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I. INTRODUCTION



Facts motivating the study:

(i) availability of experimental data on rotationally resolved infrared spectra of the com-
plexes in the H-H (D-D) excitation regions [ C. D . Thompson, C. Emmeluth, B. L.
J. Poad, G. H. Weddle, and E. J. Bieske, J. Chem. Phys. 125, 044310 (2006); C.
Emmeluth, B. L. J. Poad, C. D. Thompson, G. H. Weddle, and E. J. Bieske, J. Chem.
Phys. 126 204309 (2007)].

(ii) only two theoretical simulations (one for each complex) existing which can be con-
fronted with the measured transitions energies [ A. J. Page and E. I. von Nagy-
Felsobuki, J. Phys. Chem. A 111, 4478 (2007); Theor. Chem. Acc. 122, 87 (2009)].
The consistency is much less satisfactory than that achieved for other complexes of
atomic metal cations (M+) with H2 and D2 in the studies reviewed in: V. Dryza and
E. J. Bieske, Intern. Rev. Phys. Chem. 32, 559 (2013).

(iii) availability of electronic structure data for the potential energy and electric dipole
moment surfaces of the ground electronic state of the [LiHH]+ system which, despite
encouraging accuracy of results of the introductory application [W. P. Kraemer and
V. Špirko, Chem. Phys. 330, 190 (2006)], have not been exploited in any other more
extensive calculations on dynamics and spectroscopy of the complexes.

(iv) similarity of the title complexes to the He+−H2 complex whose dynamics was quite
extensively investigated in the course of the studies on radiative association and charge
transfer reactions in the He+ + H2 gas mixtures at low temperatures (<100 K) [F.
Mruga la and W. P. Kraemer, J. Chem. Phys. 122, 224321 (2005); 138, 104315
(2013)]. The tools elaborated for those studies should to be also useful in calculations
on complexes of the M+-H2 type.

The goals:

(i) improve consistency of theoretical simulations with the 2006-7 measurements of Bieske
et al. on the title complexes,

(ii) provide some predictions for the planned/expected (Ref. 1,2) experimental investiga-
tions of other aspects of spectroscopy and dynamics of the M+−H2 type complexes,
such as absorption from/to states excited in the intermolecular stretching and/or bend-
ing modes, vibrational predissociation rates, populations of product rotational states.

(iii) propose some methodological improvements for calculations on dynamics (predissoci-
ating states) of atom-diatom complexes.

The approaches:

• ‘exact’: solving the time-independent Schroedinger equation within the close-coupling
(CC) approximation. Two formulations of the CC equations are exploited:

– ‘BF-diabatic’ — the standard formulation using body-fixed reference frame and
diabatic basis for description of bounded motions,

– ‘SF-adiabatic’ — formulation using a ro-vibrationally adiabatic basis, closely re-
lated to the popular adiabatic bender approximation [S. L. Holmgren, M. Wald-
man, and W. Klemperer, J. Chem. Phys.67, 4414(1977)]. The associated non-
adiabatic couplings are not neglected, however. They are effectively accounted
for by making use of the smooth-variable discretization (SVD) technique [O. I.
Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B29, L389 (1996)].

• approximate: evaluating formulas of the perturbative resonance theory of Fano.
The purpose: to assist analysis of the CC results on vibrational predissociation of the
complexes.

The computational methods: algorithms of the generalized log-derivative method
[F. Mruga la, Int. Rev. Phys. Chem. 12, 1 (1993)], especially the versions for equations in
quasi-diabatic representations which are easily adaptable to the SVD technique.



II. OUTLINE of THEORY

The configuration of the nuclear centers in the Li++a2 (a=H,D) system is described by
three coordinates r, R, and θ being the lengths and the angle between the Jacobi vectors r
and R which join, respectively, the nuclei in a2 (protons, deuterons) and the center-of-mass
of the a2 with the Li nucleus. The orientation of the plane of the three nuclei is described
by azimuthal (α) and spherical (β) angles of the vector R with respect to a space-fixed (SF)
reference frame Oxyz with the origin O at the center-of-mass of a-a-Li and by angle (ψ)
of rotation of the plane around R. Euler rotations of the SF frame over the angles α, β,
and ψ give a body-fixed (BF) reference frame OXY Z with the axis Z aligned to R and the
axis Y perpendicular to the plane of the nuclei. The azimuthal and spherical angles of the
vector r in the two frames are (αr, βr):=r̂

SF
and (0, θ), respectively. (ψ, θ), denoted with r̂

BF
,

are the angles in the partly body-fixed frame which is related to Oxyz by the Euler angles

(α, β, 0):=(R̂, 0).
The Hamiltonian for the relative nuclear motion in the Li++a2 system is

H=K+V=H0+V , where K denotes the kinetic energy operator, V (r, R, θ) — the elec-
tronic energy potential surface (PES), H0 is the Hamiltonian of the noninteracting
subunits, and V (r, R, θ) — the interaction potential obtained by subtracting from V

the part V
R→∞

:=V
HH

(r). Expressed in the Jacobi vectors, K(R, r)=− ~
2

2µ
∆(R)− ~

2

2m
∆(r),

where µ and m are the reduced masses of Li+–a2 and of a-a, respectively, and
H0(R, r)=− ~2

2µ
∆(R)+H

HH
(r). The vibrational and translational modes of motion in the

system are described by the radial coordinates r and R, and the rotational motions are de-

scribed by the four angles R̂ and r̂
SF

or R̂ and r̂
BF

. Expressed in the (R, r, R̂, r̂fr) coordinates,
for fr=BF or SF, the kinetic energy operator is11,12,

K(R, r, R̂, r̂fr) =
1

2µ

[
p2(R) +

1

R2 frL
2(R̂, r̂fr)

]
+

1

2m

[
p2(r) +

1

r2
j2(r̂fr)

]
, (1)

where p(x)=−ı~( ∂
∂x

+ 1
x
) for x=R, r are the radial momenta operators and the operators in

the angular coordinates have the following meaning. SFL=J(R̂, 0) and j(r̂
SF

)=J(r̂
SF
, 0) are

the angular momenta l and j of the Li+ ion about the a2 diatom and of the a2 rotations,

respectively, and BFL
2=J2(R̂, ψ)+j2(r̂

BF
)−2

1∑
ǫ=−1

P−ǫ(R̂, ψ)e−ıǫψjǫ(r̂BF
). The symbol J(R̂, ψ)

denotes the set of the differential operators (Jx,Jy,Jz) which represent the total angular
momentum J=l+j in the SF basis vectors and the symbols Pǫ for ǫ=±1, 0 are related to the

operators (PX ,PY ,PZ) representing J in the BF basis vectors13. J2=
1∑

ǫ=−1

JǫJ−ǫ=
1∑

ǫ=−1

PǫP−ǫ,

where J±1=
1√
2
(Jx±ıJy), J0=Jz, and Pǫ(α, β, ψ)=J−ǫ(ψ,−β, α) . The other symbols denote:

j2(r̂fr)=J2(r̂fr, 0) and jǫ(r̂BF
)=Jǫ(r̂BF

, 0) for ǫ=±1, 0.

A. Ro-vibrational states of the Li+−a2 (a=H,D) complexes

The states of interest are bound and quasi-bound states of the Hamiltonian H(r,R),

ΨJMp(EB
n ; r,R) and Ψ

(+)JMp(Eres
n ; r,R), which are also eigenstates of the operators J2, Jz,

I (spatial inversion), and P (permutation of identical nuclei) to the eigenvalues ~
2J(J+1),

~M , p (−1)J , and (−1)I , respectively, where I denotes the nuclear spin of a2 and p=±1

is the spectroscopic parity. More specifically, Ψ
(+)JMp(Eres

n ; r,R) denotes the set of partial

stationary scattering states
{
〈r,R|E(+)

JMp, (vjl)i〉 , i=1, . . .No

}
at energy of a resonance,

E=Eres
n . The symbols behind the comma in the ket indicate the related state (of H0) before

scattering14 as being |EJMp (vjl)i〉, where E=Ekin+ε(vj)i and the quantum numbers v, j,
and l specify the occupied states of H

HH
, j2, and l2, respectively. No is the number of (vjl)

states that at given E, J , p, and I pertain to open Li++a2(I; v j)-channels (Ekin>0). Only
channels with j of parity (−1)I are possible in the Li++a2(I) system, where I=0 (1) and
I=1 (0, 2) for a2 being para-(ortho-) H2 and D2, respectively.



The resonance energy Eres
n together with related resonance width Γn are pre-

cisely defined by referring to analytical properties of the partial scattering matrix,
SJp(E)=

{
〈EJMp (vjl)f |V |E(+)JMp, (vjl)i〉, i, f=1, . . . No

}
, continued into complex en-

ergy plane14. Staying in the real energy domain, it is sufficient here to adopt definitions
based on the isolated resonance decomposition15 of SJp(E),

S(E) = Sd(E)
[
I− ı~− 1

2γ†(E) a(E)
]

with a(E) = −ı
√
~γ(E)

E −Er(E) + ı
2

Γ(E)
, (2)

where I denotes unit matrix and γ is No-dim. row vector which satisfies the relation
γT=Sdγ† and gives Γ=γγ† . Namely, E is considered to be a resonance energy Eres

n if:
Er(Eres

n )=Eres
n , the functions Γ(E) and Er(E) are nearly constant at least in the interval

[Eres
n −Γn, E

res
n +Γn] with Γn:=Γ(Eres

n ), and the variation of Sd(E) within this interval is slow.
Then Pn,i:=Γn,i/Γn with Γn,i:=|γi(Eres

n )|2 gives the probability of decay of the quasi-bound
state of Li+–a2 into the state (vjl)i of free Li++a2 system. Obviously,

∑
li

Pn,i:=Pn,vj gives

the population of decay channel v j.
For the actual determination of the quasi-bound state characteristics, the collision-time-

delay (life-time) matrix16 is used, QJp=ı~(SE)†SJp; the subscript ‘E’ denotes hereafter
derivative with respect to energy. The isolated resonance decomposition of SJp(E) implies
the following (exact) decomposition of QJp(E)

Q(E) = Qd(E) + Qr(E) + q(E) with Qr(E) = a†(E)a(E) , (3)

Qd=ı~(Sd
E)†Sd, and q comprising terms proportional to Er

E and γE. A detailed description
of this decomposition and of the entire life-time (LT) matrix approach to the resonance
determination is enclosed in Supplementary Material, Ref. 55

The quantum numbers J and p and the formal index n are used above to differentiate
between the ro-vibrational energy levels of the Li+–a2(I) complexes. It appears that in
the majority of their bound and quasi-bound states the complexes behave like atom-diatom
van der Waals molecules of intermediate anisotropy strength17. This allows for complete
and meaningful labeling of the corresponding energy levels. Namely, the index n may be
replaced with four approximate quantum numbers, vr, b, k, and vR, where vr and b describe
internal stretching and hindered rotations of the a2 subunit and correlate with the vibrational
(v) and rotational (j) quantum numbers of free a2, vR describes intermolecular stretching
motion, and k denotes the absolute value of the best preserved eigenvalue λ of the angular
momentum operator PZ=Z . Possible values of k are: k=kmin, . . . b with kmin=0 (1) for
p=1 (−1) or e (f) parity states. In some states of the present complexes, however, rotations
of the diatomic subunits are rather severely restricted. In consequence, a considerable j-
mixing occurs in these states and assigning them with the number b, as defined above,
becomes problematic. Therefore a vibrational bending number vθ is also introduced. It
is based on the Natural Expansion Analysis (NEA) of functions of the states18,26 and is
equal to the number of zeros which occur in the most populated natural orbital in the θ
coordinate inside the [0, π] interval. The number b may be defined as the sum vθ+k and as
such it remains meaningful for any state of the Li+–H2 (D2) complexes. Considering only
states with unexcited intermolecular vibration modes, vR=0 and vθ=0, the complexes have
been treated in Refs. 3 and 4 as near-rigid asymmetric tops and the rotational levels have
been labeled with the standard symbol19 JKa,Kc

. Since the body-fixed axes Z and X nearly
coincide with the principal axes of the top a and b, respectively, and obviously Y coincides
with the axis c, the numbers Ka and Kc can be obtained from the quantum numbers k, J

and p as: Ka=k and Kc=J−k+1−(−1)s

2
where (−1)s=(−1)kp (s=0, 1 is the parity index of

the asymmetric top functions19).

B. Characteristics of absorption spectrum

The cross-section for absorption of light of frequency ν by the Li+–a2 (a=H, or D) molecules
in a gas at temperature T , or the absorption coefficient by one molecule in unit volume of



the gas20,21, is the sum

σ(ν;T ) =
∑

i,f

σi→f(ν;T ) =
∑

i,f

Ii→f(T ) Φ(ν−νif) , (4)

where σi→f(ν;T ) is the cross-section due to transitions from states of energy Ei to states of
energy Ef , and the symbols appearing in the second equality are the characteristics of the
corresponding absorption line: the position of its center, νif=

1
hc

(Ef−Ei) with h being the
Planck constant and c — the speed of light, the absolute intensity, Ii→f(T )=

∫
σi→f(ν;T ) dν,

and the line profile, Φ(ν−νif). The profile is here a Lorentzian whose half-width-at-
half-maximum accounts for dissociative decay of the final state in the transition, i.e.
Φ(ν−νfi)= 1

π
γ

(ν−νif)2+γ2 :=Lγ(ν−νif) with γ=Γ/(2hc). [In the actual line shape simulations,

the profiles Lγ(ν−νif) were convoluted with a Gaussian to account for some other causes of
broadening]. The intensity Ii→f(T ) is given by the formula

Ii→f(T )=
{ 2π2

3hcǫ0

}
νif Si→f Pi(T ) [1− exp(−hcνif/kBT )] (5)

and is related to the electric-dipole vector of the Li+–H2 molecule, d(r,R), through the
factor Si→f — the line strength which is defined by the expression

Si→f Lγ(ν−νif) ≈ hc
∑

q

∑

Mf ,Mi

〈. . . | . . .〉†〈Ψ(+)JfMfpf (E)|dqΨJiMipi(EB
i )〉 (6)

with dq denoting spherical components of d with respect to SF-axes, ν= 1
hc

(E−EB
i ),

νif=
1
hc

(Eres
f −EB

i ), and |ν−νif |∼γ. The factor Pi(T ), when multiplied by (2Ji+1), gives
the population of the energy level Ei at temperature T ,

Pi(T ) = gi exp(−Ei/kBT )/Z(T ) ; (7)

here gi is the nuclear spin statistical factor which assumes values 1 (3) or 3 (6) for ‘i’ being
a state of Li+–a2 with a2=para-(ortho-)H2 or a2=para-(ortho-)D2, respectively, kB is the
Boltzmann constant, and Z(T ) — the total internal partition sum (TIPS),

Z(T ) =
∑

i

gi(2Ji+1) exp(−Ei/kBT ) . (8)

The factor in braces in formula (5) with ǫ0 being the permittivity of free space is
4.1623756×10−19 cm2 Debye−2.

The integrated vibrational band intensity I[v′′]→[v′] is the sum

I[v′′]→[v′](T ) =
∑

k,J,p

∑

k′,J ′,p′

Ii→f(T ) (9)

as the letter ‘i’ (‘f’) stands for the complete label ([v] k J p) with [v]:=[vr vθ vR] of the initial
(final) rovibrational energy-level.

C. Close-coupling

Diabatic representations. In the standard implementations of the close-coupling
approximation22,23 to solving the time-independent Schrödinger equation with the Hamil-

tonian H(R, r, R̂, r̂
fr
) for fr=SF and fr=BF, the dependencies on the five coordinates

(r, R̂, r̂
fr
):=y

fr
are described using orthonormal bases

fr
ΦJMp

1×N
=
{

ΦJMp
vjL

fr
(y

fr
)
}

the individual

members of which are built of eigenfunctions of the operators H
HH

, j2, and l2 or Z ; the sym-
bol L

fr
stands for the quantum number l or λ (when fr=BF). In these bases, the Hamiltonian

matrices take the form

fr
HJp(R) = − ~2

2µ
I d2

dR2 +
fr
WJp(R) , (10)



where the matrix
fr
WJp(R) contains couplings between the (vjL

fr
) states included. Explicit

expressions for these couplings are listed in numerous papers. Here it suffices to remind only
the structure of the matrix

BF
WJp(R),

[
BF
WJp(R)

]
vjλ, v′j′λ′

= δv,v′δj,j′
~
2

2µR2

[
cJp(j)

]
λ,λ′

+ δλ,λ′ [δv,v′δj,j′ εvj + V λ
vj, v′j′(R) ] . (11)

The non-zero elements
[
cJp(j)

]
λ,λ′

, for λ′=λ and λ′=λ±1, are the coefficients

of the centrifugal potentials and of the Coriolis couplings, J(J+1)+j(j+1)−2λ2

and −[J(J+1)−λ(λ±1)]1/2, respectively, and V λ
vj, v′j′(R) is the potential coupling∑

L

〈vj|VL(r, R)|v′j′〉
r
gλL(j, j′) , with VL being the L-th order anisotropy strength function

which comes from the Legendre polynomial expansion V (r, R, θ)=
∑
L

VL(r, R)PL(cos θ) and

gλL(j, j′)=(−1)LC(jLj′, 000)C(j′Lj, λ0λ) , where C(. . . , . . .) denotes the Clebsch-Gordan co-
efficient.

The size N of the matrices
fr
HJp for given J , p and I (not explicitly shown) is determined

by the included vj states, v=0, 1, ..., vmax and j=jmin, jmin+2, ...., jmax with jmin = 0 (1) for I
even (odd). For each j, the values of l may change in step of 2 from |J−j|+1−p

2
to J+j− 1−p

2

and the values of λ may change in step of 1 from 1−p
2

to min(J, j).
Formally, the two diabatic representations are equivalent, i.e.

SF
ΦJMp=

BF
ΦJMpUJp where

UJp is a unitary transformation (see e.g. Ref. 24 for details). For practical reasons, however,
the BF-diabatic representation is better suited to the present complexes. The reasons are:

(i) The assignment of the ro-vibrational energy levels with the approximate quan-
tum numbers is greatly facilitated. Namely, in the matrices of radial functions

BF
FJp
N×1

(EB
n ;R) and

BF
F(+) Jp

N×No

(Eres
n ;R) which represent the states ΨJMp(EB

n ; r,R) and

Ψ
(+)JMp(Eres

n ; r,R), respectively, there are rows of clearly dominating components
whose index (v, j, λ) contains the same values of v and λ. This gives the two ap-
proximate numbers vr and k, respectively. In the majority of the states, single rows of
dominating components occur and on this ground the number b can be assigned, too.

(ii) A good approximation is indicated and easy to implement. Namely, the radial func-
tions with large values of λ appear rather unimportant for converging the calculated
energies EB

n , Eres
n , and widths Γn. This allows for a reduction of the size N of the basis

BF
ΦJMp. It is realized by excluding all functions ΦJMp

vjλ with λ>λmax where λmax is a
fixed value which may be much smaller than jmax but not smaller than the number
b of state being calculated. The resulting approximation, called ‘Coriolis-coupling-
reducing’ (CCr), is a part of the CC-BF-diabatic approach which was exploited in our
calculations on the He++H2 and He+H+

2 systems25–27.

Adiabatic representation. The adiabatic basis of interest here is the one introduced in
Ref. 27 for the purpose of enabling a perturbative treatment of rotational predissociation in
the He+–H2 complex. It is defined by means of orthogonal matrices

fr
ΥJp

N×N
(R)=

{
ΥJp

vjL
fr
,v̄̄l̄

(R)
}

which diagonalize the coupling matrices
fr
WJp(R) at different Rs. Namely,

ΦJMp

1×M
(y

SF
;R)=

fr
ΦJMp(y

fr
)
[
fr
ΥJp(R)

]
N×M (12)

with M≤N . In this basis, the Hamiltonian H takes the form,

HJp(R) = − ~2

2µ

[
I d2

dR2 + 2AJp(R) d
dR

+ BJp(R)
]

+ eJp(R) , (13)

where eJp(R) denotes a diagonal matrix of ro-vibrational adiabatic energies,

eJp(R):=
[
fr
ΥJp T

(R)
fr
WJp(R)

fr
ΥJp(R)

]
M×M , (14)



and AJp(R) and BJp(R) are the respective non-adiabatic coupling matrices,

AJp(R) =
[
fr
ΥJp T

(R) d
dR fr

ΥJp(R)
]
M×M and BJp(R) =

[
. . . d2

dR2 . . .]M×M . (15)

At sufficiently large Rs, the matrices
fr
ΥJp(R) become constant and equal to I when fr=SF

and UJp when fr=BF. In consequence, HJp(R) becomes diagonal and the adiabatic energies

behave like eJp
v̄̄l̄

(R) −→
R→∞

εv̄̄+
~2

2µ
(Λ2

l̄
−1

4
)/R2 , where Λ2

l̄
−1

4
denotes an eigenvalue of the kinetic

energy coupling matrix cJp
n×n

(̄). If dimension of this matrix is as large as allowed, i.e.,

n=min(J, ̄)+1+p
2

, all Λl̄s assume half-integer values, Λl̄=l̄+
1
2
, and l̄ correlates strictly with

the quantum number l. If n is reduced because of the restriction λ≤λmax imposed in the
construction of

BF
WJp, i.e. the CCr approximation is applied prior to the diagonalization

(which is computationally advantageous), non-half-integer Λl̄s arise and l̄ only enumerates
them.

In the basis (12), called ‘SF-adiabatic’27, the eigenstates of the Hamiltonian H are repre-
sented by matrices of radial functions FJp(E;R) which obviously have to satisfy the coupled
equations,

[EI−HJp(R)]FJp(E;R)=0 , (16)

and should vanish at R=0. The behavior at large Rs depends on whether E belongs to the
point part of the spectrum of H , in which case FJp(EB

n ;R) −→
R→∞

0, or E lies in the continuum

part. In the latter case, the conditions appropriate for partial scattering outgoing waves are
imposed,

F
(+)Jp(E;R) −→

R→∞
O

−Jp(E;R) −O
+Jp(E;R)SJp(E) . (17)

The symbols O
±Jp denote diagonal matrices built of Riccati-Hankel functions of order Λl̄, see

Ref. 25 for more details. The ‘energy-normalization’ of the scattering functions is assumed.
The reason for introducing the ro-vibrational adiabatic basis here is the expectation that

the dimension M of the coupled equation problem (16) may substantially be reduced in
comparison with the dimension N of the problem in the BF-diabatic basis, even if the CCr
approximation is used. Obviously, having to solve smaller sets of the coupled equations in
the adiabatic representation instead of the equations in the diabatic representation would
not yet guarantee any substantial computational savings. Sharp structures due to avoided-
crossings of the adiabatic potentials are likely to occur in the non-adiabatic couplings, see
Fig. A2 in Ref. 55 and Fig. C5 in Ref. 27, and very small step size would be needed to
pass them through in the course of solving the coupled equations. However, one has now at
choice the Smooth-Variable Discretization (SVD) technique30–32. This technique avoids the
usual difficulties with strongly localized non-adiabatic couplings at the expense of requiring
somewhat larger amount of information on input. Namely, it requires that overlapping
integrals between the adiabatic basis functions at neighboring R-points of a grid covering
the range R0(≈0) − R∞(→∞) be available. This information is available here in terms of
the matrices

OJp

M×M
(R;R) = [ΥJp(R)]T ΥJp

N×M
(R) . (18)

The SVD technique can be combined with the existing propagative methods of solving the
coupled radial equations. Combinations with the renormalized Numerov-related propagators
have been described in Ref. 31. In this work, like in Ref. 32, exploited are some algorithms
derived from the log-derivative method28, namely, the algorithms presented in Ref. 29 under
the heading ‘For equations in the quasi-diabatic representation’. Though originally designed
to situations when only the nonadiabatic couplings A and B are available on input, these al-
gorithms require merely a slight modification in order to work efficiently with the overlaps.
In Part A of Supplementary Material, there are some details on the modified algorithms
for evaluation of free-free and bound-free transition amplitudes (analytical proof of correct-
ness, numerical tests of convergence properties) which are useful in the calculations of the
resonance characteristics.



Within the close-coupling approach, the line strength Si→f due to bound→resonance
phototransition is obtained as

Si→f = π
2
Γ ×T†T(Eres

f Jfpf ;E
B
i Jipi) , (19)

where T
No×1

(Eres
f Jfpf ;E

B
i Jipi):=

√
2Jf+1

C(Ji1Jf ,MiqMf)
〈Ψ(+)JfMfpf (E=Eres

f )|dqΨJiMipi(EB
i )〉 — the vec-

tor of reduced transition amplitudes to No open resonance decay channels is evaluated
according to the formula24,27,42

T(Eres
f Jfpf ;E

B
i Jipi) = UJfpf T 〈

BF
F

(+)Jfpf (Eres
f )|

BF
dJfpf ,Jipi

BF
FJipi(EB

i )〉R (20)

with the matrix
BF
dJfpf ,Jipi
N×N

(R) containing the following elements

[
BF
dJfpf ,Jipi(R)

]
v′j′λ′, vjλ

= 1+pfpi(−1)Jf+Ji+1

2

1∑
Λ=−1

√
2Ji+1C(Ji1Jf , λΛλ′) fλΛ

[
dλΛ(R)

]
v′j′,vj

, (21)

where
[
dλΛ(R)

]
v′j′, vj

=
∑

L

〈v′j′|DL|Λ|(r, R)|vj〉
r
gλLΛ(j′, j) , (22)

gλLΛ(j′, j) = (−1)L
[ (L+|Λ|)!
(L−|Λ|)!

]1/2
C(jLj′, λΛ λ+Λ)C(j′Lj, 000) , (23)

fλΛ = [1 + (1−δΛ,0)(1−δλ,0)(1−δλ+Λ,0)]
− 1

2 , (24)

and the functions DL|Λ|(r, R) come from expansions of the two non-zero components of the
dipole vector d(r,R) along the BF-axes into the Legendre polynomials and the associated
functions: dZ(r, R, θ)=

∑
L

DL0(r, R)PL(cos θ) and dX(r, R, θ)=
∑
L

DL1(r, R)P 1
L(cos θ) .

III. CALCULATIONS

A. Methods

‘Exact’ (3D). This term signifies calculations performed with application of the theory
outlined in the previous section. ‘3D’ refers to the fact that all three modes of vibrational
motion in the complexes, i.e. the r-, θ-, and R-motions, in all their bound and quasi-bound
states are accounted for by the bases and the equations of the close-coupling approximation.
The accuracy controlling parameters of this approximation, i.e. the values of vmax, jmax,
and λmax determining the BF-diabatic basis size, the range [R0, R∞] of integration of the
coupled equations were adjusted to properties of state being determined. For calculations
on vr=0, 1 states of the complexes, the bases were built of 28 diatomic v j functions, with
v=0−3 and j being even or odd integers from the 0−13 range. For vr=3, 4 states, the
values vmax=vr+2 and jmax=15, 17 were adopted. The parameter λmax was usually chosen
as max(4, b+2). Larger values of this parameter, up to λmax=8, were used in large J (>20)
cases, especially in calculations of partial widths. The coupled equations were integrated
from R0=0.5Å up to maximally R∞=40Å. The boundary R∞ could be shifted towards
origin, even by 25−20Å, in calculations on bound states with low values of the number
vR. The bound-state energies and functions were determined with the help of the artificial-
channel log-derivative propagation method33. In calculations on the quasi-bound states, the
SF-adiabatic representation of the coupled equations was exploited. The energies and widths
of these states were determined via evaluation and analysis of the life-time matrices using the
SVD verions of the log-derivative algorithms for first- and second-order free-free transition
amplitudes presented in Ref. 55. Due to faster convergence with respect to the adiabatic
basis size and due to properties of the SVD technique (constant step size, practically the same
as in the diabatic representation), all the quasi-bound calculations could be substantially
(about eight times) speeded up.



Perturbative (3D-CM). These calculations were performed in connection with the
vibrational predissociation (VP) in the complexes which is driven by relatively weak cou-
pling between the internal (r) and intermolecular vibrational (R and θ) modes of motion.
By treating this coupling as perturbation it became more easy to rationalize some fea-
tures of the VP which were displayed by results of the ‘exact’ calculations. More specifi-
cally, the bound-continuum configuration-mixing (CM) theory34 was applied to the coupled
equations in the BF-diabatic representation. For a given predissociating state with vr>0,
the P (continuum)- and the Q (bound) -subspaces were chosen as spanned by the basis
functions with v changing from 0 to vr−1 and from vr to vr+2, respectively. 0-th order
approximation to energy of the state, E(0)Jp, was obtained as energy of a related state
in the Q-subspace, [HJp

QQ−E(0)JpIQQ]FJpQ =0, and the 2-nd order approximation, ECMJp, as

the sum E(0)Jp+EshftJp. The values of EshftJp and −1
2
ΓCMJp were obtained as real and

imaginary parts, respectively, of the scalar product 〈FJpQ |HJp
QP f

(+)Jp
P (E)〉 with the vector

of radial functions f
(+)Jp
P (E;R) at E=ECMJp describing the final stage of the VP process,

i.e. the half-collision in the P - subspace. Precisely, f
(+)Jp
P (E;R) is the solution of the

driven coupled equations, [EIPP−HJp
PP ] fJpP =HJp

PQFJpQ , which vanishes at R=0 and behaves

as −O+Jp(E;R) tJp(E) at R→∞. (The index ‘BF’ of the blocks of the Hamiltonian matrix
and of the radial functions are omitted here for clarity.) The partial widths were obtained as

ΓCMJp
vj = 1

2π

∑
l

|tJpvjl(ECMJp)|2. Three, four iterations over the energy, starting from E=E(0)Jp,

were usually performed to get converged values of EshftJp and of all ΓCMJp
vj s up to five signif-

icant figures. Obviously, solving of the driven coupled equation problem could be avoided
if the level shift EshftJp were negligible or uninteresting. In such cases, it would suffice to

exploit the relation of the vector tJp(E) to the radial component matrix F
(+)Jp,vjl
P (E;R) of

the full scattering function in the P -subspace, tJpvjl(E)=−2πı〈FJpQ |HJp
QP F

(+)Jp,vjl
P (E)〉. One

should note that this relation at E=E(0)Jp is actually exploited in the ‘Diabatic Vibrational
Golden Rule’ approaches35–37, see also Table DI in Ref. 55.

Of the radial functions fJpP (E;R) and F
(+)Jp
P (E;R) combined appropriately with the BF-

basis functions, one can construct coordinate dependent counterparts X(R, θ) of the char-

acteristics X=ECMJp, ΓCMJp, ΓCMJp
vj such that X=

∫
dR

∫
sin θ dθX(R, θ), see Eqs. D1–19

in Ref. 55. The coordinate-dependent level shifts and widths were constructed for a number
of J=0 resonances in order to get a better insight into the role of rovibrational excitations
in the Q-subspace, influencing the resonance decay through the driving term to the cou-
pled equations, and into the role of inelastic rotational transitions during separation of the
fragments in the P -subspace.

2D approximate. In these calculations, the diatomic vibrational (r) motion was di-
abatically separated from the other modes of motion in the complexes. This means that
the BF-diabatic bases used in formulation of the close-coupling equations were restricted to
include a single v-state only. By this restriction, the vibrationally predissociationg states of
the complexes, i.e. states assigned with vr≥1, become approximated by bound states of the
Hamiltonian matrix built of the v=vr basis states. This 2D approximation was exploited in
nearly all theoretical simulations of rotationally resolved spectra of the complexes formed by
the H2( D2) molecules with metallic cations (M+) which have been investigated experimen-
tally thus far1,2. However, accuracy of the approximation was not quite certain38 as it could
be quantified only in application to truly bound states (vr=0). Because of this uncertainty,
less information could be inferred from the simulations on quality of the used PESs. In this
work, it was possible to test the 2D approximation against the 3D ‘exact’ and the 3D-CM
approaches on any state of the studied complexes.



B. Electronic structure input
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Fig. 1. The electronic structure input to the present calculations, taken from Ref. 8.

a) V (r, R, θ) — the PES of the ground electronic states of the [LiH2]+ system. 1D cuts through the min-

imum, r∗=0.7503Å, R∗=1.9870Å (thick line), and the saddle point at θ=0, π, r∗=0.7428Å, R∗=2.4073Å.

Shown are also the energy levels of bound J=0 states of the complexes Li+–para-H2, Li+–ortho-H2, Li+–

ortho-D2, Li+–para-D2 (black solid, dashed, blue solid, and dashed lines, respectively). The dissociation

thresholds Li++a2(v=0j=0) of the complexes with a=H and a=D, at which E is set to zero, lie 4339.9

and 3706.4 cm−1, respectively, above the minimum of the PES, and 2183.3 and 1549.8 cm−1 above the

asymptote of the PES. The respective thresholds v=0 j=1 lie 118.5 and 59.8 cm−1 higher. The zero-point

energies of Li+–H2 and Li+–D2 are 2665.2 and 1922.8 cm−1, respectively. All levels lie above the barrier

to linearity, of 1633 cm−1, which is marked by the double arrow.

b) The components of the electric dipole vector field of the ground state of [LiHH]+ along the body-fixed

Z- and X-axes with the origin at the center-of-mass of the Li+–H2 complex, represented by the ex-

pansions dZ(r, R, θ)=
∑

L=0,2

DL0(r, R)PL(cos θ) and dX=D21(r, R)P 1
2 (cos θ) with D00(r, R)→ 2mH

mLi++2mH
Re

and D2|Λ|(r, R)→0 for R→∞. Matrix elements of the strength functions DL|Λ|(r, R) between vibrational

states (v=0, j=0 and v′, j′=L) of H2 and D2 molecules. The matrix elements 〈v′| . . . |0〉r for D2 with

v′=1, 2 are almost indistinguishable from their counterparts for H2 in result of multiplication by the

specified mass factors. The elements 〈0| D00|0〉r of the two complexes differ because of the center-of-mass

shift, DLi+−D2
00 = D00+

(µLi+−HH

2mH
−µLi+−DD

2mD

)
Re. Note that these elements are diminished 10 times in the

figure.

The input needed is taken from Ref. 8. It is the PES of the ground electronic states of the
[LiH2]

+ system which is resolved into the Li+–H2 interaction and the diatomic H–H poten-
tials, V (r, R, θ)=V (r, R, θ)+V∞(r) with V∞(r):= lim

R→∞
V (r, R, θ) , and the dipole moment

surfaces dZ(r, R, θ) and dX(r, R, θ). Some characteristics of these surfaces are presented in
Fig. 1. In particular, information is provided on the zero-point energies (ZPE) and the posi-
tions of two lowest dissociation limits of the complexes Li+–H2 (D2) on the surface V (r, R, θ).
Worth of noting seems the fact that the present values of ZPE(Li+–a2) for a=H and a=D
differ by only −14.2 and +4.8 cm−1, respectively, from the values resulting from the PES
used in Refs. 9 and 10. The dissociation energies D0(Li+−a2) are larger by only 8.3 and
∼9.7 cm−1, see Ref. 39. The two other PESs important in the discussion of the present
results are those published in Ref. 6 and in Ref. 5, respectively. In comparison with the
former PES, the binding characteristics of the PES used here differ rather significantly40:
the ZPEs and the D0s of the Li+–H2 (D2) complexes are smaller by as much as 90.1 (∼60)
and 57.6 (∼87) cm−1, respectively. In comparison with the latter PES, these characteristics
differ about two times less: the ZPEs are smaller by 53.2 (38.6) and the D0s are larger by
28.0 (32.4) cm−1.

The positions of the lowest dissociation limits of the complexes relative to the asymptote
of the PES, i.e the ZPEs of the monomers H2 (D2) in the potential V∞, are too high by
2.87 (2.97) cm−1 as compared to positions in accurate Born-Oppenheimer potential for H2,
see Fig. B1 (Ref. 55). Distances to higher limits resulting from this potential, εv,j−ε00, are



in turn too small. The shifts are tiny for j=1, of −0.09 (−0.04) cm−1, but increase with
growing j and v, reaching values of −0.28 (−0.13), −4.83 (−0.28) and −18.3 (−4.45) cm−1

cm−1 for (v j)=(0 2), (1 0), and (2 0), respectively. More details are given in Tables BI–II
and Fig. B1.

In all calculations of this paper the nuclear masses were used: mp=1836.152701me,
md=3670.48305me, and m7Li=12786.3931me.

IV. RESULTS. DISCUSSION

The list of dynamical and spectral characteristics of the Li+–H2 (D2) complexes determined
in the calculations includes:

(i) the energies EB
n of all bound states; 1233 (3503) such states have been found below

the lowest dissociation thresholds of the complexes41, v=0 j=0 and v=0 j=1 for Li+–
pH2 (oD2) and Li+–oH2 (pD2), respectively,

(ii) the energies Eres
n and the dissociative widths Γn of about 3900 (2100) quasibound

states; about 1400 (1900) of these states decay predominantly by the VP mechanism,

(iii) the populations of decay channels Pn,vj in the VP of about 180 (120) states,

(iv) the TIPSes Z(T) for temperature range up to 400 K,

(v) the frequencies νi→f , the strengths Si→f , and the absolute intensities Ii→f(T ) at
T=296 K of about 9200 (12100) rovibrational transitions i→f belonging to 19 (13)
vibrational absorption bands [0 v′′θ v

′′
R]→[v′r v

′
θ v

′
R] in the near-infrared (v′r=1, 2) and to

14 (14) bands in the far- and mid-infrared ranges (v′r=0);

(v)’ the integrated intensities I[v′′]→[v′] of 16 bands of each complex for T up to 330 K, and

(vi) the absorption cross-sections σ(ν; 296K) in several frequency intervals, embrac-
ing lines σi→f from 13 (12) vibrational bands. The line shapes are described by
the Voigt profiles V (ν−νif ; γ, α) with the parameter α of the Gaussian component
Gα(ν)= α√

π
exp(−α2ν2) fixed to the value suggested in the experimental work3, i.e.

α=2
√

ln 2/(0.017 cm−1).

In the majority, the determined energy levels/states of the two complexes are fully as-
signed, albeit sometimes very approximately, with the quantum numbers defined in Sec. IIA.
So, they can be categorized as belonging to 106 (116) different vibrational states [vr vθ vR]
(with vr, vθ and vR ranging up to 3, 5 (7), and 10 (12), respectively) and to 317 (404) rovibra-
tional groups [vr vθ vR] k, or (vr b k vR). The lowest (Jp=k) levels of nearly all of the groups
in vr = 0, 1 states are shown in Figs. 2 (3). In numerical form, information on positions and
widths of these levels is provided in Tables BI–BII, DI (CI–CII, DII). Sequences of higher
(Jp>k) rotational levels have been actually determined in only 183 (161) k-groups within
53 (44) vibrational states. Of them, 55 (119) groups, with maximal J-value of 27 (36), be-
longing to 22 (35) states [vr=0 vθ vR] are the bound levels and 34 (42) groups within 10 (9)
states [vr=1−2 vθ vR] are the quasi-bound VP levels. Detailed information on the latter lev-
els and on the groups of bound levels which were included in the line strength calculations
is provided in Tables BIV–BV (CIII–CIV). About 2700 (450) of the levels determined and
assigned with vr=0 lie above the lowest dissociation thresholds of the complexes. The levels
of Li+–H2 were exploited in the present study to test convergence of the calculated TIPS
for this complex Much greater is, however, the role of these (predominantly) unstable levels
in dynamics of the radiative association reaction Li+ + H2 →LiH+

2 + hν, a study of which
will be described elsewhere.
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Fig. 2. The structure of J=k energy levels of the Li+–H2 complex associated with the v=0 j=0, . . . , 5

and v=1 j=0, . . . , 5 thresholds (continuous and dotted lines, respectively). Shown are also the lowest

levels associated with the v=2 j=0, 1, 2 thresholds (dashed lines). The v=0 j thresholds are shown with

the red dotted lines. The thresholds v>0 j are shifted down so that v=1 j=0 and v=2 j=0 coincide with

v=0 j=0. Each line in k>0 ladders represents two, e- and f -parity, states. The yellow crosses are to

inform that transitions to or from these levels and sets of Jp>k levels in the same groups (vr b k vR)

were included into the simulations of the absorption spectrum of the complex carried out in this work,

presented in Figs. 13, 17–18, B5–B6 and in Tables XII–XIII, BVIII–BXI.

-2000

-1500

-1000

-500

 0

 500

E
 /c

m
-1

Li+-D2
(J=k levels)

0 k=1 2 3 4 5 6 7 k=0 1 2 3 4 5 6 k=0 1 2 3 4 5 k=0 1 2 3 4 k=0 1 2 k=0 1 0

3

4

5

0

1

2

3

4

0

1

2

0

1

4

0

3

0

1

2

1

2

3

4

0

1

2

3

0

1
0

3

0

1

3

4

0

1

2

0

1
0

0

1

0

1

1

2

0

1
0

2

0

1

0

1
0

0

0

vθ=0 vθ=1 vθ=2 vθ=3 vθ=4 vθ=5 6

vR

vR

vr=0
vr=1
vr=2

Fig. 3 Same as in Fig. 2 for Li+–D2 except the number vθ (=b−k) instead of b is used to arrange the

k-ladders of levels. It should be noted that in the present complex, unlike in the Li+–H2, several levels

associated with j=6 and j=7 thresholds fall into the energy ranges below the respective v j=0 limits.

The yellow crosses indicate the vibrational states [vr vθ vR] and the groups k of their rotational J≥k

levels which were used in the simulations of the absorption spectrum presented in Figs. 14, C3, C7 (and

in Tables CXIII–CXVI) and/or in the calculations of the integrated band intensities presented in Table

XII (and in Fig. C9).



TABLE I: Li+–H2(D2). Harmonic frequencies ωm of vibrational modes m=r, θ,R and anharmonic

constants xmm′ (all in cm−1) from least-squares fits to the formula for semirigid asymmetric tops,

Eq. (25). Comparison with results of Ref. 5 in terms of relative deviations [X(Ref. 5)/X−1]×100%

for X=ωm, xmm′ , shown within ⌊ ⌋.

ωr ωθ ωR xrr xθθ xRR xrθ xrR xθR σa

Li+–H2 4267(5)b 710(5) 477(5) −115(2) −53(2) −28(1) 15(2) 9(2) −51(2) 2

⌊2.67⌋ ⌊−1.1⌋ ⌊−2.5⌋ ⌊−8.7⌋ ⌊5.7⌋ ⌊−3.6⌋ ⌊88⌋ ⌊−11⌋ ⌊−7.8⌋
Li+–D2 3024(3) 512(3) 377(3) −59(1) −27(1) −17(1) 7(1) 5(1) −30(1) 1

⌊2.61⌋ ⌊−0.9⌋ ⌊−0.8⌋ ⌊−8.5⌋ ⌊3.7⌋ ⌊5.9⌋ ⌊129⌋ ⌊0.0⌋ ⌊0.0⌋

aRoot mean square errors of the fits. For each complex, energies of (18) states with vr=0−2, vθ=0−2, and

vr+vθ+vR≤3 were used; the same set of states was used in the fits of Ref. 5.
bIn parentheses are the calculated uncertainties of the constants.

A. VIBRATIONAL ENERGY LEVELS

Confining considerations to low excited (by no more than three quanta) vibrational states,
one may attempt to describe their energies with the following formula, appropriate for near-
rigid asymmetric top molecules44

G(v1, v2, v3)=
3∑

m=1

ωm(vm+1
2
)+

3∑
m=1

3∑
m′=m

xmm′(vm+1
2
)(vm′+1

2
) ; (25)

G(v1, v2, v3) denotes here energy of state [vr vθ vR] J=0 relative to the minimun of the PES.
The parameters of this formula, the harmonic frequencies ωm and the anharmonic constants
xmm′ , are among the characteristics of the (20) vibrational states of (each of) the Li+–H2(D2,
T2) complexes which have been studied in Ref. 5.

In Table I, it is demonstrated what changes of these characteristics are induced by the PES
used in the present study. According to the listed relative deviations, the only severe changes
occur in the case of the parameter xrθ which describes the coupling between the r- and θ-
motions in the complexes. Considering the sizes of the parameters, one should also state that
the present frequencies ωr are changed (improved) by quite substantial amounts. However,
the changes in the frequencies ωm and the anharmonic constants xmm of the intermolecular
modes m=θ and m=R look reasonably small. As a matter of fact, they are, on average,
about 20 times smaller than the deviations observed in the analogous comparisons with
results from the two other previously used PESs7,9, presented in Table BIII (Ref. 55).

In Table II, the calculated values of vibrational transition frequencies in the Li+–H2( D2)
complexes are presented. Fundamental and two overtone transitions in the intramolecular
(r) mode are included. Their frequencies are listed together with the redshifts from the
respective accurate Qv(0) transition frequencies in free H2 (D2). The values of the redshifts
obtained for the vr=0→1 transitions in the two complexes are 108.1 (78.2) cm−1 and compare
favorably with the experimental values3,4: absolute deviations are only 0.3 (−0.8) cm−1. The
redshifts obtained for the vr=0→2 and vr=0→3 transitions are bigger by factors of 2.0 (2.0)
and 2.9 (3.0), respectively. This increase is in full agreement with one of the conclusions of
the analysis performed in Ref. 46. As to the intermolecular modes, shown are frequencies
of two lowest transitions, (νθ, 2νθ) and (νR, 2νR), in the complexes with the diatoms in the
v=0−3 states. Relations between these frequencies are, at the most, qualitatively consistent
with formula (25). For example, the differences νR(v+1)−νR(v) for v=0, 1, 2 are nearly
independent of v, as they should if νR(v)≈G(v, 0, 1)−G(v, 0, 0), but their values are almost
2 times larger than the values of the parameter xrR listed in Table I.



TABLE II: Li+–H2(D2). Fundamental and two overtone transitions frequencies in monomer vi-

brations (νr), shifts (∆ν) from Qv(0) transition frequencies in free H2(D2)a, fundamental and first

overtone transition frequencies in intermolecular stretching (νR) and bending (νθ) vibrations within

the complexes with H2(D2) in v=0−3 states. Accuracy of 2D and 3D-CM approximations: in angle

brackets — deviations of 2D results from the 3D ‘exact’ results, below them — the respective devi-

ations of CM results. Comparison with frequencies obtained from three other PESs: from the PES

of Ref. 5 — within ⌊ ⌋, from the PES of Ref. 6, calculated in Refs. 7 and 3 — in square brackets,

and from the PES of Ref. 9 — in braces. Listed are absolute deviations of these frequencies from

the present ‘exact’ values. All entries are in cm−1.

v νr ∆νa νθ 2νθ
b νR 2νR

Li+–H2 0 0 594.33 〈−3.44〉 1068.18 〈−5.15〉 405.15 〈−1.14〉 750.36 〈−2.48〉
/ −1674.61c 〈 8.85〉/ ⌊−5.8⌋ ⌊−18.5⌋ ⌊−6.1⌋ ⌊−13.5⌋

[52.3] [51.6] [21.0] [7.8]

1 4053.10 〈−0.60〉 −108.07d 605.42 〈−4.51〉 1094.77 〈−6.05〉 410.55 〈−1.12〉 763.99 〈−2.39〉
⌊141.7⌋ 0.01 ⌊9.9⌋ 0.01 ⌊6.7⌋ 0.01 ⌊−6.1⌋ 0.00 ⌊−14.1⌋ 0.01

[−0.2]e [19.6]e [12.3]e

2 7872.46 〈−2.11〉 −214.54 615.59 〈−5.74〉 1118.53 〈−6.81〉 415.10 〈−1.12〉 775.43 〈−2.29〉
⌊303.6⌋ 0.03 ⌊23.5⌋ 0.03 0.09 ⌊−6.9⌋ 0.00 0.02

[−21.4]e [24.5]e [25.7]e

3 11470.94 〈−4.29〉 −311.45 625.24 〈−7.11〉 1140.00 〈−7.74〉 419.15 〈−1.20〉 785.41 〈−2.28〉
0.09 0.09 0.20 0.00 0.03

Li+–D2 0 0 451.29 〈−2.72〉 846.75 〈−4.51〉 333.14 〈−0.88〉 629.34 〈−1.91〉
/ −1783.61c 〈 9.44〉/ ⌊−4.1⌋ ⌊−10.8⌋ ⌊−3.3⌋ ⌊−9.2⌋

[51.7] [31.9]

{35.0} {160.9} {24.5} {92.7}
1 2915.45 〈−0.05〉 −78.17d 455.63 〈−3.51〉 858.56 〈−5.55〉 335.90 〈−0.88〉 636.07 〈−1.91〉

⌊94.8⌋ 0.01 ⌊4.9⌋ 0.00 ⌊5.4⌋ 0.01 ⌊−3.9⌋ −0.00 ⌊−9.8⌋ −0.00

{2.1}
2 5710.22 〈−0.57〉 −157.90 459.87 〈−4.37〉 869.43 〈−6.64〉 338.35 〈−0.89〉 642.05 〈−1.90〉

⌊200.5⌋ 0.04 ⌊13.4⌋ 0.01 0.03 ⌊−3.8⌋ −0.00 −0.00

3 8390.49 〈−1.49〉 −235.11 464.15 〈−5.32〉 879.62 〈−7.85〉 340.56 〈−0.92〉 647.43 〈−1.90〉
0.09 0.03 0.06 −0.01 −0.00

aTheoretical values54 are taken for the transition frequencies in free H2 and D2.
bObtained as E([vr=v vθ=2 vR=0] J=0)−E([vr=v 0 0] J=0) and the ν’s concerning the R- and θ-vibrations

are obtained analogously.
cThe energy of the ground state of the complex relative to the v=0 j=0 threshold, E([0 0 0] J=0), from the

present ‘exact’ calculations. 2D result for this energy is shifted up by amount shown in the angle brackets.
dThe experimental values (Refs. 3,4) are −107.8 and −79.0 cm−1 for Li+–H2 and Li+–D2, respectively.
eDeduced from the resonance energies listed in Table 2 of Ref. 7 assuming that: i) these energies pertain to

vR=0−2 states associated with the thresholds v=1–2 j=0, i.e. not with odd j thresholds as communicated

in the caption, ii) these energies are given relative to the asymptote of the PES, i.e. differently than the

bound state energies in Table 1 which are relative to the H2(v=0 j=0)+Li+ dissociation threshold, and iii)

the included ZPE of H2 has the value of 2180.87 cm−1 shown in Fig. 1. Only with the present assignment

of the resonances of Ref. 7, the energy differences between them become reasonably consistent with the

transition frequencies obtained here and (for R-mode) in Ref. 5.

Table II provides also information on accuracy of the two approximate 2D and 3D-CM
approaches in the determination of the vibrational transition frequencies. The accuracy
is of particular interest in cases involving predissociating states. The 3D-CM results are
practically exact in all such cases shown. The 2D results are all too small by amounts
varying from 0.6 (0.05) cm−1 for the fundamental transitions in the r-mode to about
4 (1.5) cm−1 for the second overtone in this mode, and above 7 (5) cm−1 for the hot
vr+vθ=3+0→3+1 transitions. The errors of the vr=0→1 transition frequencies look
small. However, since the 3D ‘exact’ and CM results agree with the experimental data



within 1 cm−1, the additional error of 0.6 cm−1 would alter rather significantly the
assessment of accuracy of the used PES. Concerning the intermolecular modes, it is
demonstrated in Table II that the 2D−3D deviations of the frequencies νθ and νR are
comparable in size with the differences between the present values of these frequencies
and the values obtained in Ref. 5, from certainly less accurate PES. This fact and an
inspection of errors of 2D results for energies of a wider selection of [vr vθ vR] states of
the complexes, plotted in Fig. B2, leave no doubts that vibrational transition frequencies
generated within the 2D approximation cannot be safely used in quantitative compar-
isons with accurate measurements from which conclusions on quality of PESs may be drawn.

B. ROTATIONAL ENERGY LEVELS

in

different vibrational states

Rotational structure in [0 0 0] and [1 0 0] states. Calculations versus experiment.
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Fig. 4. Transition frequencies in vr=0→1 bands of absorption spectra of the Li+–H2 and Li+–D2

complexes.

a)- b) Deviations of the values calculated in this and in the previous works, Refs. 9 and 10, from the values

measured in Refs. 3 and 4. Deviations concerning transitions in the Ka>0 subbands from the initial

JKa,Kc
levels of e- and of f - parity (Kc equal to J−Ka+ 1−(−1)Ka

2 and J−Ka+1+(−1)Ka

2 , respectively),

barely distinguishable on the scale of the figure, are shown with the same symbols. See Fig. 5.

c) Comparison with the experimental data of three sets of theoretical results, obtained within the three

approaches to dynamics of the complexes described in Sec. IIIA.

In Fig. 4 the confrontation is made on transitions between (k J p) levels of these states,
more specifically, on the frequencies of R(Jp), P (Jp), and Q(Jp) transitions in the Ka=0−0,
1−1, 2−2, and 3−3 subbands of the vr=0→1 band of the absorption spectrum. All the
measured (93) frequencies of such transitions in the spectrum of the Li+–H2 complex4 and
all but one of the (105) ro-vibrational transition frequencies measured in the spectrum of
the Li+–D2 complex3 are reproduced by the present calculations with absolute deviations
smaller than 1 cm−1. The improvement over the previous calculations9,10 is evident: the
deviations are reduced by factors ranging from above 3 to above 40, see Tables BVIII and
CXIV. As a matter of fact, no better agreement has been achieved thus far in any other
theoretical simulation of the data provided by the infrared photodissociation spectroscopy
experiments on M+–H2(D2) complexes1,2.

As demonstrated in Fig. 4c, not only the accuracy of the used PES but also the 3D
treatment of dynamics of the present complexes had a role in achieving the sub-cm−1

consistency with the measured transition frequencies. The use of the 2D approximation



would give the entire band in the spectrum of Li+–H2 shifted by ca −0.6 cm−1 and would
also cause some slight changes in the relative positions of the subbands.

It is customary to represent the rotational energies in terms of rotational and centrifugal
distortion constants. Sets of such constants have been extracted from the measured
transition frequencies3,4 by fitting the rotational levels in the initial and final vibrational
states of the transitions to eigenvalues of the A-reduced Watson’s Hamiltonian (Ref. 45).
Full version of this Hamiltonian in the quartic approximation reads

H = 1
2
(B+C)J2 +

(
A−B+C

2

)
J2
z + B−C

2
J2
xy

− ∆JJ
4 − 2δJJ

2J2
xy − ∆JKJ

2J2
z − ∆KJ

4
z − δK [J2

z , J
2
xy]+ , (26)

where J2
xy:=J

2
x−J2

y and [X, Y ]+:=XY+Y X . In the actual fits, some of the quartic terms
were omitted. To compare with the parameters resulting from those fits, the calculated
rovibrational energies, here and in the previous works7,9,10, have been modeled analogously.
Results are presented in Tables III–VI, BVI, and CVI.

The main fact documented in these tables is that the parameters of Hamiltonian (26)
extracted from energies of the present calculations are best consistent with the experimental
values; the rotational constants B

ǫ
=(Bǫ+Cǫ)/2 with ǫ=′′ and ǫ=′ for states [0 0 0] and

[1 0 0], respectively, deviate from the experimental values by −0.6 to −0.8%. One may note
that the rotational constants extracted from the energies of the Li+–D2 complex calculated
in Ref. 9 are similarly close or even closer to the experiment. Unfavorable for these results

is, however, the fact that the deviations ‘Cal/Exp−1’ of the constants B
′

differ so much,

i.e. by 0.8–1.5%, from the deviations of their counterparts B
′′
. This causes the rapid

growth with increasing number J of the discrepancy between the calculated and measured
transition frequencies which is demonstrated by the blue curves in Fig. 4a.

K=1 doubling. An important feature of the rotational structures of the complexes, dis-
played by the spectra recorded in Refs. 3–4, is the splitting of lines in the Ka=1–1 subbands.
Since determined by the small asymmetries B′′−C ′′ and B′−C ′ it is harder to reproduce
in calculations than the Bs and Cs themselves. Fig. 5 shows what the calculations have
actually given to compare with the (55) splitting values measured in the R-, P -, and Q-
branches. Except for a few cases in the spectrum of Li+–D2, of R(1), P (2), P (3), and Q(1)
lines, the present calculations reproduce the experimental data within ±4%. The previous
calculations9,10 were generally less successful, giving splitting even qualitatively inconsistent
with the data for the R-branch in Li+–D2.

The splitting of Q(Jf ) and Q(Je) lines has been measured for a few lowest J
values, J<4. Together with the splitting measured in the R- and P - branches, this
enabled the experimentalists to provide some information on the K=1 doubling,
∆([vr vθ vR], J)=E([vr vθ vR] k=1, Jf)−E([. . .] k=1, Je), in each individual vibrational state,
[0 0 0] and [1 0 0]. In Tables V and VI, the calculations are confronted with this information.
Included are the calculated data for states [1 0 0] of the complexes and thereby the present
confrontation completes those given in Tables III of Refs. 3 and 4. The assessment of the
PES of Ref. 8, as enabling the most realistic description of the rotational structures in the
two vibrational states, is confirmed.

Summarizing, the contents of tables and figures described in this subsection should
give the reader a ground for believing that calculations on other vibrational states of the
complexes using the same PES and the 3D treatment of dynamics will provide useful
predictions for future experiments.



TABLE III: Infrared spectrum of Li+–D2. The vr=0→1 band. Origins of Ka=0–0, 1–1, and

2–2 subbands (ν0) and rotational constantsa in [0 0 0] and [1 0 0] vibrational states (all in cm−1).

Comparison of calculated and experimentalb data.

Cal− Exp

Ka = 0 Ka = 1 Ka = 2 Ka = 0 Ka = 1 Ka = 2

ν0 2915.445c 2914.155 2910.339 0.822 {2.94}d 0.796 {2.83} 0.753 {3.36}

(Cal/Exp−1 )×100%

A′′ 31.562

B′′ 1.5877 −0.5 {−0.8} [+5.4]e

C′′ 1.4867 −0.7 {−0.6} [+5.0]e

∆′′
J
×104 1.165 +4.0 {−6.5} [−5.5]e

δ′′
J
×106 7.0

B
′′

1.5394 1.5371 1.5304 −0.7 {−0.8} [+5.1]f −0.6 {−0.7} [+5.2]f −0.7 {−0.7} [+5.2]f

D
′′×104 1.260g 1.19 1.13 −0.9 {−11.} [−4.0]f +6.3 {−4.6} [+0.1]f −3.4 {−13.} [−11.]f

A′ 30.263

B′ 1.5824 −0.6 {+0.1}
C′ 1.4797 −0.7 {+0.4}
∆′

J×104 1.132 +1.9 {−107}
δ′J×106 6.9

B
′

1.5332 1.5310 1.5248 −0.7 {+0.0} −0.7 {+0.3} −0.7 {+0.8}
D

′×104 1.234 1.16 1.09 −1.0 {−99.} +4.4 {−104} −4.9 {−134}
A′′−A′ 1.299 +3.3 {+11.1}

aExtracted from the calculated energies for Je=0–16, Je,f=1–12, and 2–10 levels in k=0, k=1 and k=2

groups, respectively. The energies in k=1 groups were fitted to eigenvalues of Watson’s Hamiltonian,

Eq. (26), truncated to two centrifugal distortion terms, giving the constants A, B, C, ∆J , and δJ . The

calculated uncertainties of the constants do not affect their figures shown here. The root mean square errors

of the fits for vr=0 and vr=1 are 5.5×10−4 and 5.4×10−4 cm−1, respectively. The constants B and D and

the subband origins were obtained from fits of the energies in each subgroup kp for p=e, f to second order

polynomial in J(J+1), see Table VII.
bThe data obtained in Ref. 3 from separate fits to 30, 45, and 28 transition energies measured in the

Ka=0–0, Ka=1–1, and Ka=2–2 subbands, respectively, are taken as reference here.
cLarger by 0.53 than the result obtained from the same PES in Ref. 8, mainly because of using the nuclear

masses in the present calculations.
dThe numbers in braces concern the calculations of Ref. 9. The parameters were extracted from the energies

given in that paper using the fitting procedure described in footnote a. The obtained values A′′=31.0893(9),

B′′=1.58346(5), and C′′=1.48796(7) are close (as they should) to the values of the rotational matrix ele-

ments 1
2 〈A〉11=31.11, 1

2 〈B〉11=1.586, and 1
2 〈C〉11=1.492 cm−1, respectively, listed in Table 5 of Ref. 9. The

rotational constants obtained for the state [1 0 0] are: A′=29.6895(1), B′=1.59320(9), C′=1.49735(9).
eThese deviations concern the constants deduced from the (8) energies calculated (for Ka=1) in Ref. 3 using

the PES of Ref. 6. The deduced rotational constants: A′′=31.1908(2), B′′=1.68175(9), C′′=1.57134(9).
fConcern the constants obtained in Ref. 3 from the energies calculated in that work using the PES of

Ref. 6.
gLarger by 7% and therefore much closer to the experimental value than the result obtained from the same

potential in Ref. 8; the most likely cause are too big rounding errors of x the energy values used in the fit

of that work.



TABLE IV: Infrared spectrum of Li+–H2. The vr=0→1 band. The calculated origins of Ka=0–0,

1–1, and 2–2 subbands (ν0), rotational (A, B, C) and centrifugal distortion (∆J , δJ) constantsa in

the initial and final vibrational states, and their deviations from experimental datab. A comparison

with previous calculations. Except for the percentage deviations, the entries are in cm−1.

Cal − Exp

Ka=0 Ka=1 Ka=2 Ka=0 Ka=1 Ka=2

ν0 4053.097c 4049.055(8)d 4037.718(2) −0.263 {5.53}f −0.285 {5.15}f −0.321 {4.52}f

(Cal/Exp−1 )×100%

A′′ 65.531(4)e

B′′ 2.5483(1) −0.6 { 0.7}g [ 4.6]h

C′′ 2.3981(1) −0.6 { 1.4}g [ 4.5]h

∆′′
J×104 3.252(4) 2.2 {−20.8}g [ −1.2]h

δ′′J×105 1.59(3) −6.5 {−23.5}g [−32.9]h

B
′′

2.4782 2.4724 2.4558(1) −0.6 { 1.0}g [ 4.5]i −0.7 { 1.0}g [ 4.5]i − 0.8 { 0.8}g [ 4.4]i

D
′′×104 3.296(2) 3.22j 3.17j 0.2 {−20.7}g [−0.6]i 1.3 {−21.4}g [−0.3]i −22.7 {−39.0}g [−24.9]i

A′−A′′ − 4.050(4) 0.7 { 8.7}f
B′ 2.5360(1) −0.7 { 2.1}f
C′ 2.3841(1) −0.7 { 2.7}f
∆′

J
×104 3.121(4) 2.0 {−46. }f

δ′
J
×105 1.57(3) 7.5

B
′

2.4645 2.4595(12) 2.4445(1) −0.7 { 2.5}f −0.7 { 2.5}f − 0.8 { 2.8}f
D

′×104 3.178(6) 3.11(5) 3.05 −0.7 {−20.9}f 1.6 {−13.7}f −10.3 {−17.9}f

aObtained for each [vr 0 0] state by least-squares fitting of 30 energies in k=1 group, for Je,f=1–15, to

eigenvalues of a truncated Watson’s Hamiltonian, see Table III. The root mean square errors of the fits for

vr=0 and vr=1 are 9.1×10−3 and 9.5×10−3 cm−1, respectively. The constants B and D and the subband

origins ν0 were obtained as described in Tables VII and VIII.
bFrom Ref. 4; the data from separate fits to transition energies measured in each of the three subbands.
cLarger by 1.127 cm−1 and by the same amount closer to the experimental value than the result obtained

from the same potential in Ref. 8. In ∼92% this is an effect of using the nuclear masses in the present work.
dIn parentheses are the calculated uncertainties of the constants in their last figures shown.
eLarger than the values resulting from the PESs of Refs. 9 and 6. See footnotes g i h.
fObtained from the positions of R(J) and P (J) lines for J≤5 and the energy levels in the [0 0 0] state

calculated in Refs. 10 and 9, respectively. A′=58.306(15), B′=2.607(4), C′=2.465(4).
gDeviations from experiment of the rotational constants extracted from the (20) energies which were

calculated (for Ka=1) in Ref. 9. The obtained values A′′=62.676(1), B′′=2.5827(1), and C′′=2.4459(1)

agree well with the respective elements in Table 5 of that paper: 62.71, 2.589, and 2.455.
hThese deviations concern the constants deduced from the (8) energies calculated (for Ka=1) in Ref. 4

using the PES of Ref. 6: A′′=64.4759(1), B′′=2.68137(4), C′′=2.521136(4).
iConcern the constants resulting from the PES of Ref. 6 which were calculated in Ref. 4.
jSignificantly different values of these constants, of 2.65 and 3.6×10−4 for Ka=1 and Ka=2, respectively,

are presented as results from the same PES in Ref. 4. Evidently, they were not calculated de novo there but

were extracted from the rotational enegies provided in Ref. 8 up to single decimal figure only.



TABLE V: Li+–D2. Comparison with experiment of quantities related to energy splitting of f -

and e- parity J states in k=1 groups of [0 0 0] and [1 0 0] vibrational states.

(X/XExp−1)×100%a

J ∆′′
1
b ∆′

1
b ∆b X=∆′′

1 X=∆′
1 X=∆

1 0.403ce 0.411c 0.102 0.7 {−5.0} [10.0]d 0.2 {−7.3} 4.1 {−8.2}
2 0.906e 0.923 0.305 −1.8 {−6.8} [ 7.5] 0.8 {−5.0} −0.7 {−5.5}
3 1.608e 1.637 0.609 −1.1 {−6.5} [ 8.3] −0.8 {−6.7} −0.7 {−6.6}

aXExp taken from Table III of Ref. 3. The values ∆′′
1 (3)=1.626 and ∆′

1(3)=1.650 deduced from the provided

transition wavenumbers.
b∆ǫ

1(J)=∆ǫ(J)+∆ǫ(J+1) for ǫ=′, ′′, and ∆(J)=[∆′(J)+∆′′(J)]/2, where ∆′′(J) and ∆′(J) denote the

splitting E(f)−E(e) of k=1 J levels in the vr=0 and vr=1 states, respectively. All ∆’s are given in cm−1.

The directly measured quantities are: ∆R(J)=∆′(J+1)−∆′′(J) and ∆P (J)=−∆′(J−1)+∆′′(J), shown in

left panel of Fig. 5, and ∆Q(J)=2∆(J) — in right panel of this figure.
cThe values of ∆ǫ

1(J) for ǫ=′, ′′ fit well to the expression [Bǫ−Cǫ−4δǫJ(J2+2J+2)](J+1)2 with the parame-

ters Bǫ, Cǫ and δǫJ from Table III. An analysis of the quantities ∆ǫ
1(J) based on fits to complete Hamiltonian

(26) is given in Fig. C1.
dThe deviations in braces concern the results of Ref. 9, in brackets — the results calculated in Ref. 3 from

the PES of Ref. 6.
eAvailable from Ref. 8 up to first decimal figure.

TABLE VI: Same as in Table V for Li+–H2.

(X/XExp−1)×100%a

J ∆′′
1
b ∆′

1
b ∆b X=∆′′

1 X=∆′
1 X=∆

1 0.599c 0.607c 0.151 −2.0 {−10.0} [ 4.7]d −3.2 {−13.9} −1.9 {−12.3}
2 1.346e 1.365 0.452 −1.0 { −9.6} [ 5.7] 0.6 { −9.7} −2.8 {−11.8}
3 2.386e 2.399 0.903 0.2 { −8.4} [ 7.0] −0.8 {−10.3} 1.1 { −8.5}
4 3.713e 3.731 1.489 −1.2 { −9.8} −1.0 { −9.9} −1.2 { −9.9}
5 5.321 5.367 2.233 −1.2 { −9.7} −1.1 −1.0 { −9.8}

aXExp taken from Table III of Ref. 4. The value ∆(5)=2.256 cm−1 deduced from the data for J=4 using

the relation ∆′
1(J)+∆′′

1 (J)=2[∆(J)+∆(J+1)] and the values ∆′′
1(5)=5.385 and ∆′

1(5)=5.428 cm−1 obtained

as 2∆(5)+∆P (6) and 2∆(5)+∆R(5), respectively.
b,c See the respective footnotes in Table V. The parameters for the analytical representation of the functions

∆ǫ
1(J) for ǫ=′, ′′ should be taken from Table IV.
dThe deviations in braces concern the results of Refs. 9 and 10, in brackets — the results calculated in

Ref. 4 from the PES of Ref. 6.
eThe numbers available from Ref. 8 for these quantities, 1.3, 2.4 and 3.8 for J=2, 3, and 4, respectively,

appear only slightly less consistent with experiment than the present numbers.
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Fig. 5. The vr=0→1 bands of the absorption spectra of the Li+–H2(D2) complexes; splitting of lines in

the Ka=1–1 subbands due to transitions from the initial f - and e-parity states. Plotted are the frequency

shifts ν[R(Jf )]−ν[R(Je)]:=∆R(J), ν[P (Je)]−ν[P (Jf )]:=∆P (J) and ν[Q(Je)]−ν[Q(Jf )]:=∆Q(J) di-

vided by J+1, J , and J(J+1), respectively. The values calculated in this work and in Refs. 9–10 are

confronted with the values measured in Refs. 3–4.

Rotational structures in [vr vθ vR] states with vm=0−2 for m=r, θ,R .

To visualize the structures, sets of lowest rotational levels in the states were paramerized
using two approaches, called below parametrization P1 and P2, respectively.

Parametrization P1 consists in fitting separately levels of parity p=e and p=f from each
group k to second order polynomial in J(J+1). The resulting parameters Xkp=(Ekp

o , Bkp,
and Dkp) describe the kp subgroup origin, the subgroup rotational and centrifugal distortion
constants, respectively. The parameters Xkp for at least three (k=0, 1e,f) subgroups of nine
vibrational states, all but one with

∑
m vm≤2, are listed in Tables VII and VIII.

Parametrization P2 consists in exploitation of Watson’s Hamiltonian, Eq. (26), which
can represent sets of J levels from several k groups of a given vibrational state. Fits yield-
ing all five centrifugal distortion parameters of this Hamiltonian with reasonable uncer-
tainties appeared possible only for k=0−2 groups of levels in four vibrational states of
the Li+–D2 complex; see Table CVI and Fig. C1. Therefore, resorting to truncated ver-
sions

(i)
H , including only the first 2≤i<5 quartic terms listed in the second line of Eq. 26,

was necessary. Fits to eigenvalues of Hamiltonians
(i)
H with i=2, 3, and 4 can represent

levels in k=1, in k=0−1, and in k=0−2 groups, respectively, in terms of 3+i parameters

(i)
X=

(i)
A,

(i)
B,

(i)
C

(i)
∆J , . . .. The asymmetric top rotational constants obtained from the fits

to the differently truncated Watson’s Hamiltonian account effectively for different contribu-
tions of terms rejected. Namely,

(3)
A≈A−∆K ,

(3)
B≈B−2δK ,

(3)
C≈C+2δK ,

(2)
X≈

(3)
X−∆JK

for X=A,B,C, and
(4)
X≈

(3)
X for X=B,C, but

(4)
A≈A.

The two parametrizations are obviously not strictly equivalent but approximate relations
between all the parameters

(i)
X for i=2−4 and the parameters Xkp for k=0−2 can be es-

tablished (see Table CVII). For i=2, they are:
(2)
A≈

∑
p

1
2
(E1p

o +B1p)−E0
o ,

(2)
B≈1

2
(3B1f−B1e),

(2)
C≈1

2
(3B1e−B1f ),

(2)
∆J≈ 1

2
(D1f +D1e), and

(2)
δJ≈ 1

2
(D1f−D1e). Accuracy of these relations

can be checked on the parameters of states [0 0 0] and [1 0 0] using the
(2)
Xs listed in Tables

III and IV and the values of Xkp from Tables VII and VIII. Deviations smaller than 0.1%
occur between the approximate and ‘exact’ (fitted) values of the rotational constants. The



same consistency is observed in Tables IX and CVIII between the rotational constants ob-
tained from fits to Hamiltonians

(3)
H and

(4)
H and their approximations obtained from the

parameters Xkp.

(3)
H is the least truncated version of Watson’s Hamiltonian which could be exploited for

parametrization of rotational structures in a number of vibrational states of both complexes,
Li+–H2 and Li+–D2. Thus, the values of

(3)
A,

(3)
B, and

(3)
C are the most appropriate data

available on which the dependence of the rotational constants on the vibrational quantum
numbers and effects of isotopic substitution on this dependence can be demonstrated. This
demonstration is given in Table IX and Fig. 6.

The most striking effects displayed in Table IX are associated with the excitation of
Li+–H2 from [0 0 0] to [0 1 0] state. The parameter

(3)
A increases by about 45 %. Both

parameters
(3)
B and

(3)
C decrease by much smaller amounts but the small difference between

them increases enourmously, by over 75 %. Though above two times smaller, the effects of
vθ=0→1 excitation in the Li+–D2 complex are also clearly larger than the effects of vR=0→1
or vr=0→1 excitation.

The question naturally arises about the adequacy of the semirigid asymmetric top model
for application to the present complexes in the higher excited vibrational states mentioned
in the title of this subsection. If the model is unreservedly applicable to these states, the
rotational constants A, B, and C should show a linear dependence on the three quantum
numbers vr, vθ, and vR (cf. Ref. 44). The linearity is tested in Fig. 6 by comparing the values

of
(3)
X (=A,B,C) in states states with

∑
m

vm=2, 3 to the values
(3)
X̂ (=Â, B̂, Ĉ) extrapolated

from the constants in the four states with
∑
m

vm≤1,

X̂([vr vθ vR]) = X([0 0 0])
(
1−

∑

m

vm
)

+
∑

m

X([δm,r δm,θ δm,R]) vm . (27)

As expected, the dependence on the number vθ is superlinear. This is documented in the fig-

ure on the parameters for state [0 2 0] of Li+–H2: the relative deviations (
(3)
X/

(3)
X̂−1)×100%

are as large as 45 and 83 % for X=A and X=B−C, respectively. Thus, from physical point
of view the semirigid top model appears inappropriate for this complex when excited in the
bending mode above vθ=1. Actually, even formal application of the model to vθ>1 states of
both complexes is rarely possible because of the more frequent and stronger perturbations
of J levels that occur in the higher and more congested parts of the spectra, cf. Figs. 2–3.

Fig. 7 shows the K=1 doubling ∆([vr vθ vR], J) in several vibrational states of the com-
plexes from the range considered here. In the states amenable to the parametrizations P2
and P1, the J dependence of the doubling is well represented by the polynomial

∆([vr vθ vR], J) = a([. . .])J(J+1) − b([. . .])[J(J+1)]2

with the parameters a and b being related to the parameters
(i)
X and X as

a≈ 1
2
(
(i)
B−

(i)
C)≈ 1

2
(B−C)−2δK and b≈2δJ . The overall size of the doubling is determined

by the parameter a which, in turn, is determined mostly by the asymmetry B−C of the
top describing given complex in a given state [vr vθ vR]. The contribution of the distortion
parameter δK may be quite substantial, however, as indicated by the distances between the
corresponding violet and blue symbols in Fig. 6c. Obviously, the parameter a changes with
the vibrational quantum numbers the same as shown in Fig. 6c for

(3)
B−

(3)
C. It increases

slightly and decreases visibly with growing vr and vR, respectively, and grows rapidly with
vθ. The parameter b, above three order magnitude smaller than a, shows a reverse depen-
dence on the numbers vr and vR, i.e. a slight decrease and a visible increase, respectively,
and even more rapid growth with the number vθ; see Table IX and Fig. C2.



TABLE VII: Li+–D2. Rotational energy levels in kp{=e,f} subgroups of several vibrational states

[vr vθ vR] represented the polynomials E(kp;J)=Ekp
o +Bkp[J ]−Dkp[J ]2 in [J ]=J(J+1) a. The en-

ergies are shown in cm−1 relative to the position of the ground state of the complex, at 1783.613

cm−1 below the dissociation threshold D2(v=0 j=0) + Li+.

kp [vrvθvR] Ekp

o Bkp
Dkp

σ Nfit [vrvθvR] Ekp

o Bkp
Dkp

σ Nfit

×104 ×103 ×104 ×103

0 [0 0 0]b 0.000 1.5394 1.260 0.4 17 [1 0 0]b 2915.445 1.5332 1.235 0.8 17

1e 30.025 1.5119 1.117 0.4 12 2944.180 1.5054 1.088 0.5 12

1f 30.025 1.5624 1.257 0.4 12 2944.180 1.5567 1.227 0.2 12

2e 119.700 1.5304 1.095 0.4 10 3030.039 1.5248 1.059 0.4 10

2f 119.700 1.5304 1.162 0.2 10 3030.039 1.5248 1.134 0.2 10

3e 268.009 1.5196 1.153 0.5 10 3172.126 1.5146 1.114 3.5 10

3f 268.010 1.5196 1.151 0.4 10 3172.124 1.5147 1.121 3.3 10

4e 473.598 1.5055 1.127 0.9 8 3369.162 1.5024 1.117 2.2 10

4f 473.596 1.5055 1.130 1.4 10 3369.163 1.5024 1.115 2.1 10

0 [0 0 1] 333.141 1.4373 1.323 1.9 17 [1 0 1] 3251.344 1.4344 1.287 1.2 17

1e 363.725 1.4115 1.175 0.6 12 3280.595 1.4083 1.139 0.4 12

1f 363.725 1.4589 1.328 0.6 12 3280.595 1.4566 1.288 0.5 12

2e 454.787 1.4291 1.217 0.1 10 3367.777 1.4261 1.169 1.8 10

2f 454.788 1.4291 1.260 0.1 10 3367.777 1.4260 1.221 2.1 10

0 [0 1 0] 451.291 1.4781 1.334 0.4 17 [1 1 0] 3371.073 1.4694 1.297 0.6 17

1e 488.319 1.4407 1.127 0.9 12 3406.034 1.4331 1.104 1.0 12

1f 488.318 1.5081 1.317 0.3 12 3406.035 1.4998 1.280 0.9 12

2e 596.730 1.4636 1.369 1.1 7 3508.868 1.4557 3.120c 4.8 7

2f 596.730 1.4636 1.392 1.0 7 3508.869 1.4556 3.126c 4.2 7

0 [0 0 2] 629.338 1.3318 1.413 4.2 17 [1 0 2] 3551.515 1.3327 1.363 3.1 17

1e 660.561 1.3080 1.236 0.2 12 3581.350 1.3086 1.200 0.5 12

1f 660.561 1.3517 1.409 0.7 12 3581.350 1.3533 1.364 0.7 12

0 [2 0 0] 5710.216 1.5272 1.212 1.0 17

1e 5737.740 1.4992 1.066 0.7 12

1f 5737.741 1.5514 1.199 0.4 12

2e 5820.015 1.5194 1.018 0.7 10

2f 5820.015 1.5194 1.106 1.5 6

aThe coefficients of the polynomial were determined by least-squares fitting to Nfit lowest J levels ob-

tained from the 3D calculations. Italic figures of the coefficients are uncertain according to the calculated

uncertainties (not shown). Shown are the root mean square deviations σ between the fitted and calculated

values.
bThe parameters for k=0−2 are listed in Table III as X(k)= 1

2−δk,0

∑
p
Xkp

for X=B,D. The origin ν0 of

Ka=k subband of the vr=0→1 band is obtained as Eo(k; [1 0 0])−Eo(k; [0 0 0]).
cPerturbed by interactions with levels from kp=3p subgroups of state [1 0 1].



TABLE VIII: Same as in Table VII for Li+–H2
a.

kp [vrvθvR] Ekp

o Bkp
Dkp

σ b [vrvθvR] Ekp

o Bkp
Dkp

σ b

×104 ×103 ×104 ×103

0 [0 0 0] 0.000c 2.4782 3.30 0.3 [1 0 0] 4053.097 2.4645 3.18 1.2

1e 63.070 2.4349 3.06 0.7 4112.125 2.4218 2.98 4.7

1f 63.070 2.5100 3.38 0.7 4112.124 2.4973 3.24 9.5

2e 249.032 2.4558 3.18 1.6 4286.751 2.4445 3.05 1.4

2f 249.033 2.4557 3.16 1.2 4286.752 2.4444 3.05 1.0

3e 552.522 2.4294 3.17 3.3 4572.374 2.4205 3.04 2.5

3f 552.525 2.4292 3.14 2.1 4572.374 2.4205 3.03 2.3

0 [0 0 1] 405.150 2.2625 3.56 0.6 [1 0 1] 4463.645 2.2593 3.40 0.5

1e 470.791 2.2238 3.37 1.1 4524.924 2.2201 3.20 2.7

1f 470.791 2.2930 3.72 1.1 4524.918 2.2911 3.62 6.5

2e 660.968 2.2415 3.57 2.7 4703.548 2.2401 3.34 3.0

2f 660.966 2.2417 3.39 3.2 4703.541 2.2405 3.27 2.1

0 [0 1 0] 594.332 2.3288 3.49 0.3 [1 1 0] 4658.524 2.3075 3.33 1.9

1e 687.572 2.2554 3.11 1.8 4742.446 2.2412 3.00 5.3

1f 687.575 2.3882 3.63 0.1 4742.455 2.3650 3.42 2.6

0 [0 0 2] 750.356 2.0359 3.92 0.8 [1 0 2] 4817.085 2.0451 3.70 0.9

1e 818.962 2.0023 3.78 2.1 4880.973 2.0106 3.54 1.6

1f 818.962 2.0647 4.15 2.2 4880.973 2.0743 3.90 1.7

0 [2 0 0] 7872.461 2.4520 3.10 5.6

1e 7927.844 2.4069 2.44 6.8

1f 7927.838 2.4854 3.08 4.9

aOf the parameters Ekp

o , Bkp

and Dkp

for the states [0 0 0] and [1 0 0] formed are the subband origins ν0

and the constants B and D listed in Table IV.
bNfit=10 energies were fitted in all cases shown except for the k=1e and k=1f subgroups of the state [2 0 0]

where 7 and 9 energies, respectively, were used.
cLies 1674.606 cm−1 below the threshold H2(v=0 j=0) + Li+.

TABLE IX: Rotational constants and selected centrifugal distortion parametersa characterizing

J level structures of Li+–aa (a=H,D) complexes in vibrational states [vr vθ vR] with vr+vθ+vR≤1.

All entries in cm−1.

Li+–D2 Li+–H2

[0 0 0] [1 0 0] [0 0 1] [0 1 0] [0 0 0] [1 0 0] [0 0 1] [0 1 0]

(3)
Ab 31.563 〈+1〉c 30.265 〈+3〉 32.016 〈+5〉 38.503 〈+3〉 65.537 〈 11〉 61.487 〈 +5〉 67.896 〈 +7〉 95.573 〈−3〉

(3)
Bb 1.5900〈−1〉c 1.5846〈−1〉 1.4848〈 0〉 1.5454〈+1〉 2.5538〈−5〉 2.5410〈−10〉 2.3330〈−13〉 2.4618〈−2〉

(3)
B−

(3)
Cb 0.1010〈 0〉c 0.1027〈−1〉 0.0948〈 0〉 0.1348〈 0〉 0.1501〈+1〉 0.1519〈 −9〉 0.1385〈 −1〉 0.2646〈 10〉

(3)
δJ×105b 0.69 〈+1〉c 0.69 〈 0〉 0.76 〈 0〉 0.97 〈−2〉 1.59 〈+1〉 1.57 〈−27〉d 1.73 〈 +2〉 2.32 〈 28〉

∆K×10 e 0.332 0.283 0.593 2.15

δK×102e 0.312 0.296 0.435 1.33

aThe parameters δK and δJ contribute to K=1 doubling, see Fig. 7.
bFrom fits to the truncated Watson Hamiltonian

(3)
H ; details in Table CIX. Related to parameters of H ,

Eq. (26), as:
(3)
A≈A−∆K ,

(3)
B≈B−2δK ,

(3)
C≈C+2δK , and

(3)
δ≈δJ ; see Tables CVI–CVII.

cIn angle brackets: (
(3)
X̃−

(3)
X)×10β for X=A,B,B−C, and δJ with β=3, 4, 4, and 7, respectively,

where
(3)
X̃ denotes the respective value obtained from the parameters Xkp

listed in Tables VII and VIII:

(3)
Ã= 1

2 (E1e

o +E1f

o )−E0
o+B0,

(3)
B̃=B0+B1f−B1e ,

(3)
B̃−

(3)
C̃=2(B1f−B1e), and

(3)
δ̃J=1

2 (D1f−D1e).
dLarge deviation due to inaccuracy of the paramaters D1p in this case; see Table VIII.
eObtained from fits to H ; details in Table CVI and Fig. C1.
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Fig. 6. Rotational parameters
(3)
A,

(3)
B, and

(3)
B−

(3)
C of the semirigid asymmetric top characterizing

the rotational level structures in nine vibrational states of the L+–H2 (D2) complexes with combined

excitation vr+vθ+vR≤3. The black and blue symbols represent the values of the parameters
(3)
X for

X=A,B,B−C obtained from fits to the truncated Watson’s Hamiltonian
(3)
H . See Tables BVI and CIX

for details on the fits. The full lines show the changes of each of the parameters upon one-quantum

excitation in one of the modes m=r, θ, R. The dashed line show the values
(3)
X̂ for the higher excited

states, with
∑
m

vm=2, 3, extrapolated linearly from the
(3)
X ’s for the four

∑
m

vm≤1 states, Eq. (27). The

cases of largest departure from linearity,
(3)
X−

(3)
X̂ , occurring in state [0 2 0] and [1 1 0] of Li+–H2, are

marked with the yellow dots and labels. In panel c), the ‘true’ asymmetry B−C of the tops describing

the Li+–D2 complex in the
∑
m

vm≤1 states is shown for comparison with the values of
(3)
B−

(3)
C, see

Table IX.
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Fig. 7. K=1 doubling in several vibrational states of the Li+–H2 (D2) complexes,

∆([vr vθ vR], J):=E([vr vθ vR] k=1, Jf )−E([vr vθ vR] k=1, Je).

In most of the states shown, ∆(J)≈a J(J+1)−b[J(J+1)]2, the polynomials plotted as the ‘fit’ lines,

where a≈ 1
2 (

(3)
B−

(3)
C)≈ 1

2 (B−C)−2δK and b≈2δJ (Table IX, and Figs. 6c). The ‘extrpl’ lines are

plotted for states with
∑

m vm>1 using values of a and b extrapolated linearly from the values for states

with
∑

m vm≤1. Note the large separation between the ‘extrpl’ and ‘fit’ lines for state [0 2 0] of Li+–H2 —

effect of superlinear growth of the parameters a and b with the number vθ. See Fig. C2 for more details.



TABLE X: Widths (in cm−1) of vibrationally predissociating states of the Li+–H2(D2) complexes

used in the determination of the frequencies shown in Table II. Correlation with the redshifts.

Comparison with the widths calculated in Ref. 7 from the PES of Ref. 6.

Γ([vr vθ vR]J=0) Γ/(∆ν)2 a

vr vθ=vR=0 vR=1 vR=2 vθ=1 vθ=2 ×106

Li+–H2 1c 2.37 (−2)b 6.84 (−2) 1.12 (−1) 1.67 (−2) 1.59 (−2) 2.03

[1.50 (−2)]d [2.19 (−2)]d [2.66 (−2)]d

2 1.09 (−1) 2.90 (−1) 4.70 (−1) 1.08 (−1) 2.80 (−2) 2.37

[4.34 (−2)]d [6.05 (−2)]d [7.44 (−2)]d

3 3.82 (−1) 8.92 (−1) 1.40 2.70 (−1) 1.05 (−1) 3.94

Li+–D2 1c 8.29 (−3) 2.52 (−2) 4.55 (−2) 9.00 (−3) 5.86 (−3) 1.36

2 3.24 (−2) 8.94 (−2) 1.56 (−1) 5.18 (−2) 2.25 (−2) 1.31

3 8.54 (−2) 2.26 (−1) 3.89 (−1) 8.71 (−2) 8.64 (−2) 1.55

aΓ — the widths from third column , ∆ν — the redshifts from Table II.
bThe numbers in parentheses are powers of 10.
cThe widths of the states with vr=1 have been previously determined in Ref. 8. The numbers provided

there (up to third decimal digit) agree almost perfectly with the numbers listed here.
dExtracted from the lifetimes listed in Table 2 of Ref. 7.

C. VIBRATIONAL PREDISSOCIATION

Total VP widths. The widths are generally very sensitive to properties of the used PES,
to details of the entailed coupling between the r- and R-, θ-modes, in particular. Thus, in
view of the differences in the mode’s frequencies and anharmonicities exhibited in Tables
II and BIII, a good consistency of the widths obtained from the present PES and the PES
of Ref. 6 should rather not be expected. Actually, in the case of the lowest predissociating
state [1 0 0] J=0 of the Li+–H2 complex the widths differ only by the factor of 1.6. However,
the five other widths available from Ref. 7 depart more significantly from their present
counterparts. As shown in Table X, they are smaller by factors ranging from 2.5 for state
[2 0 0] to 6 for [2 0 2].

In the remainder of this subsection presented is a list of observations made on properties
of the VP widths generated in this work, concretely, on dependencies of the widths on the
vibrational and rotational quantum numbers of the predissociating states and on effects of
the H→D substitution.

(c1). Dependence on vr, approximately quadratic, is exhibited by the widths
Γ([vr 0 0] J=0) of Li+−D2 listed in Table X. Combined with the ∼linear dependence of
the redshifts ∆ν of 0→vr transition frequencies, this gives the approximately constant ra-
tios Γ/(∆ν)2 — the correlation observed experimentally in many van der Waals complexes
and analyzed in Ref. 46. It should be added that in the present complexes the occurrence
of the correlation is limited to the few lowest vrs. In Li+–H2, a significant departure occurs
already for vr=3, as demonstrated in the last column of Table X. However, in the small
ranges of validity, vmax

r =2 (3) for Li+–H2 (D2), the ∼v2r scaling concerns not only the widths
Γ([vr 0 0] J=0) but also the widths of vibrational states excited additionally in the R-mode,
which can be noted in Table X and is clearly demonstrated in Fig. D14c, and also the widths
of ro-vibrational states [vr 0 0] k J , which is documented in Fig. D16c.

(c2). Dependence on vR is demonstrated in Fig. 8 on the widths of the lowest rota-
tional levels (J=k) in several groups k of states [vr=1 vθ=0−1 vR]. The functions Γ(vR; vθ k)
are shown by the k-curves in separate panels panels a) and b) for vθ=0, and 1, respec-
tively. Qualitatively describing, all curves have Gaussian-like shapes. Their maxima occur
at vR=4 (5), i.e. near the centres of the ranges of variation of this number among the states
of the Li+–H2 (D2) complexes below the v=1 j=vθ+k thresholds, vmax

R =10 (12). In addition
to the shift in the maxima position, the curves pertaining to Li+–D2 are considerably shifted



down relative to their Li+–H2 counterparts. In panel c), the vR-dependence of the widths of
levels from the groups vθ=0 k=1−5 is shown in an implicit way; the plotted curves represent
superposition of the functions Γ(vR; vθ k) with functions vR(|EkvR−εv=1 j=vθ+k|

1
2 ), nearly lin-

ear as shown in Fig. D15b. This way facilitates the comparison between the complexes. It
appears that three curves pertaining to Li+–D2, for k=0, 1, 2, can be made nearly-coincident
with their Li+–H2 counterparts by scaling them with the mass factor (µDD

µHH
)
1
4
µLi+−DD

µLi+−HH
(deduced

from the CM analysis presented in Fig. D14).
The non-monotic dependence of the widhts Γ on the number vR, noted already in the

pioneering work of Beswick and Jortner, Ref. 47. is certainly not explainable by a single
factor. The fast increase in the low vR range seems to originate from the ‘initial condition’
to the half-collision in the P -subspace, see Sec. IIA and c3 below.

(c3). Dependence on vθ in the range 0−2 (5) can be observed in the sets of widths
of purely vibrational states of the Li+–H2 (D2) complexes [vr=1−3 vθ vR=0−vmax

R ] J=0,
which are listed in Tables IX and DI–II, and in the sets of widths of ro-vibrational states
[1 vθ vR=0−vmax

R ] k J , which are shown in Figs. 8a–b and D15c (for J=k levels), and in Figs.
10a and 10c. The main observation is that the effect of excitation of the θ-mode on the
widths is different than the effect of excitation of the R-mode (up to vR=4, 5, at least).
Namely, the widths tend to decrease upon the increase of vθ. In Li+–H2(v=1), the decrease
is substantial (by about 50%) already for vθ=1. In Li+–D2, it begins at vθ=2 and becomes
quite sizeable for vθ=4, 5. More precisely, the latter concerns the widths of J=0 levels in
states [1 vθ=4−5 0] which drop below the value for vθ=0 by more than 100% as indicated by
the arrows in Fig. 9c. Analogous tendency as to the effects of the intermolecular bending and
stretching excitations on the VP widths has been previously observed in rare gas–halogen
diatom van der Waals complexes35,48,51. The explanation suggested in Ref. 48 is confirmed
here using the 3D-CM approach: the overall size of the term driving the coupled equations
in the P -subspace, measured by the integral 〈FQHQP |HPQFQ〉R, does indeed reflect the
different impact of the excitation of the two modes.

(c4). Dependence on J and k of the widths of rotational levels in the vibrational state
[1 0 0] is shown in Fig. 9. Widths of p=e and p=f parity levels are shown by different
symbols. In most cases, the splitting between them appears very small. Therefore, only
occasionally widths of both parity levels will be included in further presentation. The main
fact to note is that

(i) the widths decrease with growing number J , much faster in Li+–H2 than in Li+–D2,
and increase with the number k, also faster in the lighter complex. Inspection of the
energies transferred to translational motion of the fragments, estimated with the use
of the respective populations Pj , indicates that the momentum gap law47,49 can be
invoked to rationalize this behavior of the widths (see Fig. D16d).

Information on behavior of the rotational level widths in several other vibrational states is
provided in Fig. 10. In panel a), the widths in k=0 groups of states [vr vθ vR] with

∑
m vm≤3

of both complexes are plotted as functions of J(J+1). It is shown that ln Γ decreases
approximately linearly with growing J(J+1), especially in states with vθ=0; the slope of line
for each vibrational state is determined by the respective rotational constant Bk=0([ ]). This
suggest that the widths Γ([vr 0 vR] k J) of both complexes should decline with approximately
the same rate when expressed as function of the rotational energy E([ ] k J)−E([ ] k J=k).
Actually, it was found profitable (see Fig. D16b) to replace the rotational energy with the
distance of the level E([ ] k J) from the threshold εv=vr j=k. As functions of this ‘binding
energy’, the widths of levels of Li+−H2 and of Li+−D2 appear related through a simple mass
factor, the same for levels of at least four vibrational states. Namely, as demonstrated in
panel b) of Fig. 10,

(ii) the widths Γ([ ] k J) in each of the four states [1−2 0 0] and [1 0 1−2] can be represented
by the formula

ΓLi+−aa
kJ =

1

sa
C exp[−β(ELi+−aa

kJ −εaav=vr j=k)] with sa= µaa
µHH

µLi+−aa

µLi+−HH
for a=H,D .



The values of the parameters for state [1 0 0] — C=2.050×10−3 cm−1 and
β=1.439×10−3 1/cm−1, and for state [2 0 0] — C=4×2.168×10−3 and β=1.320×10−3,
confirm the statement made in (c1) about the range of validity of v2r scaling.

In Fig. 10c, the behavior of rotational level widths in states [1 vθ 0] of Li+–D2 with vθ growing
up 5 is demonstrated. The most striking fact revealed is that

(iii) in states with the θ-mode excited to vθ=4, 5 the widths behave completely differently
than in the lower vθ states, namely, they rapidly grow with the number J .
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The widths are shown a) as functions of the number J(J+1) and b) as functions of the energy position

relative to the εv j threshold with v=vr and j=b=vθ+k. The gray lines in panel a) show the declines of

the functions exp[−βaBaJ(J+1)] for the rotational constants Ba=Bk=0[vr vθ vR] taken from Table VII

and VIII and βa=1.24 and 1.43×10−3 for the complex with aa=D2 and H2, respectively. The gray lines

in panel b) represent fits to the widths ΓLi+−H2([ ] kJ) and c×ΓLi+−D2 in the four [vr 0 vR] states shown.

In panel c) are widths of states [1 vθ, 0] k=0 J of the Li+–D2 complex for vθ growing from 0 to 5. For

each vθ, the dependence on the number J is shown implicitly through the energy E([1 vθ 0] J)−ε1 j with

j=0 (1) for vθ even (odd). The arrows indicate widths of J=0 levels in the different vθ sets.

Partial widths. The widths Γvj for all v j channels available in the predissociation of
the complexes from their vibrational states [vr=1−3 0 0] J=0 are shown in Fig. 11. Overall
information is provided on the populations of the H2 (D2) product v-states (Pv=

∑
j Γvj/Γ)

depending on the state vr of the complex, and on the populations of the product j-states
(Pj(v)=Γvj/Γ) depending on the vibrational number change ∆v:=vr−v. The energies avail-
able (Eavl) in the vibrational channels Li+ + aa(v) which pertain to the six populations curves
shown for each complex Li+–aa in Fig. 11 and the energies disposed, according to these pop-
ulations, into rotations of the diatomic fragment (Erot) are listed in Table XI. The j-state
populations in the important ∆v=1 vibrational channel which follow the VP of the com-
plexes from their vibrational states [vr=1−3 vθ vR] J=0 for vθ=0−3 (5) and vR=0−9 (12) and
from a wide selection of ro-vibrational states [vr=1 vθ vR] k J p, with k∈[0, 5] and J∈[0, 30],
are presented in Tables DI–DII and in Figs. 12, D1b, and D13.

This material allows for several observations on how the product state populations depend
on the initial states, on the degree of excitation in each of the vibrational modes and in the
overall rotation. The observations are summarized in the following two sub-subsections.

(c5). Populations of product v-states are highly peaked at v=vr−1 which is an expected
effect, of course. The branching ratio for population of ∆v>1 to ∆v=1 channels in the
decay of states [vr 0 0] J=0 with vr=2 and 3 is as small as 0.0089 (0.0043) and 0.020 (0.0093),
respectively. The branching increases slightly if the initial state is excited additionally in
the R-mode, e.g. the values 0.037 (0.017) are obtained for [3 0 2] state.

(c6). Populations of product j-states, Pj(v; [vr vθ vR] k J), display distinct properties de-
pending on the value of ∆v. Therefore it is convenient to categorize them as specified in the
titles (italic) of the following two paragraphs.

In v=vr−1 channels, the most prominent feature concerns correlation with the number
vθ. Namely,

(i) a strong b=vθ+k → j=b+2 propensity occurs in the decay of vθ=0 states, e.g.
Pj=b+2(0; [1 0 0] k=b=J)&0.95 for b=0−5. However, with increasing vθ, the peak at
j=b+2 lowers substantially and a tendency to populate the highest accessible j-state



develops. In the populations resulting from decay of states highly excited in the bend-
ing mode, like [1 4−5 vR] k J states of Li+−D2, the peak is at the highest available
j-state and a lower maximum at j<b+2 appears. Detailed analysis within the 3D-CM
approach (Figs. D3–D12) shows that both factors of the dissociation model underly-
ing this approach have a role: (1) the ‘initial condition’ (the driving term HPQΨQ) to
the half-collision taking place in the P -subspace, and (2) the interactions within the
P -subspace. The populations of j-states being the outcome of the half-collision can
depend on the number b only through the function ΨQ. In turn, the propensity for the
j−b=2 excitation of the diatom detaching from the Li+ ion is established entirely in
the P -subspace. Though seemed probable, the L=2 anisotropy of the coupling HQP

is not responsible for this excitation. The propensity vanishes, excitations to higher
j-states become dominating, when the region of the strongest anisotropy of the po-
tential VPP in the P -subspace, θ.45◦ and &135◦, becomes accessible. Access to this
region is controlled, however, by the driving term, by its extent in the θ-coordinate
which obviously increases with the number vθ of the state described by ΨQ.

As to correlations with the other quantum numbers of the predissociating states, the general
observation is that they merely attenuate the b=vθ+k → j=b+2 propensity. Namely, the
comparisons of the populations: Pj(vr−1; [vr 0 vR] J=0) for vr=1 versus vr=2, 3 (Fig. 11,
Tables DI–II), Pj(0; [1 0 vR] k J=k) for vR=0 versus vR> 0 (Fig. 12, Tables DI–II), and
Pj(0; [1 0−1, vR] k J) for J=k versus J>k (Figs. D1b, D13b,d) show that

(ii) the increase of each of the numbers vr, vR, and J of the predissociating state causes
a broadening of the distributions Pj , mostly at the j>b+2 side. The anisotropy
of interactions in the P -subspace, reflected by the magnitude of the torque func-
tion 〈v=vr−1| ∂

∂θ
Vint(r, R, θ)|v〉r, increases with vr. The broadening effect of the

other two excitations on the distributions Pj(0; [1 0−1, vR] k J) should be ascribed
rather to the associated increase of the total energy available to the fragments,
E([1 0 vR] k J)−εv=0,j=0.

The populations from the states highly excited in the bending mode (Fig. D13), like the
total widths of these states (Fig. 9c), behave differently upon the increase of J ; the peaks
at the highest accessible j-states gradually disappear.

In v=vr−2 and vr−3 channels, the distributions Pj(v=vr−∆v; [vr 0 0] J=0) are signifi-
cantly broader than in vr−1 channels and the positions of maxima are shifted from j=2
to j=6 and j=8 (10), respectively (Fig. 11). This may be interpreted as a manifestation of
sensitivity to the magnitude of the total energy available to the fragments in a given channel
v. In the dissociation with ∆v=1, 2, and 3 transitions, the values of Eavl in v=0 channels
increase like 1, 2.6 (3.5), and 4.1 (5.8), respectively (Table XI). Another factor which could
influence the distributions Pj in the ∆v>1 decays are the ro-vibrational couplings in the
respective P -subspaces containing more than one v-state. Inspection of the ratios Erot/Eavl

in Table XI points to importance of this factor. While in the ∆v=1 dissociation the ratios
have nearly the same values for Li+–D2 and Li+–D2, they differ substantially between the
two complexes dissociating with ∆v>1.



TABLE XI: Dissociation of Li+–aa (a=H,D) complexes from [vr=2−3 vθ=0 vR=0]J=0 states into

Li+ + aa(v=vr−∆v) channels for ∆v=1, 2, 3. Total energy available (Eavl) and average energy

transferred to rotation of diatomic fragments (Erot), both in cm−1.

Li+–H2 Li+–D2

∆v v Eavl
a javl jmax

b Erot
c Erot

Eavl
Eavl javl jmax Erot

Erot
Eavl

1 0 2378.50 4 2 405.7 0.17 1131.84 4 2 186.4 0.16

1 2039.31 4 2 510.6 0.25 932.43 4 2 254.6 0.27

2 1723.57 4 2 531.6 0.31 744.57 4 2 240.2 0.32

2 0 6197.89 10 6 24.4 0.0039 3926.59 10 6 5.9 0.0015

1 5637.85 10 6 37.9 0.0067 3612.76 10 6 9.8 0.0027

3 0 9796.42 12 8 1.4 6606.93 14 10 0.2

aE([vr 0 0] J=0)−εv j=0 with vr=v+∆v; see Tables DI–DII,
bPosition of maximum in the distribution Pj(v; [vr 0 0]J=0), see Fig. 11.
cObtained as

∑
j

Pj(v; [vr 0 0]J=0)×(εv j−εv 0).
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D. ABSORPTION SPECTRUM

Absolute intensities.
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′
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8620 lines are shown in the three panels of the figure. About 3170 of the lines belong to the b-type
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TABLE XII: Integrated vibrational band intensities (I[v′′]→[v′](T ), in cm/molecule) in the infrared

absorption spectra of Li+–H2 (D2) at T=296 K.

Li+–H2 Li+–D2

[v′′]→[v′] ν[v′′]→[v′]
a I[v′′]→[v′]

b ν[v′′]→[v′]
a I[v′′]→[v′]

b

[0 0 0]→[1 0 0] 4053.1 6.3 (−18) 2915.4 2.6 (−18)

→[0 1 0] 594.3 6.9 (−19) 451.3 2.1 (−19)

→[0 0 1] 405.1 4.4 (−18) 333.1 5.0 (−18)

[0 0 0]→[2 0 0] 7872.5 2.7 (−19) 5710.2 8.3 (−20)

→[0 2 0] 1068.2 4.3 (−19) 846.2 2.0 (−19)

→[0 0 2] 750.4 2.2 (−19) 629.3 2.3 (−19)

[0 0 0]→[1 1 0] 4658.5 4.6 (−19) 3371.1 1.7 (−19)

→[1 2 0] 5147.9 8.7 (−20) 3774.0 2.3 (−20)

→[1 1 1] 5010.5 4.5 (−20) 3675.4 1.1 (−20)

→[1 0 1] 4463.6 4.3 (−21) 3251.3 2.5 (−21)

[0 0 1]→[1 0 1] 4058.5 9.1 (−19) 2918.2 5.2 (−19)

[0 1 0]→[1 1 0] 4064.2 4.7 (−19) 2929.8 3.5 (−19)

→[1 0 0] 3458.8 2.9 (−20) 2464.1 2.1 (−20)

→[1 2 0] 4553.5 2.8 (−20) 3322.7 2.4 (−20)

[0 0 1]→[0 0 2] 345.2 1.2 (−18) 296.2 1.9 (−18)

[0 1 0]→[0 1 1] 346.3 1.8 (−19) 301.3 4.5 (−19)

aBand center taken as [E([v′] J ′=0)−E([v′′] J ′′=0)]/hc where [v]:=[vr vθ vR].
bIncluded into the sums of Eq. (9) are intensities of lines in the subbands k′′→k′ with k′′=0−3 (4), k′=k′′

for the bands with ∆vθ=0, 2, and k′=k′′±1 for the bands with ∆vθ=±1.

Linestrengths. Vibrational factors.
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Fig. 15. Vibrational factors of line strengths in selected bands of the infrared spectra of

Li+–H2 (D2). The Svibs of lines R(J), P (J), and Q(J) in the subband Ka=k→k′, with k′=k

in the three a-type bands (v′θ=vθ) and k′=k±1 in the b-type band, are results of dividing the

strengths Si→f of the lines (here i:=([vr vθ vR]kJp) and f:=([v′r v
′
θ v

′
R]k′J ′p′) ) by the rotational factors

Srot(Jk→J ′k′)=(2J+1)|C(J1J ′, k k′−k k) fk
k′−k|2 with J ′=J+1, J−1, and J , respectively, see Eqs. (21)–

(24) and (C16)–(C18). The values of Svib for lines of Li+–D2 in the bands with vr=0→1, 2 excitations

are enlarged in the figure by mass-factors related/analogous to that defined in Fig. 1b.

The Svibs of R(0) lines in the vR=0→1 and vr=0→1 bands of Li+–H2 (D2), 3.830 (6.829)×10−2 and

4.73 (3.17)×10−3 D2, respectively, agree well with the vibrational strengths of 3.889 (6.942)×10−2 and

5.02 (3.32)×10−3 D2 obtained in Ref. 5. A more extensive comparison in made in Table CXV.



Line heights in the NIR (bound→resonance transitions).
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Fig. 16. A comparison of line intensities Ii→f(T ) and line heights σi→f(ν=νif ;T ) in the absorption

spectra of the Li+–H2 (D2) complexes at T=296 K. The comparison is made on R(Je) and P (Je) lines

in the most intense subband Ka of each of the three most intense vibrational bands in the NIR: the

fundamental [0 0 0]→[1 0 0] and the hot [0 0 1]→[1 0 1] and [0 1 0]→[1 1 0] bands. The intensities are shown

by the sticks and the line heights — by the symbols. The units of I and σ used in the upper (lower)

panels are the values describing the highest lines in the spectra of Li+–H2 (D2) which are the R(7e) lines

at ν=4086.48 (2939.38) cm−1 in the Ka=1−1 (0−0) subbands of the fundamental bands.
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Fig. 17. A fragment of simulated near-infrared absorption spectrum of Li+–H2 at T=296 K. The

shown frequency interval contains P lines of the two most intense hot bands which overlap with vr=0→1

fundamental, see Figs. 13 and 15. The arrows on the ν axis indicate the lines of the fundamental band

on which some information can be added to that provided by the experimental work, see Table XIII.



TABLE XIII: Infrared absorption spectrum of Li+–H2. Line positions (ν, in cm−1), deviations

from positions observed in Ref. 4 (∆=ν−νobs), vibrational factors of line strength (Svib, in 10−3

D2), and line intensities (I, in cm/molecule) at T=296 K in four subbands of vr=0→1 band,

(b k=b vR=0J p)→(k k 0J ′ p′) for k=0–3. For each J in k>0 subbands, the entries in lower line

concern (Jp)→(J±1 p), (J −p) transitions from initial p=−1 parity state. The asymmetric top

labels of initial and final rotational levels, JKaKc and J ′
K ′

aK
′
c
, are: Ka=K ′

a=k, Kc=J−k+1−(−1)kp
2 ,

K ′
c=Kc+∆Kc with ∆Kc=±1 and ∆Kc=(−1)kp for J ′=J±1 and J , respectively a.

R(J) P (J) Q(J)

J ν ∆ Svibb Ic ν ∆ Svibb Ic ν ∆ Svibb Ic

k = 0

0 4058.02 −0.31 4.73 1.16 (−20)

1 4062.92 −0.34 4.74 2.28 (−20) 4048.14 d 4.74 1.13 (−20)

2 4067.77 −0.38 4.74 3.26 (−20) 4043.17 −0.20 4.73 2.15 (−20)

4 4077.31 −0.47 4.77 4.63 (−20) 4033.19 −0.15 4.72 3.63 (−20)

5 4082.00 e 4.77 4.93 (−20) 4028.21 −0.14 4.74 4.03 (−20)

6 4086.61 e 4.79 5.01 (−20) 4023.24 −0.12 4.74 4.19 (−20)

7 4091.15 −0.61 4.79 4.85 (−20) 4018.30 −0.10 4.73 4.13 (−20)

k = 1

1 4058.70 −0.37 4.74 3.76 (−20) 4049.18 −0.31 4.68 3.71 (−20)

4059.01 −0.37 4.72 3.75 (−20) 4048.88 −0.31 4.70 3.72 (−20)

2 4063.47 −0.41 4.73 6.39 (−20) 4039.30 −0.24 4.71 3.55 (−20) 4049.43 −0.33 4.62 1.94 (−20)

4063.93 −0.41 4.72 6.35 (−20) 4039.00 −0.24 4.72 3.55 (−20) 4048.52 −0.30 4.66 1.95 (−20)

3 4068.21 −0.43 4.73 8.37 (−20) 4034.40 −0.22 4.71 5.88 (−20) 4049.80 −0.32 4.52 1.24 (−20)

4068.80 −0.46 4.72 8.31 (−20) 4033.96 −0.20 4.72 5.87 (−20) 4048.00 −0.34f 4.58 1.25 (−20)

4 4072.86 −0.50 4.77 9.84 (−20) 4029.49 −0.19 4.70 7.49 (−20) 4050.30 −0.32 4.39 8.46 (−21)

4073.62 −0.50 4.73 9.70 (−20) 4028.91 −0.19 4.71 7.47 (−20) 4047.32 −0.28 4.48 8.56 (−21)

6 4082.01 −0.58 4.79 1.09 (−19) 4019.71 −0.14 4.71 9.00 (−20) 4051.64 4.06 4.15 (−21)

4083.05 −0.61 4.71 1.06 (−19) 4018.86 −0.13 4.73 8.91 (−20) 4045.42 4.28 4.30 (−21)

7 4086.48 −0.66f 4.81 1.07 (−19) 4014.84 −0.12 4.71 8.97 (−20) 4052.48 3.84 2.89 (−21)

4087.70 −0.62 4.70 1.03 (−19) 4013.86 −0.10 4.72 8.82 (−20) 4044.24 4.13 3.04 (−21)

k = 2

2 4052.28 −0.51 4.69 5.32 (−21) 4037.651 −0.38 4.60 1.04 (−20)

4052.28 −0.51 4.69 5.32 (−21) 4037.651 4.60 1.04 (−20)

3 4057.06 −0.54 4.71 8.96 (−21) 4022.95 −0.29 4.67 4.90 (−21) 4037.585 4.52 6.66 (−21)

4057.06 −0.54 4.71 8.96 (−21) 4022.95 −0.29 4.67 4.90 (−21) 4037.585 4.52 6.66 (−21)

k = 3

3 4039.03 −0.69 4.69 3.56 (−21) 4019.746 −0.46 4.50 1.02 (−20)

4039.03 −0.69 4.69 3.56 (−21) 4019.746 4.50 1.02 (−20)

4 4043.73 −0.71 4.70 5.95 (−21) 4000.39 4.65 3.18 (−21) 4019.678 4.40 7.01 (−20)

4043.73 −0.72 4.70 5.95 (−21) 4000.39 4.65 3.18 (−21) 4019.681 4.40 7.01 (−20)

5 4048.38 g 4.71 7.46 (−21) 3995.55 4.65 5.17 (−21) 4019.595 4.28 4.94 (−20)

4048.39 g 4.70 7.45 (−21) 3995.54 4.65 5.17 (−21) 4019.597 4.28 4.94 (−20)

6 4052.97 −0.83 4.73 8.29 (−21) 3990.72 4.66 6.32 (−21) 4019.509 4.12 3.48 (−20)

4052.98 −0.83 4.73 8.29 (−21) 3990.72 4.66 6.32 (−21) 4019.502 4.12 3.49 (−20)

aExtended version of this Table, including all transitions measured and above 250 other transitions in the

same band, is given in Supplementary Material 55.
bObtained as Svib=S/Srot with Srot being here (cf. Fig. 15) the Hönl-London factor for J k→J ′ k symmetric

top transitions19, Srot(J→J ′; k)=J+1− k2

J+1 , J− k2

J , and 2J+1
J2+J k

2 for J ′=J+1, J−1, and J , respectively.
cEvaluated according to formulas (5)–(8). The value of Z(296) is 687.65×Zref where

Zref := exp(−E0/kB296) is 3428.11. See Table BVII in Ref. 55.
dLine not measured. The cause appears to be the closeness to the Q(3f ) line of the k=1 subband, as

indicated by the gray arrow in Fig. 17.
eNot measured, probably because of strong overlapping with the R(6e) and R(7e) lines of the k=1 subband.
fLine observed as blended. This may be the cause of the slight local increase of |∆|.
gMissed in the measurements of Ref. 4; the ν values provided concern actually R(6e,f ) lines in the same

(k=3) subband. The lines R(5e,f ) and R(6e,f ) are indicated by the black arrows in Fig. 17.
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Fig. 18. The most intense combination bands in the near-infrared absorption spectra of the Li+–H2 (D2)

complexes.
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