p. SUPPLEMENTARY MATERIAL — PART D

VIBRATIONAL PREDISSOCIATION



Li—H, COMPLEX



TABLE DI: Vibrationally predissociating v, b k=0vg J=0 states of the Lit-Hs complex.

3D perturbative (CM)® versus 3D ‘exact’® results for energies (E), total widths (I'), and populations
(P;=T,;/Tx100% and P,=3" P;) of decay channels Hy(v,)+Li* with v=v,—1. AEQO=gO)_F
AEM=FM_E  [=(T“M/T—1)x100%. Accuracy of results from the 2D-GR approach®: the
deviations AE?P=F?P —F and 6T?P=(I"PVER /T —1)x100% listed in angle brackets.

v b wg AE©d  AECM (AE2D)d Ede ST (5T2P) rd P;

Jo

poMI P,

j=0 2 4 6 8

1 0 0 —9.8669  0.007 ( 8.247)  2378.491 15 ( 3.8) 2.37(—2) 0.8 934 58
0.8 926 6.6
1 —8.7679  0.009 ( 7.131)  2789.040 1.7 ( 5.0) 6.84(—2) 0.8 87.7 80 3.6
0.8 8.3 101 28
2 —7.4539  0.013 ( 5.860) 3142.481 3.0 ( 5.0) 1.12(-1) 09 8.5 111 15
0.9 844 136 1.1
3 —6.035 0.018 ( 4.552)  3438.954 2.4 (3.9) 1.46(-1) 1.0 837 116 3.7
1.0 817 158 15
4 —4.631 0.019 ( 3.334)  3679.296 4.9 ( 53)  1.54(—1) 11 828 146 15
1.0 802 17.6 1.2
5 —3.324 0.018 ( 2.271)  3864.893 5.7 ( 5.2)  1.42(—1) 11 822 151 1.6
11 795 181 1.3
6 —2.214 0.009 ( 1.417)  3998.446 125 ( 6.8) 1.11(-1) 12 795 19.0 0.3
12 816 169 0.3
7 —1.292 0.010 ( 0.795)  4085.736 7.0 (4.9  7.46(-2) 13 816 158 02 1.1
12 792 179 04 13
8 —0.629 0.007 ( 0.378)  4134.417 7.6 ( 4.6) 3.86(—2) 1.3 805 17.0 04 0.8
13 778 194 06 0.9
9 —0.197 0.004 ( 0.116)  4155.187 9.8 ( 4.0) 1.23(-2) 1.3 802 174 04 0.7
13 773 200 06 0.8
2 0 —5.686 0.021 ( 2.194)  3473.264 74 (22.4)  1.59(-2) 0.1 167 292 54.0
0.1 209 342 448
1 —5.222 0.029 ( 1.784)  3778.283 6.6 (13.1)  3.34(—2) 0.1 13.3 394 47.2
0.1 17.3 46.0 36.6
2 —4.276 0.037 ( 1.157)  4033.246 111 (12.3)  5.48(—2) 0.1 17.2 39.7 43.0
0.1 219 439 34.1
2 0 0  —202029  0.033 ( 6.739) 6197.852 0.6 ( 4.4)h 1.09(—1) 0.9 721 261 99.1
1.0 747 234 99.1
1 —181619  0.036 ( 5.621) 6612.956 3.4 ( 1.6) 2.90(—1) 1.0 780 18.0 1.9 98.9
1.0 769 19.7 1.3 98.9
2 —15.6699  0.051 ( 4.452)  6973.285 55 ( 1.6) 4.69(—1) 1.0 774 195 0.7 98.6
11 753 21.7 0.7 98.8
5 —7.556 0.072 ( 1.503)  7729.987 9.3 ( 1.6) 6.08(—1) 11 741 223 0.6 98.1
11 708 253 1.0 98.2
6 —8.106  —0.751° (—0.535)  7883.568 59.0 (17.6)  2.69(—1) 0.6 732 107 138 98.3
1.0 929 05 3.8 98.2
7 —3.239 0.049 ( 0.480)  7979.424 11.2 ( 1.7)  3.50(-1) 12 727 233 0.7 97.9
12 69.0 26.7 1.2 98.1
2 0 —12.202 0.126 (—0.069)  7316.381 56.5 (19.4)  2.80(—2) 0.1 401 37.7 209 98.8
0.1 370 394 226 99.1
3.0 0  —30.327 0.087 ( 4.564) 9796.336  —3.8 ( 0.1)" 3.82(—1) 11 57.0 39.9 98.0
1.3 66.4 304 98.1
1 —27.568 0.088 ( 3.360) 10215.485 4.4 (—1.0) 8.92(-1) 1.3 685 27.4 97.2
1.3 69.6 26.4 97.3
2 —24.096 0.114 ( 2.281) 10581.741 6.9 (—1.0) 1.40 13 711 233 0.7 96.4
13 706 239 0.8 96.6
3 —20.210 0.140 ( 1.361) 10895.417 86 (—0.8) 175 12 694 242 0.9 95.7
13 680 255 1.2 96.0
2 0  —19.339 0.286 (—3.178) 10936.335 64.8 (16.1)  1.05(—1) 12 367 432 17.8 98.9

09 329 424 22.7 98.9




TABLE DI: continued

j=1 3 5 7
1 1 0 —7.673  0.017 ( 3.743)  2983.914 155 (13.1)  1.67(—2) 9.1 720 189
9.0 717 193
1 —6.732  0.022 ( 2.977)  3335.862 6.1 (11.2)  6.37(—2) 93 723 98 86
9.8 734 99 69
2 —5.598  0.029 ( 2.161)  3633.935 9.3 (11.2)  1.01(—1) 105 735 111 4.9
108 727 124 4.1
3 —4.620  0.029 ( 1.881)  3870.882 55 (21.6)  7.32(—2) 107 69.5 87 111
107 668 138 8.7
4 —3.091  0.032 ( 0.751)  4060.586 134 (12.0)  1.19(—1) 11.8 715 137 3.0
118 69.3 164 2.5
5 —2.255 —0.040 ( 0.759)  4189.186 22.7 ( 29)  6.92(—2) 114 657 19.1 3.8
120 680 181 1.9
6 —0.771  0.016 ( 0.102)  4255.017 17.4 (12.1)  3.99(-2) 123 69.8 157 2.2
123 67.6 182 1.9
30 —4.447  0.021 ( 1.930)  3882.051 17.3 (=0.8)  5.54(—2) 108 687 174 3.1
11.3 704 163 2.0
1 —4.204  0.103 ( 1.959)  4176.812 —9.7 (30.4)  3.90(—2) 72 454 56 41.8
58 360 204 37.8
2 1 0 ~16.275  0.067 ( 1.002)  6813.442 21.4 (11.6)  1.08(—1) 9.0 826 7.7 99.3
94 861 36 99.1
31 0 —25.081  0.175 (—2.544) 10421.577 29.1 (11.9)  2.70(—1) 8.8 68.6 20.5 97.9
8.6 645 24.9 98.0

?From the implementation of the bound-continuum configuration-mixing theory' described in Sec. III of the
paper. E(©) — the 0-th order approximation to the energy F is obtained as the energy of related state in the
bound-state subspace @ which includes v-channels with v=v,, v,+1, v,.+2.

*From the life-time matrix? analysis, see Ref. 3.
¢The approach originally proposed in Refs. 4 and 5, under the name ‘diabatic vibrational golden rule’ (DVGR)
approximation, for studying van der Waals complexes of Cls and ICl molecules with rare gas atoms. It differs
from the 3D-CM approach in the following respects: (i) the Q- and P-subspaces are built of only one v-state of
the diatomic subunit, v=v, and v=v,—1, respectively, (ii) only 0-th order approximation is used for energy of
the predissociating state, i.e., E2P=E() and (iii) the width is calculated according to the Golden Rule formula
2P =27 (F5[Hqp FL (E))§(E—E©), ie. using the P-subspace function at E=E(©).
1

dGiven in cm™1. ®The energy is relative to the Ha(v=0, j=0)+Li* dissociation limit.

MListed in the lower line for each v, bvg case.
9These deviations are counterparts of the shifts between energies listed in Table 2 of Ref. 6 in columns

‘Quasibound state’ and ‘Resonance’: —8.45, —6.82, —6.63 cm ™! for v=1 and —11.23, —9.59, —9.31 cm™! for
v=2. The latter shifts are nearly two times smaller than the AE(%)’s for v,=2. This indicates that the PES used
in Ref. 6 entails substantially stronger r—(R, ) coupling than the PES used here. The same conclusion may

be drawn from inspection of the widths from this PES (as assigned in Table IX), from their strong departure

2
T

hThe values of 6T for v,=2, 3 states might suggest that the 2D-GR approximation is much more accurate
than the 3D-CM approach in describing these states. However, it should be realized that the 2D widths are

approximations actually not to the 3D ‘exact’ widths but to widths obtainable with bases which include only

from v7 scaling.

two v-states, v=v,.—1 and v=v,. Energies and widths from close-coupling calculations using such restricted
bases differ from the fully convergent results the more substantially the higher the v, is. In the case of the
v,=3b=0vr=0 state, for example, the energy is higher by as much as 35.5 cm~! and the width is smaller by
26%. Because of the big (and increasing with v,) shift contributed to the level positions, the coupling of v=wv,
with v=wv,41 state has also a significant impact on the level widths. Therefore it is essential that this coupling
be present in the Q-subspace. Thus, the good consistency of the 2D-GR widths with the exact results should
be regarded as fortuitous. Similar conclusion was reached in Ref. 5 from tests of the DVGR approach on the

Ne-ICT complex.
“This relatively large deviation is due to strong mixing between the states v,=2 b=0v=6 and v,=2 b=2vr=2.

JFunction of the state is shown and analyzed in Figs. Dlc—d.



le-1

le-2

=0Jp)

le-3

=1 b=k vy

T T (v,

Li™—H,
Fig. D1. Vibrationally predissociating states v,=1bkvgr J p
D1a. Total widths of J=Fk levels (cf. Fig. 8)
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States formed with para- and ortho-Hg, are shown here in separate panels (and only those which can
decay by pure vibrational predissociation, cf. Table BI in Ref. 7). It is better exposed that the widths of
states with b—k>0 are smaller than the b=k widths for given values of b and vr. The red arrow connects
heavily mixed states. The mixing causes the dip in the b=1 k=0 curve, see part d of the figure. Results

of the perturbative calculations for k=0 states (see Table DI) are shown here with the yellow symbols.

D1b. Populations (I';/I") of decay channels Hy(v=0j) 4+ Li*

— correlations with the quantum numbers of the states (cf. Fig. 12)
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The left-hand panels concern states with vg=b—k=0. It is shown that the property of decay of these states
— almost entirely to channels with j=b+2 — weakens with growing J. The right-hand and middle panels
provide further examples of the fact that the population of decay channels changes substantially with
excitation of bending vibrations in the complex — the peak population shifts towards the energetically
highest channel. Orange symbols mark cases of departure from this tendency.



D1c. Functions of the states U (E., R, )
approximated by bound state functions in the entire (P+Q) space
Probability densities p(6, R)
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Shown are the two cases marked with orange symbols in part b of the figure and one ‘regular’ case (in
the rightmost panel).

D1d. Natural expansion analysis (NEA)*
of related bound states functions in the ()-subspace
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* details of NEA are as described in Ref. 8.
Here plotted are: the diagonal elements of the density kernels, p(R, R):=p(R) and p(d,0):=p(0), and two

their most occupied eigenfuctions (the natural orbitals). The occupancies are listed in the legend of each
panel.

The state (3010) represents a regular case in the sense that its assignment is well justified
by the shape of the function: i) by the high occupancy of the leading natural orbitals in
the R- and #-coordinates (81%), and ii) by the clear structure of both these orbitals (the
number of zeros in them).



D1le. Accuracy of energies and widths
of v,=1b=kvr=0J p states
determined within

the 3D-CM and 2D approaches
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The plotted deviations AE?P, AE©) AEM §TGR and sTM from 3D ‘exact’ energies E and widths T
of the states are defined in the caption of Table DI. The ‘exact’ values of ' and I' can be found in Table
BIV of Ref. 7. The I'’s are also plotted here in the bottom right panel (enlarged view of a fragment of
Fig. 9 of the paper).

COMMENTS

The error AE®M is approximately the same for the different rotational states (.J, k) within the
selected vibrational state, [v, vgvg]=[100]. The error AE?" does not have the property; it is
clearly larger for k=2, 3 than for k=0, 1 and grows with increasing .J.

In Fig. B3 of Part B, it is shown that the rate of growth of the error AE?P with the number .J
and the dependence on k vary between different vibrational states. This lowers, of course, the
suitability of the 2D approximation to simulations of absorption spectra.

In view of the large disproportion in the size of errors of the energies of the states, AEM
and AE?P| the errors of the widths, T and §T?P (2D:=GR, see Table D1), differ little.
Generally, in cases of well isolated predissociating states the accuracy of the widths determined
with the Golden Rule formula is rather weakly correlated with accuracy of the energies of the
states. Quite different is, of course, the situation when some disturbances (mixing) between
the states occur. The relative errors of the widths become then high. Such disturbances are
not rare in the Lit—H, complex. Therefore, if accuracy of the widths is of concern relaying on
the perturbative approach (on the isolated resonance version of it) is not quite safe. A checking
tool, like the 3D exact life-time matrix approach, should be at hand.



Li™—D, COMPLEX



TABLE DII: Vibrationally predissociating v, bk=0vgr J=0 states of the Lit-Dy complex. Per-
turbative (CM)® versus ‘exact’ (LT)® results for energies (E), total widths (I'), and populations
(P;=T,;/Tx100% and P,=3" P;) of decay channels Dy(v,j)+Li" with v=v,—1. AEO=gO) _F,
AEM=EM_FE T=(TM/T—1)x100%. Accuracy of results from the 2D approach: the deviations
AE?P=FE?P_F and listed in angle brackets.

v b wgR AE©®c  AECM (AE2D)c Ecd sT re Py, poMe P,
j=0 2 4 6 8
1 0 O —9.896 0.010 { 9.391)  1131.835 204 8.29(—3) 06 979 15
07 975 1.8
1 —9.051 0.007 ( 8.506)  1467.733 —2.3  2.52(-2) 05 79.6 188 1.1
05 812 174 09
2 —8.059 0.009 ( 7.481)  1767.906 —1.1  4.55(-2) 0.3 806 173 1.8
04 810 171 15
3 —6.974 0.012 ( 6.381)  2032.430 0.0 6.41(-2) 0.2 807 184 0.7
0.3 80.7 183 0.7
4 —5.818 0.014 ( 5.037)  2262.003 0.6 6.91(-2) 01 935 60 01 03
01 936 58 02 03
5 —4.760 0.017 ( 4.209)  2455.465 1.5 8.38(-2) 0.1 784 201 1.3 0.1
01 775 208 15 0.1
6 —3.718 0.017 ( 3.223)  2615.390 2.0 8.20(-2) 00 797 191 12 0.0
00 788 198 14 00
7 —2.779 0.015 ( 2.358)  2742.526 1.3 7.41(-2) 0.0 812 177 11 00
0.0 804 184 1.2 00
8 —2.020 0.050 ( 1.659)  2838.899 2.0 5.95(-2) 00 739 239 20 0.2
0.0 694 267 35 04
9 —1.315 0.010 ( 1.075)  2907.935 3.3 4.39(-2) 0.0 807 181 12 0.0
00 798 189 13 0.0
10 —0.802 0.008 ( 0.649)  2953.334 3.9 2.85(-2) 00 781 203 15 0.1
00 768 213 18 0.
11 —0.424 0.007 { 0.338)  2979.770 52 1.55(—2) 0.0 727 247 25 0.1
00 688 275 35 0.2
12 —0.236  —0.065 (—0.195) 2992.044f —54.9  1.45(-2) 0.2 712 11.2 154 20
01 957 29 12 0.1
2 0 —6.586 0.016 ( 3.841)  1990.399 14.7  5.86(—3) 0.0 109 615 27.6
0.0 108 586 306
1 —5.902 0.020 ( 3.474)  2258.352 6.6 3.15(—2) 01 52 773 106 6.8
01 50 744 155 5.0
2 —5.074 0.024 ( 2.610)  2494.417 12.0  4.14(-2) 0.1 203 558 166 7.2
0.1 201 51.0 234 5.4
3 —4.194 0.028 ( 1.967)  2696.302 14.4  5.74(-2) 0.1 16.5 556 227 5.1
0.1 163 499 30.7 3.0
4 —3.304 0.023 ( 1.466)  2864.419 14.9 5.81(—2) 0.2 205 53.6 243 14
0.2 205 49.2 266 3.5
5 —2.338 0.098 ( 0.619) 2991.2307 35.3  5.58(—2) 02 97 566 303 3.2
0.2 16.3 46.7 343 25
4 0 —4.303 0.012 ( 2.744)  2607.876 —2.7 1.85(-3) 00 16 233 135 616
0.0 1.6 204 284 496
2 0 0 —20.161 0.038 ( 8.866)  3926.603 -9.3  3.24(-2) 0.8 69.2 295 99.5
1.1 770 216 99.7
1 —18.534 0.033 ( 7.971)  4264.951 —5.0 8.94(-2) 0.9 742 221 22 99.4
1.1 778 194 1.2 99.5
2 —16.614 0.037 ( 6.966)  4568.653 —2.3  1.56(—1) 09 756 216 1.2 99.3
1.0 774 199 1.0 99.3
2 0 —13.905 0.069 ( 2.227)  4796.029 23.9  2.25(-2) 00 81 446 46.8 99.5

0.0 8.2 42.0 49.3 99.5




TABLE DII: continued

3 0 0 —30.331  0.091 ( 7.947) 6606.877 —11.9 8.54(-2) 0.9 675 306 99.1
1.1 779 20.1 99.1
1 —28.011  0.079 ( 7.029) 6947.438 —6.1  2.26(—1) 1.4 709 26.4 98.7
1.7 76.3 20.8 98.8
2 —25.256  0.089 ( 6.049) 7254.304 —-3.2  3.89(-1) 1.4 735 209 2.5 98.3
1.8 76.3 18.4 1.8 98.3
2 0 —21.637 0.149 ( 0.094) 7486.494 304 8.64(—2) 0.1 121 86.6 0.3 99.1
0.1 117 78.0 9.2 99.0
j=1 3 5 7 9
1 1 0 —8.090 0.012 ( 5.877)  1587.460 4.9 9.00(-3) 3.3 76.8 199
3.3 76.8 199
1 —7.366  0.013 ( 5.196) 1891.797 —4.2  3.56(—2) 2.9 692 127 152
3.2 699 176 9.3
2 —6.481 0.015 ( 4.392) 2160.775 54  5.55(—2) 4.1 704 228 2.7
40 684 255 2.1
3 —5.491  0.019 ( 3.542) 2394.238 6.4 7.95(-2) 4.5 681 240 3.4
4.5 655 270 3.0
4 —4.459  0.020 ( 2.694) 2592.111 77 9.25(—2) 52 679 253 1.6
5.1 65.6 276 1.6
5 —3.491 0.024 ( 1.973) 2752.581 84 9.57(-2) 5.1 61.2 30.1 3.3 0.3
5.0 57.1 34.0 3.7 0.3
6 —2.503  0.021 ( 1.305) 2878.409 9.2 8.73(-2) 5.7 63.7 281 2.3 0.2
5.6 604 31.2 2.6 0.2
7 —1.659 0.012 ( 0.783) 2968.628 10.1  6.48(—2) 6.4 69.8 225 1.0 0.3
6.3 676 24.6 1.3 0.2
8 —0.867 0.012 ( 0.393) 3023.581 11.0 3.87(-2) 6.2 63.5 281 2.0 0.2
6.0 603 31.1 2.5 0.1
9 —0.259  0.007 ( 0.113) 3048.223 14.2  1.19(-2) 6.2 619 294 2.3 0.2
59 585 327 2.8 0.1
3 0 —5.160 0.018 ( 2.844) 2327.928 —-1.9 5.04(-3) 0.2 178 477 343
0.3 209 51.0 27.8
1 —4.799  0.020 ( 2.501) 2564.936 11.0 1.25(-2) 0.0 128 489 383
0.0 11.6 49.6 388
2 —4.056  0.026 ( 1.945) 2775.440 14.7  2.45(-2) 1.9 420 270 182 10.9
2.0 46.1 218 21.1 9.0
3 —3.381 0.032 ( 1.489) 2953.181 18.9 3.32(-2) 0.0 14.0 499 27.1 9.0
0.1 146 46.8 31.0 7.5
5 0 —4.617  0.014 ( 3.356)  2887.202 —5.8 4.29(-3) 0.4 142 205 0.7 64.2
0.6 193 19.6 5.1 554
2 1 0 —16.780  0.047 ( 4.491) 4386.468 —11.8 5.18(—2) 20 628 349 99.7
24 59.5 377 99.6
3 1 0 —25.626  0.120 ( 2.632) 7071.024 14.9 8.71(-2) 3.6 79.7 155 98.8
3.6 848 10.6 99.0

%The bound-continuum configuration-mixing theory® in its isolated-resonance version, implemented as de-

scribed in Sec. III of the paper. ®The life-time matrix analysis®3. ¢Given in ecm™!.

IThe energy is relative to the Do (v=0, j=0)+Li* dissociation limit. ¢Listed in lower lines.
fCase of strong mixing; could be better described with the overlapping-resonance version of the CM theory.

COMMENT

The accuracy of the energies from the 3D-CM approach is really good, especially in view of the
fact that the shifts from the 0-th order values are so big. The accuracy of the widths is much
worse; these quantities are more sensitive to disturbances by nearby levels. Still, the values of
'™ and PJ-CM reasonably reflect the correlations of the ‘exact’” total and partial widths with
the quantum numbers of the states. So, formulas of the 3D-CM approach may be exploited for
a rationalization of the trends in the predissociation dynamics.



Detailed

BOUND-CONTINUUM CONFIGURATION MIXING ANALYSIS
of
v,=1bkvg J=0 states

P-subspace — spanned by 7 basis functions: v=03;=0,2, ...,12 or v=0j=1,3,...,13
(-subspace — spanned by 21 diabatic basis functions with v=1—3 and j€[0, 13]

Fig. D3. Interaction in the Q-subspace: (1|Vin(r, R, 0)|1), + €y=1
in the P-subspace: (0|Viy(r, R, 0)[0),
P—@Q coupling: (0|Vin(r, R,0)|1),

Vit (1, R, 0) =V (r, R, 0) — R}im V(r, R,0) — the interaction potential
—00

(V|Vine(r, R, 0)|v"),, — matrix elements between vibrational functions of Dy
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The red contours in the upper left panel show the region of bound states in the @-subspace,
1132<E<e19=2993 cm~!. The corresponding energy region on the interaction potential surface in
the P-subspace is indicated by the red strip in the bottom left panel. The dark parts in the two
panels are the repulsive walls above the €1p- and the ggp- thresholds, respectively. The contours
within the wells are drawn with step of 100 cm™!. In the upper right panel, the contours are drawn
in step of 50 ecm~! starting from -150 cm~!. The 0 contour is shown in red. In the bottom right
panel, the torque in the P-subspace is shown, % < Vint > (R,0). Tt is 0 at 6=0,7/2, and .



Fig. D4. Bound states functions in the ()-subspace: Wq
Probability densities: pg = Wq ¥,
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Fig. D5. Perturbed functions in the P-subspace:
@ (B) = [EC)—Hpp] " Hpo Vg
at £ = Eo(Z: E(O))

D6. Level shifts " and total widths I' as functions of R- and #-coordinates
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Fig. D7. Partial widths for decay into Do(v=075) + Li* channels
as functions of R- and 8- coordinates

[i(R,0) = v;(R,0)xv;
i =27 Uy Hop U (E=Ey, j)

(12010) - (0

(11050) -

In left lower corner of each panel listed is the factor by which the shown function I'; (R, #) is multiplied. The relative
magnitudes of the functions I';(R, ) that pertain to the same state (v, bkwvg J) are approximately described by
ratios of these factors. The functions I';(R, ) with the smallest factors determine the shapes of the total width
functions I'(R, #) of the states; compare with Fig. D6 ( panels in the lower row).



Fig. D4a. Perturbing functions: VqHgp
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For two predissociating states, with vg=b—k=1 and 5, shown are the functions \I/QVjC;?P (R, 0) with j/=9,
defined in Eq. (D7). For comparison with the structures of ¥, plots of the probability densities pg (Eo; R, 0)
are added (in the second and forth panel from the left), cf. Eq. (D1).
Fig. D8. Scattering functions of Dy(v=07) + Li* in the P-subspace
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The functions are shown at three energies E, 2252.4, 2949.8, and 2603.6 cm™!, equal to energies Ey
of (12010), (13030), and (14000) states, respectively. At the first energy, the functions of all open
channels j are shown in the upper two rows (Im-part below Re-part). Functions of two highest channels

are shown only at the other E’s.



The functions plotted in Figs. D4-DS8 are:

po(Eo; R,0) = > F(Eo; R)7(6) (vj|5]) 75(0) Fi(Eo; R) (D1)
viEQ VIEQ
OB R, 0) = > [ ER)7(0), (D2)
j'epr
(B, 5 R,0) = > F (B, §; R) 7(0), (D3)
j'epP
EM(R0) = Re Y UoVPP(R,0) £, (E=Eo R) (D4)
j'epP
[(R,0) = —2Im Y WoVP'(R.0) £, " (E=Ey; R), (D5)
j'epP
1(R.0) = Var Yy WoVPT(R.0) Fy A E=Ey, j; R) (D6)
j'eP
where
\IIQVQP R, 0) Z FQ (Eo; R Z (ilVL(R,7)|05") Pr(cos ) 7;:(0), (D7)
vjEQR L
7(0) = (=1)’y/j+3 Pi(cost), (D8)

Ejy is the energy of the bound state in the @)-subspace related to the predissociating (v, bk vg J)
state shown in a given panel. [It is the 0-th order approximation to the energy E of the state
which is denoted as E® in Table DII]. The symbol ~; which stands in the definitions of the
coordinate-dependent widths without arguments is indeed the integrated decay amplitude

/vj(R,H) dR:/%(H) sinfdf = ;.

The radial functions FJ-I/D(JF)(E,j;R), f]P(+ (E;R), and FE(EO;R) are presented in Figs.
D9-D10.

COMMENT

Inspecting Figs. D5, D4, and D8 one notices that:
(i) the structures of the real and imaginary parts of the perturbed functions ®”*) are rather
different,
(ii) the functions Re ®*) resemble the respective bound state functions Uy in the @-subspace,
i.e. the constituents of the perturbing functions Hpo¥,
(iii) the structures of Im ®”*) for (1b0wv50) states with b<4 are similar to the structures of
the scattering functions WXH)(E. j) for E=Ey~FE,e and j=b+2.
These observations can easily be explained using the spectral representation of the Green
operator [EH)—Hpp]~!. Namely, different states of Hpp dominate in forming the Re- and
Im-parts of ®”+). Bound states, most likely (v,=0bwvg0), contribute to the Re-part and
scattering states of energy E to the Im-part. Precisely, the relation of this part to the
scattering states is the following, see Eq. (D17):

Im &\ (E: R, 0) = \/gz V(B G R, 0) ) = —\/g\IItOt(E; R,0).
J

The W't appearing here is a counterpart of the total dissociation wavefunction which was used
for visualization of photodissociation dynamics, Ref. 10. [The ;s replace, of course, the partial
photodissociation amplitudes].



Fig. D9. Radial components of the functions \IJEQL)(E,j; R,0)

in the diabatic and adiabatic bending representations
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The adiabatic representation is defined separately for the ()- and P- subspace. The functions
transformed to these representations, plotted or exploited in Figs. D9 — D11, are:

Fy"(E, j; R)
f a(+)(E R)
FQV;‘?P(EO; R)

F2(Ey; R)

where TP(R)::{TJJ,DJ.(,I(R)} and TO(R):

={T}

> T (R Fy (B, j; R) (DY)
j'eprP
> T (R) £ (B R), (D10)
j'epP
Y FOVET(EG R) T, (R), (D11)
j'epP
ST e (R) FA(Ey R), (D12)
vjeQ

viwaj. (12} are the orthogonal transformations which

diagonalize the coupling matrices of the Hamiltonian Hpp and Hgg in the diabatic represen-

tation,

2

d
H* (R)=I"— + W* |

dR?



i.e. the matrices W?*:= {Wv‘g vg, vj, vj€s} for s=P and s=Q), respectively, whose elements are

B j(+1)

Wi = ujaglev + o R

vj,0]

]+ (wilVi(R, )3 955 (D13)

with

L_
i~

V2D (L
(=1) 2 (0 0 0) '

The resulting adiabatic potentials are denoted as e;_, (R), see Fig. D14.
Obviously, the symbol F QV]?P(EO; R) denotes

FOVIT(Eg;R) = > F(Eg;R)Y (vjlVi(R.7)[05) gf . (D11)

vjEQ L
where Fv%(EO; R) is the radial component of the function Vg (Ey; R, 0).

The matrices of the radial functions
FQ (Ey; R)y:={F2(Eo; R)}, £'(E;R)={f;"(E;R)}, and
NQ><1 NPX

Fr)(E; R)::{F]f(+)(E, J; R)} are obtained as solutions of the following boundary value prob-
NpxNPen
lems:

[ETY—H9C(R)|FYR) =0, (D14)
FO(Ry) = F¥(Rw)=0,

[ET°—HP(R) P (R) = HP?(R) FYR), (D15)
PR =0, fFO(RL) = -0 (R,

[ET”—H"P(R)FF(R) =0, (D16)
F'(Ro) =0,  F'(Ry) = 07 (Rx) — O"(Rx) S,

where I* denote the unit matrices of dimension N* for s=P, Q and the symbols O%(R) and S
have the meaning described in Eq. (16) of the paper. [For J=0,

[Oi(R)] i j \/ﬁ, [ 7 exp (+1k; R) with k; being the wave-number in the i-th open channel.]

It can be shown that the vector t in the boundary condition for the function f**)(R) is
t = —/21yT  with  y=V2r (FCHOP|FPH) (D15)
and that the following relation takes place
Imf(R) = —\ /ZFH(R) 4. (D17)

The functions f*)(R) and FFH)(R) are simply related to the functions which are directly
generated in the generalized log-derivative method!'. Namely, generated are the solutions
W(R) and ¥~ (R) of Eq. (D15) and (D16), respectively, which satisfy the following boundary
conditions: WY(Ry)=¥"(R,,)=0 and ¥~ (Ry)=0I" and ¥~ (R.)=I". The relations are:

fPFH(R) = ¥OR) — ¥ (R) O (R t, (D18)
FY(R) = ¥ (R) [0 (Rx)—O"(Rs) S]. (D19)



Fig. D10. Radial components of the functions (ID;L)(E; R, 0)

in the diabatic and adiabatic bending representations
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The numbers listed in the square brackets of the plots in the two lowest rows are
plj:de|FvQ=1j(R)|2><100% and plja:de|F£=1ja(R)|2><100%. The contributions
pu>1; and p,,>1j, to the probability integrals (Ugo|¥g)=1 are very small.



COMMENTS

The comparison of the respective blue and red functions in Figs. D9-D10 shows that the
bending motion in the complex tends to adjust adiabatically to the changing atom-diatom
distance. A consequence of this tendency in the P-subspace is the fact that the component

Fji(Jr)(E ,7; R) of the scattering function with j/=j dominates not only at large R’s but also in
the interaction region or, at least, remains comparable there to the neighboring components
Jr=7j£2. An analogous effect in the @)-subspace is the dominance of the component F]?(R)
with j,=b (its contribution p;,—, always much larger than the contribution p;—, of the diabatic

component FJQ:b)

An important conclusion can be drawn from the upper rows of Fig. D10: for each pre-
dissociating state, the dominant component Im fPH)(R) of the perturbed function indicates
the most populated channel of decay of the state For states with 6<3, it is the component
with j/=b+2. Moreover, it appears that the dominant component is not fully determined
by properties of the perturbing functions FQV]?P(R): the largest among these functions is
always the one with j/=b, as seen in the third rows of the figure. Thus, the observed relations

between the components Im fj],D(H(R), and the decay channel populations by the same, are all
in some degree affected by transitions between the adiabatic bending states in the P-subspace.

Obviously, the impact of these non-adiabatic rotational transitions in the P-subspace
becomes most substantial when the configuration regions of the largest torque are accessed, see
Fig. D3. These regions are certainly accessed when the functions |V (R, 6)| take large values
at @’s <45° (>135°) and R’s near 2A, like in the (14000) and (15000) cases. In these cases,
the rotational transitions in the P-subspace cause the shift of the maximally populated de-
cay channels to the highest open ones. An illustration of this fact is given in Figs. D11 and D12.

For reason given in the comment to Figs. D4-D8 the shapes of the radial components

of the real parts of the perturbed functions, Re fﬁéﬂ(R), are quite different from the Im

fJZH)(R) parts. Though undoubtedly affected by interactions in the P-subspace, they remain

similar to the shapes of the perturbing functions F' QVj?P(R), plotted in the third rows of the
figure. The shapes of the latter functions are in turn similar to the shapes of their constituents
ij(R) with j,=7.=0, plotted in the fifth rows. A difference should be noted, however, in cases
with excited bending vibrations (b—k>0): an additional oscillation occurs in the functions
FQVj?fb(R) at small R side. It comes from the V@F coupling, from the change of sign along
the red line shown in the right upper panel of Fig. D3. [The feature is even better seen in the
2D plots of ¥ Hgp in Fig. D4a, the (15000) case].

The extra oscillation in the perturbing functions produced by the V@F coupling can certainly
have a role in determining the widths I' of states with excited bending mode. Namely, it can
act towards lessening of these widths as compared to the widths of states tightly localized
around #=m/2. This explains in part the vg-dependence of the total VP widths described in
the paper.



Fig. D11. Level shifts, partial and total widths
as functions of R- coordinate
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The numbers in the square brackets in the legends of the plots of I';, here
and in Fig. D12, are the populations I';/T'x100% of the decay channels
D(v=0, j)+Li" of the (v,=1bk=0vg J=0) states shown.



Fig. D12. Level shifts, partial and total widths
as functions of 0- coordinate
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It is to note in Figs. D11 and D12 that the most populated channel j (the largest I';)
for a given predissociating state is indicated by the magnitude (of oscillations) of the
corresponding function I';(R) and/or I'j(#). The decay amplitude functions v;(R) and v;(0)
show usually quite different relations, as e.g. in the (10040) and (12010) cases. Therefore,
one cannot relay on inspection of these functions in the analysis of the predissociation dynamics.

The components I'j; ;(R) with j,=j of the largest partial widths I';, shown in Fig. D11 (red
curves), reproduce rather closely the entire functions I';(R). Substantial differences occur,
however, in the (14000) and (15000) cases. The integrated contributions I'sg and I'gg to the
widths I'j_g and I'j_g, respectively, are even negative and other components I';, ;, with j; <j,
bring even more substantial positive contributions. This is another evidence of the increased
role played in these cases by the rotationally non-adiabatic transitions in the P-subspace; see
the comments below Fig. D10.
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Fig. D13. Vibrational predissociation widths of J-levels

in different groups |v,=1vgvg| k
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D13a. Total widths of J-levels in k=0 groups of [1 vy 0] states with v9=0—5 shown as functions of ‘bind-
ing’ energy which is defined here as E([1vg 0] 0 J)—ey=1; with j=0 for v9=0, 2,4 and j=1 for vy=1, 3, 5.

D13b. Populations of Li* + Da(v=0j) channels due to VP of selected J-levels in groups [1 vy 0] k=0 for

U9=0—5.
[v, vg VRI=[1 0 9] k=0 J=0-13 --@-
[123]k=0 0-16 -5
[122] k=2 2_15 -H- —|_|1 T T T T T 1T T T T T T T T 1T T T 17T Iél 1T
01t [120]k=4 4-15 % - g §
[141k=0 111 & - i e 1L
[140]k=1 1-15 -©- 1091k=0 [1 41] k=0’ ]
b e
| £1=0 - @ J=0 & J=1 O
“-'E i o 308 L 2 ¢ 44 4 -5
: Y 6 @ 4 -o- 7 -o-
5 % - | T .—,. H-- . 8 e i J 7 10 -o.
= 12 e || 1 - 14 o
=) & % K3 A4 _1 [ R | |? |_ |? I T T |_ _| T B B |_
i i ‘.. gl 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
G ; o a,g | j j ]
>CD S 0 " T T T 1T 1T 1T 1T 11 L )K_l'
— P9 e : "\ d) /
IL < | . x* / \ J/
=, -' <> ' A L L PR A
= Hkye %% ‘ S . ' [122] k= "] ;
KK ¢ K ‘5‘4 § D J=2 - & -
K - - ¢ 5 mq b K
* 8 0 -
£ 11 ¥ A3 %
5 c) = I B R
001 C 1 <> 1 1 1 1 1 i I""II | I Y N Y I | 1 I"I "I | N T I I | 1 I"I 1 I"‘vl‘ 111
-300 -200 -100 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
1 i j j

E(1kJ)-¢&=1j01 /cm

D13c and D13d — same as in panels D13a and D13b,

[vr-=1vg vg] k With vg>0 and/or k>0.

1l

0.01

0.001

0.1

1l

0.01

0.001

respectively, but for J-levels in groups



COMMENTS

The purpose of Fig. D13a is to display how the VP widths behave upon the increase of centrifu-
gal barriers (J-number) in states with excited bending vibrations. A dramatic change in this
behavior occurs in the two highest excited states shown, vg=4 and vy=>5. At low J’s, the widths
in the violet curves, especially in the vy=4 curve, are much smaller than one would expect from
the values in the vy=2—3 curves at J’s in the same ‘binding’ energy region. The decay of the
complex from its high vs—low J-states is substantially affected by the anisotropic interactions in
the final, continuum-state, subspace; see the comments below Fig. D10. By driving transitions
to the highest accessible j-channel in this subspace the interactions apparently slow down the
decay process. With growing J, the increasing centrifugal barriers [together with the increasing
energy release, E([ |kJ)—eqo, cause a gradual weakening of the effective anisotropy; the decay
becomes thus less and less retarded. Such explanation may be offered for the rapid growth of
the violet curves.

The populations curves shown in the vy=4 and vy=>5 panels of Fig. D13b seem to support
this explanation. The curves pertaining to low J’s (darker) are indeed peaked at the highest
accessible channels j=8 and j=9. For larger J’s, however, the peaks shift down; they occur at
J=6 in all J>7 curves in the vy=4 panel.

The comparison of the curves from Fig. D13a with the corresponding population curves in
Fig. 13b suggest that there is a correlation between the decrease (increase) of the total VP
widths with growing J and the feature of the partial widths to have (not to have) a maximum
at j=vg+k+2.

Figs. D13c—d provide some evidence that the described tendencies among the total and partial
VP widths of different J-levels are not limited to levels in the groups [1 vs 0] k=0 but may show
up also in groups with vg>0 and/or £>0. In Fig. D13c, a qualitative difference in the behavior
of the total widths with growing J is seen between the groups [141]0 and [140] 1 on one side
and the groups [109]0, [123]0, [122]2 and [120]4 on the other side. Like in Fig. D13a, the
discriminating factor is the degree of excitement of bending vibrations: vg>4 versus v,<2. In
Fig. D13d, clear maxima at j=wvy+k+2 are displayed by all curves that represent populations
of j-channels due to decay of the selected states with v4<2 (drawn in blue). In the decay of the
vp=4 states, in turn, this rule is not obeyed: maxima at j=5 occur in the curves for [140]1.J
levels and two weak maxima, at j=4 and j=8, in the curves for [141]0 J levels.
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threshold. The blue dotted curves are the diabatic potentials WvQ: 1j=0.10(R) and the red curves are the
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D14b. Analysis of I'([100]J=0; R)

Upper panel: Total width functions I'(R) of the [100]J=0
state of the two complexes and their largest components
['jr (R), with j,=b+2=2. ji is the quantum number of the
adiabatic bending state in the P-subspace. See Fig. D11,
where the resolution I'(R)= ) T';/ (R) is defined.
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Lower panel: A comparison of the functions I'js —2(R) for

the two complexes,

Ly, (R) = —2F?VE"(R) x Imf}, 7 (R).

Compared are separately the two constituents of the func-
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D14c. Scaling properties of " and T'
of [v,=1-3 vy=0wvg| J=0 states
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ESO)U — 0-th order approximation to energy of a given [v, 0vg| J=0 state, i.e. the energy of correspondin
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state in the @Q-subspace containing three closed v-channels, v=v,., v, +1, v, 42. Eu:urj:o*Egg)vR — binding

energy in the @-subspace. ¢ — scaling factor deduced from inspection of the width functions I'(R) in
Fig. D14b. T'(R,,) — the value of the width function of a given [10vg] J=0 state at position of the first
maximum R,,~1.6-1.7A, as shown in Fig. D14a (in the two right-hand panels).

COMMENTS

The properties illustrated in Fig. D14c are:

(1)

The shifts E*' of the ES%R levels in the two complexes depend only on the binding
energy |E1()2)UR — €y—, j—0|, denoted in the following comments shortly as BY.

The shifts decrease with decreasing v B9 approximately linearly, except for the region of
B?’s smaller than ~100 cm™!.

The E*M's grow approximately linearly with increasing vibrational excitation of the di-
atomic subunit, at least, in the range of low v.

The widths T of the states v, 0vg] J=0 with fixed v, show a Gaussian-like dependence

on vV B9. The dependence is qualitatively indicated by the heights of the maxima in the
widths functions I'( R) near the classical turning points in the respective P-subspaces.

The curve I'(V BQ) for Lit—Hy(v=1), when multiplied by the mass factor ¢ defined in the
figure (¢=0.51449), coincides almost perfectly with the respective curve for Lit—Dy(v=1).

The curves I'(v/B@) that pertain to states of the Lit-Dsy(v) complex are, apart from
the multiplicative factor of v?, practically the same for the three lowest v’s. Larger
differences occur between the curves pertaining to Lit—Hy(v) for v=1,2 and for v=3,
especially between their low-vg parts (the I''s are listed in Table IX).
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D15a. Most of the widths shown in Fig. 8 of the pa-
per as functions of the number vy are re-plotted here
as functions of (minus) square-root of the binding en-
ergy of the states relative to their respective threshold in
the closed-channel (Q) subspace. After the re-plotting,
the k=0—2-curves formed of the widths of the two com-
plexes in the states with vg=0 appear to differ merely by
a multiplicative factor, approximately equal to the ¢ de-
fined in Fig. D14. In the right panel, the k=0, 1-curves
formed of the widths T =23 ([v, =1 vy=1vg]k J=Fk) for
Therefore these
curves cannot be made close to their counterparts for

a=H exhibit substantial distortions.

a=D by the simple mass-scaling.

D15c. The widths due to vibrational predissocia-
tion of the Lit-Dy complex shown in the two panels
of Fig. D15a, for states with vp=0, 1, are compared
here with their counterparts for states with higher

excited bending vibrations, vg=2-5.

For each vy, the dark-blue symbols show the widths
for different v and k=0, the lighter and smaller sym-
bols are used for other k-values from the range listed

in the legend.

The decrease of the widths with growing wvg
shown in Fig. 10c (by the arrows) on the levels
[v,=1vpvr=0] J=0 is demonstrated here to occur
also among J=k levels of a number of states excited
additionally in the R-mode.
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The J levels of v,=1 state shown here, not listed in the legend, are the same as shown in panel a).
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COMMENTS

The set of widths shown in panel a) of Fig. D16 is the same as shown in Fig. 9 of the
paper. It appears that all the widths in the set, excluding the most strongly disturbed ones,
can roughly be described with the formula [plotted with gray line in panels a) and a’)]

FII;?_aa = 1/s" expla—B(E},—¢€2 )] for a=H,D, (D20)

v=uv, j=k

Where Sa: Haa Hrit —aa
HDD Hpi+_pD

in a given [v, 00] k J state (if it would never decay), and o and § are parameters; their values
(for v,=1 here) are —7.374 In(cm™!) and 0.001440 1/cm™!, respectively.

(s"=0.3060), Ep;—e? , is the ‘binding’ energy of the Lit —aa complex

The features of the VP widths displayed in panels a) and a’) occur also in some higher
excited vibrational states of the Lit—Hy(Dy) complexes. More precisely, they are likely to occur
in states with higher excited diatomic and atom-diatom stretching vibrations, as indicated
by the [200], [101], and [102] cases in Fig. 9 of the paper, but rather not in states with
excited atom-diatom bending, as indicated in Fig. D16’ below. An explanation of the latter
fact may be the observation that the rotational levels of the particular k groups of vy>0
states are more susceptible to perturbations when crossing with levels from other groups/states.

In panel b) of Fig. D16, the widths are plotted as functions of the rotational energy
Ey j—FEy j—r. This option is mentioned in the paper, in the comments on Fig. 9. The main
effect is indeed the same as presented in panel a): the widths of k J-levels of both complexes
form nearly parallel lines. The difference concern the factors which are needed to make the
lines nearly overlapping. The factor w used for this goal in panel b) works as good as the
factor s used in panel a). However, tests have shown the w does not (or would have to be
modified in order to) reflect equally well the relations between the k J-level widths of the two
complexes as functions of the energy Fj ;—E}) j— in the excited vibrational states, even in the
three mentioned above: [200], [101], and [102].

In panel ¢) of Fig. D16, the sets of widths of (kJ) levels of the complexes Lit—Hy(D3) in
their states [100] and [200] are re-plotted in a way exposing the near-quadratic dependence
on the number v,. The two nearly-coincident gray lines represent fits of the widths in the two
states to formula (D20). The parameters obtained for mlﬂ,ﬂ’a&([QOO]) are: a=-—7.318

In(cm™!) and $=0.001320 1/cm™!.

In panel d) of Fig. D16, it is demonstrated that the decrease of the widths with growing J
and the increase for a given J > 3 with k growing from 0 to 3 (both effects seen in Fig. 9) can be
explained for each complex by the momentum gap law'2. The energy of relative translational
motion of the fragments in the v=0 channel is obtained by substraction from the total energy
released in the decay of state [1 00]k J) the part which is transferred to rotations of the diatom.
This part is estimated using the calculated j-state populations Pj=I";/I.
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