lowest b=4 resonance occurs at ∼220 cm−1. Moreover, all the five resonances can

dissociate only through j=4→0 transitions. Their widths Γ are more than two orders of magnitude

smaller than widths of the resonances (b=2) decaying via ∆j=2 transitions. Consequently, the factors

Γ/(Γtrad+Γ) to insert into Eq. (17) are merely ∼10−3 − 10−5.



Radiative decay of He+ ions from mixtures

with equilibrium and normal D2 or H2

Rate constants in temperature range 10−6−100 K

Fig. C7a. Contributions of collisions with ortho- and para-D2 (-H2)
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The relations between the functions k(T ), kc(T ), knrm(T ), kcnrm(T ), and ck(T ) for c=o,p are:

k(T ) ≈ ko(T ) ≈ ok(T ) at T<10 K for He+ + D2 ,

k(T ) ≈ kp(T ) ≈ pk(T ) at T<20 K for He+ + H2 ,

and kcnrm(T ) = gc

gp+go ck(T ) at any T .

The values at T=0 in unit of 10−16 cm3s−1:

k(0) konrm(0) kpnrm(0)

He++ D2 3.923 2.615 1.448

He++ H2 4.565 5.650 1.141

. . . the impact of resonances
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Fig. C7b. Resonance and background contributions

 0.1

 1

 10

 100

 1010.1 0.001 10-5 

k 
* 

10
15

  /
s-1

cm
3

T /K

He+ + equiD2  tot
-res(b=4,5)

bck
bck+shp

He+ + equiH2  tot
bck
bck+shp

75

50

25

   

res(Feshbach)

%

 10

 20

 30

 40

 50

 60

 70

 80

 10  20  30  40  50  60  70  80  90  100

k 
* 

10
15

  (
s-1

cm
3 )

T (K)

capture model

He+ + equiD2   tot
tot-res(b=4)
bck
bck+res(shp)

He+ + equiH2   tot
bck
bck+res(shp)

 0.1

 1

 10

 100

 1010.1 0.001 10-5 

k 
* 

10
15

  /
s-1

cm
3

T /K

He+ + nrmD2

He+ + nrmH2

tot
-res(b=4,5)

bck
bck+shp

tot
bck+shp

75

50

25

   

res(Feshbach)

%

 10

 20

 30

 40

 50

 60

 70

 80

 10  20  30  40  50  60  70  80  90  100

k 
* 

10
15

  /
s-1

cm
3

T /K

capture model

He+ + nrmD2   tot
tot-res(b=4)
bck
bck+res(shp)

He+ + nrmH2   tot
bck
bck+res(shp)

Fig. C7c. D/H isotope effect
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Referring to the scheme on page 1, one may conclude that of the two routes along which the ‘trad’ reaction

can proceed at its initial stage, i.e. at the stage of the He+ and H2 (D2) reactants approaching each other

on the PES of the first excited electronic state of the [HeHH]+ system, the route via complex formation is

definitely more important than the direct (non-resonant) collision route. Of the two mechanisms of formation

of the complexes which are possible (at subthermal energies) within the adopted collision model, the inverse

rotational predissociation is definitely more important than the tunneling through centrifugal barriers. These

conclusions are based on inspection of the second (and final) ‘trad’ reaction stage at which the He+ and H2

(D2) reactants are close together and the radiative transitions take place out of their resonance and continuum

states down to the ground electronic state of the [HeHH]+ system. More concretely, the findings are:

• The radiative transitions which originate from the rotational Feshbach resonances have the decisive

impact on the reaction rate. They contribute as much as 85 % to the rate constants of the reaction in

the mixture with equilibrium H2 at temperatures near 1K and as much as 70 − 75 % in the mixtures

with pure para-H2 or pure ortho-D2 at temperatures from about 10 K up to 100 K. No much smaller are

the Feshbach resonance contributions to the reaction rates in the mixtures with equilibrium or normal

D2. More visibly smaller they are only in the mixtures with normal H2, though still at the level of 60%,

cf. the insets in the left panels of Fig. C6b and C7b.

• The shape resonances, as initial states of the radiative transitions, take the rate determining role in the

cold range, between ∼0.5 mK and ∼0.5 K, simply because there is no Feshbach resonance to compete

with them. In the subthermal range, their contribution drops below 10%.

• The effect of the H2→D2 substitution on the ‘trad’ reaction rate is qualitatively different in the cold and

subthermal ranges, as shown in the two panels of Fig. C7c.

In the first range, especially in its ultracold subrange, T<∼0.1 mK, the rate of the reaction becomes

smaller after the substitution. In the T=0 limit, the coefficients k(He++o/pD2) compare with the

coefficients k(He++o/pH2) like 0.39:0.46 and 0.41:0.71 (in unit of 10−15 cm3s−1) for o/p=equi and

o/p=nrm, respectively. The latter relation is already affected by the lowest lying resonance of He++o-

H2, labeled as (1 1 8 2e). At somewhat higher T s, around 7 mK, this resonance makes the relation look

like 1:82, cf. Table IX. Just above this temperature, the near threshold shape resonances of He++o-

D2 become operative, cf. Fig. C5a. They locally reverse the isotope substitution effect on the rate

coefficient for the mixture with equilibrium H2. Namely, around T=0.05 K, they enhance the coefficient

k(He++equi D2) so that it becomes above 10 times bigger than its counterpart for equi-H2. Around 2−3

K, the two lowest lying Feshbach resonances, (2 2 2 5e) of He+−H2 and (4 3 0 5e) of He+−D2, come into

play. Because of unfavorable relation between the radiative and dissociative widths, the impact of the

latter resonance on the rate coefficient k(He++equi D2) is much weaker than the impact of the former

resonance on the rate coefficient k(He++equi H2). Therefore the ratio of these coefficients drops again

below unity, down to 0.4.

In the temperature range ∼10<T≤100 K, the H2→D2 substitution only enhances the ‘trad’ reaction

rates, by factors of ∼1.2−1.5 in the mixtures with o/p=normal and by somewhat smaller factors (maxi-

mally 1.37) – in the fully equilibrium mixtures. This effect is entirely due to the (nearly 4 times) bigger

number of the rotational Feshbach resonances involved into the reaction in the heavier system. Indeed,

as demonstrated by the gray curves in the right panel of Fig. C7c, a weak reverse effect would occur,

i.e. the factors k(He++o/p D2)/k(He++o/p H2) would be slightly smaller than unity if only the shape

resonances were taken into account. Of the Feshbach resonances, the b=4 resonances of the He+−D2

complex have an especially big part in the isotope effect in the subthermal range; compare the ‘tot’

and ‘tot-res(b=4)’ curves in Fig. C7b. This is because counterparts of these resonances in the He+−H2

complex contribute practically nothing to the rate constants at T s below 100 K.



TABLE I: He+−ortho-D2. Positions (E) and widths, dissociative (Γ) and radiative (Γrad), of

‘vibrational’ levels (b k vR J=k p) below the v=0 j=0, 2, 4 thresholds. The positions of the levels

are relative to the v=0 j=0 threshold. The positions of the j>0 thresholdsa are shown in lines marked

with ε. All data are in cm−1, the values of Γrad are multiplied by 106.

p=1 p=−1

b k vR E Γ Γrad E− Γ Γrad −
E(p=1) Γrad(p=1)

0 0 0 −889.03 0 254.8

1 −645.11 0 200.7

2 −446.07 0 153.0

3 −290.58 0 111.9

4 −175.81 0 77.7

5 −96.88 0 50.5

6 −47.16 0 29.8

7 −19.39 0 15.2

8 −6.09 0 6.7

9 −0.79 0 2.1

2 2 0 −755.91 0 256.0 0.00 0 0.0

1 −509.52 0 202.1 0.00 0 0.0

2 −307.73 0 154.8 0.00 0 0.0

3 −149.02 0 114.3 0.00 0 0.0

4 −30.32 0 81.8 0.00 0 0.0

5 53.50 7.3 (−5) 54.4 0.00 0 0.0

6 108.91 4.8 (−5) 34.4 0.00 0 0.0

7 142.93 2.1 (−5) 20.2 0.00 0 0.0

8 162.38 1.8 (−5) 11.3 0.00 0 0.0

9 173.05 1.1 (−5) 6.1 0.00 0 0.0

10 178.13 1.1 (−5) 4.4 0.00 0 0.2

2 1 0 −509.25 0 234.1 0.14 0 0.0

1 −294.02 0 178.8 0.16 0 0.1

2 −123.94 0 130.4 0.14 0 0.0

3 2.12 2.6 (−3) 89.1 0.14 0 0.1

4 87.79 1.8 (−3) 57.1 0.13 0 −0.1

5 139.96 1.1 (−3) 31.2 0.12 0 0.0

6 166.70 4.7 (−4) 13.8 0.10 0 −0.1

7 176.84 1.7 (−4) 6.0 0.12 0 −1.9

2 0 0 −282.42 0 204.6

1 −107.43 0 148.6

2 22.57 2.4 (−5) 99.4

3 108.52 2.0 (−4) 59.2

4 156.21 2.2 (−4) 33.8

5 176.79 5.8 (−5) 23.9

ε 178.96



TABLE I: continued

4 4 0 −372.08 0 258.9 0.00 0 0.0

1 −122.43 0 204.7 0.00 0 0.1

2 82.68 3.1 (−9) 155.7 0.00 0 1.9

3 244.86 4.7 (−4) 117.0 0.00 4.7 (−4) −0.1

4 367.71 8.7 (−3) 87.8 0.00 8.6 (−3) 0.1

4 3 0 −186.00 0 240.6 0.00 0 0.0

1 40.49 6.6 (−8) 185.8 0.00 0 0.0

2 221.87 7.6 (−3) 135.5 0.00 7.8 (−3) 2.4

3 359.81 8.7 (−3) 97.8 0.00 8.5 (−3) 0.0

4 2 0 −26.16 0 219.6 0.01 0 0.0

1 177.44 6.0 (−5) 132.6 −0.10 0 0.7

2 335.01 4.2 (−2) 117.5 0.01 3.8 (−2) 0.1

4 1 0 97.89 4.1 (−7) 196.8 1.15 1.3

1 280.92 2.8 (−1) 143.8 0.90 1.2 (−1) 0.0

4 0 0 172.27 9.7 (−6) 147.9

1 343.13 2.1 (+0) 123.0

ε 593.35

aShown are the threshold positions which result from the asymptotic part of the used PES for the [HeHH]+

system5. In comparison with exact data for D2
7, the positions εv=02 and εv=0 3 are too low by 0.11 and 0.36

cm−1, respectively.



TABLE II: He+−para-D2. Positions (E) and widths, dissociative (Γ) and radiative (Γrad), of

‘vibrational’ levels (b=j k vR J=k p) below the v=0 j=1, 3, 5 thresholdsa. The level positions are

relative to the v=0 j=0 threshold. The positions of the j>0 thresholdsb are shown in lines marked

with ε. All data are in cm−1, the values of Γrad are multiplied by 106.

p=1 p=−1

b k vR E Γ Γrad E− Γ Γrad −
E(p=1) Γrad(p=1)

1 1 0 −854.85 0 255.1 0.08 0 0.0

1 −610.06 0 201.1 0.08 0 0.0

2 −409.96 0 153.6 0.07 0 0.0

3 −253.10 0 113.0 0.05 0 0.0

4 −136.46 0 79.3 0.04 0 0.0

5 −54.97 0 52.7 0.03 0 0.0

6 −1.96 0 32.7 0.03 0 0.0

7 29.69 0 18.4 0.02 0 0.0

8 47.03 0 9.7 0.01 0 0.0

9 55.95 0 4.7 0.01 0 0.0

10 59.53 0 1.1 0.01 0 0.0

1 0 0 −555.89 0 232.0

1 −347.36 0 175.8

2 −184.58 0 125.6

3 −67.20 0 82.4

4 7.98 0 47.3

5 47.85 0 20.9

ε 59.74

3 3 0 −594.32 0 257.3 0.00 0 0.0

1 −346.23 0 203.4 0.00 0 0.0

2 −142.71 0 156.1 0.00 0 0.0

3 17.67 0 116.3 0.00 0 0.0

4 138.35 4.4 (−5) 82.1 0.00 4.4 (−5) 0.2

5 224.10 4.2 (−5) 56.6 0.00 4.2 (−5) 0.1

6 281.35 3.4 (−5) 35.2 0.00 3.4 (−5) 0.5

7 317.03 2.4 (−5) 21.4 0.00 2.4 (−5) 0.0

8 337.89 1.4 (−5) 12.2 0.00 1.4 (−5) 0.0

9 349.68 1.6 (−5) 6.7 0.00 1.6 (−5) 0.0

10 355.65 3.8 (−4) 2.9 0.00 1.4 (−5) −0.1

3 2 0 −383.03 0 237.3 0.00 0 0.0

1 −161.53 0 182.2 0.00 0 0.2

2 14.86 0 134.5 0.00 0 0.1

3 147.81 1.2 (−2) 94.7 0.06 7.2 (−3) 0.6

4 240.22 2.1 (−3) 61.6 0.00 2.1 (−3) 0.0

5 299.60 1.4 (−3) 36.9 0.03 1.6 (−3) −0.1

6 333.27 9.4 (−4) 26.8 0.01 9.4 (−4) −0.3

7 349.58 3.9 (−4) 8.3 0.01 4.1 (−4) 0.0

8 356.07 9.4 (−5) 2.8 −0.04 4.7 (−4) 0.3



TABLE II: continued

3 1 0 −199.27 0 213.6 0.34 0 0.0

1 −6.17 0 158.0 0.29 0 0.0

2 141.10 1.9 (−2) 97.4 0.22 5.9 (−3) 11.7

3 244.34 1.6 (−2) 70.4 0.13 6.0 (−3) −0.3

4 308.82 1.1 (−2) 40.2 −0.05 4.5 (−3) −0.3

5 343.20 4.5 (−3) 19.2 −0.51 2.3 (−3) −1.1

6 354.81 1.3 (−3) 5.3 0.57 6.3 (−4) −0.5

3 0 0 −59.64 0 183.7

1 105.33 3.7 (−3) 129.4

2 223.52 7.0 (−4) 84.5

3 298.99 8.5 (−7) 49.1

4 339.91 8.7 (−5) 23.4

5 355.65 4.6 (−5) 5.6

ε 357.10

5 5 0 −91.20 0 260.2 0.00 0 0.7

1 159.88 4.2 (−8) 206.5 0.00 1.3 (−8) 0.1

5 4 0 76.27 2.3 (−9) 243.7 0.00 2.8 (−9) 0.0

1 306.77 3.8 (−5) 187.9 0.00 1.0 (−4) −1.5

5 3 0 220.14 1.1 (−5) 225.1 0.00 5.9 (−6) 0.0

5 2 0 335.74 2.6 (−4) 199.6 0.06 1.1 (−8) 0.4

ε 886.66

ab=5 levels lying above the ε03 threshold are not shown.
bThe values of ε0j for j=1, 3, and 5 are too small by 0.04, 0.21, and 0.55 cm−1, respectively, cf. Ref. 7.



TABLE III: He+−ortho-D2. Positions (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of rotational states associated with the v=0 j=2 threshold (b=2) in the

energy range from 0 (=ε00) up to 357(≈ε03) cm−1.

b=2 k vR J p

p=1 p=−1 p=1 p=−1

J E Γ Γrad ∆E Γ ∆Γrad E Γ Γrad ∆E Γ ∆Γrad

(f -e) (f -e) (f -e) (f -e)

k=2 vR=0

25 40.21 4 (−15)a 144.8 0.81 0 2.5

26 97.32 3.4 (−6) 130.2 1.76 0 7.5

27 161.53 2.0 (−1) 98.3 −3.39 0 29.0

28 218.50 1.2 111.6 −0.55 4 (−18) 4.6

29 278.28 1.7 102.6 −0.09 2.3 (−8) 1.5

30 338.22 1.7 89.2 0.18 4.0 (−4) 1.4

k=2 vR=1 k=1 vR=0

21 5.78 9 (−25) 107.0 −2.52 0 20.5 32.22 9 (−10) 152.1 26.53 0 −3.9

22 49.05 2.4 (−6) 113.7 −0.73 0 6.0 79.98 2.2 (−2) 142.2 28.62 0 −2.9

23 94.30 8.2 (−2) 105.4 0.12 0 6.0 129.23 2.1 (−1) 135.0 30.49 0 −5.4

24 140.90 1.1 102.5 0.42 0 −0.2 179.53 1.8 (−1) 125.3 32.36 7 (−15) −6.1

25 188.26 1.3 92.1 0.46 2 (−26) 0.2 230.69 1.6 (−1) 114.3 34.14 9.9 (−6) −6.5

26 235.66 1.3 81.0 0.59 1.6 (−8) 0.4 282.42 1.3 (−1) 102.3 35.76 2.0 (−3) −7.3

27 282.51 1.3 68.0 0.78 1.7 (−3) 0.6 334.22 1.5 (−1) 88.4 37.05 6.9 (−2) −9.5

28 327.43 1.6 50.3 1.13 4.5 (−1) 1.1

k=2 vR=2 k=1 vR=1

17 25.68 1.0 (−2) 107.1 17.63 0 15.8

18 26.14 2.7 (−5) 106.7 0.29 0 2.2 60.47 2.5 (−1) 119.1 19.78 0 −3.3

19 60.83 6.8 (−1) 95.8 0.26 0 0.4 96.99 2.6 (−1) 111.8 21.44 0 −3.8

20 96.12 6.5 (−1) 88.5 0.35 0 0.1 134.62 2.5 (−1) 104.5 23.02 0 −4.9

21 132.05 7.1 (−1) 81.5 0.43 0 −0.8 172.47 2.0 (−1) 110.6 25.16 5 (−12) −20.3

22 168.33 7.6 (−1) 73.0 0.52 0 −0.8 211.79 2.2 (−1) 85.4 26.24 2.3 (−3) −5.6

23 204.54 7.9 (−1) 63.4 0.64 1 (−10) −0.7 250.86 1.8 (−1) 73.2 26.41 7.0 (−2) 36.5

24 240.00 7.6 (−1) 51.8 0.80 1.7 (−3) −0.6 289.15 3.1 (−1) 58.0 27.64 8.0 (−1) −8.0

25 273.16 1.4 34.8 1.07 7.2 (−1) 0.6

k=0 vR=0

15 5.73 1 (−13) 156.6

16 42.24 1.3 (−3) 149.8

17 80.51 1.5 (−3) 141.4

18 120.40 1.8 (−3) 134.5

19 161.76 1.1 (−3) 125.9

20 204.41 1.7 (−3) 116.4

21 248.10 5.2 (−3) 105.3

22 292.56 1.4 (−2) 93.5

23 337.13 1.1 (−1) 79.0



TABLE III: continued

k=2 vR=3 k=1 vR=2

12 17.28 1.7 (−1) 104.5 9.55 0 −1.4

13 5.07 1.0 (−7) 87.2 0.02 0 1.5 40.06 1.8 (−1) 100.3 10.88 0 −2.0

14 28.01 1.7 (−1) 84.1 0.12 0 0.0 64.28 1.9 (−1) 97.6 12.15 0 −4.4

15 52.13 2.1 (−1) 79.2 0.16 0 0.0 87.78 1.3 (−1) 134.3 15.43 0 −45.7

16 77.21 2.6 (−1) 74.0 0.20 0 0.0 115.23 2.1 (−1) 86.1 16.38 0 16.5

17 103.09 3.0 (−1) 68.4 0.26 0 0.0 142.53 2.1 (−1) 77.0 16.20 0 2.5

18 129.56 3.4 (−1) 62.2 0.32 0 0.0 170.35 2.0 (−1) 69.0 17.67 4 (−11) −3.0

19 156.34 3.8 (−1) 55.3 0.40 0 0.0 198.41 1.8 (−1) 59.7 18.82 6.3 (−5) −3.9

20 183.05 3.9 (−1) 47.6 0.49 7 (−20) 0.1 226.14 1.6 (−1) 48.7 19.51 1.0 (−1) −5.9

21 209.09 3.8 (−1) 38.3 0.61 1.8 (−4) 0.1 252.29 9.8 (−1) 33.5 19.62 2.8 −5.5

22 233.17 8.7 (−1) 27.2 0.76 5.6 (−1) −0.3

k=2 vR=4 k=0 vR=1

7 7.32 11.7 (−3) 72.5 0.01 0 1.6

8 19.05 18.9 (−3) 71.1 0.02 0 0.7

9 32.06 28.6 (−3) 69.3 0.03 0 0.0

10 46.28 41.1 (−3) 66.5 0.04 0 0.0 10.18 126.9 (−5)b 126.8

11 61.62 56.4 (−3) 63.3 0.06 0 0.0 32.88 156.3 (−5) 122.5

12 77.98 74.4 (−3) 59.8 0.08 0 0.0 57.32 185.0 (−5) 117.5

13 95.24 94.6 (−3) 56.0 0.11 0 0.0 83.41 212.2 (−5) 112.0

14 113.26 1.2 (−1) 51.9 0.15 0 0.0 111.03 239.5 (−5) 105.8

15 132.01 1.3 (−1) 53.5 0.18 0 −0.6 140.03 258.1 (−5) 98.7

16 150.65 1.6 (−1) 42.7 0.24 0 0.1 170.24 277.1 (−5) 90.8

17 169.74 1.6 (−1) 41.8 0.35 0 3.5 201.53 19.6 (−3) 90.0

18 188.14 1.7 (−1) 29.1 0.39 1.4 (−8) 0.2 233.17 14.7 (−3) 71.8

19 205.30 2.6 (−1) 19.0 0.49 1.1 (−1) 0.1 264.99 1.1 (−1) 61.0

k=1 vR=3 k=0 vR=2

0 22.57 23.8 (−6) 99.4

1c 2.12 25.8 (−4) 89.1 0.14 0 0.1 24.41 39.7 (−6) 99.1

2 5.25 76.9 (−4) 88.3 0.41 0 0.3 28.08 81.4 (−6) 98.4

3 9.92 15.1 (−3) 87.1 0.81 0 0.4 33.57 164.2 (−6) 97.3

4 16.12 24.6 (−3) 86.4 1.33 0 −0.2 40.85 301.9 (−6) 95.9

5 23.83 35.7 (−3) 84.9 1.96 0 −0.3 49.90 501.1 (−6) 94.0

6 33.02 48.1 (−3) 83.1 2.70 0 −0.4 60.68 758.6 (−6) 91.5

7 43.67 61.0 (−3) 81.5 3.54 0 −0.7 73.14 106.2 (−5) 89.0

8 55.82 70.8 (−3) 84.0 4.40 0 −3.7 87.22 140.1 (−5) 86.0

9 68.15 74.7 (−3) 90.2 7.08 0 21.2 102.86 670.3 (−6) 82.0

10 83.15 1.0 (−1) 73.9 6.34 0 3.4 119.97 190.9 (−5) 78.8

11 98.90 1.1 (−1) 68.2 7.55 0 −0.3 138.50 209.8 (−5) 75.7

12 115.62 1.2 (−1) 63.4 8.70 0 −1.1 158.43 20.2 (−4) 76.0

13 133.21 1.3 (−1) 58.4 9.84 0 −1.5 195.25 8.7 (−2) 75.0

14 151.49 1.3 (−1) 52.9 10.94 0 −1.9 217.42 9.4 (−2) 53.0

15 170.22 1.3 (−1) 46.6 11.96 7.4 (−4) −2.3

16 189.05 1.2 (−1) 39.3 12.78 6.5 (−4) −3.4

17 207.34 1.4 (−1) 30.1 13.05 4.7 (−1) −5.5



TABLE III: continued

k=2 vR=5 k=1 vR=4

1 87.79 18.3 (−4) 57.1 0.13 0 −0.1

2 53.50 73.1 (−6) 54.4 0.00 0 0.0 90.22 54.2 (−4) 56.1 0.38 0 −0.1

3 57.18 36.0 (−5) 53.4 0.00 0 0.3 93.83 10.6 (−3) 53.9 0.75 0 0.9

4 62.05 10.5 (−4) 52.7 0.00 0 0.0 98.60 17.1 (−3) 53.3 1.23 0 0.0

5 68.09 23.9 (−4) 51.8 0.00 0 0.0 104.50 24.6 (−3) 51.8 1.82 0 −0.2

6 75.38 40.7 (−4) 63.3 0.01 0 0.0 111.48 32.7 (−3) 49.3 2.49 0 0.3

7 83.33 80.2 (−4) 49.3 0.01 0 0.3 119.48 40.5 (−3) 48.5 3.25 0 −1.3

8 92.56 12.8 (−3) 45.9 0.02 0 0.4 128.45 48.8 (−3) 44.4 4.05 0 0.1

9 102.68 20.1 (−3) 42.9 0.03 0 0.9 138.30 55.5 (−3) 42.2 4.90 0 −0.9

10 113.63 26.8 (−3) 40.5 0.05 0 0.5 149.28 39.3 (−3) 38.7 5.41 0 0.5

11 125.29 35.7 (−3) 37.1 0.07 0 0.9 159.90 68.4 (−3) 35.2 6.56 0 1.5

12 137.52 45.3 (−3) 34.5 0.09 0 0.2 171.46 60.0 (−3) 29.9 7.40 0 −1.2

13 150.16 54.8 (−3) 29.9 0.12 0 1.0 183.05 56.3 (−3) 24.8 8.02 4.3 (−3) −2.5

14 162.97 62.6 (−3) 26.5 0.17 0 0.2 193.58 1.4 (−1) 32.4 8.62 1.1 −17.4

15 175.63 66.2 (−3) 21.7 0.21 0 0.2

16 187.63 61.1 (−3) 15.5 0.27 1.1 (−4) 0.3

k=0 vR=3

0 108.52 196.5 (−6) 59.2

1 110.10 230.1 (−6) 59.8

2 113.23 298.9 (−6) 60.9

3 117.86 403.8 (−6) 62.5

4 123.94 53.9 (−5) 65.0

5 131.47 68.4 (−5) 70.2

6 140.54 78.7 (−5) 82.1

7 151.52 757.3 (−6) 108.2

8 155.61 13.6 (−4) 82.2

9 167.97 20.9 (−4) 54.3

10 180.61 41.7 (−4) 36.0

11 192.93 3.4 (−2) 29.5

12 204.68 9.5 (−1) 19.6

k=2 vR=6 k=1 vR=5

1 139.96 10.7 (−4) 31.2 0.12 0 0.0

2 108.91 47.8 (−6) 34.4 0.00 0 0.0 141.66 31.4 (−4) 30.7 0.36 0 0.0

3 111.72 233.7 (−6) 33.7 0.00 0 0.3 144.17 61.0 (−4) 29.8 0.69 0 −0.8

4 115.43 68.2 (−5) 32.6 0.00 0 0.2 147.48 99.2 (−4) 27.8 1.14 0 0.7

5 119.98 14.9 (−4) 31.8 0.00 0 −0.2 151.56 1.3 (−2) 26.9 1.64 0 0.1

6 125.35 28.8 (−4) 30.3 0.01 0 0.0 156.32 1.7 (−2) 25.2 2.23 0 0.3

7 131.45 48.8 (−4) 28.7 0.01 0 0.0 161.68 2.0 (−2) 23.0 2.78 0 0.2

8 138.25 74.3 (−4) 28.6 0.02 0 0.0 167.55 2.2 (−2) 21.8 3.38 0 −2.1

9 145.55 1.1 (−2) 24.7 0.03 0 0.1 173.67 2.3 (−2) 17.6 3.99 0 −1.6

10 153.38 1.5 (−2) 23.5 0.05 0 0.0 179.71 2.2 (−2) 17.2 4.54 9.5 (−3) −6.5

11 161.38 1.4 (−2) 18.6 0.06 0 1.3 185.48 2.6 (−1) 7.2 4.46 1.3 −1.9

12 169.56 2.5 (−2) 15.8 0.10 0 0.6

13 177.55 2.4 (−2) 12.6 0.14 0 0.1

14 184.88 2.4 (−2) 8.1 0.19 2.2 (−3) 0.1



TABLE III: continued

k=2 vR=7 k=0 vR=4

0 156.21 22.4 (−5) 33.8

1 157.33 25.9 (−5) 32.0

2 142.93 21.4 (−6) 20.2 0.00 0 0.0 159.50 33.7 (−5) 29.6

3 144.96 84.5 (−6) 19.6 0.01 0 0.8 162.60 47.0 (−5) 27.2

4 147.62 39.5 (−6) 19.4 −0.01 0 −0.6 166.56 68.8 (−5) 24.8

5 150.85 13.4 (−4) 17.9 0.01 0 0.0 171.24 12.7 (−4) 21.7

6 154.62 19.7 (−4) 16.7 0.01 0 0.0 176.79 23.3 (−6) 17.5

7 158.84 30.1 (−4) 15.3 0.01 0 0.0 182.33 3.2 (−2) 10.9

8 163.43 44.4 (−4) 13.8 0.02 0 −0.1 187.75 7.9 (−1) 9.4

9 168.29 59.2 (−4) 12.0 0.04 0 0.0

10 173.21 71.2 (−4) 12.4 0.06 0 0.2

11 178.12 79.0 (−4) 8.2 0.09 0 0.0

13 186.08 9.2 (−1) 3.6 0.13 9.4 (−1) −1.0

k=1 vR=6 k=0 vR=5

1 166.70 47.4 (−5) 13.8 0.10 0 −0.1

2 167.72 13.5 (−4) 13.4 0.30 0 −0.1 177.62 1.3 (−6) 16.4

3 169.21 24.8 (−4) 12.6 0.58 0 −0.2 179.21 9.7 (−4) 5.8

4 171.14 36.3 (−4) 11.5 0.92 0 −0.3

5 173.47 42.5 (−4) 10.3 1.26 0 −0.7

6 175.79 61.7 (−4) 10.0 1.85 0 −2.7

7 178.55 5.0 (−3) 5.9 2.05 4.9 (−3) −1.4

8 181.07 1.1 (−1) 2.8 2.01 6.8 (−1) −0.8

k=2 vR=8

2 162.38 17.6 (−6) 11.3 0.00 0 0.0

3 163.77 83.0 (−6) 10.8 0.00 0 0.0

4 165.58 24.5 (−5) 10.2 0.00 0 0.0

5 167.75 51.9 (−5) 9.5 0.00 0 0.0

6 170.24 9.4 (−4) 8.6 0.01 0 0.0

7 172.97 1.5 (−3) 7.5 0.02 0 0.1

8 175.84 2.1 (−3) 6.3 0.03 0 0.0

9 178.69 2.6 (−3) 4.9 0.06 0 0.1

10 181.23 1.1 (−1) 2.8 0.13 5.7 (−2) −0.2

k=1 vR=7 k=0 vR=6

0 176.79 58.1 (−6) 23.9

1 176.84 1.7 (−4) 6.0 0.12 0 −1.9 177.78 13.4 (−6) 51.7

2 180.71 3.2 (−1) 2.3 −1.33 1.5 (−2) −0.4

k=2 vR=9

2 173.05 10.7 (−6) 6.1 0.00 0 0.0

3 173.95 51.1 (−6) 5.6 0.00 0 0.0

4 175.09 14.2 (−5) 5.1 0.00 0 0.0

5 176.43 31.7 (−5) 4.4 0.01 0 0.0

6 177.88 6.0 (−4) 3.6 0.04 0 0.3

7 179.31 4.5 (−3) 2.5 0.04 7.6 (−4) 0.0

k=2 vR=10

2 178.13 3.4 (−6) 4.4 0.00 0 0.2

3 178.55 6.6 (−5) 1.8 0.02 0 0.2

aThe widths Γ≪10−9 cm−1 were determined with the help of the Siegert quantization method? .
bThe widths Γ are shown with more figures in cases when they are comparable to the width Γrad, i.e. when

0.1 . Γ/Γrad . 10.
cWith red color are marked the b=2 resonances which are shown in Fig. C5, in the upper left panel.



TABLE IV: He+−ortho-D2. Energies (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of rotational states associated with the v=0 j=4 threshold (b=4) in the

range 0 − 357 cm−1.

b=4 k vR J p

p=1 p=−1 p=1 p=−1

J E Γ Γrad ∆E Γ ∆Γrad E Γ Γrad ∆E Γ ∆Γrad

(f -e) (f -e) (f -e) (f -e)

k=4 vR=0

18 32.06 122.1 (−6) 201.6 0.05 0 −0.7

19 77.51 455.6 (−6) 200.8 0.04 0 0.1

20 124.98 166.3 (−5) 190.9 0.10 0 4.0

21 174.99 40.6 (−3) 167.9 −0.54 0 20.1

22 225.57 49.0 (−4) 177.5 −0.11 263.8 (−6) 1.0

23 278.43 1.8 (−1) 172.3 0.87 1.2 (−1) −44.1

24 332.70 3.1 (−1) 165.0 0.11 2.4 (−1) −0.8

k=4 vR=1 k=3 vR=0

11 7.07 13.3 (−6) 187.6 0.01 0 −0.1

12 34.31 4.9 (−6) 184.2 0.01 0 −0.1

13 63.60 16.8 (−6) 180.2 0.01 0 0.0 21.37 780.1 (−6) 211.1 0.18 0 0.5

14 94.88 295.0 (−6) 175.7 0.01 0 0.0 54.44 670.8 (−5) 203.9 0.38 0 2.9

15 127.95 90.3 (−4) 163.2 0.02 0 2.3 91.52 7.2 (−2) 156.6 −1.39 0 43.8

16 163.35 13.4 (−6) 165.3 0.02 0 0.1 127.67 146.6 (−5) 193.0 −0.77 0 −18.7

17 200.16 1.4 (−1) 149.9 0.07 2.3 (−1) −8.7 166.63 698.2 (−5) 183.5 0.97 0 −8.3

18 238.97 2.0 (−1) 155.1 −0.02 3.0 (−1) 2.5 207.62 5.0 (−2) 182.7 1.20 5.4 (−2) −3.6

19 279.28 2.7 (−1) 149.0 0.02 2.6 (−1) 1.1 250.29 5.2 (−1) 174.1 1.48 2.9 (−1) 3.9

20 321.14 3.6 (−1) 143.4 0.05 3.2 (−1) 0.2 292.59 1.1 103.1 4.18 4.2 (−1) 67.4

21 341.29 1.6 160.1 1.94 4.2 (−1) 2.4

k=4 vR=2 k=3 vR=1

3 40.49 6.6 (−8) 185.8 0.00 0 0.0

4 82.68 3.1 (−9) 155.7 0.00 0 1.9 49.40 1.1 (−6) 184.5 0.00 0 0.0

5 93.07 1.1 (−7) 155.4 0.00 0 0.8 60.49 12.9 (−6) 182.5 0.00 0 0.0

6 105.49 2.0 (−6) 154.4 0.00 0 0.1 73.61 572.4 (−6) 167.4 0.00 0 0.1

7 119.93 507.0 (−6) 151.0 −0.01 0 1.4 89.29 23.2 (−6) 177.1 0.00 0 0.0

8 136.31 100.4 (−6) 148.3 0.00 0 0.0 106.80 20.1 (−6) 175.6 0.01 0 0.1

9 154.69 2.5 (−7) 146.1 0.00 0 1.3 126.40 338.8 (−6) 172.4 0.02 0 0.3

10 174.97 14.5 (−6) 142.1 0.00 0 −0.1 147.59 21.7 (−3) 134.0 0.40 0 32.6

11 197.06 4.3 (−2) 141.5 0.00 4.3 (−2) 0.0 171.78 16.3 (−6) 163.9 0.15 0 −2.4

12 220.98 6.5 (−2) 138.1 0.00 6.3 (−2) 0.0 197.30 2.4 (−1) 161.0 0.12 2.6 (−1) 3.8

13 246.67 9.5 (−2) 134.4 0.01 8.9 (−2) 0.0 224.83 4.5 (−1) 157.4 0.15 2.7 (−1) 0.3

14 274.05 1.4 (−1) 130.5 0.01 1.2 (−1) 0.0 254.05 5.6 (−1) 152.7 0.26 3.2 (−1) 0.4

15 303.07 1.9 (−1) 126.3 0.02 1.7 (−1) 0.1 285.19 8.2 (−1) 143.8 0.20 3.6 (−1) 3.8

16 333.68 2.8 (−1) 122.1 0.04 2.4 (−1) 0.1 317.48 8.8 (−1) 141.4 0.61 3.9 (−1) 0.3

17 351.40 1.1 134.6 0.89 4.0 (−1) 0.4

k=4 vR=3

4 244.86 473.3 (−6) 117.0 0.00 472.5 (−6) −0.1

5 253.88 188.2 (−5) 115.9 0.00 187.4 (−5) 0.0

6 264.65 490.6 (−5) 114.3 0.00 486.2 (−5) 0.0

7 277.16 10.6 (−3) 112.3 0.00 10.4 (−3) 0.0

8 291.37 20.6 (−3) 110.3 0.00 19.9 (−3) 0.0

9 307.29 36.7 (−3) 113.4 0.00 34.6 (−3) 0.0

10 324.78 68.1 (−3) 106.8 0.01 61.7 (−3) 0.0

11 343.96 1.2 (−1) 104.6 0.02 1.0 (−1) 0.1



TABLE IV: continued

k=2 vR=0 k=1 vR=0

1 97.89 4.1 (−7) 196.8 1.15 0 1.3

2 101.03 5.4 (−9) 194.0 3.37 0 3.7

3 105.89 4.8 (−6) 189.8 6.54 0 6.6

4 112.58 30.3 (−6) 183.7 10.53 0 11.6

5 1.97a 107.4 (−6) 215.9 0.22 0 0.1 121.15 146.1 (−6) 173.6 15.26 0 19.8

6 15.89 308.3 (−6) 213.4 0.45 0 0.3 131.52 315.3 (−6) 156.9 20.77 0 33.5

7 32.00 980.6 (−6) 209.2 0.81 0 1.5 143.28 717.8 (−6) 124.3 27.47 0 63.3

8 50.12 512.9 (−5) 201.2 1.41 0 4.3 165.13 106.9 (−5) 140.8 26.53 20.2 (−3) 42.0

9 71.46 15.0 (−3) 176.6 0.49 0 −8.6 181.76 276.8 (−6) 158.6 33.23 13.0 (−3) 22.2

10 93.33 648.1 (−6) 196.7 3.36 0 −1.8 200.80 3.3 173.0 39.88 688.9 (−5) 3.6

11 117.45 4.2 (−8) 192.1 4.74 0 4.1 224.26 2.7 175.7 44.38 243.0 (−5) −3.4

12 143.19 379.3 (−6) 181.5 6.82 0 11.2 249.46 2.6 171.7 49.30 446.2 (−6) −4.6

13 180.20 566.5 (−6) 92.1 −0.19 7.4 (−6) 95.2 277.03 2.5 166.6 53.87 250.4 (−5) −5.5

14 205.64 50.4 (−3) 129.3 6.68 1.9 (−1) 53.7 306.92 2.3 162.1 57.90 11.7 (−3) −8.6

15 234.90 1.3 160.1 11.70 2.0 (−1) 17.8 339.09 2.0 156.2 61.02 33.3 (−3) −11.6

16 268.60 4.0 182.9 14.29 1.8 (−1) −11.1

17 303.65 4.2 164.9 17.42 1.6 (−1) 0.2

18 340.32 4.6 158.1 20.72 1.2 (−1) −0.4

k=2 vR=1 k=1 vR=1

1 280.92 2.8 (−1) 143.8 0.90 1.2 (−1) 0.0

2 177.44 59.8 (−6) 132.6 −0.10 0 0.7 283.88 5.7 (−1) 142.8 2.64 1.1 (−1) 0.2

3 183.65 6.8 (−2) 164.2 0.03 5.4 (−2) 0.0 288.44 9.6 (−1) 141.7 5.13 1.0 (−1) −0.4

4 191.96 1.2 (−1) 162.8 0.09 8.3 (−2) 0.0 294.68 1.4 140.2 8.21 8.5 (−2) 0.0

5 202.29 2.1 (−1) 161.0 0.22 1.2 (−1) 0.0 302.72 1.8 138.2 11.75 7.0 (−2) −0.1

6 214.59 3.4 (−1) 158.9 0.43 1.5 (−1) 0.0 312.64 2.2 136.0 15.62 5.4 (−2) −11.0

7 228.82 5.2 (−1) 156.4 0.77 1.9 (−1) 0.0 324.52 2.6 133.5 19.67 3.7 (−2) −4.6

8 244.92 7.6 (−1) 153.4 1.26 2.2 (−1) 0.2 338.43 2.8 130.8 23.75 3.6 (−2) −2.3

9 262.83 1.1 150.2 1.96 2.4 (−1) 0.2 354.45 3.0 127.8 27.65 9.1 (−3) −3.2

10 282.47 1.5 146.5 2.89 2.6 (−1) −0.3

11 303.78 1.9 142.4 4.09 2.7 (−1) 0.4

12 326.69 2.4 137.8 5.60 2.6 (−1) 0.7

13 351.10 3.0 132.8 7.48 2.4 (−1) 1.0

k=1 vR=2

2 335.01 4.2 (−2) 117.5 0.01 3.8 (−2) 0.1

3 340.34 8.4 (−2) 116.4 0.03 6.4 (−2) 0.0

4 347.39 1.5 (−1) 115.0 0.10 9.5 (−2) 0.0

k=0 vR=0 k=0 vR=1

0 172.27 9.7 (−6) 147.9 343.13 2.1 123.0

1 174.87 40.7 (−6) 113.5 345.90 1.9 122.7

2 177.13 42.0 (−5) 36.0 351.39 1.7 122.0

3 191.88 1.2 174.3

4 204.32 1.0 174.1

5 219.53 7.8 (−1) 172.1

6 237.39 5.7 (−1) 169.9

7 257.75 3.7 (−1) 167.0

8 280.50 2.2 (−1) 160.7

9 305.46 8.9 (−2) 159.4

10 332.47 2.0 (−2) 154.7

aThe resonance closest to the v=0 j=0 threshold among all Feshbach resonances (b>0) of He+−o-D2. Because

of the width Γ being above two times smaller than the width Γtrad, the contribution of this resonance to the

rate constant function k(T ) is only one third of what it would be if the relation Γ≫Γtrad were true, cf. Eq. (17).



TABLE V: He+−ortho-D2. Energies (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of shape resonances b=0 k=0 vR J .

vR J E Γ Γrad vR J E Γ Γrad

0 27 37.82 2 (−19) 123.6 3 19 17.89 5.9 (−9) 48.3

28 97.63 1.8 (−9) 112.2 20 43.27 85.8 (−6) 38.0

29 157.76 48.1 (−6) 98.9 21 66.65 1.2 25.0

30 217.63 20.7 (−3) 84.6 4 16 5.84 1 (−11) 34.5

31 276.09 83.9 (−2) 66.4 17 22.55 49.6 (−4) 42.9

32 332.37 6.5 50.9 18 38.59 1.5 16.5

1 24 16.26 1 (−21) 98.3 5 14 9.82 14.0 (−4) 17.3

25 63.71 1.9 (−8) 88.8 15 19.56 1.1 9.7

26 111.53 88.2 (−5) 81.2 6 11 2.45 3.6 (−6) 11.6

27 152.01 66.7 (−3) 86.8 12 8.18 2.9 (−1) 5.9

28 197.82 3.2 45.5 7 9 2.48 1.6 (−2) 3.6

2 22 35.43 1.1 (−8) 71.4 10 5.39 9.1 (−1) 2.6

23 71.28 27.7 (−4) 56.7 8 6 0.38 3.0 (−4) 2.9

24 105.06 63.9 (−2) 40.0 7 1.74 3.0 (−1) 1.5

25 135.93 6.8 28.7 9 3 0.09 8.9 (−3) 0.9

The resonance marked with red color lies closer to the respective lowest threshold (here v=0 j=0) than any

other resonance of He+−D2, see Fig. C5.



TABLE VI: He+−para-D2. Energies (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of rotational states associated with the v=0 j=3 threshold (b=3 k vR J p)

in the range 59.745 (=ε01) − 357 (≈ε03) cm−1.

b=3 k vR J p

p=1 p=−1 p=1 p=−1

J E Γ Γrad ∆E Γ ∆Γrad E Γ Γrad ∆E Γ ∆Γrad

(f -e) (f -e) (f -e) (f -e)

k=3 vR=0

23 74.96 2 (−19) 167.8 0.51 2 (−20) 0.5

24 129.37 1.9 (−4) 152.9 0.95 1.6 (−5) 6.1

25 186.09 3.0 (−1) 149.1 0.93 4.3 (−1) −2.2

26 243.17 4.4 (−1) 138.9 1.29 4.0 (−1) 2.7

27 300.49 5.7 (−1) 117.3 2.58 4.2 (−1) 14.6

k=3 vR = 1 k=2 vR = 0

19 73.35 5 (−11) 152.5 0.22 2 (−11) 6.1 65.78 4 (−18) 150.1 0.43 7 (−19) 6.0

20 117.07 2.5 (−1) 150.4 1.18 3.1 (−1) 9.5 108.43 8.4 (−2) 129.4 0.84 2.9 (−2) 12.9

21 162.53 2.3 (−1) 144.7 2.68 2.2 (−1) 9.1 152.49 1.4 (−1) 135.8 0.86 1.6 (−1) −1.3

22 209.09 1.7 140.3 4.82 1.9 (−1) 6.4 197.59 1.9 (−1) 126.9 0.84 2.2 (−1) −1.5

23 258.68 3.2 136.6 5.43 1.7 (−1) 1.9 243.66 2.6 (−1) 117.8 0.79 2.7 (−1) −1.2

24 309.02 3.6 127.1 6.57 1.4 (−1) 2.3 290.48 2.8 (−1) 108.3 0.79 3.1 (−1) −0.8

25 337.84 3.1 (−1) 98.3 0.82 3.4 (−1) −0.6

k=3 vR=2 k=2 vR=1

14 63.87 1.3 (−8) 139.3 3.54 1.8 (−5) 16.3

15 85.93 2.2 (−2) 123.5 −0.49 9.1 (−3) −4.1 94.21 2.5 (−1) 122.6 7.52 6.2 (−2) 33.8

16 128.53 1.5 133.6 10.35 3.3 (−2) 8.1

17 148.83 1.6 (−1) 113.1 −0.25 6.2 (−2) −0.2 163.15 1.9 130.7 15.19 1.8 (−2) 20.0

18 182.20 1.7 (−1) 107.4 −0.30 9.2 (−2) −1.0 199.43 2.2 125.7 20.36 1.1 (−2) 19.0

19 216.83 2.0 (−1) 102.9 −0.53 1.2 (−1) −3.2 237.16 2.5 119.6 25.83 6.5 (−3) 16.8

20 253.20 2.2 (−1) 106.0 −1.59 1.5 (−1) −13.3 276.20 2.7 113.1 31.54 3.8 (−3) 15.9

21 286.39 1.0 (−1) 90.7 1.26 1.8 (−1) −5.6 316.46 2.8 106.2 37.39 2.1 (−3) 13.7

22 323.27 1.6 (−1) 78.7 0.87 2.0 (−1) −1.7

k=1 vR=0

15 63.17 3 (−12) 165.4 28.73 1.6 (−1) −20.8

16 97.23 1.4 (−2) 159.3 28.47 1.9 (−1) −21.2

17 133.05 2.2 (−1) 155.5 27.82 2.0 (−1) −24.1

18 170.52 9.1 (−2) 145.7 26.88 2.1 (−1) −21.0

19 209.29 2.6 (−2) 134.8 25.90 2.0 (−1) −17.6

20 248.59 6.0 (−3) 101.5 25.55 1.9 (−1) 7.9

21 292.88 2.0 (−1) 113.6 21.19 1.8 (−1) −12.5

22 334.71 3.3 (−1) 106.1 20.01 1.6 (−1) −14.2

k=3 vR=3 k=2 vR=2

7 64.37 6.7 (−2) 108.2 0.49 5.8 (−2) −2.4

8 71.16 2.2 (−2) 106.4 −0.71 1.1 (−4) 13.9 80.05 2.5 (−1) 124.4 0.81 6.8 (−2) 2.7

9 87.00 2.4 (−2) 97.2 −0.35 1.3 (−3) 10.0 97.46 3.5 (−1) 122.2 1.56 7.0 (−2) 4.9

10 104.51 5.0 (−2) 93.9 −0.44 4.3 (−3) 8.6 116.67 4.9 (−1) 119.7 2.84 6.2 (−2) 5.6

11 122.24 1.9 (−2) 112.9 0.73 8.8 (−3) −13.7 137.67 6.4 (−1) 117.2 4.71 4.8 (−2) 7.9

12 143.16 1.4 (−2) 97.0 0.14 1.5 (−2) −3.1 160.51 8.0 (−1) 115.3 6.97 3.5 (−2) 6.3

13 165.01 3.9 (−2) 89.8 −0.02 2.3 (−2) 1.5 185.41 9.0 (−1) 117.5 9.20 2.5 (−2) −0.1

14 188.14 8.1 (−2) 89.1 −0.21 3.4 (−2) −3.0 213.08 7.3 (−1) 119.7 10.47 1.8 (−2) −4.3

15 210.14 1.3 (−1) 103.7 1.88 4.6 (−2) −21.8 244.45 3.7 (−1) 122.7 9.69 1.2 (−2) −12.9

16 236.47 3.4 (−2) 78.8 0.67 6.0 (−2) −4.1 279.14 1.5 (−1) 121.0 7.05 8.5 (−3) −17.8

17 262.68 5.2 (−2) 71.5 0.46 7.4 (−2) 1.2 316.23 5.0 (−2) 102.3 3.29 5.5 (−3) −10.0

18 289.15 7.2 (−2) 72.1 0.37 8.8 (−2) 0.8 355.14 1.3 (−2) 107.5 −1.26 1.2 (−3) −20.0

19 316.34 9.0 (−2) 60.2 0.40 1.0 (−1) −0.2

20 343.52 1.0 (−1) 52.7 0.43 1.1 (−1) −0.2



TABLE VI: continued

k=1 vR=1 k=0 vR=0

8 63.32 1.6 (−3) 142.7 8.81 7.3 (−3) −16.1

9 81.17 2.3 (−1) 142.0 9.45 2.1 (−2) −10.5

10 101.03 1.5 (−1) 136.4 9.84 4.5 (−2) −14.2 75.55 3.4 (−2) 152.9

11 124.42 1.2 (−1) 121.2 7.99 7.4 (−2) −2.0 100.78 2.4 (−1) 151.6

12 148.42 6.7 (−2) 123.0 6.77 1.0 (−1) −10.0 127.27 3.1 (−1) 143.3

13 175.23 8.9 (−2) 120.5 4.02 1.2 (−1) −13.2 154.57 3.5 (−1) 133.9

14 203.70 4.3 (−1) 116.3 0.90 1.4 (−1) −14.7 182.36 3.0 (−1) 123.1

15 232.52 1.0 104.2 −1.34 1.5 (−1) −8.4 213.02 2.0 (−1) 94.6

16 261.61 1.5 96.0 −2.73 1.6 (−1) −6.2 241.05 2.2 (−1) 102.6

17 291.42 1.8 89.4 −3.87 1.6 (−1) −6.2 270.80 1.4 (−1) 96.4

18 322.09 1.9 83.1 −5.07 1.5 (−1) −6.9 301.30 1.0 (−1) 88.1

19 353.55 1.9 76.2 −6.52 1.4 (−1) −7.6 332.17 1.5 (−1) 71.4

k=3 vR=4 k=2 vR=3

2 147.81 1.2 (−2) 94.7 0.06 7.2 (−3) 0.6

3 138.35 4.4 (−5) 82.1 0.00 4.4 (−5) 0.2 153.16 3.7 (−2) 95.0 0.27 1.5 (−2) 2.3

4 144.39 1.8 (−4) 81.2 0.00 1.9 (−4) 0.2 160.24 7.6 (−2) 96.0 0.71 2.1 (−2) 2.1

5 151.89 4.9 (−4) 79.3 0.00 5.0 (−4) −8.6 169.03 1.3 (−1) 96.0 1.37 2.3 (−2) 2.1

6 160.83 1.1 (−3) 77.9 0.00 1.1 (−3) 0.3 179.54 2.0 (−1) 94.9 2.19 2.3 (−2) 3.2

7 171.16 2.1 (−3) 73.9 0.00 2.1 (−3) 2.0 191.80 2.7 (−1) 96.0 3.10 2.2 (−2) 0.9

8 182.85 5.0 (−3) 73.6 −0.01 3.6 (−3) −5.2 205.88 3.3 (−1) 94.7 3.94 2.0 (−2) −0.7

9 195.68 2.2 (−2) 72.9 0.11 5.8 (−3) −1.2 221.92 3.5 (−1) 94.6 4.49 1.8 (−2) −3.4

10 209.93 9.3 (−3) 69.5 0.06 8.8 (−3) −0.3 240.08 3.0 (−1) 94.1 4.51 1.5 (−2) −6.1

11 225.26 1.2 (−2) 66.4 0.06 1.3 (−2) −0.2 260.50 2.2 (−1) 92.8 3.75 1.3 (−2) −9.5

12 241.79 1.4 (−2) 74.2 0.07 1.5 (−2) 0.5 283.11 1.3 (−1) 90.2 2.15 1.0 (−2) −11.0

13 258.87 2.2 (−2) 58.8 0.08 2.4 (−2) −0.4 307.69 6.3 (−2) 85.1 −0.22 7.6 (−3) −11.6

14 276.99 2.9 (−2) 54.9 0.10 3.1 (−2) −0.1 333.90 2.1 (−2) 68.8 −3.21 4.9 (−3) −1.2

15 295.74 3.5 (−2) 50.2 0.13 3.8 (−2) 0.0

16 314.92 4.2 (−2) 45.3 0.16 4.6 (−2) −0.5

17 334.30 4.9 (−2) 39.6 0.19 5.2 (−2) −0.3

18 353.50 5.2 (−2) 33.5 0.24 5.9 (−2) 0.3

k=1 vR=2 k=0 vR=1

0 105.33 3.7 (−3) 129.4

1 141.10 1.9 (−2) 97.4 0.22 5.9 (−3) 11.7 107.52 5.0 (−3) 124.2

2 144.29 3.6 (−2) 106.8 0.60 2.4 (−3) 0.7 111.87 8.1 (−3) 128.1

3 149.10 5.3 (−2) 103.1 1.01 6.4 (−5) 0.7 118.36 1.4 (−2) 126.3

4 155.56 6.5 (−2) 102.3 1.35 1.6 (−3) −2.8 126.93 2.5 (−2) 121.7

5 163.67 6.7 (−2) 99.0 1.58 7.8 (−3) −9.9 137.51 4.3 (−2) 118.1

6 173.46 5.8 (−2) 97.7 1.64 1.7 (−2) −5.8 149.99 7.1 (−2) 117.0

7 184.92 4.3 (−2) 93.5 1.51 2.9 (−2) −5.1 164.19 1.1 (−1) 115.5

8 198.06 3.6 (−2) 89.7 1.14 4.2 (−2) −4.9 179.88 1.7 (−1) 110.4

9 212.86 7.1 (−2) 87.3 0.51 5.6 (−2) −6.9 196.93 2.1 (−1) 102.3

10 229.25 1.9 (−1) 83.4 −0.39 6.8 (−2) −9.5 214.68 2.7 (−1) 97.6

11 247.06 3.9 (−1) 79.6 −1.47 8.0 (−2) −5.0 233.16 2.7 (−1) 90.5

12 266.10 6.3 (−1) 75.8 −2.63 9.0 (−2) −5.3 252.24 2.3 (−1) 83.3

13 286.24 8.6 (−1) 72.0 −3.84 9.7 (−2) −5.5 271.94 1.6 (−1) 64.5

14 307.34 1.0 63.2 −5.86 7.8 (−2) 37.6 292.26 1.1 (−1) 40.2

15 329.27 1.1 55.0 −6.83 1.0 (−1) 0.9 312.94 7.4 (−2) 62.4

16 351.49 1.1 55.7 −8.15 9.7 (−2) −6.8 334.07 9.1 (−2) 57.8

17 355.16 1.3 (−1) 46.0

k=3 vR=5 k=2 vR=4

2 240.22 2.1 (−3) 61.6 0.00 2.1 (−3) 0.0

3 224.10 4.2 (−5) 56.6 0.00 4.2 (−5) 0.1 244.02 5.5 (−3) 60.8 0.01 5.3 (−3) −0.1

4 228.81 2.1 (−4) 84.0 0.00 2.0 (−4) −0.4 249.12 1.1 (−2) 58.9 −0.02 9.6 (−3) −0.5

5 234.94 5.0 (−4) 53.9 0.00 5.0 (−4) 0.1 255.58 2.1 (−2) 59.3 −0.16 1.5 (−2) −0.9

6 242.09 1.0 (−3) 52.2 0.00 1.0 (−3) 0.0 263.51 4.6 (−2) 57.9 −0.53 2.1 (−2) −7.9

7 250.30 1.9 (−3) 50.5 0.00 1.9 (−3) 0.0 273.17 9.0 (−2) 74.1 −1.09 2.0 (−2) 22.7

8 259.52 3.2 (−3) 48.1 0.01 3.2 (−3) 0.4 283.58 2.1 (−1) 62.6 −2.27 3.6 (−2) −9.1

9 269.68 4.9 (−3) 44.7 0.01 4.9 (−3) 1.4 308.70 4.3 (−1) 51.8 −4.83 4.9 (−2) −6.1



TABLE VI: continued

10 280.71 7.1 (−3) 43.6 0.02 7.2 (−3) 0.0 322.44 5.2 (−1) 47.6 −6.08 5.4 (−2) −5.6

11 292.49 9.7 (−3) 40.7 0.02 9.9 (−3) 0.0 336.77 5.7 (−1) 42.9 −7.30 5.6 (−2) −5.5

12 304.97 1.2 (−2) 42.9 0.03 1.3 (−2) −0.3 351.49 5.8 (−1) 37.0 −8.51 5.5 (−2) −5.6

13 317.75 1.6 (−2) 33.0 0.05 1.7 (−2) 1.1

14 330.93 1.9 (−2) 29.9 0.07 2.1 (−2) −0.8

15 344.16 2.2 (−2) 26.4 0.10 2.3 (−2) 0.0

16 356.98 2.4 (−2) 20.1 0.13 2.5 (−2) −0.7

k=1 vR=3 k=0 vR=2

0 223.52 7.0 (−4) 84.5

1 244.34 1.6 (−2) 70.4 0.13 6.0 (−3) −0.3 225.26 1.8 (−3) 83.9

2 247.38 3.6 (−2) 69.7 0.37 6.8 (−3) −0.7 228.71 5.2 (−3) 82.9

3 251.92 7.5 (−2) 66.7 0.67 7.6 (−3) 1.5 233.79 1.3 (−2) 81.0

4 258.05 8.9 (−2) 68.4 0.92 8.3 (−3) −2.8 240.39 2.9 (−2) 76.2

5 265.74 1.1 (−1) 67.6 1.07 8.8 (−3) −2.8 248.30 5.4 (−2) 75.0

6 275.07 1.2 (−1) 66.6 1.00 9.0 (−3) −4.3 257.25 8.3 (−2) 70.8

7 286.09 1.1 (−1) 65.7 0.57 8.7 (−3) −5.7 266.91 9.6 (−2) 65.1

8 298.85 8.4 (−2) 64.8 −0.31 7.9 (−3) −6.6 277.15 9.1 (−2) 59.1

9 313.39 4.8 (−2) 69.9 −1.49 5.4 (−3) 11.1 288.04 7.7 (−2) 54.5

10 328.32 2.7 (−2) 76.7 −3.18 5.7 (−3) −22.8 299.63 6.2 (−2) 50.0

11 345.48 7.3 (−3) 53.6 −5.49 4.2 (−3) −8.3 311.90 5.0 (−2) 45.4

12 324.74 4.3 (−2) 37.8

13 337.99 4.5 (−2) 35.9

14 351.40 6.8 (−2) 30.2

k=3 vR=6 k=2 vR=5

2 299.60 1.4 (−3) 36.9 0.03 1.6 (−3) −0.1

3 281.35 3.4 (−5) 35.2 0.00 3.4 (−5) 0.5 302.37 3.3 (−3) 36.2 0.10 4.0 (−3) −0.2

4 285.08 1.4 (−4) 34.8 0.00 1.4 (−4) 0.1 306.00 5.6 (−3) 36.3 0.24 6.9 (−3) 1.0

5 289.68 3.7 (−4) 33.8 0.00 3.6 (−4) 0.0 310.46 8.6 (−3) 31.4 0.45 1.0 (−2) 2.1

6 295.10 7.6 (−4) 32.4 0.00 7.6 (−4) 0.0 315.68 1.2 (−2) 32.5 0.72 1.4 (−2) −0.7

7 301.28 1.4 (−3) 30.9 0.00 1.4 (−3) 0.0 321.63 1.5 (−2) 26.6 1.04 1.8 (−2) 3.2

8 308.16 2.2 (−3) 28.9 0.00 2.2 (−3) 0.2 328.22 1.7 (−2) 28.1 1.40 2.1 (−2) −0.7

9 315.66 3.4 (−3) 27.0 0.01 3.4 (−3) 0.0 335.35 1.9 (−2) 25.7 1.78 2.4 (−2) −0.8

10 323.64 4.7 (−3) 24.6 0.01 4.8 (−3) 0.1 342.89 2.0 (−2) 21.8 2.16 2.4 (−2) 0.2

11 332.00 6.3 (−3) 22.0 0.02 6.3 (−3) 0.0 350.67 2.3 (−2) 18.8 2.31 2.6 (−2) 4.7

12 340.56 8.2 (−3) 19.0 0.03 8.1 (−3) 0.0

13 349.11 8.3 (−3) 15.7 0.06 1.0 (−2) 0.1

k=1 vR=4 k=0 vR=3

0 298.99 8.5 (−7) 49.1

1 308.82 1.1 (−2) 40.2 −0.05 4.5 (−3) −0.3 300.17 8.6 (−4) 48.4

2 311.36 2.2 (−2) 40.3 −0.17 4.6 (−3) −1.0 302.49 5.3 (−3) 46.5

3 315.20 3.1 (−2) 39.9 −0.44 4.7 (−3) −1.6 305.92 1.7 (−2) 44.5

4 320.36 3.5 (−2) 39.5 −0.91 4.8 (−3) −2.7 310.35 4.0 (−2) 42.0

5 326.82 3.5 (−2) 39.1 −1.63 4.7 (−3) −4.1 315.69 7.4 (−2) 39.9

6 334.50 2.3 (−2) 32.1 −2.63 4.3 (−3) 1.0 321.86 1.1 (−1) 36.6

7 343.23 1.1 (−2) 37.6 −3.85 3.8 (−3) −7.8 328.82 1.7 (−1) 31.7

8 352.90 1.5 (−3) 27.8 −5.35 2.8 (−3) −1.4 336.38 1.9 (−1) 28.7

9 344.50 2.2 (−1) 27.0

10 353.01 2.3 (−1) 23.4

k=3 vR=7 k=2 vR=6

2 333.27 9.4 (−4) 26.8 0.01 9.4 (−4) −0.3

3 317.03 2.4 (−5) 21.4 0.00 2.4 (−5) 0.0 335.24 2.1 (−3) 19.2 0.04 2.3 (−3) 0.0

4 319.75 9.0 (−5) 20.6 0.00 1.2 (−4) 0.0 337.72 3.5 (−3) 17.6 0.11 3.8 (−3) 0.0

5 323.08 2.4 (−4) 19.9 0.00 2.3 (−4) 0.0 340.67 4.8 (−3) 16.2 0.23 5.5 (−3) 0.0

6 326.93 5.0 (−4) 19.4 0.00 4.9 (−4) 0.0 344.05 6.1 (−3) 14.7 0.40 7.0 (−3) −0.1

7 331.32 9.3 (−4) 17.3 0.00 8.7 (−4) 0.0 347.78 7.2 (−3) 14.5 0.62 8.4 (−3) −0.9

8 336.10 3.1 (−3) 15.7 0.01 1.4 (−3) 0.0 351.49 7.3 (−3) 12.8 1.06 9.1 (−3) −2.1

9 341.20 1.9 (−3) 13.9 0.01 2.2 (−3) 0.0 355.53 7.8 (−3) 8.4 1.37 1.0 (−2) 2.1

10 346.50 2.6 (−3) 12.1 0.02 3.8 (−3) 0.1

11 351.82 3.9 (−3) 10.0 0.01 1.4 (−3) 0.1

12 356.94 2.4 (−3) 7.5 0.04 2.6 (−3) 0.0



TABLE VI: continued

k=1 vR=5 k=0 vR=4

0 339.91 8.7 (−5) 23.4

1 343.20 4.5 (−3) 19.2 −0.51 2.3 (−3) −1.1 340.21 1.6 (−3) 22.0

2 345.52 6.0 (−3) 19.4 −1.22 2.2 (−3) −1.7 341.12 6.7 (−3) 20.7

3 348.68 5.3 (−3) 19.8 −2.01 2.0 (−3) −0.6 342.83 1.2 (−2) 39.5

4 352.67 1.3 (−3) 30.5 −3.43 2.0 (−3) 17.5 344.91 3.1 (−2) 18.3

5 347.80 4.5 (−2) 16.4

6 351.20 5.8 (−2) 14.2

7 355.02 7.8 (−2) 11.2

k=3 vR=8 k=2 vR=7

2 349.58 3.9 (−4) 8.3 0.01 4.1 (−4) 0.0

3 337.89 1.4 (−5) 12.2 0.00 1.4 (−5) 0.0 350.69 8.6 (−4) 7.8 0.04 9.5 (−4) 0.0

4 339.78 5.7 (−5) 11.6 0.00 5.8 (−5) 0.0 352.10 1.3 (−3) 9.5 0.13 1.5 (−3) 5.7

5 342.06 1.4 (−4) 10.9 0.00 1.5 (−4) 0.0 353.67 1.8 (−3) 6.4 0.23 2.1 (−3) −0.2

6 344.70 2.8 (−4) 10.1 0.00 3.9 (−4) 0.0 355.40 1.7 (−3) 4.8 0.39 2.1 (−3) 0.1

7 347.64 1.9 (−4) 11.9 0.00 3.1 (−4) 0.1

8 350.72 8.7 (−4) 7.9 0.01 7.1 (−4) 0.0

9 353.91 5.9 (−2) 6.6 0.02 9.5 (−4) 0.0

k=1 vR=6 k=0 vR=5

0 355.65 4.6 (−5) 5.6

1 354.81 1.3 (−3) 5.3 0.57 6.3 (−4) −0.5 356.57 1.2 (−4) 4.6

2 355.03 3.5 (−3) 5.0 1.18 2.3 (−4) −1.2 357.73 6.3 (−2) 2.3

3 355.61 5.2 (−3) 4.3 1.62 6.3 (−4) −1.2

4 356.53 5.2 (−3) 4.2 1.82 1.6 (−1) −2.4

k=3 vR=9 k=2 vR=8

2 356.07 9.4 (−5) 2.8 −0.04 4.7 (−4) 0.3

3 349.68 1.6 (−5) 6.7 0.00 1.6 (−5) 0.0

4 350.91 5.9 (−5) 6.3 0.00 5.8 (−5) −0.1

5 352.39 1.4 (−4) 5.6 0.00 1.2 (−4) 0.0

6 354.03 2.7 (−4) 4.9 0.01 2.3 (−4) 0.0

7 355.75 4.9 (−4) 4.0 0.02 3.5 (−4) 0.0

k=3 vR=10

3 355.65 3.8 (−4) 2.9 0.00 1.4 (−5) −0.1

4 356.28 1.8 (−4) 2.3 0.01 4.9 (−5) 0.0

5 356.93 2.8 (−4) 1.7 0.03 9.4 (−5) −0.1



TABLE VII: He+−para-D2. Energies (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of rotational states associated with the v=0 j=5 threshold (b=5) in the

range 59.745 − 357 cm−1.

b=5 k vR J p

p=1 p=−1 p=1 p=−1

J E Γ Γrad ∆E Γ ∆Γrad E Γ Γrad ∆E Γ ∆Γrad

(f -e) (f -e) (f -e) (f -e)

k=5 vR=0

12 67.35 5 (−10) 241.5 0.00 1.2 (−7) 0.0

13 99.53 1.1 (−6) 237.4 0.00 2.9 (−7) 0.1

14 133.98 7.0 (−6) 233.2 0.00 4.2 (−6) 0.0

15 170.65 35.3 (−6) 228.5 0.00 22.7 (−6) 0.0

16 209.48 151.9 (−6) 223.5 0.00 100.8 (−6) 0.0

17 250.38 808.3 (−6) 217.7 0.00 610.2 (−6) 0.0

18 293.57 126.2 (−5) 206.4 0.05 284.3 (−5) −5.0

19 338.42 151.4 (−5) 205.5 −0.04 424.5 (−6) 0.2

k=5 vR=1 k=4 vR=0

4 76.27 2.3 (−9) 243.7 0.00 2.8 (−9) 0.0

5 159.88 4.2 (−8) 206.5 0.00 1.3 (−8) 0.1 88.48 4 (−10) 242.1 0.00 1.3 (−9) 0.0

6 173.69 425.4 (−6) 204.1 0.00 5.0 (−6) 0.7 103.09 7.9 (−8) 240.2 0.00 1.8 (−8) 0.0

7 189.74 78.9 (−6) 202.7 0.00 3.1 (−6) 0.0 120.09 1.1 (−6) 238.0 0.00 3.5 (−7) 0.0

8 208.02 128.5 (−6) 199.9 0.00 5.2 (−7) 0.4 139.44 6.9 (−6) 235.3 0.00 2.4 (−6) 0.2

9 228.48 23.4 (−6) 197.7 0.00 11.8 (−6) 0.0 161.12 32.1 (−6) 232.6 0.00 11.0 (−6) 0.0

10 251.10 9.8 (−6) 194.7 0.00 8.4 (−7) 0.0 185.09 125.3 (−6) 229.3 0.00 42.3 (−6) 0.0

11 275.84 8.8 (−6) 191.4 0.00 3.4 (−6) 0.0 211.31 461.4 (−6) 225.5 0.01 167.9 (−6) 0.0

12 302.59 573.6 (−6) 182.3 0.00 544.3 (−6) 0.3 239.59 385.2 (−5) 208.7 0.02 276.4 (−5) 0.4

13 331.53 58.9 (−6) 183.6 0.00 10.3 (−6) 0.0 270.33 319.6 (−5) 211.3 0.08 592.6 (−6) 5.0

14 302.89 86.0 (−3) 204.3 0.94 23.8 (−3) −43.9

15 338.09 818.9 (−5) 193.0 −0.03 51.4 (−6) 13.0

k=3 vR=0

3 220.14 10.7 (−6) 225.1 0.00 5.9 (−6) 0.0

4 229.53 34.2 (−6) 195.6 0.00 2.1 (−6) 0.2

5 240.92 271.8 (−6) 216.0 0.01 65.3 (−6) 6.3

6 254.65 113.9 (−5) 219.6 0.03 336.4 (−6) 0.1

7 270.41 220.0 (−4) 200.5 −0.11 907.3 (−5) −25.0

8 288.99 595.2 (−6) 208.7 0.08 9.2 (−6) 3.6

9 308.98 513.3 (−5) 199.4 0.10 148.0 (−5) −15.1

10 332.11 97.7 (−6) 187.2 0.27 9.7 (−6) 16.5

11 355.90 26.5 (−3) 193.2 1.27 142.6 (−6) 4.0

k=4 vR=1 k=2 vR=0

2 335.74 261.8 (−6) 199.6 0.06 1.1 (−8) 0.4

3 341.71 555.9 (−5) 184.1 0.40 110.9 (−6) 18.6

4 306.77 37.7 (−6) 187.9 0.00 1.0 (−4) −1.5 349.70 306.0 (−5) 182.4 1.38 1.2 (−6) −19.7

5 317.70 28.5 (−6) 187.0 0.00 3.4 (−9) 0.1

6 330.80 1.1 (−6) 184.6 0.00 9.7 (−6) −0.4

7 345.94 153.6 (−4) 178.8 0.00 1.1 (−4) 0.5



TABLE VIII: He+−para-D2. Energies (E, in cm−1), dissociative widths (Γ, in cm−1), and radiative

widths (Γrad, in 10−6 cm−1) of shape resonances b=1 k vR J p.

k=1 k=0

p=1 p=−1

vR J E Γ Γrad ∆E Γ ∆Γrad vR J E Γ Γrad

(f -e) (f -e)

0 27 57.87 0 127.5 22.10 6 (−26) −6.7 0 23 100.54 1.5 (−7) 112.5

28 117.39 4 (−14) 116.4 22.76 1 (−10) −7.3 24 152.09 455.4 (−5) 117.0

29 177.36 4.4 (−7) 104.3 23.18 23.8 (−6) −8.1 25 203.85 221.3 (−4) 105.4

30 237.30 15.9 (−4) 90.5 23.22 19.0 (−3) −9.6 26 255.94 48.7 (−3) 89.2

31 296.34 20.8 (−2) 73.6 22.48 93.9 (−2) −11.4 27 308.01 94.1 (−2) 86.5

1 25 87.29 8 (−16) 91.6 15.98 2 (−11) −5.6 28 363.16 2.1 106.8

26 134.42 1.9 (−6) 80.3 16.15 93.1 (−6) −6.4 29 421.87 2.1 90.9

27 180.96 11.8 (−3) 66.4 15.80 98.5 (−3) −7.7 1 20 91.80 3.6 (−5) 100.3

28 225.43 1.0 48.7 14.63 3.0 −10.0 21 130.52 13.8 (−2) 88.3

2 22 66.27 ∼0 70.5 10.59 1 (−14) −4.2 22 169.23 14.1 (−2) 73.8

23 102.52 1.5 (−6) 76.1 10.20 88.4 (−6) −20.4 23 206.72 1.1 55.5

24 137.18 33.8 (−3) 48.5 9.94 20.1 (−2) −6.3 2 17 88.11 12.4 (−2) 64.6

25 168.68 2.0 32.8 9.19 4.2 −1.0 18 115.02 89.5 (−3) 52.2

3 20 78.11 2.1 (−8) 45.6 6.89 4.5 (−6) −3.7 19 140.90 81.7 (−2) 40.3

21 103.36 27.4 (−3) 30.1 6.44 15.9 (−2) −0.6 3 13 66.01 10.5 (−4) 44.3

22 125.98 2.2 21.5 5.72 4.2 −2.4 14 83.29 35.4 (−3) 38.0

4 17 62.59 2 (−16) 32.7 4.12 6 (−11) −2.0 15 100.59 55.0 (−2) 44.4

18 80.20 34.8 (−4) 24.4 3.92 30.9 (−3) −3.0 16 116.77 329.5 (−3) 118.7

19 95.69 1.5 14.6 3.41 2.7 −1.5 4 10 67.43 25.2 (−3) 25.4

5 15 65.48 7.9 (−7) 19.6 2.27 26.6 (−6) −2.8 11 76.77 40.2 (−2) 17.8

16 75.97 3.1 (−1) 9.9 1.95 6.9 (−1) −1.4 5 6 62.60 54.2 (−3) 10.5

6 13 64.50 54.4 (−5) 10.5 1.28 29.7 (−4) −2.6 7 66.38 1.0 55.5

14 70.28 8.2 (−1) 4.6 1.05 1.1 −0.2

7 11 62.94 3.5 (−5) 4.7 0.68 2.0 (−2) −0.4

12 66.16 9.3 (−1) 2.5 0.67 1.1 −0.1

8 8 59.74 0 4.3 0.37 1.8 (−7) −0.1

9 61.89 1.2 (−1) 2.3 0.41 1.4 (−1) −0.1

9 6 60.26 3.5 (−2) 1.6 0.21 3.9 (−2) 0.3



TABLE IX: Rate constants k(T ) (in 10−15 s−1cm3) for radiative quenching of 4He+ ions from

gas mixtures with equilibrium and normala deuterium at selected temperature values in the range

10−5−100 K compared to rate constants for quenching from mixtures with equilibrium and normala

hydrogen.

He++D2 He++H2
He++D2
He++H2

He++D2 He++H2
He++D2
He++H2

T equi nrm equi nrm equi nrm T equi nrm equi nrm equi nrm

10−5 0.39 0.41 0.46 0.71 0.86 0.57 4 46.1 41.6 89.6 40.2 0.51 1.04

0.0005 0.40 0.47 0.47 2.7 0.87 0.17 5 45.9 41.9 79.3 39.1 0.58 1.07

0.001 0.41 0.53 0.47 6.2 0.87 0.09 6 46.1 42.1 71.3 38.1 0.65 1.10

0.002 0.44 0.65 0.49 22.8 0.89 0.03 7 46.5 42.3 65.3 37.3 0.71 1.13

0.005 0.50 0.90 0.54 74.5 0.92 0.01 10 47.9 42.9 54.4 35.5 0.88 1.21

0.007 0.54 1.0 0.58 81.9 0.93 0.01 13 49.0 43.5 49.0 34.2 1.00 1.27

0.01 0.61 1.1 0.63 78.8 0.97 0.01 15 49.4 43.7 46.7 33.5 1.06 1.31

0.02 1.7 2.0 0.78 55.6 2.18 0.04 19 49.7 43.9 43.8 32.4 1.13 1.36

0.03 5.4 4.5 0.93 41.2 5.79 0.11 20 49.7 43.9 43.3 32.1 1.15 1.37

0.05 13.5 10.1 1.2 27.5 11.12 0.37 25 49.3 43.9 41.2 31.0 1.20 1.41

0.10 20.9 15.2 2.9 17.7 7.20 0.86 30 48.5 43.7 39.5 30.1 1.24 1.45

0.20 24.9 18.4 6.8 15.8 3.69 1.16 35 47.5 43.4 38.0 29.3 1.25 1.48

0.30 25.4 19.1 9.8 15.5 2.60 1.23 40 46.5 43.1 36.5 28.6 1.27 1.50

0.40 24.8 18.9 16.7 16.2 1.49 1.17 45 45.4 42.6 35.1 28.0 1.29 1.52

0.50 25.2 19.2 28.4 18.3 0.89 1.05 50 44.3 42.1 33.6 27.4 1.32 1.53

0.70 29.3 22.2 57.1 25.1 0.51 0.88 60 42.1 40.8 31.1 26.5 1.35 1.54

1.00 37.3 28.1 90.0 33.9 0.41 0.83 70 39.9 39.1 29.1 25.7 1.37 1.52

2.00 46.9 38.4 113.2 41.6 0.41 0.92 80 37.7 37.3 27.5 25.0 1.37 1.49

2.50 47.0 38.4 108.6 41.7 0.43 0.96 90 35.6 35.4 26.1 24.3 1.36 1.46

3.00 46.7 40.9 102.3 41.3 0.46 0.99 100 33.6 33.5 25.0 23.7 1.35 1.41

aFixed ortho:para concentration, 2:1 and 3:1 for D2 and H2, respectively.
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Appendix 2: Energy dependent rate constants

Kvj(e) — a quantity of dimension (length)3(time)−1 can be defined as function of relative translational energy in

the vj-channel, e=E−εvj , using the yield function ptradvj (E), cf. Eqs. (8) and (5), expressed as Θ(E−εvj) p
trad
vj (e).

Namely,

Kvj(e) =
1

2j+1

~
2π

√

2µ3

1√
e
ptradvj (e) . (56)

Correspondingly to the background-resonance resolution of Eq. (6),

Kvj(e) ≈ Kbck
vj (e) + Kres

vj (e) (57)

with Kres
vj (e) =

1

2j+1

~
2π

√

2µ3

1√
e

∑

n

(2Jn+1)
Γtrad
n Γn,vj

(e−eresn,vj)
2+(Γtrad

n +Γn)2/4
. (58)

Here n enumerates resonances lying above the vj-channel threshold, eresn,vj denotes position of n-th resonance

relative to this threshold, eresn,vj=Eres
n −εvj , and Γn,vj denotes the partial dissociative width which accounts for

decay of the resonance into the vj-channel only.

If the translational motion is in thermal equilibrium, as assumed here, the following averages — functions

of temperature, can be defined

Kvj(T ) =

∫ ∞

0

de Ptrn(e, T )Kvj(e) (59)

with Ptrn(e, T ) =
2

√

π(kBT )3

√
e exp

(

− e

kBT

)

.

From these functions, the rate constants kc(T ), ck(T ), or kcnrm(T ) are obtained upon an additional averaging

over the population of vj states. For example, the rate constant ck(T ) is obtained as

ck(T ) =
∑

v

∑

j(c)

cPvj(T )Kvj(T ) =
∑

v

∑

j(c)

ckvj(T ) (60)

with cPvj(T ) =
2j+1

Zc(T )
exp

(

− εvj
kBT

)

.

At ultra-cold collision energies, the functions K0j(e) with j=0 and j=1 that describe the ‘trad’ reactions of

the He+ ions with the o-D2(p-H2) and the p-D2(-H2) molecules, respectively, are constant and the constants

coincide with the values of the respective functions ck0j(T ) at T=0. This obviously is a consequence of the√
e-dependence of the yield functions in the near-threshold regions, ptrad0j (e)≈(2j+1) Ctrad

0(j,j)

√
e, cf. Eqs. (45)

and (54). In the subthermal range, a
√
e-dependence, reflecting the validity of the capture model in the −1

R4 -like

potential, is revealed by the background parts of the yield functions, p
trad(bck)
0j (e)≈ξ(2j+1)

√
e, cf. Eq. (51).

Therefore one finds a similar coincidence between values of the background parts of the energy and temperature

dependent rate functions,

Kbck
0j (TkB) ≈ ckbck(T ) ≈ ktradcpt ,

which should hold true at least for TkB≪ε0 j+2−ε0j.

Thus, the collision-energy-dependent rates would provide practically the same information on the studied

reaction as the thermally averaged rates if the resonance involvement were small. Just the opposite is true,

however, in the considered systems. Not the nearly constant backgrounds but the highly peaked resonance parts

of the functions Kvj(e) decide on the overall reaction rates. For comparing between the systems, a smoothing-

averaging of these functions is requisite. The proper way of the averaging here is, of course, that of Eq. (59).

An illustration is provided in Fig. C8 where the functions K00(e) and K01(e) are plotted in two intervals of the

energy e together with the functions K00(T ) and K01(T ) in the equivalent temperature intervals and all the

four functions are compared between the He++D2 and He++H2 systems.



Fig. C8. K0jc(T )
(∗) versus energy dependent rate constants K0jc(e)

e=E−ε0jc , jc=0 (1) for o (p)-D2 and p (o)-H2
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(∗) In the T -range shown, the values of the functions K0jc(T ) constitute no less than 98% of the

values of the respective functions ck(T ), cf. Eq. (60).

The vertical labels of the resonance peaks in the functions K0jc(e) are the quantum numbers

(b k vR J). Except for the three b=2, 4 cases near 2−3 K, only shape resonances are given label

here.



Fig. C9. ck(T ) versus energy dependent rate constants K0jc(e)

and their averages 〈K0jc(e)〉[e1,e2] := 1
e2−e1

e2
∫
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The function K00(e) for He++o-D2 exhibits 59 resonance peaks in the range shown. 10 peaks

are due to shape resonances (b=0). In the function for He++p-H2, 20 resonance peaks occur of

which 7 peaks are due to shape resonances. These resonances are accounted for by the averages

〈K00(e)〉
[e1,e2]

plotted with the dash-dotted lines: red – for He++o-D2 and black — for He++p-H2.

The respective functions ok(T ) and pk(T ) (solid lines) account, of course, for more resonances. At

T s above ∼80 K, they account for resonances from the energy range at least two times larger than

shown here.
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Bottom: a demonstration of how the functions
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nances left in the backgrounds.

The lower borders of the shadowed strips show the averages 〈K00(e)〉[e1,e2] in the interval

[e1/kB, e2/kB]=[1, 257] K, i.e. ε00+e2 is close to the ε02 threshold in the He++D2 system.
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The function K01(e) for He++o-D2 exhibits 86 resonance peaks in the range shown. 29 peaks are

due to shape resonances (b=1). In the function for He++p-H2, 34 resonance peaks occur of which

16 are due to shape resonances. For the sake of clarity, only the most pronounced shape resonance

peaks are given label here.
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The averages 〈K0j(e)〉[e1,e2] are counterparts of the mean values of the quasi-rate coefficients which are used

in recent calculations23 on radiative decay processes in cold atom-ion collisions, in particular in those referring

to the experiment24 with trapped Yb ions and Rb atoms. Though no physical argument can be given to justify

the use of the averages 〈K0j(e)〉[e1,e2] in the present context, it still seems interesting to see what picture of

the resonance role in the ‘trad’ reaction these quantities would provide, and how much this picture would

differ from that provided by the Boltzmann-averaged characteristics. Qualitatively, the pictures appear the

same: both kinds of averages tell practically the same on the role of the shape resonances, both indicate that

the rotational Feshbach resonances make several times larger contribution and that their role increases upon

the H→D substitution. However, the contents of the small panels of Fig. C9 indicate also that the averages

〈K0j(e)〉[e1,e2] are not generally suitable for quantitative considerations since they may depend on the choice of

the interval [e1, e2]. Certainly, the latter comment applies to situations like in the He++H2(D2) systems where

strong Feshbach resonances (with relatively large Γtrad but not exceedingly larger than Γ) occur at low collision

energies and because of them the Boltzmann-averaged rate constant functions are far from being constant

functions.


