c. SUPPLEMENTARY MATERIAL — PART C

 Li^+-D_2 COMPLEX

VIBRATIONAL ENERGY LEVELS

				$v{=}0~(\varepsilon{=}0)$				$v{=}1 \ (\varepsilon{=}2994.163^a)$			
			p=	1	p = -1		Ţ) =1	<i>p</i> =	=-1	
b	k	v_R	E^{b}	Γ^c	E- E(p=1) ^b	Γ^c	E	Γ^{de}	E- E(p=1)	Γ^d	
0	0	0	-1783.613	0			-1862.328	8.29(-3)			
Ū.		1	-1450.470	0			-1526.430	2.52(-2)			
		2	-1154.270	0			-1226.257	4.55(-2)			
		3	-894.963	0			-961.733	6.41(-2)			
		4	-673.039	0			-732.160	*6.91(-2)			
		5	-485.932	0			-538.698	8.38(-2)			
		6	-334.665	0			-378.773	8.20(-2)			
		7	-216.860	0			-251.637	7.41(-2)			
		8	-129.899	0			-155.264	5.95(-2)			
		9	-69.732	0			-86.228	4.39(-2)			
		10	-31.534	0			-40.829	2.85(-2)			
		11	-10.109	0			-14.393	*1.55(-2)			
		12	-1.009	0			-2.119	*1.45(-2)			
2	2	0	-1654.734	0	0.000	0	-1738.591	9.31(-3)	0.000	9.31(-3)	
		1	-1320.255	0	0.000	0	-1401.450	2.72(-2)	0.000	2.73(-2)	
		2	-1022.590	0	0.000	0	-1099.928	4.92(-2)	0.000	4.90(-2)	
		3	$\flat - 761.687$	0	0.000	0	-833.994	6.95(-2)	0.000	6.96(-2)	
		4	-537.248	0	0.000	0	-603.333	8.41(-2)	0.000	8.41(-2)	
		5	* - 348.676	0	0.000	0	-407.475	9.08(-2)	0.000	9.08(-2)	
		6	* - 194.570	0	0.000	0	-245.434	8.91(-2)	-0.002	8.91(-2)	
		7	* - 73.824	0	0.001	0	-115.764	8.05(-2)	0.000	8.06(-2)	
		8	17.203	1.02(-4)	0.000	0	-15.878	6.70(-2)	0.000	6.70(-2)	
		9	82.886	5.84(-5)	0.000	0	57.529	5.16(-2)	0.000	5.15(-2)	
		10	127.662	8.46(-6)	0.006	0	108.591	5.68(-2)	0.170	3.98(-2)	
		11	156.318	3.20(-5)	0.001	0	142.464	2.40(-2)	0.000	2.39(-2)	
		12	172.572	2.85(-5)	0.004	0	162.356	1.30(-2)	0.000	1.30(-2)	
		13					171.455	4.11(-3)	0.003	4.10(-3)	
2	1	0	-1292.413	0	0.134	0	-1368.873	1.26(-2)	0.133	1.03(-2)	
		1	-988.448	0	0.130	0	-1062.189	3.27(-2)	0.128	3.13(-2)	
		2	-720.830	0	0.125	0	-790.283	5.95(-2)	0.124	5.85(-2)	
		3	b - 489.941	0	0.130	0	-553.439	8.56(-2)	0.121	8.41(-2)	
		4	-296.265	0	0.107	0	-352.467	1.01(-1)	0.105	1.01(-1)	
		5	* - 139.337	0	0.101	0	-186.586	1.06(-1)	0.098	1.06(-1)	
		6	* - 17.989	0	0.121	0	-55.657	9.80(-2)	0.087	9.79(-2)	
		7	68.296	1.92(-3)	0.079	0	41.246	8.22(-2)	0.078	8.00(-2)	
		8	125.068	1.38(-3)	0.069	0	106.412	6.05(-2)	0.151	5.68(-2)	
		9	158.099	1.49(-3)	0.042	0	146.724	1.41(-2)	0.212	3.19(-2)	
-	-	10	174.252	1.45(-4)	0.228	0	166.434	1.38(-2)	0.101	1.38(-2)	
2	0	0	-936.866	0			-1003.764	5.86(-3)			
		1	-671.059	0			-735.811	3.15(-2)			
		2	-441.179	0			* - 499.746	4.14(-2)			
		3	-246.547	0			* - 297.861	5.74(-2)			
		4	-87.136	0			* - 129.744	5.81(-2)			
		5	28.906	3.54(-2)			* - 2.933	5.58(-2)			
		6	111.012	1.46(-2)			* 90.133	1.08(-1)			
		7	155.055	1.19(-2)			* 144.950	0.23(-2)			
~		ð	178 000	4.29 (-3)			* 108.203	1.90 (-2)			
E 1	4	0	1070.040	0	0.000	0	172.495	1.01 (.0)	0.000	1.01 (.0)	
4	4	1	-12/9.949	0	0.000	0	-1378.000	1.21(-2)	0.000	1.21(-2)	
		1	-942.932	0	0.000	0	-1038.999	3.41(-2)	0.000	5.41(-2)	
		2	-042.700	U	0.000	U	-735.006	0.23(-2)	0.000	0.23(-2)	

TABLE CI: Li⁺–D₂(I=0,2). Positions (E) and widths (Γ) of 'vibrational' levels $v_r b k v_R$ J=k p associated with the v=0-1 j=0-6 thresholds ($v_r \sim v, b \sim j$). The positions are relative to the respective v j=0 threshold. Positions of j>0 thresholds^a are shown in lines marked with ε . All data are in cm⁻¹.

TABLE CI:

_										
		3	$\flat - 379.134$	0	0.000	0	-466.528	8.64(-2)	0.000	8.64(-2)
		4	-151.822	0	0.000	0	-232.827	9.63(-2)	-0.006	9.66(-2)
		5	39.362	2.43(-6)	0.001	0	-34.902	1.11(-1)	0.005	1.09(-1)
		6	196.466	4.85(-5)	0.000	3.95(-4)	129.969	1.14(-1)	0.001	1.10(-1)
		7	320.940	7.83(-5)	0.000	7.84(-4)	262.824	1.00(-1)	0.000	1.00(-1)
4	3	0	-994.024	0	0.000	0	-1084.579	1.40(-2)	0.000	1.40(-2)
		1	-681.444	0	0.000	0	-769.597	4.30(-2)	0.000	4.30(-2)
		2	-405.421	0	0.000	0	-489.689	7.90(-2)	0.000	7.90(-2)
		3	$\flat - 166.162$	0	0.000	0	-245.127	1.12(-1)	0.000	1.12(-1)
		4	36.409	2.82(-5)	0.002	0	-35.812	1.34(-1)	0.000	1.34(-1)
		5	200.816	4.05(-2)	0.023	3.07(-2)	137.275	1.35(-1)	0.017	1.38(-1)
		6	333.396	8.94(-3)	0.013	8.24(-3)	277.847	1.60(-1)	-0.351	2.13(-1)
4	2	0	b - 734.601	0	0.001	0	-814.951	1.06(-2)	0.012	1.05(-2)
		1	-447.196	0	0.005	0	-525.708	3.25(-2)	-0.002	3.24(-2)
		2	* - 196.206	0	0.001	0	-270.718	6.07(-2)	0.000	6.05(-2)
		3	18.756	5.74(-8)	0.005	0	-50.546	8.68(-2)	0.011	8.70(-2)
		4	196.161	2.82(-2)	0.007	2.49(-2)	134.122	1.05(-1)	0.017	1.15(-1)
		5	336.981	2.24(-2)	0.014	1.83(-2)	271.912	3.14(-1)	0.686	3.04(-1)
4	1	0	b - 508.614	0	0.471	0	-577.431	5.07(-3)	0.406	5.30(-3)
		1	-247.042	0	0.620	0	-314.631	2.31(-2)	0.270	1.69(-1)
		2	* - 21.618	0	0.329	0	-85.701	3.86(-2)	0.302	3.85(-2)
		3	167.729	1.93(-6)	0.414	0	109.703	5.63(-2)	0.294	5.40(-2)
		4	320.418	9.16(-2)	0.247	7.81(-2)	269.031	2.99(-1)	-0.238	3.05(-1)
4	0	0	-334.240	0		()	* - 386.287	1.85(-3)		()
		1	-96.790	0			* - 150.236	1.52(-2)		
		2	104.776	9.67(-3)			* 52.894	1.88(-2)		
		3	259.696	9.47(-2)			* 201.400	1.57(-1)		
ε			593.472	()			571.875			
6	6	0	*-671.736	0	0.000	0	-794.012	1.84(-2)	0.000	1.84(-2)
		1	* - 332.303	0	-0.001	0	-452.008	5.07(-2)	0.000	5.07(-2)
		2	* - 29.595	0	0.000	0	-145.598	8.78(-2)	0.000	8.78(-2)
		3	236.539	3.85(-6)	-0.001	2.33(-6)	125.342	1.20(-1)	0.000	1.20(-1)
6	5	0	-432.701	0	-0.001	0	-547.406	2.34(-2)	0.000	2.34(-2)
		1	-113.193	0	0.000	0	-225.520	7.12(-2)	0.000	7.13(-2)
		2	169.541	1.3(-11)	-0.003	0	61.031	1.34(-1)	0.000	1.35(-1)
6	4	0	b - 219.364	0	0.002	0	-325.148	1.91(-2)	0.000	1.91(-2)
		1	81.211	2.05(-8)	0.000	0	-22.453	6.02(-2)	0.000	6.01(-2)
		2	344.908	6.52(-4)	0.002	2.78(-4)	244.750	1.01(-1)	0.000	1.01(-1)
6	3	0	b - 34.667	0	0.004	0	-132.060	1.13(-2)	0.000	1.13(-2)
Č.	, in the second s	1	248.693	1.73(-5)	-0.008	1.36(-5)	153.044	9.52(-2)	-0.042	4.83(-2)
6	2	0	116.507	2.46(-3)	-0.297	0	28.131	5.22(-3)	0.052	4.84(-3)
~	-	1	385.374	7.26(-4)	0.059	2.43(-4)	298.670	2.45(-2)	0.024	2.42(-2)
6	1	0	223.914	1.41(-2)	3.764	2.34(-3)	146.724	1.41(-2)	2.750	5.93(-2)
6	0	Õ	295.806	6.91(-1)	0.101		*236.930	1.42(+0)		
ε	5	Ŭ	1236.032	0.01(1)			1190.874	1.12(10)		
0			1200.002				1100.014			

^{*a*}The thresholds obtained from the PES of the LiHH⁺ system are used. The threshold $\varepsilon_{0,0}$ lies 3707.4 cm⁻¹ above the minimum of the PES. In comparison with the accurate data for D₂¹, the values of $\varepsilon_{v,j} - \varepsilon_{0,0}$ are too small by 0.075, 0.243, 0.490, -0.545, -0.297, 0.292, and 1.244 cm⁻¹ for (v, j) = (0, 2), (0, 4), (0, 6), (1, 0), (1, 2), (1, 4), and (1, 6), respectively. See Fig. B1 in Ref. 2 for a more detailed (and adequate) assessment of accuracy of the PES in the Li⁺+HH fragmentation region.

^bSee the respective footnote in Table CII.

 $^c\mathrm{All}$ widths $\Gamma{>}0$ in the column are due to rotational predissociation.

^dThe widths in the column that pertain to states of negative energies (relative to ε_{10}) and to *f*-parity states in the [ε_{10} , ε_{12}] range are due to pure vibrational predissociation.

 $^{e}J=0$ resonances from the same PES were determined in Ref. 3. However, not all of them were assigned and for some resonances substantially larger widths were obtained (see the comments to Tables BI–BII in Part B). The cases with new information in the present table are marked with an asterisk.

				v=0 (s	ε=0)			$v = 1 \ (\varepsilon = 2994.163) \\ 0.545^a$				
			p=	1	p=	=-1	1	p=1	<i>p</i> =	=-1		
b	k	v_R	E^{b}	Γ^c	E- $E(p=1)^{b}$	Γ^c	E	Γ^d	E- E(p=1)	Γ^d		
1	1	0	-1750.564	0	0.101	0	-1830.585	8.79(-3)	0.103	8.40(-3)		
		1	-1417.064	0	0.095	0	-1494.364	2.55(-2)	0.097	2.55(-2)		
		2	-1120.435	0	0.087	0	-1193.808	4.61(-2)	0.089	4.61(-2)		
		3	b - 860.603	0	0.079	0	-928.821	6.50(-2)	0.081	6.50(-2)		
		4	$\flat - 637.420$	0	0.070	0	-699.353	7.93(-2)	0.074	8.01(-2)		
		5	* - 450.175	0	0.060	0	-504.630	8.54(-2)	0.063	8.54(-2)		
		6	* - 297.870	0	0.050	0	-343.923	8.38(-2)	0.053	8.38(-2)		
		7	* - 178.706	0	0.041	0	-216.648	6.31(-2)	0.236	7.25(-2)		
		8	* - 89.621	0	0.037	0	-117.733	6.21(-2)	0.042	6.20(-2)		
		9	* - 26.538	0	0.026	0	-46.568	4.74(-2)	0.033	4.73(-2)		
		10	15.750	0	0.015	0	2.343	3.24(-2)	0.021	3.24(-2)		
		11	41.739	0	0.017	0	33.313	2.01(-2)	0.017	2.01(-2)		
		12	55.598	0	0.019	0	50.606	1.00(-2)	0.015	1.00(-2)		
1	0	0	-1332.321	0			-1406.703	9.00(-3)				
		1	-1031.054	0			-1102.366	3.56(-2)				
		2	-766.750	0			-833.388	5.55(-2)				
		3	-539.672	0			-599.925	7.95(-2)				
		4	-349.971	0			-402.052	9.25(-2)				
		5	-198.973	0			-241.582	9.57(-2)				
		6	-84.699	0			-115.754	8.73(-2)				
		7	-7.309	0			-25.535	6.48(-2)				
		8	37.696	*0			29.418	3.87(-2)				
		9	56.406	*0			54.060	*1.19(-2)				
ε			59.755				57.583					
			-0.025^{a}				-0.087^{a}					
3	3	0	-1497.384	0	0.000	0	-1587.494	1.01(-2)	0.000	1.01(-2)		
		1	-1161.650	0	0.000	0	-1249.109	3.01(-2)	0.000	3.01(-2)		
		2	-862.859	0	0.004	0	-946.467	5.42(-2)	0.000	5.42(-2)		
		3	$\flat-600.547$	0	-0.001	0	-679.270	7.63(-2)	0.000	7.63(-2)		
		4	$\flat - 374.734$	0	0.000	0	-447.359	9.19(-2)	0.000	9.19(-2)		
		5	* - 184.686	0	0.000	0	-250.169	9.90(-2)	0.000	9.90(-2)		
		6	* - 29.243	0	0.000	0	-86.743	9.75(-2)	0.000	9.74(-2)		
		7	93.544	1.03(-4)	0.000	1.03(-4)	44.565	8.80(-2)	0.000	8.80(-2)		
		8	186.639	7.81(-5)	0.000	7.80(-5)	146.145	7.38(-2)	0.000	7.38(-2)		
		9	254.131	5.14(-5)	0.000	5.23(-5)	221.445	5.72(-2)	0.000	5.72(-2)		
		10	300.827	2.81(-5)	0.000	2.86(-5)	274.638	4.13(-2)	0.000	4.13(-2)		
		11	331.291	8.27(-6)	0.000	8.33(-6)	310.147	2.73(-2)	0.000	2.73(-2)		
		12	349.133	4.57(-6)	0.000	2.84(-6)	331.813	1.59(-2)	0.000	1.59(-2)		
3	2	0	-1178.105	0	0.000	0	-1260.178	1.14(-2)	0.000	1.14(-2)		
		1	-869.749	0	0.005	0	-949.481	3.46(-2)	0.019	3.49(-2)		
		2	-598.260	0	-0.185	0	-673.486	6.54(-2)	0.010	6.52(-2)		
		3	b - 362.739	0	-0.016	0	-432.759	9.45(-2)	0.003	1.03(-1)		
		4	$\flat - 164.356$	0	0.010	0	-227.391	1.13(-1)	0.004	1.14(-1)		
		5	* - 2.458	0	0.003	0	-57.204	1.20(-1)	0.002	1.20(-1)		
		6	124.002	4.21(-3)	0.002	4.09(-3)	78.445	1.17(-1)	0.001	1.17(-1)		
		7	217.280	3.15(-3)	0.001	3.05(-3)	181.249	9.78(-2)	0.001	9.84(-2)		
		8	281.324	2.18(-3)	0.002	2.11(-3)	253.978	7.25(-2)	0.001	7.24(-2)		
		9	321.879	1.42(-3)	0.002	1.38(-3)	301.201	4.72(-2)	-0.001	4.73(-2)		
		10	355.856	1.14(-3)	0.061	1.00(-3)	328.548	2.96(-2)	0.003	2.94(-2)		

TABLE CII: Li⁺–D₂(*I*=1). Positions (*E*) and widths (Γ) of 'vibrational' levels $v_r b k v_R$ J=k *p* associated with the v=0-1 *j*=1–7 thresholds ($v_r \sim v, b \sim j$). The positions are relative to the respective v j=0 threshold. Positions of *j*>0 thresholds are shown in lines marked with ε . All data are in cm⁻¹.

TABLE CII: continued

3	1	0	$\flat - 880.887$	0	0.212	0	-952.385	7.06(-3)	0.199	7.08(-3)
		1	$\flat - 603.130$	0	-0.066	0	-672.917	2.73(-2)	0.279	2.55(-2)
		2	* - 361.065	0	0.060	0	-425.505	2.76(-2)	-0.844	4.33(-2)
		3	* - 155.168	0	0.095	0	-213.391	6.39(-2)	-0.094	6.70(-2)
		4	13.885	0	-0.155	0	-36.763	6.45(-2)	-0.762	7.93(-2)
		5	146.300	6.80(-2)	-0.599	3.49(-2)	102.587	3.14(-1)	0.935	1.61(-1)
		6	240.411	1.10(-1)	0.955	2.56(-2)	208.590	1.91(-1)	0.607	1.33(-1)
		7	302.944	5.29(-2)	0.715	1.59(-2)	280.475	1.19(-1)	0.474	9.03(-2)
		8	337.895	2.61(-2)	0.611	8.25(-3)	321.978	6.44(-2)	0.449	4.87(-2)
		9	353.712	1.19(-2)	0.518	3.04(-3)	340.432	2.57(-2)	0.420	1.73(-2)
3	0	0	-608.959	0			-666.235	5.04(-3)		
		1	-372.362	0			-429.227	1.25(-2)		
		2	-166.729	0			-218.723	2.45(-2)		
		3	6.417	*0			-40.982	3.32(-2)		
		4	141.103	3.74(-1)			103.630	6.40(-1)		
		5	242.103	2.88(-1)			212.793	5.26(-1)		
		6	305.985	1.79(-1)			286.124	3.42(-1)		
		7	340.659	8.60(-2)			326.743	1.64(-1)		
ε			357.166				344.183			
			-0.148^{a}				-0.503^{a}			
5	5	0	-1004.127	0	0.000	0	-1113.536	1.47(-2)	0.000	1.47(-2)
		1	-665.867	0	0.000	0	-772.700	3.91(-2)	0.000	3.91(-2)
		2	-364.375	0	0.000	0	-467.478	7.06(-2)	0.000	7.06(-2)
		3	-99.510	0	0.000	0	-197.753	1.06(-1)	-0.008	1.01(-1)
		4	129.080	5.52(-8)	0.000	2.88(-8)	36.774	1.20(-1)	0.000	1.20(-1)
		5	322.123	1.73(-7)	0.000	2.10(-7)	236.779	1.29(-1)	0.000	1.29(-1)
5	4	0	-744.331	0	0.000	0	-845.846	1.94(-2)	0.000	1.94(-2)
		1	-428.027	0	0.000	0	-527.146	5.62(-2)	0.000	5.25(-2)
		2	-148.399	0	0.008	0	-243.822	9.64(-2)	0.000	9.64(-2)
		3	94.371	3.63(-6)	0.000	3.57(-6)	4.241	1.35(-1)	-0.001	1.36(-1)
		4	300.522	6.69(-7)	0.000	7.50(-9)	216.834	1.62(-1)	0.001	1.62(-1)
5	3	0	$\flat - 511.426$	0	0.000	0	-603.391	1.27(-2)	0.000	1.25(-2)
		1	b - 216.598	0	0.000	0	-306.644	4.00(-2)	0.000	4.00(-2)
		2	41.616	0	0.000	0	-44.737	7.53(-2)	0.001	7.53(-2)
		3	262.827	1.53(-5)	0.000	7.55(-5)	181.678	1.07(-1)	0.000	1.07(-1)
5	2	0	$\flat - 310.174$	0	0.006	0	-392.467	1.60(-2)	-0.002	6.20(-3)
		1	\flat - 35.502	0	0.008	0	-116.487	2.49(-2)	0.005	2.48(-2)
		2	202.211	6.59(-6)	0.007	7.45(-8)	124.671	4.73(-2)	-0.005	4.70(-2)
5	1	0	* - 150.432	0	0.767	0	-222.284	9.73(-3)	1.917	7.52(-3)
		1	107.568	8.62(-4)	1.109	7.31(-4)	37.715	1.08(-2)	0.823	1.21(-2)
		2	327.476	1.91(-4)	0.846	1.28(-3)	260.027	2.08(-2)	0.733	2.31(-2)
5	0	0	-48.984	0			-106.961	4.29(-3)		
		1	205.236	1.78(-4)			146.450	2.60(-2)		
7	7	0	* - 284.701	0	0.000	0	-421.892	4.71(-4)	0.001	6.10(-5)
		1	* 55.838	0	0.000	0	-78.789	6.25(-2)	0.003	6.25(-2)
		2	359.718	8.11(-7)	0.000	9.87(-7)	228.767	1.07(-1)	0.005	1.07(-1)
7	6	0	* - 62.389	0	0.000	0	-192.352	3.34(-2)	-0.002	3.34(-2)
		1	259.863	3.41(-8)	0.000	< 1 (-10)	132.353	9.20(-2)	-0.002	9.20(-2)
7	5	0	135.959	8.43(-9)	0.000	6.80(-9)	14.194	3.69(-2)	-0.003	3.69(-2)
		1	441.089	1.12(-5)	0.000	1.10(-5)	321.641	8.72(-2)	-0.002	8.72(-2)
7	4	0	308.693	2.84(-5)	0.000	3.03(-9)	194.692	1.98(-2)	0.000	1.99(-2)
								. ,		. ,

^{*a*}Deviation of the threshold position from the accurate value for D_2^{1} .

^bMost of the bound state energies listed here and in Table CI ($\Gamma=0$ cases) were determined from the same PES in Ref. 3. However, the results presented in Tables 4 and 5 of that paper for cases marked here with the symbol \flat disagree severly with the present results. Asterisks mark energies not determined in Ref. 3 or, when standing before the 0 width, bound states determined as resonances.

 $^c\mathrm{All}\ \Gamma{>}0$ widths in the column are due to rotational predissociation.

^{*d*}Widths of levels below v=1 j=1 are due to vibrational predissociation.

ROTATIONAL ENERGY LEVELS

TABLE CIII: Li⁺–D₂. Positions (*E*) and widths (Γ) of rotational levels (*J*) in thirty seven groups $(b k v_R)^a$ below v=0 j=0 and v=1 j=0 thresholds. E=0 is at the lowest threshold. All data are in cm⁻¹. $(v_r \sim v, e \sim p=1, \text{ and } f \sim p=-1)^b$.

				v_r	=0		v	r=1	
b	k	v_R	J	E(e)	E(f) - E(e)	E(e)	$\Gamma(e)$	E(f) - E(e)	$\Gamma(f)$
0	0	0	0	-1783.613		1131.835	8.29(-3)		
			1	-1780.534		1134.896	1.09(-2)		
			2	-1774.381		1141.026	9.00(-3)		
			3	-1765.158		1150.212	8.68(-3)		
			4	-1752.875		1162.446	8.92(-3)		
			5	-1737.544		1177.715	8.24(-3)		
			6	-1719.179		1196.007	8.23(-3)		
			7	-1697.800		1217.302	8.07(-3)		
			8	-1673.427		1241.580	7.22(-3)		
			9	-1646.085		1268.816	7.54(-3)		
			10	-1615.800		1298.986	7.43(-3)		
			11	-1582.603		1332.059	7.49(-3)		
			12	-1546.527		1368.001	6.36(-3)		
			13	-1507.609		1406.778	6.10(-3)		
			14	-1465.888		1448.351	5.84(-3)		
			15	-1421.406		1492.680	5.49(-3)		
			16	-1374.210		1539.718	5.18(-3)		
			17	-1324.348		1589.420	4.90(-3)		
			18	-1271.873		1641.733	4.88(-3)		
			19	-1216.840		1696.605	4.04(-3)		
			20	-1159.307		1753.977	3.75(-3)		
			21	-1099.339		1813.791	3.52(-3)		
			22	-1037.001		1875.981	3.48(-3)		
			23	-972.363		1940.483	3.64(-3)		
			24	-905.500		2007.219	2.66(-3)		
			25	-836.491		2076.120	2.85(-3)		
			26	-765.420		2147.105	2.06(-3)		
			27	-692.376		2220.087	1.83(-3)		
			28	-617.454		2294.979	1.62(-3)		
			29	-540.755		2371.684	1.42(-3)		
			30	-462.389		2450.101	1.22(-3)		
			31	-382.473		2530.121	1.04(-3)		
			32	-301.135		2611.625	9.00(-4)		
			33	-218.514		2694.487	7.84(-4)		
			34	-134.765		2778.568	5.80(-4)		
			35	-50.058		2863.712	4.79 (-4)		
1	1	0	1	-1750.564	0.101	1163.578	8.79(-3)	0.103	8.40(-3)
			2	-1744.520	0.302	1169.596	9.27(-3)	0.308	8.34(-3)
			3	-1735.461	0.604	1178.616	9.00(-3)	0.615	8.26(-3)
			4	-1723.394	1.004	1190.631	8.65(-3)	1.022	8.16(-3)
			5	-1708.331	1.502	1205.630	8.38(-3)	1.529	8.03 (-3)
			6	-1690.285	2.096	1223.601	8.17(-3)	2.133	7.87(-3)
			7	-1669.271	2.784	1244.527	8.01 (-3)	2.833	7.71 (-3)
			8	-1645.310	3.563	1268.390	8.05(-3)	3.627	7.53 (-3)
			9	-1618.421	4.431	1295.171	9.17(-3)	4.510	7.64 (-3)
			10	-1588.629	5.385	1324.844	7.26(-3)	5.481	7.20(-3)
									. /

TABLE CIII: continued

			11	-1555.963	6.421	1357.382	6.77(-3)	6.537	7.94(-3)
			12	-1520.450	7.536	1392.758	6.49(-3)	7.675	6.23(-3)
			13	-1482.125	8.726	1430.940	6.66(-3)	8.888	6.11(-3)
			14	-1441.023	9.986	1471.893	5.88(-3)	10.174	8.44(-3)
			15	-1397.183	11.311	1515.577	5.78(-3)	11.526	6.59(-3)
			16	-1350.646	12.698	1561.957	5.03(-3)	12.941	5.00(-3)
			17	-1301.459	14.139	1610.982	4.72(-3)	14.415	4.69(-3)
			18	-1249.668	15.630	1662.612	5.18(-3)	15.939	4.48(-3)
			19	-1195.326	17.164	1716.794	5.48(-3)	17.507	4.91(-3)
			20	-1138.489	18.734	1773.473	3.91(-3)	19.118	3.99(-3)
			21	-1079.213	20.335	1832.596	3.73(-3)	20.759	3.69(-3)
			22	-1017.564	21.959	1894.101	4.12(-3)	22.426	3.38(-3)
			23	-953.607	23.597	1957.926	2.95(-3)	24.110	3.00(-3)
			24	-887.413	25.242	2024.000	2.68(-3)	25.804	2.72(-3)
			25	-819.058	26.886	2092.252	2.45(-3)	27.499	2.42(-3)
			36	47.447^{c}		2960.470	4.18 (-4)	43.211	4.35(-4)
2	2	0	2	-1654.734	0.000	1255.572	9.31(-3)	0.000	9.31(-3)
			3	-1645.564	-0.001	1264.709	9.18(-3)	-0.001	9.18 (-3)
			4	-1633.349	-0.003	1276.880	9.02(-3)	-0.003	9.01 (-3)
			5	-1618.100	-0.006	1292.075	8.83(-3)	-0.007	8.83(-3)
			6	-1599.829	-0.012	1310.282	8.62(-3)	-0.014	8.62(-3)
			7	-1578.553	-0.022	1331.484	8.39(-3)	-0.025	8.39(-3)
			8	-1554.291	-0.036	1355.665	8.18(-3)	-0.042	8.14(-3)
			9	-1527.062	-0.057	1382.803	7.99(-3)	-0.064	7.87(-3)
			10	-1496.892	-0.084	1412.877	7.61(-3)	-0.095	7.58(-3)
			11	-1463.807	-0.119	1445.858	7.32(-3)	-0.136	7.29(-3)
			12	-1427.837	-0.164	1481.719	7.04(-3)	-0.187	6.99(-3)
			13	-1389.016	-0.220	1520.428	7.52(-3)	-0.251	6.80(-3)
			14	-1347.379	-0.288	1561.951	6.31(-3)	-0.328	1.05(-2)
			15	-1302.966	-0.369	1606.247	5.85(-3)	-0.422	5.81(-3)
			16	-1255.820	-0.463	1653.276	5.51(-3)	-0.531	5.48(-3)
			17	-1205.987	-0.573	1702.995	5.20(-3)	-0.657	5.16(-3)
			18	-1153.517	-0.696	1755.353	5.17(-3)	-0.800	4.99(-3)
			19	-1098.464	-0.835	1810.301	4.32(-3)	-0.962	4.68(-3)
			20	-1040.885	-0.989	1867.781	4.05(-3)	-1.140	4.00(-3)
			21	-980.844	-1.157	1927.734	3.67(-3)	-1.337	3.70(-3)
			22	-918.407	-1.337	1990.096	3.33(-3)	-1.549	3.26(-3)
			23	-853.645	-1.529	2054.798	3.04(-3)	-1.776	3.03(-3)
			24	-786.634	-1.730	2121.767	2.87(-3)	-2.017	3.09(-3)
			25	-717.458	-1.937	2190.925	2.68(-3)	-2.267	2.47(-3)
3	3	0	3	-1497.384	0.000	1406.669	1.01(-2)	0.000	1.01(-2)
			4	-1485.257	0.000	1418.757	9.90(-3)	0.000	9.90(-3)
			5	-1470.118	0.000	1433.860	1.01(-2)	0.001	1.00(-2)
			6	-1451.983	0.000	1451.930	9.72(-3)	0.000	9.57(-3)
			7	-1430.866	0.000	1472.982	9.87(-3)	0.000	9.30(-3)
			8	-1406.788	0.000	1496.988	9.09(-3)	0.000	8.86(-3)
			9	-1379.770	0.001	1523.925	8.12(-3)	-0.001	8.09(-3)
			10	-1349.839	0.001	1553.772	8.14 (-3)	0.001	7.81(-3)
			11	-1317.021	0.002	1586.497	8.78(-3)	0.003	7.95(-3)
			12	-1281.348	0.004	1622.084	9.85(-3)	-0.007	7.21(-3)
			13	-1242.855	0.006	1660.468	8.53(-3)	0.004	7.55(-3)
			14	-1201.578	0.009	1701.642	7.19(-3)	0.007	7.21(-3)
			15	-1157 559	0.015	1745 557	6.78(-3)	0.012	6.70(-2)

TABLE CIII: continued

_

2

			16	-1110.842	0.022	1792.171	6.36(-3)	0.018	6.36(-3)
			17	-1061.474	0.032	1841.438	6.08(-3)	0.026	5.96(-3)
			18	-1009.507	0.046	1893.308	5.98(-3)	0.035	5.62(-3)
			19	-954.997	0.066	1947.727	5.11(-3)	0.053	6.00(-3)
			20	-898.005	0.094	2004.639	4.70(-3)	0.072	4.70(-3)
			21	-838.596	0.134	2063.982	4.31(-3)	0.099	4.29(-3)
			22	-776.843	0.191	2125.689	3.99(-3)	0.137	3.94(-3)
			23	-712.826	0.274	2189.687	8.07(-3)	0.191	4.18(-3)
			24	-646.641	0.403	2255.903	3.17(-3)	0.259	3.18(-3)
			25	-578.405	0.610	2324.242	2.81(-3)	0.361	2.78(-3)
4	4	0	4	-1279.949	0.000	1615.557	1.21(-2)	0.000	1.21(-2)
			5	-1264.952	0.000	1630.521	1.18(-2)	0.000	1.18(-2)
			6	-1246.985	0.000	1648.452	1.15(-2)	0.000	1.15(-2)
			7	-1226.063	0.000	1669.331	1.11(-2)	0.000	1.10(-2)
			8	-1202.206	0.000	1693.141	1.06(-2)	0.000	1.04(-2)
			9	-1175.435	0.001	1719.863	1.51(-2)	-0.002	1.31(-2)
			10	-1145.776	0.002	1749.464	1.06(-2)	0.001	1.27(-2)
			11	-1113.258	0.005	1781.923	9.86(-3)	0.000	9.89(-3)
			12	-1077.916	0.014	1817.209	1.01(-2)	0.000	9.94(-3)
			13	-1039.794	0.040	1855.286	9.32(-3)	0.002	8.32(-3)
			14	-999.013	0.165	1896.122	8.81(-3)	0.002	8.92(-3)
			15	-954.915	-0.308	1939.673	7.88(-3)	0.005	7.95(-3)
			16	-908.735	-0.188	1985.896	7.40(-3)	0.011	7.30(-3)
			17	-859.821	-0.176	2034.744	7.76(-3)	0.023	7.31(-3)
			18	-808.304	-0.189	2086.166	6.43(-3)	0.044	6.59(-3)
			19	-754.251	-0.217	2140.097	6.40(-3)	0.083	5.98(-3)
			20	-697.723	-0.257	2196.463	6.21(-3)	0.161	5.76(-3)
			21	-638.782	-0.311	2255.131	5.21(-3)	0.333	3.79(-2)
			22	-577.493	-0.381	2315.797	4.53(-3)	0.897	4.85(-3)
			23	-513.927	-0.472	2381.751	4.05(-3)	-1.565	4.36(-3)
			24	-448.157	-0.592	2446.919	3.82(-3)	-1.028	3.91(-3)
			25	-380.262	-0.751	2514.592	3.56(-3)	-0.860	3.48(-3)
5	5	0	5	-1004.127	0.000	1880.627	1.47(-2)	0.000	1.47(-2)
			6	-986.367	-0.043	1898.352	1.42(-2)	0.000	1.42(-2)
			7	-965.689	0.000	1918.991	1.38(-2)	0.000	1.37(-2)
			8	-942.110	0.000	1942.526	1.32(-2)	0.000	1.33(-2)
			9	-915.653	0.000	1968.936	1.27(-2)	0.000	1.27(-2)
			10	-886.341	0.000	1998.197	1.24(-2)	0.001	1.22(-2)
			11	-854.203	0.000	2030.283	1.16(-2)	-0.001	1.20(-2)
			12	-819.268	0.000	2065.165	1.31(-2)	0.003	1.54(-2)
			13	-781.569	0.000	2102.806	1.10(-2)	0.003	1.64(-2)
			14	-741 144	0.000	2143 174	9.83(-3)	0.004	1.90(-2)
			15	-698.030	0.000	2186.231	1.15(-2)	0.006	1.38(-2)
			16	-652.000	0.000	2231 038	9.33(-3)	0.000	9.77(-3)
			17	-603.013	0.000	2201.000	8.69(-3)	0.001	1.21(-3)
			18	-553.004	0.000	2200.240	7.77(-3)	0.000	1.21(-2) 8.01(-2)
			10	400 507	0.000	2001.100	7.11(-3)	0.001	7.02(-3)
			19 20	-443.748	0.000	2304.470	7.02(-3)	0.000	7.31(-3)
			20		0.000	2-140.202	1.02 (-0)	0.000	1.01 (-3)

TABLE (CIII: co	ntinued
---------	----------	---------

0	0	1	0	$-1450\ 470$		1467 733	252(-2)		
0	0	1	1	-1447 596		1470 601	2.52(-2)		
			2	-1447.550		1476 334	2.51(-2)		
			2	1492 949		1470.004	2.30(-2)		
			3	-1455.245		1404.920	2.47(-2)		
			4	-1421.779		1490.308	2.43(-2)		
			5	-1407.473		1510.047	2.39(-2)		
			6	-1390.341		1527.749	2.32(-2)		
			7	-1370.400		1547.654	2.33(-2)		
			8	-1347.674		1570.341	2.29(-2)		
			9	-1322.188		1595.785	2.10(-2)		
			10	-1293.971		1623.959	2.04(-2)		
			11	-1263.053		1654.832	1.96(-2)		
			12	-1229.471		1688.370	1.88(-2)		
			13	-1193.262		1724.534	1.78(-2)		
			14	-1154.469		1763.286	1.71(-2)		
			15	-1113.137		1804.580	1.61(-2)		
			16	-1069.316		1848.370	1.47(-2)		
			17	-1023.057		1894.605	1.39(-2)		
			18	-974.418		1943.230	1.28(-2)		
			19	-923.459		1994.187	1.18(-2)		
			20	-870.245		2047.415	1.13(-2)		
			21	-814.845		2102.848	1.02(-2)		
			22	-757.333		2160.414	9.08(-3)		
			23	-697.790		2220.039	8.20(-3)		
			24	-636.299		2281.644	7.37(-3)		
			25	-572.953		2345.141	6.52(-3)		
1	1	1	1	-1417.064	0.095	1499.799	2.55(-2)	0.097	2.55(-2)
			2	-1411.422	0.284	1505.429	2.49(-2)	0.289	2.50(-2)
			3	-1402.966	0.566	1513.866	2.46(-2)	0.577	2.47(-2)
			4	-1391.705	0.941	1525.103	2.44(-2)	0.960	2.45(-2)
			5	-1377.649	1.408	1539.129	2.41(-2)	1.435	2.42(-2)
			6	-1360.812	1.963	1555.932	2.37(-2)	2.002	2.33(-2)
			7	-1341.212	2.605	1575.492	2.27(-2)	2.658	2.29(-2)
			8	-1318.868	3.332	1597.792	2.22(-2)	3.400	2.24(-2)
			9	-1293.803	4.140	1622.811	2.26(-2)	4.225	2.23(-2)
			10	-1266.042	5.027	1650.522	2.09(-2)	5.132	2.13(-2)
			11	-1235.615	5.988	1680.899	2.03(-2)	6.115	2.02(-2)
			12	-1202.552	7.020	1713.911	1.94(-2)	7.170	1.93(-2)
			13	-1166.889	8.117	1749.524	1.87(-2)	8.293	1.85(-2)
			14	-1128.663	9.275	1787.701	1.73(-2)	9.481	1.74(-2)
			15	-1087917	10.489	1828 403	1.64(-2)	10 727	1.64(-2)
			16	-1044.694	11.752	1871.586	1.54(-2)	12.024	1.54(-2)
			17	-999.042	13.058	1917 205	1.01(-2) 1.45(-2)	13 369	1.01(-2) 1.44(-2)
			18	-951.014	14 400	1965 209	1.10(-2) 1.41(-2)	14.753	1.11(-2) 1.33(-2)
			19	-900 663	15.770	2015 546	1.20(-2)	16,168	1.23(-2)
			20	-848 040	17 158	2010.040	1.20(-2) 1.11(-2)	17 600	1.20(-2)
			20 91	-702 929	18 555	2000.100	1.11(-2) 1.02(-2)	10.064	1.13(-2)
			⊿⊥ 99	-726 277	10.005	2122.900	1.02(-2)	20 525	1.03(-2)
				-677 940	19.940 91 919	2113.300	$\frac{9.50(-5)}{8.43(-3)}$	20.020	9.50(-3)
			⊿ə 94	616 202	21.012	2209.029 9900 107	8.60(-3)	21.910 22.410	$\frac{3}{7} \frac{3}{50} \left(-3\right)$
			24 25	-010.200	22.029 23.952	2000.107 0969 191	6.09(-3)	23.410 24 700	6.77(-3)
			20	-003.200	23.892	∠303.131	0.02(-3)	24.799	0.11(-3)

	TABLE	CIII:	continue	d
--	-------	-------	----------	---

2	2	1	2	-1320.255	0.000	1592.713	2.72(-2)	0.000	2.73(-2)
			3	-1311.694	-0.001	1601.260	2.69(-2)	-0.001	2.70(-2)
			4	-1300.292	-0.002	1612.641	2.65(-2)	-0.002	2.66(-2)
			5	-1286.062	-0.004	1626.844	2.60(-2)	-0.005	2.61(-2)
			6	-1269.019	-0.009	1643.855	2.54(-2)	-0.010	2.55(-2)
			7	-1249.178	-0.015	1663.658	2.48(-2)	-0.018	2.48(-2)
			8	-1226.562	-0.025	1686.234	2.42(-2)	-0.030	2.41(-2)
			9	-1201.193	-0.039	1711.563	2.41(-2)	-0.046	2.33(-2)
			10	-1173.097	-0.057	1739.618	2.22(-2)	-0.068	2.29(-2)
			11	-1142.305	-0.081	1770.371	2.13(-2)	-0.096	2.14(-2)
			12	-1108.850	-0.110	1803.792	2.04(-2)	-0.131	2.04(-2)
			13	-1072.766	-0.146	1839.845	1.95(-2)	-0.175	1.94(-2)
			14	-1034.094	-0.189	1878.493	1.89(-2)	-0.227	1.85(-2)
			15	-992.878	-0.240	1919.697	1.81(-2)	-0.290	1.71(-2)
			16	-949.164	-0.297	1963.406	1.63(-2)	-0.361	1.63(-2)
			17	-903.003	-0.362	2009.578	1.60(-2)	-0.443	1.80(-2)
			18	-854.452	-0.434	2058.154	1.40(-2)	-0.533	1.39(-2)
			19	-803.569	-0.512	2109.079	1.31(-2)	-0.633	1.29(-2)
			20	-750.420	-0.594	2162.292	1.20(-2)	-0.740	1.22(-2)
			21	-695.076	-0.679	2217.727	1.09(-2)	-0.855	1.11(-2)
			22	-637.611	-0.765	2275.310	1.02(-2)	-0.973	9.97(-3)
			23	-578.107	-0.849	2334.966	9.07(-3)	-1.094	9.02(-3)
			24	-516.655	-0.926	2396.609	8.12(-3)	-1.213	8.66(-3)
			25	-453.348	-0.993	2460.150	7.22(-3)	-1.327	7.27(-3)
3	3	1	3	-1161.650	0.000	1745.054	3.01(-2)	0.000	3.01(-2)
			4	-1150.310	0.000	1756.437	2.89(-2)	0.000	2.89(-2)
			5	-1136.155	0.000	1770.673	2.72(-2)	0.000	2.71(-2)
			6	-1119.197	0.000	1787.777	2.48(-2)	-0.001	2.45(-2)
			7	-1099.449	0.000	1807.774^{g}	2.26(-2)	-0.008	2.11(-2)
			8	-1076.926	0.001	1828.447^{g}	2.00(-2)	-0.013	1.99(-2)
			9	-1051.637	0.002	1853.758	2.15(-2)	-0.015	2.32(-2)
			10	-1023.587	0.003	1881.723	2.25(-2)	-0.015	2.28(-2)
			11	-992.757	0.005	1912.331	2.21(-2)	-0.014	2.20(-2)
			12	-959.106	0.004	1945.558	2.17(-2)	-0.014	2.16(-2)
			13	-922.586	-0.001	1981.376	2.18(-2)	-0.011	2.14(-2)
			14	-887.347	-0.023	2019.750	2.01(-2)	-0.007	1.99(-2)
			15	-846.273	-0.002	2060.638	1.91(-2)	0.001	1.90(-2)
			16	-802.830	0.031	2103.993	1.81(-2)	0.014	1.80(-2)
			17	-757.049	0.089	2149.762	1.70(-2)	0.037	1.70(-2)
			18	-708.997	0.197	2197.885	1.59(-2)	0.075	1.58(-2)
			19	-658.787	0.410	2248.296	1.48(-2)	0.136	1.61(-2)
			20	-606.644	0.884	2300.907	1.38(-2)	0.243	1.34(-2)
4	4	1	4	-942.932	0.000	1955.164	3.41(-2)	0.000	3.41(-2)
			5	-928.919	0.000	1969.159	3.32(-2)	0.014	3.34(-2)
			6	-912.134	0.000	1985.956	3.29(-2)	-0.005	3.24(-2)
			7	-892.594	0.000	2005.496	3.15(-2)	-0.008	3.14(-2)
			8	-870.319	0.000	2027.772	3.16(-2)	-0.014	3.21(-2)
			9	-845.331	0.000	2052.765	3.03(-2)	-0.031	3.25(-2)
			10	-817.655	0.001	2080.450	2.82(-2)	-0.067	2.82(-2)
			11	-787.322	0.001	2110.798	2.88(-2)	-0.140	2.75(-2)
			12	-754.361	0.002	2143.781	2.72(-2)	-0.289	2.63(-2)
			13	-718.808	0.004	2179.365	2.58(-2)	-0.554	2.45(-2)
			14	-680.701	0.007	2217.513	2.43(-2)	0.515	2.28(-2)
			15	-640.081	0.011	2258.188	2.28(-2)	0.502	2.16(-2)
			16	-596.993	0.017	2301.346	2.13(-2)	0.517	2.02(-2)
			17	-551.483	0.027	2346.944	1.98(-2)	0.552	1.87(-2)
			18	-503.603	0.040	2394.940	2.65(-2)	0.595	1.76(-2)
			19	-453.429	0.083	2445.269	1.67(-2)	0.669	1.62(-2)
			20	-400.945	0.084	2497.895	1.51(-2)	0.742	1.65(-2)

TABLE CIII: continued

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 -1098.594 $1823.632 $ $4.19 (-2)$	
0 -1030.034 $1020.002 4.10(-2)$	
7 - 1080145 1842102 4 09 (-2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 = -1035.120 1806.140 $5.55(-2)0 = -1035.566$ 1886.738 $3.82(-2)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
10 -642.102 2013.001 2.02(-2) 16 -802.502 2120.306 2.64(-2)	
10 002.002 2120.000 2.04 (-2) 17 -760.022 2162.023 2.46 (-2)	
17 - 700.022 2102.323 2.40 (-2) $18 - 715 413 2907 602 2.97 (-2)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	000 4.01 (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	089 4.61(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268
3 -1107.373 0.521 1813.423 4.52(-2) 0.	534 $4.52(-2)$
4 -1096.941 0.867 1823.861 4.45 (-2) 0.	4.46(-2)
5 -1083.923 1.295 1836.886 4.39(-2) 1.	327 $4.37(-2)$
b = -1068.333 1.805 1852.487 4.48 (-2) 1.	4.28(-2)
7 -1000.191 2.393 1870.043 4.22(-2) 2.000 1001 001 007 (-0) 0000 0000 0000 0000 0000 0000 0000	451 4.17 (-2)
8 -1029.516 3.058 1891.535 4.07(-2) 3.000 1006.222 3.705 1014.540 2.02(-2) 3.0000 1006.222 3.0000 1014.540 3.02(-2) 3.000000000000000000000000000000000000	133
9 -1000.332 3.795 1914.340 3.93 (-2) 3.	3.91(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	719 $3.76(-2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	510 5.00(-2)
12 - 922.011 0.399 1996.936 3.43 (-2) 0.	574 $5.44(-2)$
15 - 609.069 (7.500 - 2051.925 - 5.51(-2)) (7.500 - 2057.945 - 2.07(-2)) (7.500 - 2.050 - 2.050 - 2.050 - 2.050) (7.500 - 2.050 -	590 $5.20(-2)$
14 - 655.619 6.405 2007.245 5.07 (-2) 6.	3.09(-2)
10 - 610.250 - 9.457 - 2104.076 - 2.69(-2) - 9.	2.30(-2)
10 - 770.575 - 10.522 - 2144.761 - 2.70(-2) - 10. 17 - 734.949 - 11.557 - 9186.013 - 9.51(-9) - 19.	909 2.12(-2) 072 2.53(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.33(-2)
10 -642 519 12.576 2257.736 2.52 2.52 14	2.54 $2.54(-2)349$ $2.15(-2)$
20 -596587 -16363 -2326485 -1.90(-2) -15	2.10(-2) 280 1.96(-2)
20 000001 1000 2020.100 1.00(2) 100	200 1.00 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.90(-2)
3 -1014.003 0.000 1902.105 4.87 (-2) -0.	4.85(-2)
4 -1004.108 -0.001 1912.727 4.77(-2) -0.	4.78(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.69(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.59(-2)
7 - 930.810 - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.420(-2) - 0.008 1900.079 4.420(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.44(-2) - 0.008 1900.079 4.42(-2) - 0.008 1900.079 4.4000.079 4.400000000000000000000000000000000000	012 $4.56(-2)$
8 -953.897 -0.014 1981.024 4.32(-2) -0.000	4.31(-2)
9 -912.449 -0.021 2004.511 $4.20(-2)$ -0.020	028
10 - 880.497 - 0.030 2030.513 4.00 (-2) - 0.042 - 0.	041 4.15(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 0.00 0.00 (-2)
12 - 627.213 - 0.030 2009.927 5.00 (-2) - 0.	0.10 0.13 (-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102 3.48(-2)
14 - (30.303 - 0.091 - 2108.973 - 3.30 (-2) - 0. $15 - 720.447 - 0.111 - 9106.000 - 2.11 (-2) - 0.$	160 3.31(-2)
10 - (20.44) - 0.111 - 2190.399 - 3.11(-2) - 0.	102 0.10(-2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.91(-2)
11 - 0.51.340 - 0.101 - 2219.000 - 2.11(-2) - 0. $18 - 502.477 - 0.170 - 9294.470 - 2.51(-2) = 0.$	$255 \qquad 2.11(-2)$ $274 \qquad 251(-2)$
10 - 576,050 - 0.184 - 0.271,095 - 0.21(-2) - 0.	214 $2.01(-2)212$ $2.21(-2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312 $2.31(-2)347$ $2.11(-2)$
20 -430.440 -0.130 2420.000 2.14(-2) -0.130	2.11(-2)

TABLE	CIII:	continued
-------	-------	-----------

0	0	3	0	-894.963		2032.430	6.41(-2)		
0	0	0	1	-892 521		2034 883	6.38(-2)		
			2	-887 639		2034.005	6.34(-2)		
			3	-880 325		2037.134	6.25(-2)		
			4	-870589		2011.101	6.16(-2)		
			5	-858447		2069 114	6.05(-2)		
			6	-843 915		2003.114 2083.715	5.03(-2)		
			7	-045.915		2003.713	5.31(-2)		
			0	-827.010		2100.098	5.75(-2)		
			0	-807.775		2120.039	5.30(-2)		
			9	-760.221		2141.708	5.50(-2)		
			10	- 762.387		2165.676	5.15(-2)		
			11	-730.309		2191.907	4.92(-2)		
			12	-708.027		2220.364	4.67(-2)		
			13	-677.570		2251.013	4.43(-2)		
			14	-645.239		2283.877	3.96(-2)		
			15	-610.538		2318.413	3.82(-2)		
			16	-573.954		2355.360	3.65(-2)		
			17	-535.456		2394.198	3.39(-2)		
			18	-495.108		2434.918	3.13(-2)		
			19	-452.963		2477.455	2.86(-2)		
			20	-409.179		2521.733	2.60(-2)		
1	1	3	1	-860.603	0.079	2065.342	6.50(-2)	0.081	6.50(-2)
			2	-855.799	0.236	2070.163	6.49(-2)	0.243	6.51(-2)
			3	-848.600	0.471	2077.386	6.40(-2)	0.486	6.43(-2)
			4	-839.012	0.782	2087.004	6.29(-2)	0.806	6.33(-2)
			5	-827.043	1.164	2099.005	6.17(-2)	1.204	6.21(-2)
			6	-812.696	1.610	2113.375	6.02(-2)	1.677	6.08(-2)
			7	-795.955	2.096	2130.099	5.85(-2)	2.223	5.97(-2)
			8	-776.700^{e}	2.506	2149.160	5.66(-2)	2.837	6.02(-2)
			9	-756.757^{e}	4.694	2170.544	5.45(-2)	3.526	5.39(-2)
			10	-732.351	5.157	2194.243^d	5.25(-2)	4.525^{d}	$3.77(-2)^d$
			11	-708.675	5.192	2220.309^{d}	4.93(-2)	4.771^{d}	$4.97 (-2)^d$
			12	-680.202	6.230	2248.612	4.03(-2)	5.581	4.72(-2)
			13	-650.007	7.795	2280.020	3.30(-2)	5.664	4.34(-2)
			14	-617.853	6.569	2315.046	2.32(-2)	4.820	3.73(-2)
			15	-583.719	7.848	2353.315	1.83(-2)	4.045	2.85(-2)
			16	-547.635	8.978	2394.205	1.58(-2)	3.928	2.30(-2)
			17	-509.654	10.061	2437.486	1.42(-2)	4.092	2.78(-2)
			18	-469.839	11.127	2483.047	1.37(-2)	4.393	1.81(-2)
			19	-428.263	12.182	2530.807	1.19(-2)	4.732	1.61(-2)
			20	-385.008	13.224	2580.690	1.08(-2)	5.102	1.46(-2)
2	2	3	2	-761.687	0.000	2160.169	6.95(-2)	0.000	6.96(-2)
		-	3	-754.413	0.000	2167.478	6.87(-2)	0.000	6.88(-2)
			4	-744.729	0.000	2177.209	6.76(-2)	-0.001	6.76(-2)
			5	-732.650	0.000	2189.346	6.63(-2)	-0.001	6.63(-2)
			6	-718.194	-0.001	2203.876	6.48(-2)	-0.002	6.48(-2)
			7	-701.381	-0.001	2220.776	6.31(-2)	-0.004	6.31(-2)
			8	-682.236	-0.002	2240.025	6.11(-2)	-0.007	6.11(-2)
			g	-660.787	-0.002	2261 594	5.90(-2)	-0.010	5.90(-2)
			10	-637.068	-0.002	2285.454	5.66(-2)	-0.013	5.66(-2)
			11	$-611\ 115$	0.000	2311 568	5.00(-2) 5.41(-2)	-0.017	5.00(-2) 5.42(-2)
			12	-582.970	0.002	2339 899	5.15(-2)	-0.022	5.12(-2) 5.16(-2)
			13	-552.677	0.002	2000.000	4.88(-2)	-0.025	4.89(-2)
			14	-520 288	0.000	2010.400	4.61(-2)	-0.025	4.61(-2)
			15	-185 860	0.011	2405.055	4.01(-2)	-0.023 -0.027	4.39 (-2)
			16	-400.000	0.055	2431.133	4.03(-2)	-0.027	4.02(-2)
			17	-449.404	0.000	2474.404 9512-195	4.03(-2)	-0.023	4.03(-2)
			18	-370.080	0.090	2010.120	3.14(-2)	-0.012	3.14(-2) 3.45(-2)
			10	200.001	0.140	2000.079	3.44(-2)	0.008	3.43(-2)
			19	-329.091	0.213	2090.039	3.10(-2)	0.042	3.10(-2)
			20	-280.038	0.317	2040.122	2.87 (-2)	0.094	2.88 (-2)

TABLE CIII: continued

1	0	0	0	-1339 391		1587 460	9.00(-3)		
1	0	0	1	-1329.365		1590 397	9.36(-3)		
			2	-1323.458		1596 271	1.46(-2)		
			3	-1314604		1605.075	1.10(-2) 1.00(-2)		
			4	-1302.814		1616.797	8.81(-3)		
			5	-1288.100		1631.427	9.15(-3)		
			6	-1270479		1648 946	8.87(-3)		
			7	-1249969		1669.341	9.56(-3)		
			8	-1226.593		1692 586	9.25(-3)		
			9	-1200.377		1718 657	8.96(-3)		
			10	-1171 350		1747 526	8.64(-3)		
			10	-1139543		1779 163	8.47(-3)		
			12	-1104 991		1813 533	7.93(-3)		
			12	-1067734		1850 598	7.33(-3) 7.27(-3)		
			14	-1027.813		1890.318	6.88(-3)		
			15	$-985\ 273$		1932.650	6.00(-3)		
			16	-940.162		1977 547	6.06(-3)		
			17	-892 533		2024 959	5.66(-3)		
			18	-842.441		2024.833	5.30(-3)		
			10	-789944		2011.000	5.69(-3)		
			20	$-735\ 107$		2121.112	4.38(-3)		
			20 21	-677 996		2238 655	3.91(-3)		
			21	-618 681		2295.000	3.53(-3)		
			23	-557239		2359 023	3.03(-3) 3.17(-3)		
			20	-493750		2422 351	3.17(-3)		
			25	-428,300		2487 665	2.60(-3)		
9	1	0	1	1000.410	0 194	1/05 000	2.00(9)	0 199	1.02(0)
2	1	0	1	-1292.413	0.134	1625.290	1.26(-2)	0.133	1.03(-2)
			2	-1286.653	0.403	1631.016	1.38(-2)	0.402	1.03(-2)
			3	-1278.021	0.804	1639.603	1.07(-2)	0.799	1.02(-2)
			4	-1266.523	1.338	1651.040	9.93(-3)	1.327	1.00(-2)
			5	-1252.172	2.002	1665.316	9.57(-3)	1.985	9.89(-3)
			6	-1234.980	2.793	1682.418	1.00(-2)	2.769	9.84(-3)
			7	-1214.965	3.710	1702.332	9.71(-3)	3.678	1.03(-2)
			8	-1192.144	4.749	1725.036	8.77(-3)	4.708	9.96(-3)
			9	-1166.540	5.907	1750.511	8.33(-3)	5.858	9.95(-3)
			10	-1138.177	7.179	1//8./32	8.07(-3)	7.121	9.68(-3)
			11	-1107.081	8.560	1809.673	1.09(-2)	8.494	8.59(-3)
			12	-1073.279	10.041	1843.305	7.72(-3)	9.970	1.11(-2)
			13	-1050.790	11.009	1019.595	7.09(-3)	11.049	0.80(-3)
			14	-997.582	13.170	1918.506	0.48(-3)	13.223	0.51(-3)
			10	-930.373	13.420	1900.004	7.78(-3)	14.991	3.30(-3)
			10	-912.050	17.102	2004.040	5.70(-3)	10.850	2.98(-2)
			10	-805.290	19.007	2000.591	5.31(-3)	10.749	1.30(-2)
			10	-810.125	21.108	2099.595	5.92(-3)	20.720	4.88(-3)
			19	710,600	25.200	2101.014	5.31(-3)	22.751	5.24(-3)
			20	-710.090	25.570	2204.819	4.40(-3)	24.190	4.40(-3)
			21	-054.559	21.534	2201.010	4.17(-3)	20.703	4.30(-3)
			22	-535 607	29.072	2319.769	4.04(-3)	20.451	3.30(-3)
			20	472 155	32.133 24 572	2301.751	4.03(-3)	29.091	3.44(-3)
			24 25	-475.155	36.006	2440.919 2514 502	3.62(-3)	26.049 27.721	3.04(-3)
			20	-408.041	50.990	2014.092	3.30(-3)	21.121	2.08 (-3)
3	2	0	2	-1178.105	0.000	1733.985	1.14(-2)	0.000	1.14(-2)
			3	-1169.340	0.000	1742.676	1.17(-2)	-0.001	1.17(-2)
			4	-1157.667	-0.001	1754.238	1.22(-2)	-0.002	1.22(-2)
			5	-1143.100	-0.002	1768.643	1.35(-2)	-0.003	1.31(-2)
			6	-1125.653	-0.005	1785.849	1.54(-2)	-0.006	1.50(-2)
			7	-1105.350	-0.008	1805.803^{g}	1.99(-2)	-0.012	1.75(-2)
			8	-1082.215	-0.013	1830.668^{g}	1.76(-2)	-0.015	1.82(-2)
			9	-1056.287	-0.020	1856.449	1.46(-2)	-0.030	2.60(-2)
			10	-1027.614	-0.028	1885.077	1.44(-2)	-0.042	1.37(-2)
			11	-996.275	-0.035	1916.502	1.09(-2)	-0.060	1.15(-2)
			12	-962.380	-0.039	1950.688	9.84(-3)	-0.086	1.01(-2)

TABLE	CIII:	continue	d
-------	-------	----------	---

		13	-926.050	-0.036	1987.594	1.12(-2)	-0.116	2.18(-2)
		14	-883.222	-0.006	2027.169	8.19(-3)	-0.148	8.40(-3)
		15	-841.106	-0.003	2069.377	7.42(-3)	-0.184	7.62(-3)
		16	-796.351	0.019	2114.166	6.89(-3)	-0.219	6.94(-3)
		17	-749.068	0.085	2161.483	6.71(-3)	-0.249	6.33(-3)
		18	-699.421	0.282	2211.263	5.86(-3)	-0.262	5.95(-3)
		19	-647.953	1.065	2263.419	5.42(-3)	-0.229	5.23(-3)
		20	-590.506	-1.842	2317.762	5.44(-3)	-0.023	7.02(-3)
		21	-534.158	-1.638	2373.464	9.14(-3)	1.097	4.37(-3)
		22	-475.165	-3.234	2435.398	5.71(-3)	-1.845	1.26(-2)
		23	-413.935	0.839	2496.309	3.99(-3)	-1.829	4.55(-3)
		24	-350.625	0.664	2559.558	3.39(-3)	-3.288	6.96(-3)
		25	-285.356	0.762	2624.859	4.59(-3)	0.388	4.05(-3)
9	0	2	004 024	0.000	1000 584	1.40(-2)	0.000	1 40 (2)
3	0	3	-994.024	0.000	1909.384	1.40(-2) 1.30(-2)	0.000	1.40(-2) 1.38(-2)
		4	-982.401	0.000	1025 514	1.33(-2)	0.000	1.38(-2)
		0 C	-908.008	0.001	1955.514	1.37(-2)	0.000	1.30(-2)
		0 7	-930.713	0.005	1952.752	1.30(-2)	0.001	1.31(-2)
		(-930.588	0.009	1972.815	1.32(-2)	0.002	1.31(-2)
		8	-907.660	0.023	1995.680	1.28(-2)	0.006	1.26(-2)
		9	-881.967	0.056	2021.324	1.25(-2)	0.011	1.16(-2)
		10	-853.566	0.134	2049.716	1.05(-2)	0.025	1.16(-2)
		11	-822.565	0.329	2080.824	1.16(-2)	0.047	1.14(-2)
		12	-789.223^{j}	0.857	2114.603	1.14(-2)	0.087	1.08(-2)
		13	-749.232^{j}	-2.642	2151.005	1.07(-2)	0.157	1.05(-2)
		14	-710.677	-2.145	2189.959	1.03(-2)	0.287	1.01(-2)
		15	-669.130	-2.163	2231.362	1.01(-2)	0.532	9.55(-3)
		16	-624.889	-2.507	2275.031	1.01(-2)	1.025	9.05(-3)
		17	-578.101	-3.171	2320.623	1.09(-2)	2.051	8.59(-3)
		18	-528.860	-4.217	2375.992	1.18(-2)	-4.315	8.10(-3)
		19	-477.249	3.135	2426.433	1.04(-2)	-3.425	7.66(-3)
		20	-423.351	2.609	2479.659	8.40(-3)	-3.092	1.18(-2)
		21	-367.283	2.321	2535.336	7.52(-3)	-3.095	6.92(-3)
		22	-308.972	2.052	2593.250	6.89(-3)	-3.345	6.56(-3)
		23	-248.743	1.978	2653.242	6.40(-3)	-3.862	6.26(-3)
		24	-186.598	1.973	2715.534	8.45(-3)	-5.094	5.99(-3)
		25	-122.668	2.014	2779.047	5.76(-3)	-6.201	5.70(-3)
4	0	4	-744.331	0.000	2148.317	1.94(-2)	0.000	1.94(-2)
		5	-730.059	0.000	2162.549	1.80(-2)	0.000	1.80(-2)
		6	-712.964	0.000	2179.599	1.71(-2)	0.000	1.71(-2)
		7	-693.062	0.000	2199.450	1.65(-2)	0.000	1.65(-2)
		8	-670.372	0.000	2222.082	1.72(-2)	0.000	1.58(-2)
		9	-644.919	0.000	2247.475	1.56(-2)	-0.001	1.52(-2)
		10	-616.726	0.000	2275.602	1.47(-2)	-0.001	1.47(-2)
		11	-585.823	0.000	2306.434	1.62(-2)	-0.007	2.83(-2)
		12	-552.243	0.001	2339.942	1.37(-2)	0.001	1.39(-2)
		13	-516.020	0.002	2376.092	1.29(-2)	0.001	1.29(-2)
		14	-477.193	0.003	2414.844	1.26(-2)	0.002	1.20(-2)
		15	-435.804	0.006	2456.160	1.18(-2)	0.005	1.27(-2)
		16	-391.899	0.010	2499.993	1.04(-2)	0.007	1.07(-2)
		17	-345.529	0.016	2546.299	1.07(-2)	0.010	1.03(-2)
		18	-296.748	0.026	2595.019	9.63(-3)	0.018	9.59(-3)
		19	-245.612	0.037	2646.102	8.57 (-3)	0.031	1.09(-2)
		20	-192.191	0.063	2699.485	8.10(-3)	0.044	8.21 (-3)
		21	-136.551	0.094	2755.104	7.72(-3)	0.064	7.63(-3)
		22	-78.769	0.141	2812.885	7.58(-3)	0.095	7.05(-3)
		 23	-18.935	0.212	2872.759	6.60(-3)	0.131	6.40(-3)
		20	10.000		20121100	5.00 (0)	0.101	0.10(0)

	TABLE	CIII:	continue	d
--	-------	-------	----------	---

6	5	0	5	-432.701	-0.001	2446.757	2.34(-2)	0.000	2.34(-2)
			6	-415.846	0.000	2463.587	2.28(-2)	0.000	2.28(-2)
			7	-396.223	0.000	2483.173	2.24(-2)	0.000	2.23(-2)
			8	-373.855	0.000	2505.528	2.26(-2)	-0.001	2.26(-2)
			9	-348.762	0.000	2530.587	2.15(-2)	-0.001	2.15(-2)
			10	-320.973	0.001	2558.344	2.07(-2)	0.000	2.06(-2)
			11	-290.507	-0.008	2588.772	2.00(-2)	-0.002	1.97(-2)
			12	-257.421	-0.005	2621.838	1.92(-2)	-0.001	1.88(-2)
			13	-221.735	0.005	2657.505	1.78(-2)	-0.001	1.78(-2)
			14	-183500	-0.003	2695 737	1.68(-2)	-0.001	1.70(-2)
			15	-142781	-0.004	2736 491	1.66(-2) 1.57(-2)	0.001	2.98(-2)
			16	-99 590	-0.021	2779 720	1.67(-2) 1.49(-2)	0.003	1.47(-2)
			17	- 59.090	-0.021	2825 370	1.49(-2) 1.20(-2)	0.004	1.47(-2) 1.37(-2)
			19	7 164	0.044	2020.010	1.33(-2)	0.010	1.07(-2)
			10	-7.104 46.455†	0.071	2073.529	1.23(-2) 1.27(-2)	0.008	1.52(-2)
			20	40.455	0.410	2925.079	1.27(-2) 1.70(-2)	0.037	1.13(-2)
			20	90.002	-0.225	2975.710	1.70 (-2)	0.550	1.13(-2)
1	0	1	0	-1031.054		1891.797	3.56(-2)		
			1	-1028.311		1894.535	3.13(-2)		
			2	-1022.827		1900.003	3.05(-2)		
			3	-1014.609		1908.197	3.00(-2)		
			4	-1003.667		1919.107	2.94(-2)		
			5	-990.014		1932.721	2.87(-2)		
			6	-973.668		1949.023	2.78(-2)		
			7	-954.646		1967.995	2.77(-2)		
			8	-932.974		1989.607	2.82(-2)		
			9	-908.676		2013.844	2.62(-2)		
			10	-881.784		2040.673	2.51(-2)		
			11	-852.331		2070.061	2.42(-2)		
			12	-820.353		2101.972	2.56(-2)		
			13	-785.892		2136.371	2.08(-2)		
			14	-748.992		2173.210	2.00(-2)		
			15	-709.700		2212.444	1.84(-2)		
			16	-668.069		2254.027	1.70(-2)		
			17	-624.156		2297.903	1.58(-2)		
			18	-578.021		2344.015	1.52(-2)		
			19	-529.730		2392.303	1.60(-2)		
			20	-479.352		2442.697	1.20(-2)		
			21	-426.964		2495.130	1.40(-2)		
			22	-372.647		2549.524	9.66(-3)		
			23	-316.490		2605.797	8.49(-3)		
			24	-258.588		2663.863	7.76(-3)		
			25	-199.047		2723.626	6.88(-3)		
2	1	1	1	$-988\ 448$	0.130	1931 974	327(-2)	0.128	313(-2)
-	1	1	2	$-983\ 104$	0.389	1937 303	3.50(-2)	0.386	3.10(-2)
			3	-975.095	0.777	1945 292	3.17(-2)	0.771	3.16(-2)
			4	-964.428	1 292	1955 932	3.04(-2)	1 280	3.00(-2)
			5	$-951\ 114$	1.232	1969.225	3.09(-2)	1.200	2.94(-2)
			6	-935 165	2 694	1985 118	332(-2)	2 669	2.01(2) 2.88(-2)
			7	-916 595	3 573	2003 634	2.83(-2)	3 546	2.88(-2)
			8	-895 417	4 561	2005.054	2.00(-2)	4 547	2.00(2) 2.72(-2)
			9	-871.641	5.646	2024.145	2.10(-2) 2.67(-2)	5.664	2.12(-2) 3.05(-2)
			10	845 265	6 706	2040.420	2.01(-2)	6.001	2.56(-2)
			10	-845.205	7.026	2074.007	2.51(-2)	0.901 8 974	2.30(-2)
			11	-810.241 784 276f	7.930 9.947	2103.413	2.38(-2)	0.274	2.41(-2)
			12 19	-104.310 754 DEAF	0.041	2104.070 0160 A16	2.42(-2)	9.001 10.205	2.00(-2)
			10	-754.054	15.002	2108.410	2.22(-2)	10.595	2.43(-2)
			14	-(17.270)	10.017	2204.030	2.10(-2)	11.941	2.27(-2)
			10	-0/8.544	10.700	2245.550	1.94(-2)	13.413	2.10(-2)
			10	-037.075	18.905	2284.020	1.(4(-2))	14.694	1.95(-2)
			17	-594.625	21.455	2328.722	1.48(-2)	15.501	1.80(-2)
			18	-549.415	24.405	2307.077	1.21(-2)	23.755	1.57(-2)
			19	-502.093	19.149	2416.067	1.34(-2)	24.823	1.50(-2)
			20	-452.721	21.782	2466.047	1.18(-2)	26.494	1.36(-2)

TABLE CIII: continued

			21	-401.369	24.282	2517.798	1.09(-2)	28.548	1.23(-2)
			22	-348.122	26.703	2571.372	1.00(-2)	30.900	1.10(-2)
			23	-293.081	29.092	2626.744	9.00(-3)	33.572	9.81(-3)
			24	-236.391	31.517	2683.843	8.04(-3)	36.657	8.79(-3)
			25	-178.372	34.201	2742.569	7.36(-3)	40.282	7.60(-3)
3	2	1	2	-869.749	0.005	2044.682	3.46(-2)	0.019	3.49(-2)
			3	-861.412	0.025	2052.713	3.30(-2)	0.075	3.41(-2)
			4	-850.400	0.083	2063.411	3.13(-2)	0.176	3.34(-2)
			5	-836.710	0.233	2076.766	2.97(-2)	0.318	3.27(-2)
			6	-820.357	0.588	2092.764	2.81(-2)	0.499	3.21(-2)
			7	-801.384^{e}	1.332	2111.386	2.67(-2)	0.715	3.13(-2)
			8	-779.935^{e}	-1.822	2132.611	2.57(-2)	0.960	3.04(-2)
			9	-754.181	-3.449	2156.400	2.52(-2)	1.243	2.94(-2)
			10	-727.759	-3.622	2182.726	2.31(-2)	1.553	2.84(-2)
			11	-698.383	-0.782	2211.509	2.32(-2)	1.925	2.77(-2)
			12	-666.384	-1.513	2242.580	2.32(-2)	2.459	3.68(-2)
			13	-631.855	-1.969	2275.425	2.93(-2)	3.516	2.63(-2)
			14	-594.852	-2.345	2315.047	2.24(-2)	-0.269	2.84(-2)
			15	-555.424	-2.704	2353.313	1.80(-2)	-1.468	3.29(-2)
			16	-513.624	-3.069	2394.205	2.85(-2)	3.925	2.64(-2)
			17	-469.507	-3.450	2437.486	1.43(-2)	4.109	2.01(-2)
			18	-423.130	-3.849	2483.046	1.30(-2)	4.395	1.81(-2)
			19	-374.560	-4.270	2530.807	1.20(-2)	4.731	1.62(-2)
			20	-323.863	-4.712	2580.690	1.09(-2)	5.102	1.44(-2)
			21	-271.119	-5.171	2632.617	1.00(-2)	5.499	1.29(-2)
			22	-216.414	-5.643	2686.506	9.43(-3)	5.926	1.28(-2)
			23	-159.848	-0.112	2742.205	8.27(-3)	6.390	1.10(-2)
			24 25	-101.347	-0.349	2799.791	7.00(-3)	0.904 7.480	9.72(-3)
	_		20	-41.089	-0.885	2858.905	0.83 (-3)	1.409	8.34 (-3)
4	3	1	3	-681.444	0.000	2224.566	4.30(-2)	0.000	4.30(-2)
			4	-670.666	0.000	2235.338	4.23(-2)	0.001	4.23(-2)
			Э С	-057.215	0.001	2248.784	4.17(-2)	0.005	4.15(-2)
			07	-041.100	0.003	2204.890	4.05(-2)	0.012	4.06(-2)
			(0	-022.550	0.007	2205.009	3.94(-2)	0.024	3.93(-2)
			0	-000.990	0.014	2303.007	3.82(-2)	0.041 0.067	3.83(-2)
			9 10	-577.055	0.029	2328.970	5.66(-2)	0.007	3.70(-2) 3.55(-2)
			11	-521.467	0.041	2384 554	3.43(-2)	0.136	3.63(-2)
			12	-489.943	0.133	2416.100	3.25(-2)	0.196	3.23(-2)
			13	-455.987	0.214	2450.090	3.08(-2)	0.267	3.06(-2)
			14	-419.655	0.334	2486.452	2.94(-2)	0.375	3.04(-2)
			15	-381.014	0.509	2525.231	2.76(-2)	0.438	2.98(-2)
			16	-340.141	0.758	2566.205	2.59(-2)	0.593	2.65(-2)
			17	-297.125	1.100	2609.380	2.48(-2)	0.776	2.49(-2)
			18	-252.062	1.559	2654.655	2.32(-2)	1.006	2.33(-2)
			19	-205.052	2.142	2701.934	2.18(-2)	1.285	2.19(-2)
			20	-156.199	2.838	2751.121	2.17(-2)	1.617	2.06(-2)
5	4	1	4	-428.027	0.000	2467.017	5.62(-2)	0.000	5.25(-2)
			5	-414.735	0.000	2480.313	5.23(-2)	0.001	5.29(-2)
			6	-398.817	0.000	2496.233	5.10(-2)	0.001	5.13(-2)
			7	-380.292	0.000	2514.766	5.11(-2)	-0.001	4.93(-2)
			8	-359.181	0.000	2535.885	4.77(-2)	0.000	4.72(-2)
			9	-335.509	0.000	2559.572	4.61(-2)	-0.001	4.52(-2)
			10	-309.305	0.001	2585.796	4.44(-2)	0.002	4.87(-2)
			11	-280.601	0.001	2614.525	4.41(-2)	0.005	4.15(-2)
			12	-249.435	0.002	2645.739	4.00(-2)	0.002	4.06(-2)
			13	-215.850	0.005	2679.385	3.81(-2)	0.003	3.82(-2)
			14	-179.901	0.011	2715.427	3.60(-2)	0.005	3.59(-2)
			15	-141.691	0.023	2753.818	3.36(-2)	0.008	3.36(-2)
			16	-100.476	0.069	2794.507	3.14(-2)	0.015	3.14(-2)
			17	-58.344	0.228	2837.431	2.90(-2)	0.027	2.91(-2)
			18	-13.404	-0.012	2882.515	2.00(-2)	0.000	2.07(-2)
			19	31.510	1.207	2929.333 2070-021	2.11(-2)	0.108	2.10(-2)
			20	82.550	-1.739	2979.031	2.20 (-2)	0.085	2.20 (-2)

TABLE	CIII:	continued

5	5	1	5	-113.193	0.000	2768.643	7.12(-2)	0.000	7.13(-2)
			6	-97.476	0.000	2784.225	7.39(-2)	0.002	7.19(-2)
			7	-79.183	0.000	2803.280	7.74(-2)	0.000	7.74(-2)
			8	-58.337	0.000	2823.882	6.75(-2)	-0.001	6.75(-2)
			9	-34.959	0.000	2847.229	6.38(-2)	-0.003	6.41(-2)
			10	-9.078	0.000	2873.124	6.07(-2)	0.006	6.75(-2)
			11	19.276†	0.000	2901 513	5.79(-2)	0.002	5.89(-2)
			19	50.066†	0.004	2001.010	5.17(2)	0.002	5.03(2) 5.48(2)
			12	92.000 ⁴	0.004	2352.554	5.47(-2)	0.002	5.43(-2)
			15	63.200 ⁺	0.000	2905.028	5.15(-2)	-0.024	5.17(-2)
			14	118.822	0.000	3001.256	4.99(-2)	0.003	4.83(-2)
			15	156.693	0.001	3039.209	4.44(-2)	0.009	4.64(-2)
			16	196.830+	0.003	3079.458	4.19(-2)	0.008	4.09(-2)
			17	239.177^{\ddagger}	0.005	3121.934	3.87(-2)	0.010	3.93(-2)
			18	283.672^{\ddagger}	0.010	3166.632	5.26(-2)	-0.034	3.62(-2)
2	0	0	0	-936.866		1990.399	5.86(-3)		
			1	-934.015		1993.223	5.96(-3)		
			2	-928.318		1998.870	1.05(-2)		
			3	-919.780		2007.333	8.78(-3)		
			4	-908.412		2018.600	7.58(-3)		
			5	-894.228		2032.659	6.68(-3)		
			6	-877.243		2049.493	5.73(-3)		
			7	-857.480		2069.086	6.10(-3)		
			8	-834 960		2001.000	6.59(-3)		
			9	-809.712		2031.411	5.79(-3)		
			10	791 765		2110.445	5.19(-3)		
			10	-761.705		2144.104	7.55(-3)		
			11	-731.134		2174.508	0.44(-3)		
			12	-717.919		2207.471	6.19(-3)		
			13	-682.115		2242.993	6.09(-3)		
			14	-643.536		2280.961	7.89(-3)		
			15	-602.779		2321.821	6.12(-3)		
			16	-559.469		2364.731	4.75(-3)		
			17	-513.755		2410.096	4.35(-3)		
			18	-465.701		2457.804	4.15(-3)		
			19	-415.368		2507.791	3.82(-3)		
			20	-362.823		2559.991	3.31(-3)		
			21	-308.134		2614.340	2.98(-3)		
			22	-251.373		2670.768	2.65(-3)		
			23	-192.619		2729.201	2.35(-3)		
			24	-131956		2789 563	2.08(-3)		
			25	-69.472		2851 769	1.92(-3)		
		-	20	-03.472		2001.709	1.32(-3)		
	1	0	1	-880.887	0.212	2041.778	7.06(-3)	0.199	7.08(-3)
			2	-875.489	0.631	2047.290	8.02(-3)	0.578	7.60(-3)
			3	-867.398	1.242	2055.542	1.44(-2)	1.122	7.85(-3)
			4	-856.626	2.008	2066.547	2.22(-2)	1.795	7.92(-3)
			5	-843.184	2.803	2080.248	1.41(-2)	2.638	7.78(-3)
			6	-827.092	4.147	2096.649	1.34(-2)	3.629	7.53(-3)
			7	-808.372	4.807	2115.727	1.33(-2)	4.771	7.24(-3)
			8	-787.058	9.791	2137.462	1.34(-2)	6.064	7.02(-3)
			9	-763.202	11.732	2161.826	4.85(-2)	7.494	7.24 (-3)
			10	-736.887	14.056	2188.783^d	1.24(-2)	8.821^{d}	$2.17(-2)^{d}$
			11	-705.122	13.748	2218.288^{d}	1.71(-2)	11.050^{d}	$7.08(-3)^d$
			12	-674.325	17.148	2250.528	1.65(-2)	12.766	6.89(-3)
			12	-640 550	20.250	2200.020	1.00(-2) 1.27(-2)	14 863	9.35(-3)
			1.0	60/ 167	20.207	2200.072 9299 194	1.27(-2)	17.000	$\frac{3.10(-2)}{7.99(-3)}$
			14	-004.107	20.001 DC CTD	2022.124	1.12(-2)	10.400	7.00 (-3)
			15	-565.322	20.053	2361.607	1.44(-2)	19.406	(.26 (-3)
			16	-524.100	30.060	2403.471	1.07(-2)	21.869	4.16(-3)
			17	-480.574	33.628	2447.660	8.84(-3)	24.464	3.65(-3)
			10	494 910	37 362	2404 126	9.28(-3)	27.188	335(-3)
			18	-454.810	01:002	2434.120	0.20(0)		0.00(0)
			18 19	-386.880	41.264	2494.120 2542.802	8.86(-3)	30.030	1.19(-2)

TABLE CIII: continued

4	2	0	2	-734.601	0.001	2179.212	1.06(-2)	0.012	1.05(-2)
-	-		- 9	726.260	0.007	2187 510	0.77(2)	0.012	1.02(-2)
			Э	-720.200	0.007	2187.510	9.77(-3)	0.015	1.02(-2)
			4	-715.159	0.020	2198.559	9.52(-3)	0.018	9.99(-3)
			5	-701.313	0.048	2212.344	9.38(-3)	0.032	9.83(-3)
			6	-684.745	0.098	2228.847	9.23(-3)	0.059	9.79(-3)
			7	665 487	0.183	2248 048	0.04(-3)	0.114	1/3(-2)
			1	-005.487	0.105	2240.040	9.04(-3)	0.114	1.43(-2)
			8	-643.585	0.328	2269.924	8.88(-3)	0.166	8.84(-3)
			9	-619.132	0.594	2294.438	8.65(-3)	0.267	8.67(-3)
			10	-592.445	1.255	2321.559	8.44(-3)	0.408	8.47(-3)
			11	560 662	0.626	0251 029	820(2)	0.608	8 96 (2)
			11	-300.002	-0.030	2331.238	8.30(-2)	0.008	0.20(-3)
			12	-528.785	-0.299	2383.402	9.82(-3)	0.907	8.05(-3)
			13	-494.127	-1.075	2417.832	1.25(-2)	1.483	7.87(-3)
			14	-456.968	2.770	2456.267	1.55(-2)	0.545	7.79(-3)
			15	417 491	2 202	2405 441	0.14(2)	1 979	8 06 (2)
			15	-417.401	3.303	2490.441	9.14(-3)	1.270	3.20(-3)
			16	-375.528	3.953	2537.246	8.33(-3)	1.506	1.17(-2)
			17	-331.446	4.915	2581.350	7.09(-3)	3.446	1.19(-2)
			18	-285.213	6.071	2627.714	7.69(-3)	3.841	1.49(-2)
			10	-236 018	7 496	2676 151	6.43(-3)	4 614	767(-3)
			13	-230.310	1.420	2010.101	0.40(-3)	4.014	1.07 (-3)
			20	-186.652	8.978	2726.644	5.96(-3)	5.512	8.27(-3)
5	3	0	3	-511.426	0.000	2390.772	1.26(-2)	0.000	1.25(-2)
			4	-500.448	0.000	2401.704	1.26(-2)	0.000	1.21(-2)
			5	-486748	0.001	2415 347	1.26(-2)	0.000	1.32(-2)
			c	100.110	0.001	2491 690	1.20 (2)	0.000	1.02 (2)
			6	-470.340	0.002	2431.689	1.39(-2)	0.000	1.43(-2)
			7	-451.243	0.005	2450.714	1.12(-2)	0.000	1.14(-2)
			8	-429.477	0.010	2472.399	1.14(-2)	0.001	1.16(-2)
			9	-405.069	0.021	2496.709	3.71(-2)	0.021	1.59(-2)
			10	278 048	0.020	2522 657	1.02(2)	0.011	1 10 (2)
			10	-378.048	0.039	2525.057	1.02(-2)	0.011	1.10(-2)
			11	-348.446	0.069	2553.179	1.35(-2)	0.017	1.06(-2)
			12	-316.301	0.115	2585.297	1.76(-2)	0.028	9.59(-3)
			13	-281.657	0.185	2619.824	9.94(-3)	0.057	9.63(-3)
			14	244 560	0.280	2656 871	0.42(-3)	0.002	0.08 (3)
			15	-244.000	0.203	2000.011	9.42(-3)	0.032	9.30(-3)
			15	-205.065	0.437	2696.340	9.16(-3)	0.143	9.62(-3)
			16	-163.232	0.645	2738.173	9.00(-3)	0.223	8.98(-3)
			17	-119.130	0.932	2782.334	8.47(-3)	0.319	8.52(-3)
			18	-72.836	1 393	2828 731	8.03(-3)	0.470	8.00(-3)
			10	04 490	1.047	2020.101	7.44(-2)	0.110	7.05(-9)
			19	-24.439	1.847	2877.302	(.44 (-3)	0.680	(.05 (-3)
			20	25.950	2.549	2927.966	6.89(-3)	0.970	7.13(-3)
6	4	0	4	-219.364	0.002	2669.015	1.91(-2)	0.000	1.91(-2)
			5	-205.883	0.000	2682.456	1.87(-2)	0.000	1.89(-2)
			6	-189.741	0.000	2698.553	1.83(-2)	0.002	1.95(-2)
			7	-170.957	0.001	2000.000	1.09(-2) 1.79(-2)	-0.003	4.86(-2)
			0	-140.557	0.001	2711.230	1.73(-2)	-0.003	4.00(-2)
			8	-149.552	0.001	2738.042	1.74(-2)	-0.004	1.70(-2)
			9	-125.556	0.003	2762.587	1.70(-2)	-0.001	1.66(-2)
			10	-99.001	0.007	2789.096	1.65(-2)	0.003	1.61(-2)
			11	-69.927	0.017	2818.137	1.62(-2)	0.011	1.62(-2)
			10	28 200	0.046	2840.660	1.25(2)	0.020	1.22(-2)
			14	30.390	0.040	2043.003	1.00(-2)	0.030	1.02(-2)
			13	-4.478	0.131	2883.618	1.42(-2)	0.093	1.39(-2)
			14	31.834^{\dagger}	0.178	2920.169	2.22(-2)	-0.016	1.73(-2)
			15	71.546^{\dagger}	-0.828	2958.869	1.57(-2)	0.080	1.28(-2)
			16	$113\ 779^{\dagger}$	-2 191	2999 906	1.22(-2)	0 159	1.22(-2)
			10	154.000*	-2.131	2999.900	1.22(-2)	0.155	1.22(-2)
			17	154.293	0.629	3043.148	1.13(-2)	0.251	1.23(-2)
			18	201.702^{+}	-2.164	3088.964	1.70(-2)	-0.308	1.37(-2)
			19	252.514^{\ddagger}	-6.212	3134.659	2.88(-2)	0.904	2.03(-2)
			20	301.723^{\ddagger}	-7.021	3186.036	1.58(-2)	1.044	1.28(-2)
-	-	0	-	195 050	0.000	2000 257		0.000	
7	5	0	5	135.959*	0.000	3008.357	3.69(-2)	-0.003	3.69(-2)
			6	151.847^{\ddagger}	0.000	3024.623	4.22(-2)	0.023	6.56(-2)
			7	170.338^{\ddagger}	0.000	3042.951	2.10(-2)	0.021	3.46(-2)
			8	101 /19 [‡]	0.000	2062 062	977(-9)	0 197	9.26 (1)
			0	101-114	0.000	0000.000	2.11(-2)	0.127	2.00(-1)
			9	215.044+	0.000	3087.546	2.55(-2)	-0.032	3.20(-2)
			10	241.206^{\ddagger}	0.001	3113.658	2.39(-2)	-0.016	2.44(-2)
			11	269.870^{\ddagger}	0.001	3142.310	2.49(-2)	-0.011	2.48(-2)
			12	300.998^{\ddagger}	0.003	3173,388	2.61(-2)	-0.009	2.18(-2)
			19	294 EFET	0.000	2006 010	2.07(-2)	0.000	2.04(2)
			10	004.000 ⁺	0.008	5200.918	2.07(-2)	-0.003	2.04 (-2)
			14	370.496^{\ddagger}	0.017	3242.837	2.01(-2)	0.003	1.94(-2)
			15	408.775^{\ddagger}	0.032	3281.111	1.82(-2)	0.009	1.81(-2)

TABLE	CIII:	continued
-------	-------	-----------

3	0	0	0	-608.959		2327.928	5.04(-3)		
			1	-606.435		2330.766	5.34(-3)		
			2	-601.428		2336.426	6.44(-3)		
			3	-593.988		2344.875	9.11(-3)		
			4	-577.644		2356.093	3.69(-3)		
			5	-563.761		2370.042	3.72(-3)		
			6	-547.106		2386.697	3.42(-3)		
			7	-527.698		2406.030	2.50(-3)		
			8	-505.569		2428.021	5.87(-3)		
			9	-480.752		2452.632	3.77(-3)		
			10	-453.282		2479.832	3.69(-3)		
			11	-423.202		2509.587	4.29(-3)		
			12	-390.554		2541.862	3.40(-3)		
			13	-355.385		2576.609	2.99(-3)		
			14	-317.747		2613.781	2.90(-3)		
			15	-277.703		2653.314	2.68(-3)		
			16	-235.260		2694.907	4.75(-2)		
			17	-190.566		2739.482	2.30(-3)		
			18	-143.643		2785.789	3.08(-3)		
			19	-94.564		2834.258	2.64(-3)		
			20	-43.415		2884.798	2.37(-3)		
4	1	0	1	-508.614	0.471	2416.732	5.07(-3)	0.406	5.30(-3)
			2	-503.728	1.408	2421.658	9.33(-3)	1.219	2.95(-2)
			3	-496.397	2.799	2429.029	7.51(-3)	2.419	1.87(-2)
			4	-486.621	4.626	2438.856	7.05(-3)	4.008	3.27(-2)
			5	-474.399	6.862	2451.132	6.83(-3)	5.894	2.55(-2)
			6	-459.733	9.453	2465.851	6.73(-3)	8.201	5.56(-3)
			7	-442.629	12.199	2483.004	6.73(-3)	10.777	7.10(-3)
			8	-423.106	17.000	2502.577	6.94(-3)	13.523	1.13(-2)
			9	-401.248	20.390	2524.580	1.33(-2)	15.861	2.93(-2)
			10	-376.795	24.246	2548.878	7.72(-3)	21.984	1.45(-2)
			11	-350.547	29.025	2575.496	1.01(-2)	25.451	8.01(-3)
			12	-318.649	30.759	2604.023	2.22(-2)	29.808	6.97(-3)
			13	-287.571	35.818	2635.448	4.12(-2)	33.761	7.13(-3)
			14	-253.704	40.477	2672.580	1.73(-2)	34.316	8.37(-3)
			15	-217.363	44.887	2708.098	8.74(-3)	38.596	9.62(-3)
			16	-178.653	48.929	2746.287	6.12(-3)	42.046	1.10(-2)
			17	-137.635	52.355	2786.843	5.11(-3)	44.768	1.34(-2)
			18	-94.361	55.377	2829.646	4.60(-3)	46.666	1.57(-2)
			19	-48.882	48.882	2874.617	4.22(-3)	47.673	1.80(-2)
			20	-1.253	56.989	2921.689	4.13 (-3)	48.452	2.22(-2)
							. /		. /

 a The lowest levels of the groups shown are marked with the yellow crosses in Fig. 3 of the paper.

^b The conversion of the label $(v_r b k v_R J p)$ to the labels $[v_r v_\theta v_R]$ and J_{K_a,K_c} of the vibrational state and the rotational level, respectively, is: $v_\theta = b - k$, $K_a = k$, and $K_c = J - k + \frac{1 - p_k p}{2}$ with $p_k = (-1)^k$. The levels shown represent thus 16 vibrational states: $[v_r 0 0]$, $[v_r 0 1]$, $[v_r 0 2]$, $[v_r 0 3]$, $[v_r 1 0]$, $[v_r 1 1]$, $[v_r 2 0]$, and $[v_r 3 0]$ with $v_r = 0, 1$.

 c Bound state energy of highest J-value in the complex.

^{\dagger} Level of *e*-parity pertains to a rotational resonance. ^{\ddagger} Both *e*- and *f*-parity level have nonzero widths due to rotational predissociation and/or tunneling through centrifugal barriers.

^d An example of crossing of sequences of J^{p} -levels from different $(v_r b k v_R)$ groups, here, of the *f*-parity levels from groups $(1\,1\,1\,3)$ and $(1\,3\,1\,0)$.

^e A crossing between levels from groups (0321) and (0113).

^{*f*} A crossing between levels from groups $(0\,4\,3\,0)$ and $(0\,2\,1\,1)$. The groups belong to vibrational states $[0\,1\,0]$ and $[0\,1\,1]$, repectively. Thus, this crossing as well as the one mentioned in footnote *e* may have a significant role in lowering the accuracy of the approximate formula for the integrated band intensity, Eq. (C21), in application to bands $[0\,1\,0] \rightarrow [0\,1\,1]$ and $[0\,1\,0] \rightarrow [1\,1\,0]$, see Fig. C6.

^g A crossing between levels from groups (1 3 3 1) and (1 3 2 0). Its effects are the enhanced intensities of several P- and Q-lines in the K_a =3-3 subband of the $[0 0 0] \rightarrow [1 0 1]$ band, seen in Fig. C3 as the two peaks around ν_{if} =3200 cm⁻¹.

	k=0			k	=1			k:	=2			k:	=3	
J	E	Г	E(e)	$\Gamma(e)$	$E(f-e)^b$	$\Gamma(f)$	E(e)	$\Gamma(e)$	E(f-e)	$\Gamma(f)$	E(e)	$\Gamma(e)$	E(f-e)	$\Gamma(f)$
0	3926.60	3.2												
1	3929.66	3.2	3957.13	3.2	0.10	3.2								
2	3935.76	3.2	3963.12	3.1	0.31	3.1	4045.52	3.1	0.00	3.1				
3	3944.91	3.2	3972.10	3.1	0.62	3.1	4054.62	3.0	-0.00	3.0	4190.72	3.5	-0.00	3.5
4	3957.10	3.2	3984.07	3.0	1.04	3.0	4066.75	3.1	-0.00	3.0	4202.77	3.4	-0.00	3.4
5	3972.31	2.6	3998.90	3.0	1.56	3.0	4081.89	3.1	-0.01	2.9	4217.81	3.4	0.00	3.4
6	3990.53	2.8	4016.86	2.9	2.17	2.9	4100.04	2.9	-0.01	2.9	4235.84	3.4	-0.00	3.3
7	4011.75	2.9	4037.75	2.9	2.88	2.9	4121.17	2.6	-0.03	3.1	4256.83	3.4	-0.00	3.3
8	4035.93	2.9	4061.51	2.8	3.69	2.8	4145.27	4.1	-0.07	3.2	4280.78	5.4	-0.01	9.1
9	4063.07	2.4	4088.19	2.7	4.59	2.7	4172.33	2.8	-0.07	2.6	4307.63	3.0	0.00	2.9
10	4093.12	2.8	4117.75	2.7	5.58	2.6	4202.31	2.7	-0.11	3.1	4337.39	2.8	0.00	2.7
11	4126.08	2.4	4150.16	2.6	6.66	2.6	4235.19	2.8	-0.16	3.7	4370.03	4.4	0.00	3.8
12	4161.89	2.5	4185.40	2.8	7.82	3.0	4270.94	2.6	-0.21	2.6	4405.52	2.9	-0.01	2.7
13	4200.53	2.6	4223.45	2.1	9.05	2.2	4309.54	2.5	-0.28	2.5	4443.81	2.7	0.01	2.6
14	4241.96	2.1	4264.26	2.1	10.36	2.2	4350.95	2.4	-0.37	2.3	4484.88	2.7	0.01	2.4
15	4286.14	2.1	4307.79	2.1	11.75	2.0	4395.14	2.3	-0.48	2.3	4528.69	2.6	0.01	2.0
16	4333.02	2.2	4354.01	1.9	13.19	1.8	4442.05	2.2	-0.60	2.1	4575.20	2.0	0.02	2.2
17	4382.57	1.7	4402.88	1.8	14.70	1.8	4491.66	2.1	-0.75	2.0	4624.37	2.2	0.02	2.5
18	4434.72	1.6	4454.35	3.4	16.24	1.7	4543.91	1.9	-0.91	1.9	4676.14	2.1	0.03	2.1
19	4489.43	1.1	4508.37	1.7	17.86	1.6	4598.75	2.4	-1.10	1.9	4730.46	2.0	0.04	1.9
20	4546.64	1.4	4564.89	1.4	19.51	1.9	4656.13	1.6	-1.30	1.6	4787.28	2.0	0.06	1.9
21	4606.29	1.4	4623.86	1.3	21.19	1.3	4715.99	1.5	-1.53	1.7	4846.55	1.6	0.08	1.6
22	4668.33	1.2	4685.21	1.3	22.90	1.2	4778.27	1.6	-1.77	1.4	4908.19	1.5	0.11	1.5
23	4732.68	1.1	4748.89	1.1	24.63	1.1	4842.91	1.1	-2.03	1.1	4972.14	1.4	0.15	1.9
24	4799.28	1.0	4814.84	1.0	26.37	1.0	4909.83	1.0	-2.31	1.0	5038.33	1.3	0.20	1.2
25	4868.06	0.9	4882.97	0.9	28.12	0.9	4978.95	0.8	-2.61	1.0	5106.67	1.0	0.26	1.1

TABLE CIV: Positions (E) and widths (Γ , in 10^{-2} cm⁻¹) of lowest rotational levels in four groups $(b k=b v_R=0)$ below v=2 j=0 threshold^a, i.e. in the $[v_r=200]$ vibrational state.

^{*a*}As obtained from the asymptotic part of the PES for LiHH⁺ of Ref. 3, the threshold lies 5862.36 cm⁻¹ above the v=0 j=0 threshold. This is too low by 5.76 cm⁻¹ in comparison with the exact value of $\varepsilon_{20}-\varepsilon_{00}$ for D₂¹ (and by 7.33 cm⁻¹ in comparison with the value determined in the Born-Oppenheimer approximation, see Fig. B1 in Part B).

 $^b\mathrm{Denotes}\ E(f)-E(e),$ i.e. the K-type doubling. See Figs. C1 and C2.

TABLE CV: Total internal partition sum (Z) of the Li ⁺ -D ₂	$_2$ ion at selected temperatures below 400 K.
Bound states levels only (3503) are included into the sum.	See Table BVII and Fig. B4 in Part B.

Т	Z	T	Z	T	Z	T	Z
0.5	6.003	20	62.130	85	430.76	250	2821.2
1	6.215	22	69.605	90	469.40	260	3069.8
1.5	6.944	24	77.369	95	509.54	270	3334.2
2	8.005	26	85.408	100	551.22	273.15	3420.9
2.5	9.210	28	93.712	110	639.32	280	3615.0
3	10.477	30	102.27	120	734.08	290	3912.6
3.5	11.774	34	120.13	130	835.92	296	4099.5
4	13.088	38	138.96	140	945.35	300	4227.7
5	15.746	42	158.74	150	1062.9	310	4560.6
6	18.429	46	179.48	160	1189.1	320	4911.7
7	21.139	50	201.16	170	1324.7	330	5281.3
8	23.882	54	223.79	180	1470.1	340	5669.8
9	26.669	58	247.36	190	1626.1	350	6077.4
10	29.512	62	271.86	200	1793.3	360	6504.1
12	35.396	66	297.29	210	1972.4	370	6950.3
14	41.588	70	323.65	220	2164.1	380	7415.8
16	48.109	75	357.90	230	2369.0	390	7900.7
18	54.960	80	393.60	240	2587.9	400	8404.9

TABLE CVI: Li⁺–D₂. Least-squares fits of rotational energies in vibrational states $[v_r v_\theta v_R] = [0 \ 0 \ 0]$ and $[1 \ 0 \ 0]$ to eigenvalues of A-reduced Hamiltonian of Watson (Ref. 5) with four and five quartic terms. Comparison of the parameters obtained from energies calculated in this work and in Ref. 4 with the parameters obtained in Ref. 7 from transitions energies measured in the $v_r=0 \rightarrow 1$ band^a. All entries are in cm⁻¹.

		[(0 0 0]		$[1 \ 0 \ 0]$						
	This work	Cal (Ref. 4)	$\mathrm{Cal}{\leftrightarrow}\mathrm{Exp}^b$	This work	This work	Cal (Ref. 4)	$\mathrm{Cal}{\leftrightarrow}\mathrm{Exp}^b$	This work			
$\frac{E_0{}^c}{N_{\rm fit}{}^d}$	$0.000 \\ 51^{e}$	$0.00 \\ 48^{g}$		$0.000 \\ 61^{f}$	2915.447 51^{e}	$2917.6 \\ 42^{h}$	0.827 {3.0}	$2915.447 \\ 61^{f}$			
$A \\ \Delta A$	31.5960(7)	31.111(1)		31.5954(14)	30.2929(9) - 1.303(2)	29.616(7) - 1.495(7)	$3.6 \{ 18.8 \}$	30.2929(12) - 1.302(3)			
В	1.58998(4)	1.5857(1)	$-0.5 \{-0.8\}$	1.59610(40)	1.58453(5)	1.5914(5)	$-0.6 \{-0.1\}$	1.5904(3)			
C $\Delta_J \times 10^4$	1.48902(4) 1.168(1)	1.4902(1) 1.046(5)	$-0.7 \{ -0.7 \}$ $0.4 \{ -10.1 \}$	1.48274(41) 1.188(2)	1.48187(4) 1.134(1)	1.4955(5) - 0.09(2)	$-0.8 \{ 0.1 \}$ 0.8	1.4759(3) 1.155(1)			
$\delta_J\!\times\!10^6$	6.9(1)	5.5(6)		6.8(3)	6.8(2)			6.7(2)			
$\Delta_{JK} \times 10^3$	2.279(7)	2.20(9)	$0.4 \{-3.1\}^j$	2.173(11)	2.101(8)	-1.84(7)	0.0	2.018(9)			
$\Delta_K \times 10^2$	3.28(2)	2.04(3)		3.32(4)	2.79(2)	-6.4(2)		2.83(3)			
$\delta_K imes 10^3$	-	-		3.12(20)	-	-		2.96(16)			
$\sigma \times 10^{3i}$	1.8	4		3.8	2.1	15		3.2			

^{*a*}Fit to 103 transition energies in the three $K_a=0-0$, 1–1, 2-2 subbands.

^bShown are absolute deviations Cal-Exp for E_0 and percentage deviations for the other quantities: (X^{Cal}/X^{Exp}-1)×100%. These in braces concern the calculations of Ref. 4.

^cEnergy of J=0 level relative to the ground state of the complex.

^dTotal number of rotational energies used in the fit.

^eLevels from k=0, k=1, and k=2 groups included in the fit: J=1-15, $J^{e,f}=1-12$, and $J^{e,f}=2-7$, respectively. ^f $J^{e,f}=8-12$ levels of k=2 group added to the set specified in e.

^gIncluded all levels available from $k{=}0, 1, 2$ groups, for Js up to $J_{\text{max}}{=}10$

^hLevels included: $J^{e,f} = 1-10$ from k=0, 1 groups and $J^{e,f} = 2-7$ from k=2.

^{*i*}Root mean square deviation between fitted and calculated energies.

^jThe '-' sign of the experimental value listed in Table II of Ref. 7 is most likely a misprint. The value of Δ_{JK} should be close to the difference between the values of (B+C)/2 from the fits to $K_a=0,1,2$ and to $K_a=1$ manifolds. See comment (ii) and Table CVIIa below.

TABLE CVIa. Comparison of the parameters $A, B, C, \ldots := X^a$ from the fits to the full Watson's Hamiltonian (*H* of Eq. 26) with parameters _(i) X from fits to truncated versions (_(i)H) with $2 \le i < 5$ quartic terms ^b.

			[0 0]	0]			[1 0 0]						
		$_{(i)}X$		$\binom{1}{(i)}X$	$Z/_{(i)}X^{\mathbf{x}}$	$(-1) \times 10^{5 c}$		$_{(i)}X$		$(_{(i)}X/_{(i)}X^{x}-1) \times 10^{5} c$			
	i=2	i=3	i=4	i=2	i=3	i=4	i=2	i=3	i=4	i=2	i=3	i=4	
$_{(i)}A$	31.562	31.563	31.5960	6	3	2	30.263	30.265	31.5954	1	1	0	
$_{(i)}B$	1.5877	1.5900	1.58998	0.4	8	7	1.5824	1.5846	1.59610	-4	8	3	
$C_{(i)}$	1.4867	1.4890	1.48902	-7	2	3	1.4797	1.4819	1.48274	-7	5	3	
			(_{(i}	${\binom{(i)}{X/X}-1} \times 10^2$					${\binom{(i)}{X/X}-1}\times 10^2$				
$_{(i)}\Delta_J \times 10^4$	1.165	1.170	1.168	-2	-1.5	-2	1.132	1.137	1.134	2	-2	-2	
$_{(i)}\delta_J \times 10^6$	7.0	6.9	6.9	3	1.5	1	6.9	6.9	6.8	3	3	1.5	
$_{(i)}\Delta_{JK} \times 10^3$		2.29	2.279		5	5		2.12	2.101		5	4	
$_{(i)}\Delta_K \times 10^2$			3.28			-1			2.79			-1	

^{*a*} X — the parameters listed in 5-th and 9-th columns of Table CVI.

 $b_{(i)}X$ — from fits to k=1, k=0-1, and k=0-2 groups for i=2, 3, and 4, respectively,

rewritten from Tables III, CIX, and CVI.

^c_(i) X^{x} — functions of the parameters X, the right-hand sides of the relations listed in Table CVIIa, e.g. ₍₂₎ $A^{x} = A - \Delta_{JK} - \Delta_{K}$, ₍₃₎ $A^{x} = A - \Delta_{K}$, ₍₄₎ $A^{x} = A$.

COMMENTS

- (i) The fits of the experimental transition energies and of the calculated energies of the initial and final states to energies of the A-reduced Hamiltonian truncated to four quartic terms show the same consistency as the fits presented in Table III of the paper, using two quartic terms.
- (ii) The relations tested in Table CVIIa, between the parameters of Watson's Hamiltonian H(in the 'full' quartic approximation, Eq. 26) and the parameters of its truncated versions ${}_{(i)}H$, come from inspection of the matrix elements of these Hamiltonians in the basis of symmetric top wavefunctions⁶. Let us denote them as: $\langle JKM|H|JK'M\rangle := H_{K,K'}(X;J)$ and $\langle JKM|_{(i)}H|JK'M\rangle := H_{K,K'}({}_{(i)}X;J)$ where X and ${}_{(i)}X$ are the sets of 3+i parameters: $X := (A, B, C, \Delta_J, \delta_J, \Delta_{JK}, \Delta_K, \delta_K)$ for $i=5, {}_{(2)}X := ({}_{(2)}A, {}_{(2)}B, {}_{(2)}C, {}_{(2)}\Delta_J, {}_{(2)}\delta_J), \dots$

The use of the Hamiltonian H for parametrization of sets including k=0-2 groups of levels consists in fitting to the following five eigenvalues of the matrix $\{H_{K,K'}(X;J)\}$ for $K, K'=-2, \ldots, 2$,

$$E(X; k=0, J) \approx H_{0,0}(X; J) - \frac{2H_{0,2}^2(X; J)}{H_{2,2}(X; J) - H_{0,0}(X; J)},$$
(C1)

$$E(X;k=1^{p},J) = H_{1,1}(X;J) - p H_{-1,1}(X;J), \qquad (C2)$$

$$E(X; k=2^p, J) \approx H_{2,2}(X; J) + \delta_{p,1} \frac{2H_{0,2}^2(X; J)}{H_{2,2}(X; J) - H_{0,0}(X; J)} \text{ for } p=1, -1(e, f).$$
 (C3)

The two matrix elements in the two eigenvalue functions for representing levels in k=1 group are:

$$H_{1,1}(X;J) = A - \frac{1}{2}(B+C) - \Delta_K + \left(\frac{1}{2}(B+C) - \Delta_{JK}\right)[J] - \Delta_J[J]^2,$$

$$H_{-1,1}(X;J) = \left(\frac{1}{4}(B-C) - \delta_K\right)[J] - \delta_J[J]^2.$$

Comparing them to the elements of $_{(2)}H$,

$$\begin{split} H_{1,1}(_{_{(2)}}X;J) &= {}_{_{(2)}}A - \frac{1}{2}(_{_{(2)}}B + {}_{_{(2)}}C) + \frac{1}{2}(_{_{(2)}}B + {}_{_{(2)}}C)[J] - {}_{_{(2)}}\Delta_J[J]^2 , \\ H_{-1,1}(_{_{(2)}}X;J) &= \frac{1}{4}(_{_{(2)}}B - {}_{_{(2)}}C)[J] - {}_{_{(2)}}\delta_J[J]^2 , \end{split}$$

one notices that

$$H_{K,K'}(X;J) = H_{K,K'}(_{(2)}X;J) \quad \text{for} \quad (K,K') = (1,1), (-1,1) \quad (C4)$$

when

$${}_{\scriptscriptstyle (2)}A = A - \Delta_{JK} - \Delta_K, {}_{\scriptscriptstyle (2)}B = B - \Delta_{JK} - 2\delta_K, {}_{\scriptscriptstyle (2)}C = C - \Delta_{JK} + 2\delta_K, {}_{\scriptscriptstyle (2)}\Delta_J = \Delta_J, \text{ and } {}_{\scriptscriptstyle (2)}\delta_J = \delta_J.$$

The elements $H_{0,0}(X;J)$ and $H_{2,2}(X;J)$ are also second-order polynomials of [J],

$$H_{0,0}(X;J) = \frac{1}{2}(B+C)[J] - \Delta_J[J]^2, \qquad (C5)$$

$$H_{2,2}(X;J) = 4A - 2(B+C) - 16\Delta_K - 4\Delta_{JK}[J] + H_{0,0}(X;J).$$
(C6)

Thus, the following equalities

$$H_{K,K'}(X;J) = H_{K,K'}(_{(3)}X;J) \quad \text{for} \quad (K,K') = (0,0), (1,1), (-1,1) \quad (C7)$$

and
$$H_{K,K'}(X;J) = H_{K,K'}(_{(4)}X;J)$$
 for $(K,K') = (0,0), (1,1), (-1,1), (2,2)$ (C8)

give two systems of linear equations for determining the parameters ${}_{(3)}X$ and ${}_{(4)}X$ in terms of the parameters X. The solutions should be treated as approximate relations between the parameters obtained from actual fits to k=0-1 and k=0-2 sets of levels, in part, because of $H_{0,2}({}_{(i)}X, J) \neq H_{0,2}(X; J)$,

$$H_{0,2}(X;J) = \left\{ \frac{1}{4}(B-C) - 2\delta_K - \delta_J[J] \right\} \left\{ ([J]-2)[J] \right\}^{1/2}.$$
 (C9)

All the relations established, in the described way, between the parameters $_{(i<5)}X$ and $_{(5)}X:=X$ are collected in Table CVIIa.

(iii) Using Eqs. (C1)–(C6) one can derive approximate formulas which connect the parameters $_{(i)}^{X}$ for i=2, 3, 4 to the parameters $X^{k^{p}}=(E_{o}^{k^{p}}, B^{k^{p}}, D^{k^{p}})$ defined in Sec. IVB of the paper. These formulas are listed in part b) of Table CVII.

Overall usefulness of the relations is tested in Table CVIII, on the parameters $_{(4)}X$ for five vibrational states with $\sum_{m} v_{m} = 1, 2$ of the Li⁺–D₂ complex, and in Table CIX — on the parameters $_{(3)}X$ for the four $\sum_{m} v_{m} \leq 1$ states of both complexes. The conclusion is that the relations allow for predicting values of the rotational constants $_{(i)}A$, $_{(i)}B$, and $_{(i)}C$ obtainable from actual fits to the truncated Hamiltonians $_{(i)}H$ with accuracy better than 0.1%.

(iv) Defining: $\overline{E}(X;k,J) = \frac{1}{2-\delta_{k,0}} \sum_{p} E(X;k^{p},J)$

and expanding these quantities in powers of [J],

$$\overline{E}(X;k,J) \approx \overline{E}_{o}(X;k) + \overline{B}(X;k)[J] - \overline{D}(X;k)[J]^{2} + \dots$$

one can derive the following relations between coefficients of these expansions for k=0-2:

$$-3\overline{E}_{o}(X;k=0) + 4\overline{E}_{o}(X;k=1) - \overline{E}_{o}(X;k=2) = 12\Delta_{K}, \qquad (C10)$$

$$\overline{B}(X;k=0) - 3\overline{B}(X;k=1) + 2\overline{B}(X;k=2) \approx -6\Delta_{JK}, \quad (C11)$$

$$\overline{D}(X;k=0) - 3\overline{D}(X;k=1) + 2\overline{D}(X;k=2) \approx 0.$$
(C12)

These relations should be approximately satisfied by the respective averages of the parameters X^{k^p} , $\overline{X}(k) = \frac{1}{2} \sum X^{k^p}$ for $X = E_0, B, D$.

$$\overline{F}(k) = \frac{1}{2-\delta_{k,0}} \sum_{p} X^{k^p}$$
 for $X = E_0, B, D,$

and the parameters $_{(4)}\Delta_K$ and $_{(4)}\Delta_{JK}$ or $_{(3)}\Delta_{JK}$.

For the seven states $[v_r v_\theta v_R]$ for which the ${}_{(4)}\Delta_K$'s and ${}_{(4)}\Delta_{JK}$'s are available in Tables CVI and CVIII and the X^{k^p} 's — in Table VII, relation (C10) is satisfied with deviations $|\text{lhs/rhs}-1| \times 100\% \leq 5\%$ and relation (C11) — with deviations $\leq 18\%$.

The relations described in comment (iii) can also be used to analyze the f-e energy splitting (*K*-type doubling) which is shown for K=1 in Fig. 7 of the paper, namely, to indicate the 'asymmetry splitting' contribution⁸. This is done in Fig. C1.

In some vibrational states of the Li⁺–D₂ complex, the f-e splitting of rotational levels in k=2 groups, i.e. the K=2 doubling, appears also describable with the near-rigid rotor model in the quartic approximation. This is demonstrated in the right panel of Fig. C1.

TABLE CVII: a) Relations of parameters ${}_{(i)}X$ of A-reduced Hamiltonian truncated to include $2 \le i < 5$ quartic centrifugal distortion terms to parameters $X = A, B, C, \Delta_J, \delta_J, \Delta_{JK}, \Delta_K, \delta_K$ of the Hamiltonian with all five these terms^{\$\delta\$}. b) Relations of parameters ${}_{(i)}X$ to parameters $E_{o}^{k^{p}}, B^{k^{p}}$, and $D^{k^{p}}$ representing levels in single subgroups k^{p} for p = e, f, see Table VII in the paper.

a) $_{(2)}A \approx A - \Delta_{JK} - \Delta_{K}$ $_{(2)}B \approx B - \Delta_{JK} - 2\delta_{K}$ $_{(2)}C \approx C - \Delta_{JK} + 2\delta_{K}$	${}_{(3)}A \approx A - \Delta_K$ ${}_{(3)}B \approx B - 2\delta_K$ ${}_{(3)}C \approx C + 2\delta_K$	$A \approx A$ $A \approx B - 2\delta_K$ $A \approx C + 2\delta_K$ $A \approx C + 2\delta_K$ $A \approx C + 2\delta_K$
b) $_{(2)}A \approx \frac{1}{2} \sum_{p} (E_{o}^{1^{p}} + B^{1^{p}}) - E_{o}^{0}$ $_{(2)}B \approx \frac{1}{2} (3B^{1^{f}} - B^{1^{e}})$ $_{(2)}C \approx \frac{1}{2} (3B^{1^{e}} - B^{1^{f}})$ $_{(2)}\Delta_{J} \approx \frac{1}{2} (D^{1^{f}} + D^{1^{e}})$ $_{(2)}\delta_{J} \approx \frac{1}{2} (D^{1^{f}} - D^{1^{e}})$	$ {}_{(3)}A \approx \frac{1}{2}(E_{o}^{1^{e}} + E_{o}^{1^{f}}) + B^{0} - E_{o}^{0} $ $ {}_{(3)}B \approx B^{0} + B^{1^{f}} - B^{1^{e}} $ $ {}_{(3)}C \approx B^{0} + B^{1^{e}} - B^{1^{f}} $ $ {}_{(3)}\Delta_{J} \approx {}_{(2)}\Delta_{J} $ $ {}_{(3)}\delta_{J} \approx {}_{(2)}\delta_{J} $ $ {}_{(3)}\Delta_{JK} \approx B^{0} - \frac{1}{2}(B^{1^{f}} + B^{1^{e}}) $	$ {}_{(4)}A \approx \frac{1}{2}(E_{o}^{1^{e}} + E_{o}^{1^{f}}) + B^{0} - E_{o}^{0} + {}_{(4)}\Delta_{K} $ $ {}_{(4)}B \approx {}_{(3)}B $ $ {}_{(4)}C \approx {}_{(3)}C $ $ {}_{(4)}\Delta_{J} \approx \frac{1}{4}(D^{1^{f}} + D^{1^{e}}) + \frac{1}{2}D^{2^{f}} $ $ {}_{(4)}\delta_{J} \approx {}_{(2)}\delta_{J} $ $ {}_{(4)}\Delta_{JK} \approx \frac{1}{8}(5B^{0} - B^{2^{f}}) - \frac{1}{4}(B^{1^{f}} + B^{1^{e}}) $ $ {}_{(4)}\Delta_{K} \approx \sum_{p}(\frac{1}{6}E^{1^{p}} - \frac{1}{24}E^{2^{p}}) - \frac{1}{4}E_{o}^{0} $

 \diamond obtained by analyzing fits to k=1, k=0-1, and k=0-2 groups of J levels for i=2, i=3, and i=4, 5, respectively. See, Eqs. (C1)–(C6). (+) the relations for the centrifugal distortion parameters are: ${}_{(i)}\Delta_J \approx \Delta_J$ and ${}_{(i)}\delta_J \approx \delta_J$ for i=2-4, ${}_{(i)}\Delta_{JK} \approx \Delta_{JK}$ for i=3-4, and ${}_{(4)}\Delta_K \approx \Delta_K$.

(*) the expression for ${}_{(3)}\Delta_J$ and for ${}_{(3)}\Delta_{JK}$ should be used when values of the parameters D^{2^f} and B^{2^f} are evidently disturbed, as eg. in the case of state [1 1 0] in Table VII.

TABLE CVIII: Parameters of A-reduced Hamiltonian, truncated to four quartic terms, for rotational energies in several low-excited vibrational states of the Li⁺–D₂ complex obtained from fits to $N_{\rm fit}$ levels belonging to k=0-2 groups, denoted as $_{(4)}X$ for $X=A, B, C, \ldots$, and from the expressions of Table CVIIb, denoted here as $_{(4)}\tilde{X}$.

			$_{(4)}X$			$\left(_{\scriptscriptstyle (4)}\widetilde{X}/_{\scriptscriptstyle (4)}X-1 ight)\! imes\!100\%$				
	[010]	[001]	[200]	[110]	[101]	[010]	[001]	[200]	[110]	[101]
E_0	451.292	333.143	5710.215	3371.072	3251.345					
N_{fit}	45	59	51	45	57					
A	38.694(6)	32.082(2)	29.077(1)	36.619(8)	30.741(3)	0.09	-0.01	-0.00	-0.05	-0.03
В	1.5457(2)	1.4846(1)	1.57950(4)	1.5361(3)	1.4827(1)	-0.01	0.01	-0.01	0.00	-0.00
C	1.4109(2)	1.3899(1)	1.47508(3)	1.4028(3)	1.3861(1)	-0.01	0.00	-0.01	-0.01	0.00
$\Delta_J \times 10^4$	1.210(6)	1.238(2)	1.107(1)	1.15(1)	1.20(2)	8.0	1.4	1.1	3.6	1.4
$\delta_J \times 10^6$	9.8(7)	7.5(2)	6.6(1)	8.7(9)	7.4(2)	-3.1	2.0	0.8	1.1	0.7
$\Delta_{JK}{\times}10^3$	3.36(6)	2.03(2)	1.977(6)	3.18(8)	1.95(2)	9.0	2.2	-2.6	0.6	3.8
$\Delta_K \times 10^2$	21.5(1)	5.90(6)	2.48(2)	17.8(2)	5.08(7)	3.5	-2.6	0.5	-4.2	-6.3
$\sigma{\times}10^3$	11	4	1.6	16	8					

TABLE CVIIIb. Test of linear dependence of the rotational constants and their inverses (~moments of inertia) on the vibrational quantum numbers $v_r(:=v_1)$, $v_{\theta}(:=v_2)$, and $v_R(:=v_3)$ in low-excited states.

The symbol $_{(4)}\hat{X}$ for states with $\sum_{i} v_i > 1$ denotes value extrapolated from the values $_{(4)}X$ for states with $\sum_{i} v_i \leq 1$ according to the formula

$$\widehat{X}([v_1 \, v_2 \, v_3]) = X([0 \, 0 \, 0]) \times (1 - \sum_{i=1}^3 v_i) + \sum_{i=1}^3 X([\delta_{i,1} \, \delta_{i,2} \, \delta_{i,3}]) \times v_i \,. \quad (C13)$$

The values of $_{(4)}X([0\ 0\ 0])$ and $_{(4)}X([1\ 0\ 0])$ for X=A, B, C are listed in Table CVI, in 2-nd and 6-th column, respectively. $\sim\Delta:=1/C-1/A-1/B$.

	$({}_{\scriptscriptstyle (4)}\widehat{X}/{}_{\scriptscriptstyle (4)}X-1) \times 100\%$
	$[200]\ [110] [101]$
A	-0.3 2.1 0.12
B	-0.03 0.27 -0.24
C	-0.02 0.07 -0.24
1/A	-0.05 - 0.38 0.01
1/B	0.02 - 0.29 - 0.19
1/C	0.02 - 0.12 - 0.18
$\sim \Delta$	-0.01 3.27 -0.24

Li^+-D_2 Fig. C1. *K*-type doubling

Left: K=1 doubling, from 'exact' close-coupling calculations (black symbols), from approximate expressions (gray symbols, indistinguishable from the black ones):

$$\Delta(J) := (B^{1^f} - B^{1^e})[J] - (D^{1^f} - D^{1^e})[J]^2 \approx \frac{1}{2}(B - C)[J] - 2(\delta_K + \delta_J[J])[J]$$
(C14)

with [J]:=J(J+1), and the 'K=1 asymmetry splitting' part⁸ — the first term of the second expression. $\Delta_1(J):=\Delta(J)+\Delta(J+1)$ is the quantity which, for states [000] and [100], is confronted with experiment in Table IV of the paper. Since

$$\Delta_1(J) \approx \left\{ \frac{1}{2}(B - C) - 2(\delta_K + \delta_J[J]) - 2\delta_J(J + 2) \right\} \times 2(J + 1)^2 \,,$$

the pure asymmetry part of this quantity, $(B-C)\times(J+1)^2$, is also represented by the violet symbols. Right: K=2 doubling, 'exact' (black), approximated (gray) by the expression:

$$\frac{1}{2}(H_{2,2}-H_{0,0})\left\{1-\left(1+8\frac{H_{0,2}^2}{(H_{2,2}-H_{0,0})^2}\right)^{1/2}\right\}$$
(C15)

with $H_{0,0}$, $H_{2,2}$, and $H_{0,2}$ given in Eqs. (C5)–(C6) and (C9), respectively,

and the 'K=2 asymmetry splitting' part⁸ — obtained by setting the Δs and δs to zero.

The constants $A, B, C, \Delta_{JK}, \delta_J$, and δ_K come from fitting sets of 'exact' energies in k=0-2 groups to eingenvalues of Watson A-reduced Hamiltonian with all quartic terms included; the values for states $[0\,0\,0]$ and $[1\,0\,0]$ are listed in Table CVI, in 5-th and 9-th column, respectively. The values from analogous fit for $[2\,0\,0]$ are: $A=29.077(1), B=1.5843(4), C=1.4701(4), \Delta_J \times 10^4 = 1.124(2), \delta_J \times 10^6 = 6.5(3), \Delta_{JK} \times 10^3 = 1.91(1), \Delta_K \times 10^2 = 2.53(4), \text{ and } \delta_K \times 10^3 = 2.46(20) \text{ cm}^{-1}$. [Error: $\sigma \times 10^3 = 4.0$].

The values for [0 0 1]: A=32.084(4), B=1.4933(7), C=1.3814(8), $\Delta_J \times 10^4 = 1.271(3)$, $\delta_J \times 10^6 = 7.3(6)$, $\Delta_{JK} \times 10^3 = 2.01(3)$, $\Delta_K \times 10^2 = 5.93(7)$, and $\delta_K \times 10^3 = 4.3(4)$ cm⁻¹. [Error: $\sigma \times 10^3 = 7.6$].

It should be noted that the K=2 doubling, Eq. (C15), unlike the K=1 doubling, Eq. (C14), is not adequately described by polynomial which would result from the fits in Table VII of the paper, i.e. by the polynomial $(B^{2^f}-B^{2^e})[J]-(D^{2^f}-D^{2^e})[J]^2$. Apart from a practical difficulty with obtaining the coefficient of the linear term (as it is about 10^5 times smaller than the Bs themselves) the order of the polynomial is too low to account properly for J dependence of this subtle effect.

The f-e splitting of J levels in the shown vibrational states would be clearly larger if it were induced solely by the asymmetry B-C of the effective rotational constants in these states. The centrifugal distortion term associated with the parameter δ_K is primarily responsible for the decrease of the splitting.

According to simulations presented in Fig. C4a below, the K=2 doubling may be a noticeable effect in the spectrum of Li⁺-D₂, most likely in the *R*-branch of the $v_r=0\rightarrow 1$ band.

Li^+-D_2 and Li^+-H_2

as near-rigid asymmetric tops

Inertia defects⁸

A. Rotational constants (A, B, C) and centrifugal distortion parameters of A-reduced Watson Hamiltonian representing rotational energies in the ground and three lowest-excited vibrational states of the complexes.

B. Moments of inertia $I_X = \hbar^2/(2X)$ for X = A, B, C and inertia defect $\Delta = I_C - I_A - I_B$. Dependence on vibrational quantum numbers $v_r(:=v_1)$, $v_\theta(:=v_2)$, and $v_R(:=v_3)$, see also Table CVIII,

 $I_X([v_1 v_2 v_3]) = I_X^{\rm e} - \sum_{k=1}^3 (v_k + \frac{1}{2})\eta_{X,k} , \qquad \Delta([v_1 v_2 v_3]) = \Delta^{\rm e} + \sum_{k=1}^3 (v_k + \frac{1}{2})\Delta_k .$

		Li^{-}	$^{+}-D_{2}$			$\mathrm{Li^{+}-H_{2}}$		
А.	[000]	[100]	[010]	[001]	[000]	[100]	[010]	[001]
E_0^{a}	-1783.613	1131.835	-1332.321	-1450.470	-1674.606	2378.491	-1080.273	-1269.455
$N_{\mathrm{fit}}{}^{b}$	45	45	39	45	45	45	39	45
A^c	31.563(1)	30.265(1)	38.503(1)	32.016(1)	65.537(4)	61.487(3)	95.573(5)	67.896(7)
B^c	1.5900	1.5846	1.5454(1)	1.4847	2.5538(1)	2.5410(1)	2.4618(2)	2.3330(2)
C^c	1.4890	1.4819	1.4106	1.3899	2.4037(1)	2.3891(1)	2.1972(2)	2.1945(2)
$\Delta_J \times 10^{4 c}$	1.170(1)	1.137(1)	1.191(1)	1.243(1)	3.251(3)	3.118(3)	3.345(7)	3.593(6)
$\Delta_{JK} \times 10^{3 c}$	2.29(1)	2.12(1)	3.53(2)	1.92(1)	5.59(4)	5.04(4)	7.61(7)	4.66(7)
$\delta_J \times 10^{5 c}$	0.69(1)	0.69(1)	0.97(2)	0.76(1)	1.59(3)	1.57(3)	2.32(7)	1.73(6)
$\sigma \times 10^{3 d}$	2	2.5	2.7	3	10	10	13	19
в.								
$I_A{}^i$	0.5341	0.5570	0.4378	0.5265	0.2572	0.2742	0.1764	0.2483
$I_B{}^i$	10.6023	10.6384	10.9083	11.3542	6.6010	6.6343	6.8477	7.2257
Δ^{fi}	0.1851	0.1803	0.6046	0.2479	0.1550	0.1476	0.6482	0.2077
	I_A^{e}	$I_B^{\rm e}$	$r_{ m e}{}^g$	$R_{e}{}^{g}$	$\Delta^{\mathbf{e}h}$	Δ_1	Δ_2	Δ_3
Li^+-D_2	0.5746	10.0553	0.7554	1.9825	-0.0537	-0.0048	3 0.4195	0.0628
Li^+-H_2	0.2936	6.1487	0.7636	1.9821	-0.1144	-0.0073	0.4933	0.0528

^aEnergy of J=0 level relative to the Li⁺+a₂(v=0, j=0) threshold for a=H, D; given in cm⁻¹.

^bTotal number of rotational energies used in the fit: for $k=0, 1, p=\pm 1, \text{ and } J=1, \ldots, J_{\text{max}}=N_{\text{fit}}/3$.

^cAll in cm⁻¹. Obtained from fitting to Watson's Hamiltonian truncated to three quartic terms. In the notation used in Tables CVIa–CVII, they are the parameters $_{(3)}X$. Their values $_{(3)}\tilde{X}$ obtained from the parameters X^{k^p} according to the expressions of Table CVIIb show deviations $|_{(3)}\tilde{X}/_{(3)}X-1|\times 100\%$ smaller than 0.06% for X=A, B, C. In cases of the three centrifugal distortion parameters, $X=\Delta_J \delta_J, \Delta_{JK}$, the deviations are much larger, of the size of several or even a dozen of percent.

^{*d*}Root mean square error of the fit. ^{*i*}Given in amuÅ².

^{*f*}The inertia defect in a given vibrational state
$$\Delta = I_C - I_A - I_B$$
.

^gObtained as
$$r_{\rm e} = \sqrt{I_A^{\rm e}/\mu_{\rm aa}}$$
 and $R_{\rm e} = \sqrt{I_B^{\rm e}/\mu_{\rm Li^+-aa}}$ for a=D,H.
^h $\Delta^{\rm e} = I_C^{\rm e} - I_A^{\rm e} - I_B^{\rm e}$.

Formally, $r_{\rm e}$ and $R_{\rm e}$ are the equilibrium distances, i.e., their values, no matter whether inferred from the rotational constants of the four states of the Li⁺–D₂ or the Li⁺–H₂ complex, should equal the values at the PES minimum, $r_*=0.7503$ and $R_*=1.9870$ Å, respectively, see Fig. 1. Thus, the values of $r_{\rm e}$ and $R_{\rm e}$ obtained from the constants of Li⁺–D₂, the more accurate ones, are in error by 0.0051 and -0.0045 Å, respectively. For comparison, if one attempted to extract the same quantities from the rotational constants for the ground state only, i.e. from $I_A([0 \ 0 \ 0])$ and $I_B([0 \ 0 \ 0])$ for Li⁺–D₂, one would get values deviating from r_* and R_* by -0.0220 and 0.0487 Å, respectively.

Strictly, the defects Δ^{e} should be zero. The nonzero values actually obtained may stem from: i) uncertain adequacy of the near-rigidity assumption, especially in describing the Li⁺–H₂ complex in its excited bending states, ii) approximate character of the functions $I_X([v_1 v_2 v_3])$, and iii) inaccuracies of the fits (some disturbances of the energies used).

The symbols in the plots represent parameters obtained from least-squares fits of the polynomial $a[J]-b[J]^2$ to sets of the calculated doubling values $\{\Delta E(f-e; [v_r v_{\theta} v_R] k=1, J), J=J_{\min} \ldots, J_{\min}+N_{\text{ft}}\}$ for 11 different states $[v_r v_{\theta} v_R]$ of the complexes, see Tables CIII–CIV and BIV–BV. [Formally, $a=B^{1^f}-B^{1^e}$ and $b=D^{1^f}-D^{1^e}$, where B^{1^p} and D^{1^p} for p=e, f are the parameters representing the energies $E(f, \ldots)$ and $E(e, \ldots)$, cf. Tables VII-VIII. Direct fitting to the differences $\Delta E(f-e, \ldots)$ obviously assures better accuracy, especially of the parameters b.] $J_{\min}=1$ in all sets except for the set chosen for state [1 2 0] of the Li⁺–D₂ complex in which $J_{\min}=6$. (*) The number of items in the sets: $N_{\text{fit}}=15$ for the states with $v_{\theta}=0$ and $v_R<2$, $N_{\text{fit}}=13$ — for $v_{\theta}=1$ states, $N_{\text{fit}}=10$ — for $v_R=2, 3$, and $N_{\text{fit}}=8$ — for $v_{\theta}=2$. The dashed lines join the values of the parameters obtained from the fits for states [0 0 0], [1 0 0], [0 1 0], and [0 0 1] of a given complex with values extrapolated linearly to its higher excited states using Eq. (C13) for X=a,b. Perfectly linear dependence of the parameters on the vibrational quantum numbers would give all the symbols lying on the lines.

The yellow dots indicate the values of the parameters a and b used for plotting the 'extrpl' lines in Fig. 7 of the paper.

(*) The ΔEs for lower Js are evidently disturbed in this state, as seen in Fig. 7 of the paper. Occurrence of even bigger disturbances is the reason for which the fitting could not be made for [0 2 0] state of Li⁺-D₂ and [1 2 0] state of Li⁺-H₂.

In the range of the numbers $v_{\rm m}$ (m= r, θ, R) shown here, the departure from linearity, especially of the parameter a, is small except for the case of [0 2 0] state of Li⁺-H₂. A consequence of this fact is the near-coincidence of the 'fit' and 'extrpl' lines seen in Fig. 7 of the paper for states [2 0 0] and [0 0 2] of both complexes and for states [1 1 0] and [1 2 0] of Li⁺-D₂ and the contrastingly different separation between these lines for [0 2 0] state of Li⁺-H₂. The factors c are chosen to place at the same point the symbols of a([0 0 0]) for the two complexes, in the left panel, and the symbols of b([0 0 0]))— in the right panel. Their values listed in the black labels give also a semi-quantitative estimation of the effect of the D₂ \rightarrow H₂ substitution on the parameters for the 10 excited states considered. The parameters $a([v_r 0 v_R])$ for $v_r=0-2$ and $v_R=0-3$, i.e. for states un-excited in the bending mode, become increased by factors close to 1.5 (the ratio of the reduced masses of the complexes is 1.635). Substantially bigger is the increase of the parameters a([0 1 0]) and a([1 1 0]). In states excited above $v_{\theta}=1$, the complexes, especially Li⁺-H₂, become too floppy to be modeled by near-rigid tops.

INFRARED ABSORPTION SPECTRUM

Fig. C3. Absolute intensities of lines at T=296 K

Fig. 14 of the paper is supplied here with the panels showing one more band in the near-infrared range, namely the overtone $v_r=0\rightarrow 2$ band, and fourteen bands in the mid- and far-infrared (counterparts of the bands of Li⁺-H₂ shown in the lower panels of Fig. 13). The intensities shown with the green sticks are due to *b*-type transitions, $\Delta K_a=\pm 1$. Altogether above 12100 lines are shown in the three panels of the present figure. Nearly 39% of the lines belong to the seven *b*-type bands shown.

Fig. C4c. Two most intense combination bands:

 $v_r = 0 \rightarrow 1 + v_\theta = 0 \rightarrow 1$

Enlarged version of Fig. 17b of the paper

Like in the plots of the absorption cross-section presented in Part B (Fig. B6), the symbols are placed at the tops of profiles pertaining to individual $i \rightarrow f$ transitions, i.e. at the positions $(\nu_{if}, \sigma_{i \rightarrow f}(\nu_{if}; T))$. Most frequently in the subbands $K_a = k - k'$ with k > 1 and k' > 1, the symbols appear near the middle (or much below the tops) of the peaks in the $\sigma(\nu; T)$. This is because the peaks in these subbands are enlarged by merging of lines $B(J^p)$ for p=e and p=f in the branches B=R, P, Q, especially for low Js.

FAR-INFRARED

Fig. C4d. Fundamental $v_{\theta}=0 \rightarrow 1$ band and two *a*-type bands overlapping with it, 'direct' contribution[•] to the cross-section $\sigma(\nu; T)$

• obtained by using the parts $S_{i \to f}^{dir}$ of line strengths, see Eq. (C19).

The comparison of line heights in the two panels of Fig. C4d illustrates the role of the d_Z-d_X interference. In the *b*-type band, especially in its $K_a=1-0$ and $K_a=0-1$ subbands, the lines become substantially lowered, by factors exceeding 10 in numerous cases (i.e. the effect is much bigger than that observed in the analogous band of the spectrum of Li⁺-H₂, in Fig. B6d in Part B). In contrast to this, the heights of lines in the two *a*-type bands, precisely, in the *R*- and *P*- branches of their $K_a=0-0, 1-1, 2-2$ subbands are affected very little (the grey and pink dots in the lower panel, placed at the same positions as in the upper panel, are almost invisibly shifted relative to the tops of the lines). No doubts, of significance to the bigness/smallness of these d_Z-d_X interference effects is the size of the d_Z dipole component for Li⁺-D₂, more precisely, the size of its isotropic part $D_{0,0}(r, R)$, see Fig. 1b in the paper.

TABLE CX: Infrared spectrum of Li⁺–D₂. Line positions (ν , in cm⁻¹), vibrational factors of line strengths^{*a*} ($S_{\rm vib}$ in 10⁻³ D²), and relative line intensities ($I_{\rm rel}$) at T=296 K in five sub-bands ($b k=b v_R=0$) \rightarrow (k k 0) of $v_r=0\rightarrow$ 1 band, for k=0-4. Deviations ($\Delta=\nu^{\rm Cal}-\nu^{\rm Exp}$) of transition frequencies calculated in this work and in Ref. 4 from the values measured in Ref. 7. The asymmetric top labels of initial and final rotational levels $J_{K_aK_c}$ and $J'_{K'_aK'_c}$ are: $K_a=K'_a=k$, $K_c=J-k+\frac{1-(-1)^kp}{2}$, $K'_c=K_c+\Delta K_c$ with $\Delta K_c=\pm 1$ and $\Delta K_c=(-1)^kp$ for $J'=J\pm 1$ and J, respectively.

	R(J)							Q(J)							
J	ν	Δ	Δ Ref. 4	$S_{\rm vib}$	Ι	ν	Δ	Δ Ref. 4	$S_{\rm vib}$	Ι	ν	Δ	Δ Ref. 4	$S_{\rm vib}$	Ι
			Itel. 4					nei. 4					nei. 4		
								$k{=}0 p$	=1						
0	2918.51	0.80	2.9	3.17	5.63(-21)										
1	2921.56	0.78	2.9	3.17	1.11(-20)	2912.37	0.86	3.0	3.16	5.52(-21)					
2	2924.59	0.75	3.1	3.17	1.62(-20)	2909.28	0.85	3.0	3.16	1.07(-20)					
3	2927.60	0.72	3.1	3.18	2.07(-20)	2906.18	0.88	3.1	3.16	1.53(-20)					
4	2930.59	0.71	3.3	3.28	2.52(-20)	2903.09	0.90	3.2	3.16	1.92(-20)					
5 C	2933.55	0.68	3.5	3.19	2.73(-20)	2899.99	0.91	3.3 9.5	3.10	2.23(-20)					
7	2930.40	0.00	3.9 4.2	5.19 2.10	2.92(-20)	2090.09	0.94	5.0 9.7	0.20 9.16	2.52(-20)					
8	2939.30	0.02	4.2 4.8	3.19	3.02(-20) 3.02(-20)	2890.73	0.94	3.7 4 1	3.10	2.50(-20) 2.60(-20)					
9	2945.07	0.58	5.4	3.20	$\frac{3.02(-20)}{2.95(-20)}$	2887.66	0.96	4.6	3 16	2.00(-20) 2.56(-20)					
10	2947.86	0.54	0.4	3 21	2.33(-20) 2.81(-20)	2884.62	0.97	5.1	3 16	2.00(-20) 2.45(-20)					
11	2950.60	0.50		3.22	2.61(-20) 2.61(-20)	2881.59	0.99	0.1	3.16	2.29(-20)					
12	2953.30	0.48		3.23	2.38(-20)	2878.59	0.99		3.16	2.10(-20)					
13	2955.96	0.45		3.23	2.13(-20)	2875.61	0.98		3.17	1.88(-20)					
14	2958.57	0.41		3.24	1.87(-20)	2872.67	1.01		3.17	1.65(-20)					
15	2961.12	0.38		3.25	1.61(-20)	2869.76			3.17	1.43(-20)					
16	2963.63			3.26	1.37(-20)	2866.89			3.17	1.21(-20)					
17	2966.08			3.27	1.14(-20)	2864.07			3.18	1.01(-20)					
18	2968.48			3.27	9.35(-21)	2861.29			3.18	8.29(-21)					
19	2970.82			3.28	7.55(-21)	2858.57			3.18	6.70(-21)					
20	2973.10			3.29	6.01(-21)	2855.91			3.18	5.33(-21)					
21	2975.32			3.29	4.72(-21)	2853.32			3.19	4.18(-21)					
22	2977.48			3.28	3.63(-21)	2850.79			3.19	3.23(-21)					
23	2979.58			3.31	2.79(-21)	2848.34			3.19	2.47(-21)					
24	2981.62			3.31	2.11(-21)	2845.98			3.18	1.85(-21)					
20	2985.00			3.32	1.57(-21)	2845.71			3.20	1.38 (-21)					
					()		k=	$1 \ p=1 /$	$p=-1^{o}$	1					
1	2920.16	0.76	2.9	3.17	3.60(-21)						2914.24	0.79	2.8	3.15	3.57(-21)
0	2920.37	0.75	2.9	3.16	3.59(-21)	0000 10	0.00	0.0	9.10	9.47(-91)	2914.04	0.79	2.8	3.15	3.57(-21)
2	2923.14	0.72	3.0	3.17 2.16	6.23(-21)	2908.10	0.82	2.9	3.10 2.16	3.47(-21)	2914.42	0.78	2.9	3.12 2.14	1.91(-21) 1.02(-21)
2	2923.43	0.73	3.0	3.10	0.21(-21)	2907.90	0.84	3.2 3.0	3.10	5.47(-21)	2913.01	0.78	3.0	3.14	1.92(-21) 1.96(-21)
5	2920.09	0.71	3.1	3.17	8.41(-21) 8.36(-21)	2903.00	0.84	3.0	3.10	5.89(-21) 5.89(-21)	2914.09	0.78	3.0	3.00	1.20(-21) 1.27(-21)
4	2929.02	0.67	3.2	3.18	1.01(-20)	2902.01	0.85	3.1	3.15	7.80(-21)	2915.05	0.79	3.1	3.02	9.01(-22)
-	2929.55	0.68	3.2	3.17	1.00(-20)	2901.62	0.87	3.1	3.16	7.79(-21)	2913.02	00	0.1	3.08	9.13(-22)
5	2931.93	0.65	3.5	3.19	1.15(-20)	2898.96	0.88	3.3	3.15	9.26(-21)	2915.49			2.95	6.67(-22)
	2932.56	0.66	3.5	3.17	1.13(-20)	2898.48	0.88	3.3	3.16	9.23(-21)	2912.46			3.04	6.80(-22)
6	2934.81	0.62	3.9	3.20	1.24(-20)	2895.91	0.89	3.5	3.15	1.03(-20)	2916.02			2.87	5.01(-22)
	2935.55	0.62	3.9	3.17	1.22(-20)	2895.35	0.88	3.5	3.17	1.02(-20)	2911.79			2.99	5.16(-22)
7	2937.66	0.60	4.3	3.20	1.29(-20)	2892.87	0.91	3.8	3.15	1.09(-20)	2916.63			2.78	3.79(-22)
	2938.50	0.61	4.3	3.18	1.26(-20)	2892.22	0.92	3.8	3.17	1.08(-20)	2911.01			2.93	3.94(-22)
8	2940.48	0.58	4.9	3.22	1.30(-20)	2889.84	0.91	4.2	3.15	1.11(-20)	2917.33			2.67	2.86(-22)
	2941.43	0.57	4.9	3.18	1.27(-20)	2889.11	0.92	4.2	3.17	1.10(-20)	2910.14			2.87	3.01(-22)
9	2943.26	0.55	5.6	3.22	1.28(-20)	2886.81	0.93	4.6	3.15	1.10(-20)	2918.10			2.56	2.15(-22)
	2944.31	0.55	5.6	3.19	1.24(-20)	2886.01	0.94	4.7	3.17	1.09(-20)	2909.16			2.80	2.30(-22)
10	2946.01	0.52		3.23	1.22(-20)	2883.80	0.94	5.2	3.15	1.06(-20)	2918.95			2.44	1.60(-22)
1 1	2947.16	0.51		3.19	1.18(-20)	2882.92			3.17	1.04(-20)	2908.09			2.72	1.74(-22)
11	2948.72	0.47		3.23	1.14(-20)	2880.81			3.15	9.97(-21)	2919.88			2.31	1.18(-22)
19	2949.97	0.47		ა.20 ვე4	1.09(-20) 1.05(-20)	2819.81			3.18 2.15	9.70(-21) 0.16(-21)	2906.92			2.64 2.17	1.31(-22)
12	2901.39 2052 74			ა.⊿4 ვე∩	1.00(-20) 1.00(-20)	2011.83 2876 82			৩.10 २.19	9.10(-21) 8.91(-21)	2920.88 2005.67			4.17 2.55	0.03(-23) 0.72(-23)
12	2954.14			3.20	9.42(-20)	2874 88			3.10 3.15	8.24(-21)	2900.07 2021 QK			2.00 2.03	6.21(-23)
10	2955.47			3.20	8.92(-21)	2873.83			3.18	7.98(-21)	2904.34			2.05 2.46	7.15(-23)
	2000.11			0.21		_0.0.00			0.10					10	

TABLE CX: continued

14	2956.60			3.25	8.27(-21)	2871.96			3.15	7.27(-21)	2923.09		1.89	4.40(-23)
	2958.14			3.21	7.80(-21)	2870.86			3.19	7.00(-21)	2902.93		2.36	5.20(-23)
15	2959.14			3.27	7.18(-21)	2869.08			3.16	6.29(-21)	2924.29		1.74	3.07(-23)
	2960.77			3.22	6.70(-21)	2867.94			3.19	6.03(-21)	2901.45		2.25	3.72(-23)
16	2961.63			3.28	6.11(-21)	2866.22			3.15	5.34(-21)	2925.54		1.60	2.11(-23)
	2963.35			3.23	5.66(-21)	2865.05			3.19	5.10(-21)	2899.90		2.16	2.65(-23)
17	2964.07			3.29	5.12(-21)	2863.41			3.16	4.48(-21)	2926.86		1.45	1.42(-23)
	2965.87			3.23	4.70(-21)	2862.22			3.20	4.24(-21)	2898.30		2.05	1.86(-23)
18	2966.46			3.30	4.21(-21)	2860.65			3.16	3.69(-21)	2928.22		1.30	9.40(-24)
	2968.34			3.24	3.84(-21)	2859.43			3.21	3.47(-21)	2896.65		1.94	1.28(-23)
19	2968.80			3.31	3.42(-21)	2857.94			3.17	2.99(-21)	2929.63		1.16	6.10(-24)
	2970.75			3.25	3.09(-21)	2856.71			3.21	2.79(-21)	2894.96		1.83	8.73(-24)
20	2971.08			3.32	2.73(-21)	2855.28			3.17	2.39(-21)	2931.08		1.02	3.88(-24)
	2973.11			3.25	2.45(-21)	2854.05			3.22	2.21(-21)	2893.23		1.72	5.87(-24)
21	2973.31			3.32	2.15(-21)	2852.69			3.17	1.88(-21)	2932.57		8.89	2.41(-24)
	2975.41			3.26	1.91(-21)	2851.47			3.22	1.73(-21)	2891.47		1.60	3.88(-24)
22	2975.49			3.33	1.67(-21)				3.18	1.46(-21)	2934.09		7.61	1.46(-24)
	2977.64			3.26	1.47(-21)				3.22	1.33(-21)	2889.71		1.49	2.53(-24)
23	2977.61			3.34	1.28(-21)				3.18	1.12(-21)	2935.64		6.40	8.62(-25)
	2979.81			3.27	1.12(-21)				3.23	1.01(-21)	2887.93		1.37	1.62(-24)
24	2979.66			3.35	9.74(-22)				3.18	8.48(-22)	2937.22		5.27	4.94(-25)
	2981.92			3.27	8.42(-22)				3.23	7.61(-22)	2886.17		1.26	1.03(-24)
							k-2	n—1 /a	n—_1					
2	2919.44	0.66	3.6	3.17	5.02(-21)		<i>n</i> -2 I	5-1/1	<i>)</i> – 1		2910.30		3.13	9.88(-21)
	2919.44	0.66	3.6	3.17	5.02(-21)						2910.31	0.73	3.13	9.88(-21)
3	2922.44	0.64	3.8	3.17	8.67(-21)	2901.13	0.79	3.6	3.16	4.75(-21)	2910.27		3.09	6.54(-21)
	2922.44	0.64	3.8	3.17	8.67(-21)	2901.14	0.79	3.6	3.16	4.75(-21)	2910.27		3.09	6.54(-21)
4	2925.42	0.62	4.1	3.18	1.15(-20)	2898.06	0.80	3.7	3.16	8.05(-21)	2910.23		3.05	4.69(-21)
	2925.42	0.62	4.1	3.18	1.15(-20)	2898.06	0.80	3.7	3.16	8.05(-21)	2910.23		3.05	4.69(-21)
5	2928.38	0.58	4.5	3.18	1.35(-20)	2894.98	0.83	4.0	3.16	1.05(-20)	2910.17		2.99	3.48(-21)
	2928.37	0.57	4.5	3.18	1.36(-20)	2894.98	0.83	4.0	3.16	1.05(-20)	2910.18		2.99	3.48(-21)
6	2931.31	0.56	5.0	3.19	1.50(-20)	2891.90	0.82	4.3	3.16	1.21(-20)	2910.10		2.93	2.63(-21)
	2931.30	0.55	5.0	3.19	1.50(-20)	2891.91	0.83	4.3	3.16	1.21(-20)	2910.12		2.93	2.63(-21)
7	2934.22	0.54	5.7	3.20	1.58(-20)	2888.83	0.83	4.8	3.16	1.32(-20)	2910.01		2.85	2.00(-21)
	2934.20	0.52	5.7	3.20	1.58(-20)	2888.84	0.84	4.8	3.16	1.32(-20)	2910.06		2.85	2.00(-21)
8	2937.09	0.51	6.5	3.20	1.61(-20)	2885.77	0.84	5.4	3.16	1.37(-20)	2909.91		2.76	1.52(-21)
	2937.07	0.48	6.6	3.20	1.61(-20)	2885.79	0.85	5.4	3.16	1.37(-20)	2909.99		2.76	1.52(-21)
9	2939.94	0.49	7.6	3.21	1.59(-20)	2882.73			3.16	1.36(-20)	2909.80		2.67	1.15(-21)
	2939.90	0.45	7.6	3.21	1.59(-20)	2882.74			3.16	1.36(-20)	2909.92		2.66	1.15(-21)
10	2942.75			3.22	1.52(-20)	2879.69			3.16	1.32(-20)	2909.67		2.56	8.62(-22)
	2942.70			3.22	1.52(-20)	2879.71			3.16	1.32(-20)	2909.85		2.56	8.60(-22)
11	2945.53			3.22	1.43(-20)	2876.68			3.17	1.25(-20)	2909.53		2.45	6.40(-22)
	2945.46			3.22	1.43(-20)	2876.71			3.16	1.25(-20)	2909.78		2.44	6.38(-22)
12	2948.26			3.23	1.31(-20)	2873.70			3.17	1.15(-20)	2909.37		2.33	4.70(-22)
	2948.18			3.23	1.31(-20)	2873.72			3.17	1.15(-20)	2909.72		2.32	4.68(-22)
13	2950.97			3.24	1.17(-20)	2870.73			3.17	1.03(-20)	2909.19		2.21	3.41(-22)
	2950.86			3.24	1.17(-20)	2870.77			3.17	1.03(-20)	2909.66		2.19	3.39(-22)
14	2953.63			3.25	1.03(-20)	2867.81			3.18	9.14(-21)	2909.00		2.07	2.44(-22)
	2953.49			3.25	1.03(-20)	2867.84			3.17	9.14(-21)	2909.62		2.05	2.42(-22)
15	2956.24			3.25	8.92(-21)	2864.92			3.18	7.91(-21)	2908.79		1.93	1.71(-22)
	2956.08			3.26	8.95(-21)	2864.96			3.18	7.92(-21)	2909.58		1.91	1.69(-22)
16	2958.81			3.26	7.58(-21)	2862.07			3.19	6.73(-21)	2908.57		1.79	1.18(-22)
	2958.62			3.27	7.60(-21)	2862.11			3.18	6.74(-21)	2909.56		1.76	1.17(-22)
17	2961.34			3.27	6.33(-21)	2859.26			3.19	5.63(-21)	2908.32		1.65	8.06(-23)
	2961.11			3.27	6.34(-21)	2859.30			3.19	5.63(-21)	2909.55		1.61	7.91(-23)
18	2963.82			3.28	5.20(-21)	2856.51			3.20	4.63(-21)	2908.07		1.50	5.37(-23)
	2963.55			3.28	5.22(-21)	2856.55			3.19	4.63(-21)	2909.57		1.46	5.25(-23)
19	2966.24			3.29	4.21(-21)	2853.82			3.21	3.75(-21)	2907.80		1.35	3.51(-23)
	2965.94			3.29	4.23(-21)	2853.85			3.20	3.75(-21)	2909.60		1.30	3.41(-23)
20	2968.62			3.29	3.35(-21)	2851.19			3.21	2.99(-21)	2907.53		1.20	2.25(-23)
	2968.27			3.30	3.38(-21)	2851.21			3.20	2.99(-21)	2909.65		1.15	2.17(-23)
21	2970.94			3.30	2.63(-21)	2848.62			3.22	2.35(-21)	2907.24		1.05	1.41(-23)
	2970.55			3.31	2.65(-21)	2848.64			3.21	2.35(-21)	2909.73		1.00	1.34(-23)
22	2973.20			3.31	2.04(-21)	2846.14			3.23	1.82(-21)	2906.95		0.91	8.56(-24)
	2972.77			3.32	2.06(-21)	2846.14			3.21	1.82(-21)	2909.84		0.85	8.07(-24)

				k=	$=3 \ p=1/p$	= -1				
3	2916.14	3.18	1.23(-21)				2904.05		3.10	3.58(-21)
	2916.14	3.18	1.23(-21)				2904.05	0.60	3.10	3.58(-21)
4	2919.12	3.13	2.09(-21)	2891.93	3.16	1.14(-21)	2904.01		3.05	2.56(-21)
	2919.12	3.12	2.08(-21)	2891.93	3.16	1.14(-21)	2904.01		3.05	2.56(-21)
5	2922.05	3.19	2.78(-21)	2888.87	3.16	1.94(-21)	2903.98		2.94	1.87(-21)
	2922.05	3.18	2.78(-21)	2888.88	3.16	1.94(-21)	2903.98		2.95	1.88(-21)
6	2924.96	3.20	3.25(-21)	2885.84	3.11	2.45(-21)	2903.91		2.93	1.44(-21)
_	2924.96	3.20	3.25(-21)	2885.84	3.10	2.45(-21)	2903.91		2.93	1.44(-21)
7	2927.85	3.20	3.54(-21)	2882.80	3.16	2.85(-21)	2903.85		2.86	1.10(-21)
0	2927.85	3.20	3.54(-21)	2882.80	3.15	2.85(-21)	2903.85		2.86	1.10(-21)
8	2930.71	3.21	3.07(-21)	2879.77	3.10 2.16	3.05(-21)	2903.78		2.11	8.33(-22)
0	2930.71	0.21 2.00	3.07(-21)	2019.11	5.10 2.16	3.03(-21)	2903.77		2.11	6.30(-22)
9	2933.54	3.22	3.68(-21)	2876.76	3.10	3.12(-21) 3.12(-21)	2903.10		2.08	6.32(-22)
10	2935.34	3.22	3.57(-21)	2873 76	3.10	3.12(-21) 3.06(-21)	2903.63		2.00 2.57	4.75(-22)
10	2936.34	3 23	3.57(-21) 3.57(-21)	2873.76	3.17	3.06(-21)	2903.61		2.57 2.57	4.75(-22) 4.75(-22)
11	2939 10	3.16	3.30(-21)	2870.79	3.17	2.92(-21)	2903.52		2.01	3.54(-22)
	2939.09	3.23	3.37(-21)	2870.79	3.17	2.92(-21)	2903.51		2.46	3.54(-22)
12	2941.82	3.25	3.12(-21)	2867.84	3.17	2.72(-21)	2903.42		2.34	2.60(-22)
	2941.82	3.24	3.11(-21)	2867.84	3.18	2.72(-21)	2903.43		2.29	2.54(-22)
13	2944.50	3.25	2.81(-21)	2864.94	3.11	2.41(-21)	2903.33		2.22	1.89(-22)
	2944.50	3.25	2.81(-21)	2864.92	3.18	2.46(-21)	2903.32		2.22	1.89(-22)
14	2947.13	3.26	2.49(-21)	2862.05	3.19	2.19(-21)	2903.23		2.08	1.35(-22)
	2947.14	3.26	2.49(-21)	2862.04	3.18	2.19(-21)	2903.21		2.08	1.35(-22)
15	2949.73	3.27	2.17(-21)	2859.20	3.19	1.91(-21)	2903.13		1.94	9.54(-23)
	2949.73	3.27	2.17(-21)	2859.19	3.19	1.91(-21)	2903.10		1.95	9.54(-23)
16	2952.28	3.29	1.85(-21)	2856.40	3.20	1.63(-21)	2903.03		1.80	6.61(-23)
	2952.28	3.28	1.85(-21)	2856.39	3.20	1.63(-21)	2902.99		1.80	6.62(-23)
17	2954.78	3.30	1.55(-21)	2853.64	3.20	1.37(-21)	2902.94		1.65	4.50(-23)
	2954.78	3.30	1.55(-21)	2853.63	3.20	1.37(-21)	2902.88		1.66	4.51(-23)
18	2957.23	3.31	1.28(-21)	2850.94	3.21	1.13(-21)	2902.85		1.51	3.01(-23)
	2957.24	3.31	1.28(-21)	2850.92	3.21	1.13(-21)	2902.77		1.51	3.02(-23)
19	2959.64	3.32	1.04(-21)	2848.31	3.22	9.22(-22)	2902.78		1.36	1.97(-23)
20	2959.64	3.32	1.04(-21)	2848.27	3.22	9.22(-22)	2902.66		1.30	1.98(-23)
20	2901.99	0.00 2.22	8.30(-22)	2845.60	3.23 3.23	7.38(-22)	2902.72		1.20	1.20(-23) 1.27(-23)
	2301.33	0.00	0.00 (-22)	2040.00	0.20	1.56 (-22)	2302.00		1.21	1.27 (-20)
4	2010 47	3 10	8 80 (22)	κ =	$=4 \ p=1/p$	=-1	2805 51		3.06	3 36 (91)
4	2910.47	3.19 3.10	8.80(-22)				2895.51		3.00	3.30(-21)
5	2910.47	3.19	1.52(-21)	2880 51	3 17	8.04(-22)	2895.01		3.00	2.50(-21)
0	2913.40	3.19	1.52(-21) 1.52(-21)	2880.51	3.17	8.04(-22)	2895.47		3.00	2.50(-21) 2.50(-21)
6	2916.32	3.20	1.97(-21)	2877.51	3.16	1.36(-21)	2895.44		2.93	1.89(-21)
	2916.32	3.20	1.97(-21)	2877.51	3.16	1.36(-21)	2895.44		2.93	1.89(-21)
7	2919.20	3.20	2.27(-21)	2874.51	3.16	1.74(-21)	2895.39		2.86	1.44(-21)
	2919.20	3.20	2.27(-21)	2874.51	3.16	1.74(-21)	2895.39		2.86	1.44(-21)
8	2922.07	3.21	2.45(-21)	2871.54	3.16	1.97(-21)	2895.35		2.77	1.09(-21)
	2922.07	3.21	2.45(-21)	2871.54	3.16	1.97(-21)	2895.35		2.77	1.09(-21)
9	2924.90	3.22	2.51(-21)	2868.58	3.16	2.08(-21)	2895.30		2.68	8.30(-22)
	2924.90	3.22	2.51(-21)	2868.58	3.16	2.08(-21)	2895.30		2.68	8.31(-22)
10	2927.70	3.23	2.48(-21)	2865.64	3.17	2.09(-21)	2895.24		2.58	6.25(-22)
	2927.70	3.23	2.48(-21)	2865.63	3.17	2.09(-21)	2895.24		2.58	6.26(-22)
11	2930.47	3.24	2.38(-21)	2862.72	3.17	2.03(-21)	2895.18		2.47	4.67(-22)
	2930.46	3.24	2.37(-21)	2862.72	3.17	2.03(-21)	2895.18		2.47	4.67(-22)
12	2933.20	3.25	2.21(-21)	2859.84	3.17	1.91(-21)	2895.12		2.35	3.43(-22)
19	2933.19	3.26	2.22(-21)	2859.83	3.18 2.15	1.91(-21)	2895.11		2.36	3.45(-22)
19	2900.92 2035 88	0.24 2.07	2.00(-21)	2007.00 2856.06	0.10 2.10	1.73(-21) 1.75(-21)	2090.UO 2005 04		⊿.19 ೧.೧೨	2.41(-22)
14	2938.68	9.47 2.05	1.62(-21)	2854 30	9.10 9.82	1.30(-21) 1.30(-21)	2895.04		4.40 1.83	1.58(-22)
14	2938.52	2.90 3.28	1.80(-21)	2854.14	2.00 3.19	1.57(-21) 1.57(-21)	2655.14 2894 97		2.11	1.81(-22)
15	2940.81	2.52	1.20(-21)	2851.04	2.51	1.08(-21)	2894.59		1.60	1.04(-22)
-9	2941.13	3.29	1.58(-21)	2851.35	3.20	1.38(-21)	2894.90		1.00	1.28(-22)
		0.20	(=+)		0.20	()	200 1.00		1.01	

^{*a*}Obtained from the calculated total strength as $S_{\text{vib}}=S/S_{\text{rot}}$ using the S_{rots} listed in Eq. (C17). ^{*b*}Entries in the lower line for each J value concern $J \rightarrow J \pm 1, J$ transitions from the p=-1 parity state.

			[v]	$v v v_B =$	[0 1 0]	\rightarrow [1	10]					K	=0-0 of	f [0 0 1	$] \rightarrow [1]$	01]		
			[0	V CO CR	_0 (ינ י ר	10]						K V		n (±	0 -]		
					1 = 0 = 0) (1 0)								1 — 0 — 1	(0.0)			
				(b k) = ($(10) \rightarrow$	• (10)							(b k) = (b k)	00) —	→ (00)			
	R	R(J)		F	P(J)			Q(J)		F	R(J)		F	P(J)		Q((J)	
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	u	$S_{\rm vib}$	Ι
0	2922.72	4.39	0.44							2921.07	3.12	1.10						
1	2925.64	4.39	0.86	2916.83	4.39	0.43				2923.93	3.13	2.18	2915.33	3.12	1.08			
2	2928.53	4.39	1.25	2913.85	4.39	0.83				2926.78	3.13	3.18	2912.45	3.12	2.10			
3	2931.40	4.39	1.60	2910.87	4.39	1.20				2929.61	3.13	4.07	2909.58	3.12	3.02			
4	2934.24	4.39	1.90	2907.89	4.39	1.50				2932.43	3.13	4.82	2906.71	3.11	3.80			
5	2937.05	4.39	2.12	2904.90	4.39	1.75				2935.22	3.14	5.41	2903.84	3.11	4.43			
6	2939.82	4.39	2.27	2901.91	4.39	1.92				2937.99	3.14	5.82	2900.99	3.11	4.88			
7	2942.55	4.40	2.36	2898.92	4.40	2.03				2940.74	3.14	6.04	2898.15	3.11	5.16			
8	2945.25	4.41	2.38	2895.93	4.40	2.07				2943.46	3.15	6.10	2895.33	3.11	5.28			
9	2947.90	4.42	2.33	2892.96	4.40	2.05				2946.15	3.16	6.01	2892.53	3.11	5.23			
10	2950.51	4.41	2.22	2890.01	4.42	1.98				2948.80	3.15	5.77	2889.76	3.11	5.06			
11	2953.08	4.41	2.08	2887.07	4.42	1.87				2951.42	3.16	5.42	2887.01	3.11	4.80			
12	2955.59	4.42	1.91	2884.15	4.42	1.72				2954.01	3.16	5.00	2884.30	3.11	4.43			
13	2958.05	4.43	1.72	2881.27	4.42	1.00				2950.55	3.10 2.16	4.52	2881.03	3.10	4.02 2.59			
14	2900.40	4.45	1.02	2010.41	4.42	1.00				2959.05	5.10 2.17	4.02 2.51	2019.00	5.10 2.10	0.00 9.19			
16	2902.82	4.44	1.52	2872.81	4.43	1.20				2901.01	3.17	3.01	2873.00	3.10	2.13			
17	2905.12	4.44	0.95	2872.81	4.45	0.87				2905.92	3.17	2.56	2873.30	3.10	2.10			
18	2969.55	4.45	0.79	2867.40	4.44	0.72				2968.61	3.17	2.13	2869.02	3.09	1.91			
19	2971.68	4.46	0.64	2864.78	4.45	0.59				2970.87	3.17	1.75	2866.69	3.09	1.57			
20	2973.75	3.72	0.43	2862.22	4.45	0.48				2973.09	3.17	1.42	2864.43	3.09	1.27			
21	2975.76	4.47	0.41	2859.73	4.46	0.38				2975.26	3.17	1.14	2862.26	3.08	1.02			
22	2977.70	4.47	0.32	2857.32	3.72	0.25				2977.37	3.17	0.90	2860.18	3.08	0.80			
23	2979.59	4.47	0.25	2855.00	4.46	0.23				2979.43	3.16	0.70	2858.20	3.07	0.63			
24	2981.41	4.48	0.19	2852.77	4.46	0.18				2981.44	3.16	0.54	2856.34	3.06	0.48			
25	2983.18	4.36	0.14	2850.65	4.46	0.13				2983.39	3.15	0.41	2854.60	3.05	0.37			
				K_{a}	n = 1 - 1	1							K_{a}	_n =1-	1			
				(b k) = (2	$21) \rightarrow$	· (21)							(b k) = (11) —	→ (11)			
	$R(J^e)$	/R(J	(f)	$P(J^e)$	/P(J	$^{f})$	$Q(J^e)$	$Q(J^f)$		$\overline{R(J^e)}/R$	$R(J^f)$	P($J^e) / P(.$	$J^f)$	$Q(J^e$	$)/Q(J^{f})$		
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
1	2923.43	4.35	1.07				2917.84	4.33	1.06	2922.49	3.12	0.70				2916.96	3.10	0.70
	2923.70	4.35	1.07				2917.57	4.34	1.06	2922.69	3.12	0.70				2916.77	3.11	0.70
2	2926.26	4.35	1.85	2911.94	4.35	1.03	2918.07	4.31	0.57	2925.29	3.13	1.22	2911.22	3.11	0.68	2917.14	3.07	0.37
	2926.65	4.35	1.84	2911.67	4.35	1.03	2917.27	4.32	0.57	2925.58	3.12	1.21	2911.03	3.11	0.68	2916.57	3.09	0.37
3	2929.06	4.36	2.50	2909.04	4.35	1.76	2918.42	4.27	0.38	2928.07	3.13	1.65	2908.40	3.11	1.15	2917.41	3.03	0.25
	2929.58	4.35	2.48	2908.63	4.35	1.75	2916.82	4.29	0.38	2928.46	3.12	1.64	2908.12	3.11	1.15	2916.27	3.06	0.25
4	2931.84	4.36	3.03	2906.13	4.35	2.34	2918.89	4.22	0.27	2930.83	3.14	2.00	2905.57	3.10	1.53	2917.77	2.98	0.18
	2932.49	4.35	3.00	2905.59	4.35	2.32	2916.23	4.25	0.27	2931.33	3.12	1.98	2905.21	3.11	1.53	2915.87	3.03	0.18
5	2934.59	4.37	3.44	2903.21	4.35	2.79	2919.47	4.16	0.20	2933.58	3.03	2.20	2902.75	3.10	1.83	2918.21	2.91	0.13
	2935.36	4.35	3.39	2902.54	4.35	2.76	2915.49	4.21	0.21	2934.17	3.13	2.25	2902.30	3.11	1.82	2915.37	2.99	0.13
6	2937.31	4.37	3.72	2900.30	4.35	3.11	2920.17	4.08	0.16	2936.30	3.05	2.40	2899.94	3.10	2.05	2918.75	2.84	0.10
-	2938.20	4.35	3.66	2899.49	4.36	3.08	2914.60	4.16	0.16	2937.00	3.12	2.43	2899.41	3.11	2.04	2914.78	2.84	0.10
7	2940.00	4.37 4.25	3.89	2897.38	4.36	3.32	2920.97	4.00	0.12	2939.00	3.15 9 19	2.58	2897.14	2.99	2.11	2919.36	2.74	0.08
ç	2941.00 2042 65	4.30 1 20	3.80 3.04	2090.44	4.30 1 36	3.27 3.41	2913.39	4.10 2.01	0.12	2939.80 2041 69	3.13 3.96	2.04 9.71	2090.04	3.12	2.11 9.10	2914.10 2020 06	2.80 2.64	0.08
0	2942.00 20/2 76	4.00 1 25	<u>3.94</u> 3.82	2094.48 2803 10	4.30 1 26	3.41 3.24	2921.09	0.91 1 09	0.09	2941.08 2042 57	3.20 3.12	2.11 2.56	2094.30 2802.60	3.00	∠.10 2.20	2920.00 2012 22	2.04 2.81	0.00
9	2945.27	4.39	3.88	2891 58	4.36	3.40	2922.43	4.05 3.81	0.07	2944 32	3.15	$\frac{2.50}{2.59}$	2891 59	3.09	2.24	2913.55	2.51	0.04
U	2946.49	4.36	3.75	2890.38	4.37	3.31	2911.14	3.96	0.07	2945.32	3.16	2.55	2890.85	3.12	2.21	2912.47	2.83	0.05
10	2947.85	4.39	3.74	2888.69	4.36	3.30	2924.03	3.70	0.05	2946.94	3.16	2.50	2888.85	3.19	2.25	2921.70	2.43	0.03
	2949.16	4.36	3.58	2887.37	4.37	3.19	2909.73	3.88	0.06	2948.03	3.13	2.42	2888.05	3.11	2.14	2911.54	2.66	0.04

TABLE CXI: Near-infrared absorption spectrum of Li⁺–D₂. Line positions (ν , in cm⁻¹), vibrational factors of line strengths ($S_{\rm vib}$ in 10⁻³ D²), and line intensities (I, in 10⁻²¹ cm/molecule) at T=296 in two hot bands overlapping with the fundamental $v_r=0\rightarrow 1$ band.

TABLE CXI: continued

11	2950.39	4.40	3.51	2885.81	4.36	3.12	2925.25	3.59	0.04	2949.53	3.17	2.37	2886.14	3.08	2.06	2922.63	2.28	0.02
	2951.80	4.37	3.35	2884.37	4.37	3.00	2908.19	3.80	0.04	2950.71	3.12	2.27	2885.28	3.15	2.04	2910.53	2.58	0.03
12	2952.88	4.40	3.24	2882.95	4.36	2.89	2926.56	3.48	0.03	2952.08	3.17	2.19	2883.45	3.08	1.91	2923.63	2.14	0.02
	2954.38	4.37	3.07	2881.41	4.38	2.76	2906.54	3.71	0.03	2953.35	3.15	2.10	2882.55	3.11	1.87	2909.44	2.50	0.02
13	2955.30	4.36	2.90	2880.10	4.31	2.59	2927.94	3.34	0.02	2954.59	3.18	1.99	2880.80	3.09	1.75	2924.71	2.02	0.01
	2956.92	4.38	2.75	2878.46	4.39	2.49	2904.78	3.62	0.02	2955.95	3.13	1.89	2879.85	3.11	1.69	2908.30	2.40	0.02
14	2957.59	3.93	2.32	2877.18	3.86	2.07	2929.31	2.96	0.02	2957.07	3.18	1.77	2878.19	3.09	1.56	2925.85	1.87	0.01
	2959.41	4.36	2.41	2875.56	4.39	2.20	2902.92	3.53	0.02	2958.52	3.13	1.67	2877.21	3.13	1.52	2907.09	2.31	0.01
15	2960.42	3.45	1.78	2874.88	3.49	1.64	2931.37	2.30	0.01	2959.50	3.19	1.56	2875.62	3.08	1.37	2927.05	1.73	0.01
	2961.84	4.44	2.13	2872.68	4.39	1.91	2900.96	3.44	0.01	2961.04	3.14	1.46	2874.61	3.11	1.31	2905.83	2.20	0.01
16	2962.62	4.13	1.83	2872.03	4.15	1.67	2932.91	2.75	0.01	2961.90	3.19	1.34	2873.10	3.08	1.18	2928.30	1.59	0.00
	2964.21	4.42	1.80	2869.86	4.38	1.62	2898.91	3.35	0.01	2963.52	3.13	1.25	2872.07	3.11	1.13	2904.53	2.10	0.01
17	2964.88	4.23	1.58	2869.34	4.25	1.45	2934.63	2.70	0.01	2964.25	3.19	1.14	2870.63	3.08	1.01	2929.62	1.44	0.00
	2966.52	4.39	1.49	2867.08	4.46	1.39	2896.79	3.27	0.01	2965.95	3.13	1.05	2869.60	3.11	0.95	2903.19	1.99	0.00
18	2967.14	4.24	1.32	2866.71	4.28	1.22	2936.45	2.59	0.00	2966.56	3.20	0.96	2868.22	3.08	0.84	2930.98	1.31	0.00
	2968.78	4.39	1.23	2864.35	4.43	1.14	2894.61	3.20	0.00	2968.33	3.13	0.87	2867.19	3.11	0.79	2901.82	1.88	0.00
19	2969.39	4.16	1.06	2864.17	4.28	1.00	2938.34	2.48	0.00	2968.82	3.20	0.79	2865.87	3.08	0.70	2932.38	1.17	0.00
	2970.97	4.39	1.00	2861.69	4.40	0.92	2892.38	3.14	0.00	2970.66	3.13	0.72	2864.85	3.10	0.65	2900.44	1.77	0.00
20	2971.71	3.91	0.81	2861.70	4.25	0.80	2940.30	2.36	0.00	2971.03	3.20	0.64	2863.59	3.07	0.57	2933.82	1.04	0.00
	2973.10	4.39	0.80	2859.09	4.40	0.73	2890.14	3.12	0.00	2972.94	3.13	0.58	2862.60	3.10	0.53	2899.05	1.66	0.00

 $K_a = 2 - 2$

 $(b\,k) = (3\,2) \to (3\,2)$

 $K_a = 2 - 2$ (b k)=(2 2) \rightarrow (2 2)

2	2920.78	4.25	0.33				2912.09	4.23	0.66	2921.52	3.11	0.97				2912.97	3.07	1.91
	2920.78	4.25	0.33				2912.09	4.23	0.66	2921.51	3.11	0.97				2912.97	3.07	1.91
3	2923.58	4.16	0.56	2903.32	4.28	0.32	2912.01	4.13	0.43	2924.33	3.11	1.68	2904.41	3.10	0.92	2912.95	3.04	1.27
	2923.58	4.16	0.56	2903.32	4.28	0.32	2912.02	4.13	0.43	2924.33	3.11	1.68	2904.41	3.10	0.92	2912.95	3.04	1.27
4	2926.31	3.97	0.71	2900.34	4.24	0.54	2911.90	3.96	0.30	2927.14	3.11	2.22	2901.55	3.10	1.57	2912.93	2.99	0.91
	2926.31	3.93	0.70	2900.34	4.23	0.54	2911.91	3.96	0.30	2927.13	3.11	2.22	2901.55	3.10	1.57	2912.94	2.99	0.91
5	2928.95	3.64	0.77	2897.34	4.14	0.68	2911.74	3.67	0.21	2929.92	3.11	2.64	2898.70	3.10	2.04	2912.90	2.93	0.68
	2928.94	3.64	0.77	2897.34	4.14	0.68	2911.74	3.70	0.21	2929.91	3.11	2.64	2898.70	3.10	2.04	2912.91	2.93	0.68
6	2931.46	3.09	0.72	2894.30	3.97	0.76	2911.50	3.31	0.15	2932.68	3.11	2.93	2895.86	3.09	2.38	2912.86	2.86	0.51
	2931.45	3.15	0.74	2894.30	3.93	0.76	2911.51	3.30	0.15	2932.67	3.11	2.93	2895.86	3.09	2.38	2912.88	2.86	0.51
7	2936.02	1.69	0.42	2891.20	3.67	0.77	2911.14	2.80	0.10	2935.41	3.12	3.11	2893.03	3.09	2.60	2912.82	2.78	0.39
	2936.01	1.68	0.42	2891.20	3.67	0.77	2911.16	2.74	0.10	2935.40	3.12	3.11	2893.04	3.09	2.60	2912.85	2.78	0.39
8	2938.66	2.11	0.53	2888.02	3.18	0.69	2912.87	1.35	0.04	2938.12	3.09	3.16	2890.22	3.09	2.72	2912.77	2.69	0.30
	2938.65	2.06	0.52	2888.02	3.24	0.70	2912.90	1.36	0.04	2938.10	3.11	3.18	2890.23	3.08	2.72	2912.82	2.69	0.30
9	2941.36	2.36	0.59	2886.95	1.47	0.32	2912.70	1.49	0.03	2940.81	3.13	3.17	2887.43	3.09	2.74	2912.71	2.59	0.23
	2941.34	1.88	0.47	2886.96	1.46	0.32	2912.75	1.52	0.03	2940.78	3.15	3.19	2887.44	3.09	2.74	2912.79	2.57	0.23
10	2944.12	2.25	0.54	2884.06	1.71	0.37	2912.65	1.15	0.02	2943.47	3.13	3.07	2884.66	3.06	2.65	2912.65	2.50	0.17
	2944.08	2.16	0.52	2884.06	1.67	0.36	2912.72	1.46	0.02	2943.43	3.12	3.06	2884.67	3.08	2.67	2912.77	2.48	0.17
11	2946.96	1.93	0.44	2881.35	1.67	0.34	2912.72	1.01	0.01	2946.10	3.14	2.91	2881.92	3.09	2.55	2912.58	2.36	0.13
	2946.91	1.92	0.44	2881.34	1.33	0.27	2912.81	1.07	0.01	2946.05	3.14	2.91	2881.93	3.11	2.57	2912.76	2.37	0.13
12	2949.97	1.44	0.30	2878.88	1.24	0.24	2912.98	0.55	0.01	2948.69	3.14	2.69	2879.22	3.09	2.38	2912.51	2.25	0.10
	2949.90	1.44	0.30	2878.86	1.21	0.23	2913.11	0.59	0.01	2948.63	3.14	2.70	2879.23	3.07	2.37	2912.75	2.24	0.10
13	2953.22	0.84	0.16	2876.74	0.75	0.13	2913.53	0.17	0.00	2951.26	3.15	2.45	2876.56	3.09	2.17	2912.44	2.12	0.07
	2953.11	0.85	0.16	2876.69	0.76	0.13	2913.68	0.20	0.00	2951.18	3.15	2.45	2876.57	3.09	2.17	2912.76	2.10	0.07
14	2952.60	3.82	0.64	2870.81	3.75	0.57	2910.24	3.92	0.02	2953.79	3.15	2.18	2873.94	3.09	1.94	2912.36	1.98	0.05
	2952.42	3.80	0.63	2870.71	3.75	0.57	2910.39	3.88	0.02	2953.69	3.15	2.19	2873.95	3.09	1.94	2912.78	1.96	0.05
15	2955.27	4.07	0.59	2868.28	3.98	0.53	2910.30	3.69	0.02	2956.28	3.16	1.92	2871.37	3.09	1.71	2912.28	1.84	0.04
	2955.05	4.04	0.59	2868.13	3.96	0.52	2910.49	3.68	0.02	2956.16	3.16	1.92	2871.38	3.09	1.71	2912.81	1.82	0.04
16	2957.83	4.19	0.52	2865.73	4.10	0.46	2910.30	3.40	0.01	2958.74	3.16	1.65	2868.86	3.09	1.47	2912.21	1.69	0.03
	2957.57	4.17	0.52	2865.53	4.08	0.46	2910.50	3.41	0.01	2958.60	3.17	1.66	2868.87	3.09	1.47	2912.87	1.67	0.02
17	2960.33	4.25	0.45	2863.23	4.15	0.40	2910.30	3.07	0.01	2961.16	3.16	1.40	2866.41	3.09	1.25	2912.14	1.54	0.02
	2959.98	4.24	0.44	2862.93	4.15	0.40	2910.47	3.13	0.01	2960.99	3.17	1.41	2866.41	3.09	1.25	2912.94	1.51	0.02
18	2962.84	4.24	0.37	2860.90	4.10	0.33	2910.42	2.64	0.01	2963.53	3.17	1.17	2864.03	3.09	1.05	2912.07	1.39	0.01
	2962.33	4.28	0.37	2860.37	4.20	0.33	2910.40	2.84	0.01	2963.33	3.17	1.18	2864.02	3.10	1.05	2913.04	1.36	0.01
19	2965.71	3.88	0.28	2859.22	3.46	0.23	2911.14	1.69	0.00	2965.86	3.17	0.97	2861.72	3.11	0.87	2912.01	1.23	0.01
	2964.63	4.29	0.31	2857.89	4.21	0.27	2910.31	2.50	0.00	2965.63	3.17	0.97	2861.70	3.09	0.87	2913.16	1.20	0.01

TABLE CXII: Near-infrared absorption spectrum of Li⁺–D₂. Line positions (ν , in cm⁻¹), vibrational factors of line strengths (S_{vib}), and line intensities (I) at T=296 K in four vibrational bands non-overlapping with the fundamental $v_r=0\rightarrow 1$ band.

								$[v_r v_{\theta}]$	$v_R]=$	$[0\ 0\ 0] \rightarrow [1$. 1 0]							
				K_a	=1-0	(1.0)							K_a	=0-1	(9.1)			
-	D	(1e)		(0 K)-(1	$(1) \rightarrow (1e)$	(10)	0	(1 f)			D(10)		$(0\kappa) = (0$	(1^e)	(21))(Je)	
7	<i>n</i>	(J) S ::	I		(J) S ::	I	Q	(J*) S ::	I		S :1	I	Г 	(J) S ::	I		S :1	I
0	ν	DV1D	1	ν	DV1D	1	ν	DV1D	1	3408.90	1.87	3.87	ν	DV1D	1	ν	DV1D	1
1	3346.83	1.93	0.84	3338.02	1.97	1.71	3340.86	1.95	2.54	3411.55	1.87	5.76				3405.96	1.86	5.69
2	3349.60	1.92	1.62	3334.92	1.98	2.50	3340.49	1.95	4.10	3413.98	1.88	7.49	3399.67	1.85	1.83	3405.80	1.85	9.19
3	3352.26	1.92	2.32	3331.73	2.00	3.22	3339.93	1.94	5.46	3416.20	1.89	9.01	3396.17	1.85	3.49	3405.56	1.85	12.26
4	3354.82	1.91	2.91	3328.47	2.02	3.82	3339.19	1.94	6.58	3418.19	1.91	10.25	3392.48	1.84	4.92	3405.24	1.84	14.79
5	3357.28	1.90	3.38	3325.13	2.04	4.30	3338.26	1.93	7.42	3419.96	1.92	11.20	3388.58	1.84	6.08	3404.84	1.83	16.69
6	3359.63	1.90	3.71	3321.71	2.06	4.63	3337.14	1.92	7.96	3421.51	1.93	11.79	3384.50	1.84	6.95	3404.37	1.82	17.92
8	3361.80	1.90	3.91	3318.22	2.08	4.83	3335.83	1.90	8.21	3422.84	1.95	12.05	3380.22	1.85	7.52	3403.81	1.81 1.70	18.50
9	3365.95	1.91	3.99	3311.01	2.11 2.13	4.88	3332.65	1.89	7 94	3424.82	1.97	12.00	3371 12	1.85	7.80	3402.45	1.73	17 90
10	3367.79	1.90	3.78	3307.29	2.16	4.64	3330.77	1.86	7.47	3425.47	2.00	11.00	3366.31	1.86	7.58	3401.65	1.75	16.89
11	3369.50	1.91	3.56	3303.49	2.19	4.37	3328.70	1.83	6.86	3425.91	2.02	10.31	3361.34	1.86	7.18	3400.77	1.73	15.56
12	3371.05	1.91	3.28	3299.61	2.21	4.01	3326.45	1.81	6.16	3426.12	2.04	9.41	3356.20	1.87	6.65	3399.80	1.72	14.03
13	3372.44	1.92	2.96	3295.66	2.23	3.63	3324.00	1.79	5.42	3426.12	2.06	8.42	3350.91	1.88	6.01	3398.75	1.69	12.36
14	3373.67	1.92	2.62	3291.62	2.26	3.22	3321.36	1.77	4.67	3425.89	2.08	7.41	3345.48	1.89	5.33	3397.62	1.67	10.68
15	3374.73	1.93	2.28	3287.50	2.29	2.80	3318.52	1.74	3.95	3425.45	2.10	6.39	3339.91	1.89	4.64	3396.40	1.63	9.02
16	3375.61	1.94	1.94	3283.30	2.32	2.40	3315.50	1.72	3.28	3424.80	2.11	5.42	3334.21	1.90	3.96	3395.09	1.64	7.63
17	3376.29	1.95	1.63	3279.01	2.35	2.02	3312.28	1.69	2.67	3423.94	2.13	4.52	3328.39	1.91	3.32	3393.69	1.60	6.20
18	3376.78	1.95	1.35	3274.63	2.37	1.68	3308.87	1.66	2.14	3422.89	2.13	3.70	3322.46	1.91	2.74	3392.20	1.56	4.94
19	3377.06	1.96	1.10	3270.16	2.40	1.37	3305.27	1.63	1.69	3421.66	2.12	2.95	3316.43	1.92	2.22	3390.61	1.53	3.91
20 -	3376.07	1.04	0.74	3200.00	2.42	1.10	3301.49	1.00	1.31	3420.32 3410.13	2.02	2.23	3310.32	1.91	1.70	3388.92	1.49	3.04 9.33
21	3376 59	1.90	0.70	3256 21	2.40	0.87	3297.52	1.51 1.54	0.84 0.76	3418.15	0.75	0.50	3298.02	1.80	1.57	3385.22	1.40 1.43	$\frac{2.55}{1.76}$
23	3375.96	1.99	0.42	3251.37	2.49	0.52	3289.03	1.51	0.56	3419.28	0.28	0.14	3292.15	1.45	0.62	3383.21	1.39	1.31
$\overline{24}$	3375.08	1.99	0.32	3246.44	2.51	0.40	3284.52	1.48	0.41	3420.09	0.13	0.05	3287.25	0.67	0.22	3381.07	1.36	0.96
				K_{a}	=2-1								K_{a}	=1-2				
				(b k) = (2	$(22) \rightarrow$	(21)							(b k) = (1	$(1) \rightarrow$	(32)			
-	$R(J^e)$	/R(J	$^{If})$	$P(J^e)$)/P(J	f)	$Q(J^e)$)/Q(J	f)	$R(J^e)$) / R(.	$J^f)$	$P(J^e)$)/P(J	f)	$Q(J^e$	$^{2})/Q(J$	$I^f)$
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
1										3484.55	1.75	2.37						
										3484.45	1.75	2.38						
2	3294.34	1.88	0.34	3280.02	2.07	3.31	3286.15	2.00	1.79	3487.20	1.74	2.54				3478.50	1.70	1.24
	3295.14	1.89	0.34	3280.16	2.07	3.32	3285.75	1.99	1.78	3486.89	1.75	2.55				3478.20	1.70	1.24
3	3296.60	1.83	0.70	3276.58	2.10	3.57	3285.97	2.01	3.00	3489.70	1.69	2.67	3469.45	1.60	0.22	3478.14	1.66	2.03
	3297.93	1.86	0.72	3276.98	2.11	3.59	3285.17	1.99	2.97	3489.09	1.71	2.68	3468.84	1.62	0.22	3477.53	1.67	2.04
4	3298.66	1.78	1.04	3272.95	2.13	3.84	3285.72	2.02	3.94	3492.04	1.59	2.65	3465.07	1.53	0.45	34776.63	1.59	2.55
5	3300.00	1.02 1.73	1.00	3273.73	2.10	3.01 4.04	3285.40	1.99	0.00 4.66	3491.03	1.00	2.00	3469.57	1.00	0.40	3476.07	1.02	2.00 2.76
0	3303.29	1.79	1.34	3209.14 3270.47	2.10	4.09	3283.42	1.98	4.56	3492.67	1.43	2.41 2.45	3461.07	1.44	0.64	3475.47	1.51	2.83
6	3302.16	1.68	1.48	3265.15	2.18	4.15	3285.02	2.04	5.17	3496.09	1.10	1.92	3458.93	1.30	0.73	3476.13	1.29	2.68
	3305.85	1.76	1.55	3267.14	2.23	4.23	3282.26	1.98	5.02	3493.98	1.16	2.00	3456.83	1.34	0.74	3474.04	1.33	2.74
7	3303.59	1.63	1.59	3260.97	2.21	4.16	3284.56	2.05	5.48	3499.94	1.04	1.78	3455.12	1.10	0.71	3475.06	1.03	2.25
	3308.32	1.73	1.69	3263.76	2.27	4.28	3280.91	1.97	5.27	3497.14	1.07	1.82	3452.33	1.16	0.74	3472.29	1.05	2.27
8	3304.80	1.58	1.62	3256.62	2.23	4.08	3284.04	2.07	5.61	3501.76	1.30	2.16	3451.11	0.84	0.59	3475.96	0.93	2.07
	3310.70	1.70	1.75	3260.34	2.31	4.23	3279.36	1.97	5.33	3498.17	1.33	2.18	3447.54	0.91	0.63	3472.42	0.98	2.14
9	3305.79	1.52	1.58	3252.10	2.25	3.91	3283.43	2.08	5.57	3503.50	1.51	2.38	3449.09	0.75	0.55	3474.84	1.13	2.49
	3312.97	1.66	1.74	3256.86	2.35	4.09	3277.63	1.96	5.23	3499.02	1.28	1.97	3444.64	0.81	0.58	3470.44	1.22	2.63
10	3306.56	1.46	1.49	3247.40	2.26	3.67	3282.75	2.10	5.38	3505.13	1.58	2.32	3445.08	0.89	0.65	3473.66	1.06	2.24
11	3315.14	1.63	1.68	3253.34	2.39	3.88	3275.71	1.95	4.99	3499.69	1.63	2.32	3439.66	0.97	0.69	3468.32	1.43	2.94
11	3307.11	1.40	1.37	3242.54	2.28	3.37	3281.97	2.12	9.08	3906.65	1.63	2.18	3441.04	0.99	0.70	3472.40	1.32	2.62
	3317 90	161	1 57	39/10/79	2/2	3 61	3973 60	1 05	4 65	3500 14	1 76	2 25	3434 59	0 00	0 62	3466 04	1 50	., 22
12	3317.20 3307.43	1.61 1.34	1.57 1.21	3249.78 3237.51	2.43 2.29	$3.61 \\ 3.04$	3273.60 3281.11	1.95 2.15	$4.65 \\ 4.71$	3500.14 3508.04	$1.76 \\ 1.72$	2.28 2.07	3434.58 3436.95	0.90 0.99	$0.62 \\ 0.66$	3466.04 3471.05	$1.50 \\ 1.40$	2.88 2.55

А.	Combination	$v_r = 0 \rightarrow 1 v_\theta = 0 \rightarrow 1$	band (S	$S_{\rm vib}{}^a$ in	$10^{-4} {\rm D}$	P^2 , I in	10^{-22}	$\mathrm{cm}/$	molecule)	۱.
----	-------------	--	------------	----------------------	-------------------	--------------	------------	----------------	-----------	----

TABLE CXII: A. continued

13	3307 52	1.97	1.05	3030 30	2 30	2.68	3280-16	2 17	4 26	3509-29	1 76	1.87	3432.81	0.97	0.60	3469 60	1 47	2 40
10	3320.97	1.55	1.00	3242 51	2.50 2.52	2.00	3268.83	1.93	3.77	3500.42	1.70	1.07	3424 00	1 16	0.00	3460.99	1.47	2.40
14	3307.38	1.20	0.88	3226.97	2.30	2.33	3279.11	2.20	3.79	3510.40	1.79	1.64	3428.62	0.97	0.54	3468.04	1.48	2.13
	3322.66	1.51	1 11	3238 81	2.56	2.60	3266 17	1.92	3 30	3500.23	2.00	1 74	3418 52	1.20	0.63	3458 21	1.10	2.10
15	3307.01	1 1 3	0.72	3221 47	2.00	1.98	3277.96	2 22	3.20	3511 35	1.81	1 49	3424 35	0.94	0.00	3466 38	1 49	1.85
10	3324 22	1.10	0.12	3235.06	2.01	2.25	3263 34	1 92	0.20 2.84	3499.82	2.05	1.51	3412.89	1 19	0.40	3455 25	1.45	2.05
16	3306 /1	1.00	0.57	3215.82	2.00	1.66	3276 70	2 20	2.04	3519.13	1.83	1.01	3420.02	0.00	0.34	3464 50	1.70	1.58
10	2225 62	1.00	0.00	20210.02	2.51	1.00	2260.22	1.01	2.01	2400.19	2.10	1.20	9407 14	1 1 2	0.57	2459 11	1.50	1.56
17	3305 58	0.07	0.01	3231.28	2.05	1.31	3200.33	2 30	2.39	3433.10	1.84	1.29	3407.14	0.85	0.40	3462.60	1.70	1.70
11	2206.00	1 49	0.40	2007 44	2.50	1.57	2057 15	2.50	1.00	2408 22	1.04 9.14	1.00	2401.02	1 17	0.30	2442.09	1.00	1.02
10	2204 52	1.42	0.00	3227.44 2204 11	2.12	1.05	2072 24	1.91	1.99	2512.00	2.14	1.00	2401.27 2411-15	1.17	0.00	2460.67	1.01	1.40
10	2207 00	1.20	0.55	2002 55	2.29	1.10	2052 21	2.31	1.90	2407 22	1.00	0.82	2205 27	1.15	0.23	2445 20	1.49	1.00
10	2202 20	0.76	0.00	2102.00	2.14	1.55	2200.01 2070 02	2.24	1.60	2512.00	1.00	0.64	2406 50	0.72	0.31	2459 59	1.00	0.87
19	2220 01	1.25	0.23	2010 60	2.21	1.00	2250 21	2.34	1.02	2405.09	1.02	0.04	2200.16	1 1 2	0.17	3430.34 2441 EQ	1.40	0.01
20	2201 00	1.55	0.42	3219.02 2101.00	2.70	1.00	2270.40	1.91	1.32	3495.90	2.21	0.72	2401 01	1.15	0.20	2456 22	1.00	0.90
20	2220 66	1.91	0.14	2015 64	2.24	0.00	2210.49	2.37	1.51				2202.04	1.10	0.13	2427 52	1.47	0.09
	3529.00	1.51	0.55	5215.04	2.80	0.80	5240.09	1.91	1.05				3362.94	1.10	0.19	3437.32	1.70	0.75
				K_a	=3 - 2								K_a	=2-3				
				(b k) = (3	$3) \rightarrow$	(32)							(b k) = (2	$2) \rightarrow$	(43)			
2										3564.32	1.61	4.67						
_										3564.32	1.61	4.67						
3	3251.62	1.48	0.05	3231.37	2.16	1.32	3240.06	1.86	0.40	3566.68	1.64	4.79				3555.15	1.51	1.46
	3251.62	1.49	0.05	3231.37	2.16	1.32	3240.06	1.86	0.40	3566.68	1.64	4.79				3555.15	1.51	1.46
4	3253.90	1.30	0.09	3227.93	2.22	1.34	3239.49	1.78	0.65	3568.86	1.68	4.92	3542.93	1.38	0.18	3554.47	1.50	2.46
-	3253.90	1.29	0.09	3227.93	2.22	1.34	3239.49	1.78	0.65	3568.87	1.68	4.92	3542.94	1.38	0.18	3554.47	1.50	2.46
5	3255.97	1.06	0.12	3224.36	2.24	1.34	3238.76	1.63	0.77	3570.85	1.71	5.01	3539.22	1.34	0.39	3553.61	1.49	3.17
Ŭ	3255.96	1.07	0.12	3224.35	2.24	1.34	3238.76	1.64	0.78	3570.86	1.71	5.00	3539.23	1.34	0.39	3553.62	1.49	3.17
6	3257.79	0.77	0.11	3220.63	2.21	1.30	3237.83	1.42	0.78	3572.64	1.75	5.02	3535.34	1.30	0.57	3552.58	1.48	3.64
Ŭ	3257.77	0.79	0.11	3220.62	2.19	1.29	3237.83	1.42	0.78	3572.66	1.75	5.02	3535.36	1.30	0.57	3552.59	1.48	3.64
7	3261.53	1.03	0.17	3216 72	2.08	1 18	3236.66	1.12	0.67	3574 23	1 79	4 96	3531.31	1.00	0.71	3551.37	1.10	3.92
•	3261.52	1.03	0.17	3216 71	2.00	1.18	3236.67	1 10	0.65	3574.26	1 79	4 95	3531.33	1.20	0.71	3551.39	1.11	3.91
8	3263 24	1.00	0.21	3212.59	1 79	0.96	3237 44	1 19	0.73	3575.61	1.84	4 81	3527 11	1.20	0.80	3549.98	1.10	4 02
0	3263.21	1.14	0.21	3212.58	1.82	0.98	3237.46	1.19	0.73	3575.66	1.83	4.80	3527.14	1.21	0.80	3550.01	1.45	4.01
9	3264 85	1 24	0.24	3210.44	1.09	0.55	3236 19	1 42	0.87	3576 78	1.88	4 59	3522.74	1 18	0.85	3548 40	1 44	3.96
Ŭ	3264 80	0.99	0.19	3210.42	1.08	0.54	3236.22	1 44	0.88	3576.86	1.87	4 58	3522.80	1.17	0.84	3548 44	1 43	3.94
10	3266.34	1 21	0.10	3206 29	1.00	0.68	3234 87	1.31	0.00	3577 72	1.01	4.31	3518 22	1 14	0.85	3546.63	1.10	3 79
10	3266.28	1 17	0.21	3206.26	1.10	0.66	3234 91	1.64	0.97	3577.85	1.00	4 29	3518 31	1 13	0.84	3546 69	1 41	3 75
11	3267 71	1 17	0.23	3202.10	1.10	0.75	3233 46	1.64	0.92	3578 41	2.05	4 12	3513 52	1 10	0.81	3544 68	1.11	3.51
	3267.62	1 17	0.20	3202.10	1.00	0.60	3233 52	1.70	0.95	3578.62	1.96	3.95	3513.67	1.10	0.80	3544 75	1.10	3.46
12	3268.94	1.17	0.20	3197.85	1.98	0.00	3231.95	1.70	0.89	3578.84	2.02	3.60	3508.66	1.05	0.00	3542.53	1.38	3.18
12	3268.82	1 17	0.21	3197 79	1.00	0.70	3232.03	1.73	0.89	3579.16	2.00	3.57	3508.87	1.00	0.74	3542.61	1.39	3 21
13	3270.02	1.13	0.19	3193.54	2.12	0.69	3230.33	1.82	0.84	3578.98	2.06	3.21	3503.62	1.06	0.70	3540.18	1.35	2.80
	3269.87	1.12	0.19	3193.45	2.11	0.68	3230.44	1.82	0.84	3579.48	2.04	3.17	3503.93	1.00	0.66	3540.24	1.29	2.68
14	3270.95	1.09	0.17	3189.17	2.32	0.65	3228.60	1.84	0.75	3578.74	2.09	2.79	3498.38	0.99	0.60	3537.62	1.32	2.41
	3270.76	1.00	0.16	3189.05	2.32	0.64	3228.00	1.85	0.76	3579.56	2.00	2.10	3498.83	0.96	0.58	3537.63	1.02	2.11
15	3271.72	1.00	0.10	3184 73	2.01 2.45	0.54	3226.74	1.86	0.10	3578.00	2.00 2.06	2.11	3492.93	0.96	0.50	3534.86	1.22	2.02
10	3271.49	1.01	0.14	3184 57	$\frac{2.10}{2.42}$	0.57	3226.92	1.87	0.66	3579.39	2.11	2.38	3493 58	0.91	0.49	3534 70	1 10	1.73
16	3272.32	0.99	0.12	3180.22	2.56	0.50	3224 79	1.87	0.56	3576 44	1.87	1 75	3487 18	0.93	0.43	3531.88	1.10	1.66
-0	3272.05	0.98	0.11	3180.01	2.54	0.50	3224 99	1.89	0.57	3578.96	2.14	2.01	3488 18	0.87	0.41	3531.31	0.90	1.21
17	3272 74	0.94	0.00	3175 64	2.67	0.43	3222 71	1.88	0.47	3581.08	0.71	0.54	3481 02	0.90	0.35	3528.66	1.19	1.33
- '	3272 44	0.04	0.09	3175 30	2.64	0.43	3222.11	1 90	0.48	3578 94	2.17	1.67	3482.61	0.83	0.33	3527.18	0.59	1.00
18	3272.93	0.88	0.07	3170.99	2.77	0.36	3220.51	1.89	0.39	3579.95	1.13	0.70	3474 14	0.82	0.27	3525.20	1.13	1.03
10	3272.65	0.88	0.07	3170.69	2.74	0.36	3220.72	1.90	0.39	3577 22	2.19	1.36	3476.89	0.79	0.26	3530.20	1.19	1.09
19	3272.76	0.80	0.05	3166.26	2.86	0.30	3218 19	1.89	0.32	3578 12	1.39	0.68	3474 46	0.12	0.03	3521 47	1.06	0.78
10	3272.67	0.82	0.06	3165.93	2.83	0.30	3218.35	1.89	0.32	3575.87	2.19	1.09	3470.98	0.74	0.20	3525 73	1.33	0.99
20	52,2.01	5.04	5.50	5100.00		5.50		1.00	5.02	3576.22	1.52	0.59	3467.32	0.23	0.05	3517.45	0.96	0.56
										3574.11	2.19	0.85	3464.88	0.70	0.15	3521.53	1.35	0.80
										• -•								

^{*a*}The calculated values of the strengths S divided by the rotational factors of Eq. (C18) are the $S_{\rm vib}$ s which are listed for the bands due to b-type transitions ($\Delta v_{\theta} = \pm 1$).

							$[v_r v_\theta v_R] = [0]$	$[000] \rightarrow$	[200]						
			$K_a =$	0-0						Ka	₁ =1-1				
		(67	k) = (0 0)	$) \rightarrow (0 0)$						(b k) = ($(11) \rightarrow$	(11)			
	<i>R</i>	$\mathcal{L}(J^e)$		H	$\mathcal{P}(J^e)$		R(J	e)/R(J)	f)	$P(J^{\epsilon}$	P(J)	^f)	$Q(J^{\epsilon}$	$^{e})/Q(J)$	f)
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0	5713.27	5.24	1.82												
1	5716.30	5.23	3.59	5707.14	5.25	3.49	5713.68	5.23	1.16				5707.79 5707.50	5.25	1.17
2	5719.29	5.22	5.22	5704.04	5.26	5.01	5716.62	$5.24 \\ 5.22$	1.17 2.00	5701.65	5.27	1.14	5707.59 5707.95	$5.24 \\ 5.26$	0.63
3	5722.26	5.24	6.68	5700.92	5.26	6.30	5716.95 5719.53	$5.24 \\ 5.21$	$2.01 \\ 2.69$	5701.45 5698.58	$5.26 \\ 5.28$	$1.13 \\ 1.93$	5707.34 5708.19	$5.21 \\ 5.27$	$0.62 \\ 0.42$
4	5725 19	5 21	7 82	5697 79	5 97	7 34	5719.97 5722.40	5.24 5.18	2.70 3.24	5698.29 5695 50	5.26	1.92 2.57	5706.96 5708 50	5.18 5.28	0.41
4	0720.19	0.21	1.02	5051.15	0.21	1.04	5722.95	5.23	3.24 3.25	5695.12	5.26	2.51 2.54	5706.46	5.13	0.30
5	5728.08	5.20	8.71	5694.64	5.30	8.03	5725.24	5.17	3.65	5692.40	5.30	3.06	5708.89	5.29	0.23
				F 0.01 10	7 00	- 1 -	5725.90	5.23	3.66	5691.94	5.26	3.02	5705.84	5.06	0.22
6	5730.93	5.17	9.23	5691.49	5.28	8.45	5728.03	5.16	3.92	5689.29	5.29	3.40	5709.36	5.31	0.18
7	5733 73	5 19	9 55	5688 33	5 29	8 54	5730 79	0.25 5.15	3.93 4.06	5686 18	5.20	3.50 3.62	5705.09	4.99 5 33	0.17 0.14
'	0100.10	0.13	<u>9.00</u>	0000.00	0.20	0.04	5731.69	5.22	4.06	5685.56	5.27	3.54	5704.23	4.91	0.14
8	5736.50	5.18	9.53	5685.17	5.26	8.46	5733.50	5.15	4.08	5683.06	5.31	3.70	5710.52	5.35	0.11
							5734.53	5.22	4.07	5682.38	5.27	3.60	5703.26	4.82	0.10
9	5739.21	5.16	9.24	5682.02	5.30	8.12	5736.17	5.14	3.99	5679.94	5.32	3.67	5711.20	5.38	0.09
							5737.32	5.21	3.96	5679.20	5.27	3.55	5702.18	4.73	0.08
10	5741.88	5.16	8.79	5678.87	5.30	7.58	5738.79	5.13	3.79	5676.82	5.34	3.54	5711.96	5.40	0.07
					- 00		5740.07	5.21	3.75	5676.03	5.27	3.41	5700.99	4.63	0.06
11	5744.49	5.15	8.14	5675.73	5.30	6.96	5741.37	5.12	3.53	5673.71	5.35	3.34	5712.78	5.43	0.05
19	5747.06	5 1 /	7 30	5679 61	5 29	6.24	5742.77	5.14 5.19	3.43 3.99	5670.61	5.27 5.36	3.19	5713.68	4.52 5.30	0.04
12	5141.00	0.14	1.59	5072.01	0.02	0.24	5745.30	5.12 5.20	3 15	566974	5.30 5.27	2.91	5698.32	$\frac{1}{4}$	0.04 0.03
13	5749.57	5.13	6.58	5669.50	5.32	5.49	5746.38	5.10	2.87	5667.53	5.37	2.77	5714.63	5.49	0.03
							5748.02	5.19	2.80	5666.63	5.20	2.57	5696.85	4.28	0.02
14	5752.03	5.12	5.74	5666.42	5.32	4.74	5748.81	5.08	2.52	5664.47	5.39	2.45	5715.64	5.52	0.03
							5750.57	5.18	2.44	5663.54	5.27	2.28	5695.29	4.13	0.02
15	5754.43	5.08	4.90	5663.37	5.32	4.02	5751.19	5.07	2.16	5661.44	5.38	2.12	5716.72	5.56	0.02
							5753.07	5.17	2.09	5660.49	5.27	1.96	5693.66	3.99	0.01
16	5756.78	5.09	4.15	5660.35	5.32	3.33	5753.53	5.06	1.83	5658.44	5.38	1.80	5717.85	5.59	0.01
		F 0.0			- 00	~ - /	5755.52	5.16	1.76	5657.48	5.26	1.66	5691.96	3.84	0.01
17	5759.077	5.08	3.44	5657.37	5.30	2.74	5755.82	4.76	1.44	5655.47	5.38	1.51	5719.03	5.63	0.01
10	5761 200	269	2.04	5654 44	5 20	0.01	5757.92	5.15	1.45 1.95	5652 55	5.26 5.20	1.37	5690.20 5720.27	3.69 5.66	0.01
19	0701.300	ə.0ð	2.04	0004.44	0.32	2.21	9798.04 5760 97	5.03 5.14	1.20 1.18	0002.00 5651-61	0.39 5.25	1.24 1.19	5688 40	0.00 3.34	0.01
19	5763.488	5.04	2.25	5651.56	5.32	5.90	5760.22	5.00	1.00	5649.69	5.20 5.08	0.95	5721.55	5.54 5.70	0.01
10	5.00.100	0.01	2.20	0001.00	0.02	0.00	5762.56	5.12	0.95	5648.76	5.24	0.90	5686.53	3.39	0.00

TABLE CXII: B. Overtone $v_r = 0 \rightarrow 2$ band (S_{vib} in $10^{-5} D^2$, I in $10^{-22} cm/molecule$).

i i< i< i< i< i< <i>i<<id<i< td=""> i<<id<id>i<<!--</th--><th></th><th></th><th></th><th></th><th>K_{c}</th><th>=2-2</th><th></th><th></th><th></th><th></th></id<id></id<i<></i>					K_{c}	=2-2				
2 5709.3 5.25 1.63					(b k) = (b k)	$(22) \rightarrow$	(22)			
570.35 5.25 1.63	2	5709.35	5.25	1.63				5700.25	5.25	3.25
3 5712.31 5.24 2.80 5691.08 5.29 1.56 5701.19 5.24 2.17 4 5715.23 5.23 3.69 5687.97 5.29 2.65 5700.09 5.29 1.57 5 5715.23 5.23 3.69 5687.97 5.29 2.65 5700.00 5.29 1.57 5 5715.23 5.22 4.34 5684.85 5.30 3.45 5699.85 5.16 0.91 6 5721.00 5.22 4.34 5684.85 5.30 3.45 5699.85 5.16 0.91 7 5720.88 5.11 4.78 5681.72 5.29 4.00 5699.85 5.16 0.91 7 5720.87 5.11 4.78 5681.72 5.30 3.45 5699.75 5.14 0.71 8 5726.62 5.00 5675.46 5.31 4.52 5699.50 4.90 0.50 9 5729.57 5.19 5.00 5675.45 5.34 4.35 5699.50 4.90 10 5729.57 5.11 4.53 569.23 5.24 4.35 5699.53 4.50 9 5729.57 5.14 5.15 5		5709.35	5.25	1.63				5700.25	5.25	3.25
4 5712.31 5.24 2.80 5691.08 5.29 2.65 5700.09 5.29 2.51 5 5715.24 5.22 3.68 5687.97 5.29 2.65 5700.00 5.29 1.51 5 5718.13 5.22 4.34 5681.85 5.30 3.45 5699.88 5.10 1.18 6 5718.13 5.22 4.78 5681.72 5.30 6.01 5699.88 5.00 0.00 7 5723.82 5.21 4.78 5681.72 5.30 4.01 5699.88 5.00 0.00 7 5723.82 5.21 4.78 5681.72 5.30 4.35 5699.60 5.11 0.70 8 5725.78 5.11 4.33 5675.46 5.30 4.35 5699.60 5.11 0.50 9 5729.37 5.19 4.03 5675.46 5.31 4.52 5699.60 0.11 0.50 9 5729.37 5.19 <	3	5712.31	5.24	2.80	5691.08	5.29	1.56	5700.18	5.24	2.17
4 5715.24 5.22 3.68 5687.97 5.29 2.65 5700.00 5.22 1.57 5 5718.14 5.14 4.14 2.7 5648.85 5.30 3.15 5699.88 5.20 1.18 6 5712.00 5.22 4.74 5681.72 5.30 4.05 5699.88 5.00 0.90 7 5721.00 5.22 4.70 5681.72 5.30 4.01 5699.88 5.00 0.90 7 5723.82 5.22 4.04 5691.05 5.10 3.53 4.35 5699.05 4.14 0.71 8 5726.62 5.20 5.00 5675.47 5.31 4.52 5699.05 4.01 0.75 9 5729.37 5.19 4.79 5669.25 5.20 5.01 5675.47 5.31 4.52 5699.05 4.34 10 5729.37 5.19 4.78 5669.23 5.22 4.38 5699.48 4.94 0.25		5712.31	5.24	2.80	5691.08	5.29	1.56	5700.19	5.24	2.17
5715.23 5.23 5.29 5.29 5.20	4	5715.24	5.22	3.68	5687.97	5.29	2.65	5700.09	5.22	1.57
5 5718.14 5.14 4.27 5684.85 5.30 3.45 5699.98 5.19 1.18 6 5721.00 5.22 4.78 5681.72 5.30 4.00 5699.85 5.10 0.91 720.08 5.21 4.78 5681.72 5.30 4.00 5699.85 5.10 0.70 7 5723.62 5.22 5.04 5678.50 5.22 4.29 5699.05 5.14 0.71 8 5726.62 5.20 5.00 5675.46 5.31 4.52 5699.05 5.14 0.71 8 5726.62 5.20 5.00 5672.37 5.31 4.52 5699.05 0.43 59 5729.77 5.13 4.52 5699.45 5.00 671.33 4.53 5699.45 5.00 0.43 10 5732.62 5.19 4.70 5661.23 5.22 4.38 5699.45 5.00 0.43 11 5732.76 5.19 4.74 5661.23 5.22 4.38 5699.45 5.00 0.33 12 5734.76 5.14 4.08 5660.23 5.33 3.81 5698.54 4.90 0.55 13 5734.76		5715.23	5.23	3.69	5687.97	5.29	2.65	5700.10	5.22	1.57
6 5718.13 5.22 4.34 568.48 5.30 3.45 5700.00 5.18 5.18 6 5721.09 5.22 4.78 5681.72 5.20 4.00 5699.85 5.16 0.90 7 5720.98 5.21 4.78 5678.50 5.22 4.29 5699.50 4.90 0.50 5720.78 5.11 4.93 5678.60 5.31 4.52 5699.50 4.90 0.54 5726.58 5.00 5675.46 5.31 4.52 5699.50 4.50 5.50 5.52 4.33 5699.50 5.50 5.50 5.53 5.52 5.50	5	5718.14	5.14	4.27	5684.85	5.30	3.45	5699.98	5.20	1.18
6 5721.00 5.22 4.78 5681.72 5.29 4.00 5699.85 5.10 0.90 7 572.088 5.21 4.78 5681.72 5.20 4.01 5699.69 5.10 0.90 72 5723.82 5.22 5.04 5678.50 5.20 5.05 5.30 4.55 5699.75 5.14 0.71 8 5726.62 5.20 5.00 5673.46 5.31 4.52 5699.60 5.13 6.53 9 5726.62 5.10 5672.32 5.32 4.35 5699.40 0.43 5720.70 5.19 4.07 5660.22 5.22 4.38 5699.40 0.43 5732.00 5.19 4.79 5660.22 5.32 4.38 5699.40 0.33 11 5734.75 5.19 4.78 5661.20 5.32 4.38 5699.40 0.33 12 5734.66 5.19 4.78 5661.20 5.33 3.43 5698.57 4.84 0.19 13 5734.75 5.19 4.78		5718.13	5.22	4.34	5684.85	5.30	3.45	5700.00	5.19	1.18
5720.98 5.21 4.78 5681.72 5.30 4.01 5699.85 5.09 6.09 5723.82 5.22 5.02 5678.60 5.23 4.29 5699.50 5.10 0.70 5723.78 5.11 4.03 5678.60 5.31 4.52 5699.50 4.90 0.54 5726.58 5.20 5.10 5675.47 5.31 4.52 5699.50 4.90 0.54 5720.37 5.10 5672.32 5.33 4.53 5699.50 4.90 0.34 5720.37 5.10 5672.32 5.22 4.38 5699.80 4.94 0.33 10 5732.00 5.19 4.79 5662.32 5.23 4.38 5699.80 4.94 0.33 11 5734.75 5.19 4.79 5661.1 5.32 4.38 5699.80 4.94 0.23 12 5737.38 5.18 4.08 5663.03 5.33 3.81 5698.57 4.89 4.91	6	5721.00	5.22	4.78	5681.72	5.29	4.00	5699.85	5.16	0.91
7 5723.82 5.22 5.04 5678.50 5.22 4.29 5699.50 5.14 0.70 8 5723.62 5.10 4.03 5678.60 5.30 4.35 5699.50 4.19 0.70 9 5726.62 5.20 5.00 5675.47 5.31 4.52 5699.60 5.10 0.55 9 5729.37 5.19 5.00 5672.33 5.33 4.53 5699.40 5.00 0.43 10 5729.37 5.19 4.79 5669.22 5.32 4.38 5699.28 5.01 0.33 11 5732.00 5.19 4.79 5669.12 5.32 4.38 5699.28 5.01 0.33 12 5732.00 5.19 4.74 5669.12 5.22 4.38 569.88 4.94 0.25 12 5737.66 5.18 4.46 5661.1 5.32 4.33 569.88 4.94 0.25 12 5737.66 5.17		5720.98	5.21	4.78	5681.72	5.30	4.01	5699.88	5.09	0.90
5723.78 5.11 4.93 5678.60 5.30 4.35 5699.50 4.99 0.54 8 5726.62 5.20 5.00 5675.46 5.31 4.52 5699.50 4.99 0.54 9 5726.62 5.20 5.10 5675.47 5.31 4.52 5699.50 6.43 5729.31 5.13 4.95 5672.32 5.32 4.38 5699.40 6.06 0.43 10 5732.08 5.19 4.79 5669.22 5.32 4.38 5699.38 4.94 0.33 11 5734.75 5.19 4.47 5666.12 5.27 4.09 5698.44 4.94 0.25 12 5734.66 5.18 4.46 5666.12 5.27 4.09 5698.57 4.88 0.19 13 5734.66 5.17 4.08 5669.25 5.33 3.81 5698.57 4.88 0.19 14 5732.66 5.17 4.08 5665.92 5.33<	7	5723.82	5.22	5.04	5678.59	5.22	4.29	5699.69	5.13	0.70
8 5726.62 5.00 5.07 5.71 5.12 5.69 6.99.50 6.99 9 5726.58 5.20 5.10 5675.47 5.31 4.52 5699.60 5.11 5.55 9 5729.37 5.19 5.00 5672.32 5.22 4.33 5699.40 6.43 10 5732.08 5.19 4.79 5669.22 5.32 4.38 5699.80 4.94 0.33 11 5732.08 5.19 4.79 5666.12 5.27 4.09 5699.81 4.94 0.25 5734.66 5.18 4.46 5666.12 5.27 4.09 5699.11 4.97 0.25 12 5737.66 5.17 3.64 5650.2 5.33 3.81 5698.24 4.94 0.19 13 5737.56 5.17 4.68 5669.0 5.33 3.43 5698.26 4.79 0.11 14 5749.25 5.16 3.19 565.92 5.33 3.32 5698.26 4.79 0.11 15 5739.26 5.17 <th></th> <th>5723.78</th> <th>5.11</th> <th>4.93</th> <th>5678.60</th> <th>5.30</th> <th>4.35</th> <th>5699.75</th> <th>5.14</th> <th>0.71</th>		5723.78	5.11	4.93	5678.60	5.30	4.35	5699.75	5.14	0.71
5726.58 5.20 5.10 5675.47 5.31 4.52 5699.60 5.11 0.55 9 5729.37 5.19 5.00 5672.32 5.22 4.43 5699.44 5.06 0.43 10 5732.08 5.19 4.79 5669.23 5.22 4.43 5699.48 5.03 0.33 11 5732.08 5.19 4.78 5669.23 5.32 4.38 5699.28 5.03 0.33 11 5734.07 5.19 4.47 5666.11 5.32 4.38 5699.28 4.94 0.25 12 5734.66 5.18 4.46 5663.02 5.33 3.81 5698.57 4.88 0.19 13 5737.26 5.17 4.08 5663.03 5.33 3.81 5698.58 4.94 0.19 14 5739.97 5.17 3.64 5659.96 5.33 3.43 5698.56 4.50 0.11 15 5745.02 5.17 3.64	8	5726.62	5.20	5.09	5675.46	5.31	4.52	5699.50	4.99	0.54
95729.375.195.005672.335.334.535699.315.050.435729.315.134.955672.325.224.435699.445.060.43105732.085.194.795669.235.324.385699.285.010.335732.005.194.785666.235.224.035699.285.010.325734.665.184.475666.215.274.095699.114.970.525734.665.184.465666.125.274.095699.114.970.52125737.865.174.08563.035.333.815698.574.880.19135739.725.173.645659.665.333.435698.584.940.52145742.525.173.645659.965.333.435698.584.820.15155739.825.173.645659.965.333.435698.584.860.15145742.525.163.195656.935.333.025697.664.750.11155745.625.075.173.645659.965.333.625697.674.760.16145745.725.163.195656.935.333.625697.674.760.16155744.795.152.755653.925.332.625697.674.760.16165747.74<		5726.58	5.20	5.10	5675.47	5.31	4.52	5699.60	5.11	0.55
5729.31 5.13 4.95 5672.32 5.22 4.43 5699.44 5.06 0.43 10 5732.08 5.19 4.79 5669.22 5.32 4.38 5699.28 5.01 0.33 11 5732.00 5.19 4.78 5669.23 5.32 4.38 5699.28 5.01 0.33 11 5734.67 5.19 4.47 5666.12 5.27 4.09 569.911 4.97 0.25 12 5737.66 5.18 4.08 5663.02 5.33 3.81 5698.57 4.88 0.19 13 5737.26 5.17 4.08 5663.02 5.33 3.43 5698.78 4.82 0.15 14 5739.97 5.17 3.64 5659.96 5.33 3.02 569.76 4.79 0.14 15 5745.02 5.17 3.64 5659.96 5.33 3.02 569.86 4.80 0.15 14 5745.20 5.19 2.16	9	5729.37	5.19	5.00	5672.33	5.33	4.53	5699.31	5.05	0.43
10 5732.08 5.19 4.79 5669.22 5.32 4.38 5699.08 4.94 0.33 11 5732.00 5.19 4.47 5666.11 5.32 4.38 5699.28 5.01 0.33 12 5734.75 5.19 4.47 5666.12 5.27 4.09 5699.11 4.97 0.25 12 5737.38 5.18 4.08 5663.03 5.33 3.81 5698.57 4.88 0.19 5737.66 5.17 3.64 5659.03 5.33 3.81 5698.58 4.94 0.19 13 5737.86 5.17 3.64 5659.97 5.34 3.43 5698.58 4.82 0.15 14 5742.52 5.16 3.19 565.92 5.33 3.02 5697.63 4.63 569.64 6.63 5.34 3.03 5698.59 0.11 15 5745.02 5.19 3.16 5698.51 5.34 3.03 5698.61 4.79 0.11 16 5745.02 5.09 2.71 5653.92 5.34 <		5729.31	5.13	4.95	5672.32	5.22	4.43	5699.44	5.06	0.43
5732.00 5.19 4.78 5669.23 5.32 4.38 5699.28 5.01 0.33 11 5734.75 5.19 4.47 5666.11 5.32 4.13 5698.84 4.94 0.25 5734.66 5.18 4.66 5666.12 5.27 4.09 5699.11 4.97 0.25 12 5737.86 5.18 4.08 5663.02 5.33 3.81 5698.57 4.88 0.19 13 5737.26 5.17 4.08 5659.96 5.33 3.43 5698.78 4.82 0.15 14 5732.82 5.17 3.64 5659.97 5.34 3.43 5698.78 4.86 0.15 14 5742.52 5.16 3.19 5656.93 5.34 3.03 5698.62 4.79 0.11 15 5745.02 5.09 2.17 5653.92 5.33 3.22 5697.63 4.66 0.68 16 5747.02 5.15 2.15 5653.9	10	5732.08	5.19	4.79	5669.22	5.32	4.38	5699.08	4.94	0.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5732.00	5.19	4.78	5669.23	5.32	4.38	5699.28	5.01	0.33
5734.66 5.18 4.46 5666.12 5.27 4.09 5699.11 4.97 0.25 12 5737.38 5.18 4.08 5663.02 5.33 3.81 5698.57 4.88 0.19 13 5737.26 5.17 4.08 5659.96 5.33 3.43 5698.28 4.82 0.15 14 5742.52 5.16 3.19 565.92 5.33 3.02 5697.69 4.76 0.11 15 5742.52 5.16 3.19 565.92 5.33 3.02 5698.62 4.79 0.11 15 5742.52 5.16 3.19 565.93 5.34 3.03 5698.62 4.79 0.11 15 5745.02 5.09 2.71 565.92 5.33 2.62 5697.63 4.66 0.08 16 5747.78 5.07 2.29 565.94 5.34 2.23 5698.47 4.72 0.08 17 5747.88 5.07 2.29 565.94 5.34 2.23 5698.44 4.59 0.06 174 </th <th>11</th> <th>5734.75</th> <th>5.19</th> <th>4.47</th> <th>5666.11</th> <th>5.32</th> <th>4.13</th> <th>5698.84</th> <th>4.94</th> <th>0.25</th>	11	5734.75	5.19	4.47	5666.11	5.32	4.13	5698.84	4.94	0.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5734.66	5.18	4.46	5666.12	5.27	4.09	5699.11	4.97	0.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	5737.38	5.18	4.08	5663.02	5.33	3.81	5698.57	4.88	0.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5737.26	5.17	4.08	5663.03	5.33	3.81	5698.95	4.91	0.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	5739.97	5.17	3.64	5659.96	5.33	3.43	5698.28	4.82	0.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5739.82	5.17	3.64	5659.97	5.34	3.43	5698.78	4.86	0.15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	5742.52	5.16	3.19	5656.92	5.33	3.02	5697.96	4.75	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5742.33	5.15	3.19	5656.93	5.34	3.03	5698.62	4.79	0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	5745.02	5.09	2.71	5653.92	5.33	2.62	5697.63	4.66	0.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5744.79	5.15	2.75	5653.92	5.34	2.63	5698.47	4.72	0.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	5747.48	5.07	2.29	5650.96	5.33	2.22	5697.27	4.58	0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5747.20	5.13	2.32	5650.94	5.34	2.23	5698.34	4.59	0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	5749.89	5.06	1.90	5648.04	5.26	1.83	5696.90	4.49	0.04
18 5752.26 5.07 1.56 5645.18 5.24 1.50 5696.51 4.39 0.03 5751.87 5.11 1.58 5645.13 5.34 1.53 5698.12 4.43 0.03 19 5754.59 5.02 1.25 5642.37 5.24 1.21 5696.12 4.28 0.02 5754.13 5.10 1.27 5642.30 5.34 1.24 5698.05 4.36 0.02		5749.56	5.12	1.93	5648.01	5.34	1.86	5698.22	4.51	0.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	5752.26	5.07	1.56	5645.18	5.24	1.50	5696.51	4.39	0.03
19 5754.59 5.02 1.25 5642.37 5.24 1.21 5696.12 4.28 0.02 5754.13 5.10 1.27 5642.30 5.34 1.24 5698.05 4.36 0.02		5751.87	5.11	1.58	5645.13	5.34	1.53	5698.12	4.43	0.03
5754.13 5.10 1.27 5642.30 5.34 1.24 5698.05 4.36 0.02	19	5754.59	5.02	1.25	5642.37	5.24	1.21	5696.12	4.28	0.02
		5754.13	5.10	1.27	5642.30	5.34	1.24	5698.05	4.36	0.02

							$[v_r v_\theta v_B] =$	=[000] -	→ [120]						
			$K_a =$	=0-0			1	. ,		K	a = 1 - 1				
		(b	k) = (0.0)	$(20) \rightarrow (20)$						(b k) = ($(11) \rightarrow ($	(31)			
	Ι	$R(J^e)$		Ι	$\mathcal{P}(J^e)$		R(J)	$e)/R(J^f$)	P(J	$e)/P(J^{f}$)	Q(J	$e)/Q(J^{f}$)
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0	3776.84	2.52	0.58												
1	3779.40	2.47	1.12	3770.93	2.63	0.59	3797.85 3798 33	2.88	0.43				3792.54 3792.24	2.48	0.37
2	3781.71	2.41	1.60	3767.60	2.68	1.18	3800.06	2.83	0.41 0.72	3786.30	2.55	0.37	3792.39	2.02	0.16
3	3783.76	2.36	1.99	3764.03	2.74	1.72	3800.88 3802.01	$2.66 \\ 2.76$	$\begin{array}{c} 0.68 \\ 0.95 \end{array}$	3786.19 3782.75	$2.59 \\ 2.37$	$\begin{array}{c} 0.37 \\ 0.58 \end{array}$	3791.51 3792.12	$2.00 \\ 1.60$	$\begin{array}{c} 0.16 \\ 0.09 \end{array}$
4	3785.53	2.30	2.28	3760.21	2.80	2.21	3803.20 3803.64	$2.58 \\ 2.68$	$0.88 \\ 1.11$	3782.73 3778.94	$2.48 \\ 2.18$	0.60 0.70	3790.40 3791.74	$1.39 \\ 1.30$	$0.07 \\ 0.05$
5	3787.04	2 30	9 55	3756 14	2.86	2.61	3805.28 3804.08	2.50	1.03	3779.05 3774.88	2.42	0.78	3788.94 3701-22	0.83	0.03
0	5161.04	2.30	2.00	5750.14	2.80	2.01	3807.11	2.33 2.42	1.13	3775.17	2.00 2.43	0.92	3791.22 3787.08	0.39	0.03 0.01
6	3788.27	2.22	2.62	3751.84	2.90	2.91	3806.01 3808.69	$2.51 \\ 2.34$	$1.27 \\ 1.17$	3770.53 3771.07	$1.86 \\ 2.47$	$0.79 \\ 1.04$	3790.56 3784.84	$0.96 \\ 0.12$	$0.02 \\ 0.00$
7	3789.21	2.18	2.65	3747.29	3.02	3.18	3806.73	2.44	1.28	3765.92 2766 77	1.74	0.78	3789.77	0.87	0.02
8	3789.87	2.13	2.59	3742.51	3.04	3.24	3807.14	2.20 2.42	1.17 1.28	3760.77 3761.04	1.65	0.76	3782.22 3788.83	0.00 0.81	0.00 0.01
9	3790.24	2.09	2.47	3737.50	3.10	3.26	3811.07 3807.20	$2.15 \\ 2.34$	$1.12 \\ 1.20$	3762.25 3755.88	$2.59 \\ 1.58$	$1.17 \\ 0.72$	3779.21 3787.74	$0.04 \\ 0.74$	$\begin{array}{c} 0.00\\ 0.01 \end{array}$
10	3790.31	2.05	2.30	3732.24	3.16	3.18	3811.59 3806.92	1.35^{a} 2.33	$0.68 \\ 1.14$	3757.52 3750.46	2.66 1.57	$1.19 \\ 0.69$	3775.82 3786.23	0.19 0.16^{a}	$0.00 \\ 0.00$
	2700.07	0.00	0.00	2726 76	0.00	0.00	3812.58	2.10^{a}	1.00	3752.56	2.68	1.15	3772.03	0.39	0.00
11	3790.07	2.00	2.09	3720.70	3.22	3.03	3806.49 3812.83	1.93 2.04	0.88 0.90	3744.75 3747.14	1.53 1.66^{a}	$\begin{array}{c} 0.63 \\ 0.66 \end{array}$	3785.30 3767.83	1.14° 0.34	0.01
12	3789.52	1.95	1.84	3721.04	3.28	2.82	3805.52 3812.85	$2.08 \\ 2.17$	$0.87 \\ 0.87$	3738.74 3742.25	1.63 3.04^{a}	$\begin{array}{c} 0.61 \\ 1.11 \end{array}$	3783.74 3763.44	$1.13 \\ 2.27$	0.01 0.01
13	3788.57	1.75	1.48	3715.08	3.34	2.57	3804.25	2.08	0.78	3732.65	1.11	0.38	3782.06	1.32	0.01
14	3787.71	1.92	1.42	3708.88	3.37	2.28	3802.63	2.07	0.68	3726.10	1.32	0.39	3780.22	1.31	0.01
15	3786.14	1.91	1.21	3702.37	3.17	1.84	3812.05 3800.65	$1.87 \\ 2.06$	$\begin{array}{c} 0.58 \\ 0.58 \end{array}$	3730.97 3719.31	$3.51 \\ 1.37$	$\begin{array}{c} 1.00 \\ 0.35 \end{array}$	3753.16 3778.20	$2.24 \\ 1.45$	$0.01 \\ 0.00$
16	3784.31	1.87	1.00	3696.03	3.55	1.75	3811.21 3798.31	$1.81 \\ 2.05$	$0.48 \\ 0.49$	3725.07 3712.25	$3.29 \\ 1.41$	$0.81 \\ 0.31$	3747.48	2.39	0.01
1/7	9799.15	1.04	0.99	2620.02	9.67	1 50	3810.07	1.76	0.40	3718.96	3.38	0.70			
17	3782.15	1.84	0.82	3689.08	3.67	1.50	3795.58 3808.63	2.05 1.71	$0.41 \\ 0.32$	3704.93 3712.66	$1.45 \\ 3.47$	$\begin{array}{c} 0.27\\ 0.60\end{array}$			
18	3779.66	1.80	0.66	3681.97	3.73	1.25	3792.47 3806.87	$2.05 \\ 1.66$	$0.33 \\ 0.25$	3697.33 3706.16	$1.50 \\ 3.56$	$0.23 \\ 0.50$			
19	3776.83	1.77	0.52	3674.64	3.79	1.03	3788.96	2.05	0.27	3689.45	1.56	0.19			
							3804.79	1.01	0.20	3099.48 K	3.00	0.41			
										(b k) = ($(22) \rightarrow ($	(42)			
2							3842.24	1.98	0.41				3833.96	2.31	0.96
3							3842.26 3844.12	1.98 1.92	$\begin{array}{c} 0.41 \\ 0.69 \end{array}$	3824.78	2.33	0.46	3833.95 3833.09	2.31 2.48	$\begin{array}{c} 0.96 \\ 0.69 \end{array}$
4							3844.14 3845.69	1.92 1.86	0.69 0.88	3824.79 3820.86	2.33 2.39	$0.46 \\ 0.80$	3833.07 3831.93	2.48 2.70	0.69 0.55
1							3845.73	1.86	0.88	3820.87	2.39	0.80	3831.91	2.70	0.55
5							3846.95 3847.01	$1.80 \\ 1.80$	$\begin{array}{c} 1.01 \\ 1.01 \end{array}$	3816.66 3816.68	$2.45 \\ 2.45$	$1.07 \\ 1.07$	3830.48 3830.45	$3.00 \\ 3.01$	$0.46 \\ 0.46$
6							3847.88	1.72	1.06	3812.17	2.50	1.27	3828.74	3.40	0.40
7							3848.00 3848.48	1.72 1.67	1.06 1.09	3812.22 3807.40	$2.50 \\ 2.56$	$1.27 \\ 1.41$	3828.69 3826.72	$3.41 \\ 3.84$	$0.40 \\ 0.35$
0							3848.67	1.31	0.85	3807.48	2.57	1.41	3826.62	3.86	0.36
8							3848.73 3849.03	$1.61 \\ 1.26$	$1.06 \\ 0.83$	3802.34 3802.49	2.58 2.59	$1.47 \\ 1.48$	3824.38 3824.25	$3.53 \\ 4.51$	$\begin{array}{c} 0.25\\ 0.33\end{array}$
9							3848.62	1.55	1.00	3796.99	2.65	1.51	3821.77	4.13	0.23
							3849.09	1.22	0.79	3797.21	2.10	1.19	5621.50	5.29	0.30

_

TABLE CX	I: C.	continued
----------	-------	-----------

10	3848.13	1.49	0.92	3791.33	2.69	1.48	3818.86	4.87	0.21
	3848.82	1.17	0.72	3791.68	2.14	1.18	3818.53	6.26	0.28
11	3847.21	1.43	0.83	3785.37	2.73	1.41	3815.65	5.80	0.20
	3848.24	1.12	0.65	3785.89	2.18	1.13	3815.16	7.48	0.26
12	3845.67	1.32	0.69	3779.08	2.73	1.30	3812.15	6.94	0.18
	3847.32	1.08	0.57	3779.85	2.22	1.06	3811.40	9.05	0.24
13	3845.28	0.73	0.34	3772.42	2.67	1.14	3808.33	8.39	0.17
	3846.05	1.28	0.60	3773.55	2.26	0.97	3807.07	10.84	0.22
14	3842.82	0.98	0.40	3765.21	2.22	0.84	3804.19	12.62	0.19
	3844.39	1.22	0.51	3766.98	2.29	0.87	3803.93	6.33	0.10
15	3840.21	0.97	0.34	3759.23	2.61	0.85	3799.69	15.31	0.18
	3842.09	1.11	0.40	3760.15	2.85	0.93	3798.78	11.58	0.13
16	3837.17	0.92	0.28	3751.26	2.99	0.83	3794.57	17.54	0.15
	3841.08	0.55	0.17	3753.00	2.75	0.76	3793.53	14.85	0.13
17	3833.70	0.83	0.21	3743.23	3.02	0.70	3790.78	12.69	0.08
	3838.11	0.70	0.18	3745.31	2.10	0.49	3787.91	18.22	0.12
18	3829.67	0.77	0.16	3734.87	3.04	0.57	3785.07	20.81	0.10
	3834.98	0.66	0.14	3739.01	2.80	0.53	3781.93	21.49	0.10
19	3825.11	0.70	0.12	3726.18	3.00	0.46	3779.23	26.43	0.09
	3831.45	0.57	0.09	3730.85	3.08	0.47	3775.45	25.83	0.09

^{*a*}Affected by the crossing of levels from the groups $(v_r b k v_R) = (1 \ 3 \ 1 \ 0)$ and $(1 \ 1 \ 1 \ 3)$ marked in Table CIII. The effect on the strength of $Q(J^e)$ lines is also seen in Fig. C7.

								$v_r v_{\theta}$	$v_{R}] = [0]$	$10] \rightarrow [10]$	0 0]							
				K_a	=1-0								K_a	=0-1				
				(b k) = (2	$1) \rightarrow$	(00)							(b k) = (1	$0) \rightarrow$	(11)			
	R	(J^e)		Р	(J^e)		Q	(J^f)		R	(J^e)		Р	(J^e)		Q	(J^e)	
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0										2495.90	3.05	0.26						
1	2433.44	3.12	0.21	2424.25	3.12	0.42	2427.17	3.12	0.63	2498.96	3.07	0.39				2493.05	3.03	0.38
2	2436.86	3.12	0.41	2421.55	3.13	0.62	2427.28	3.11	1.02	2502.07	3.09	0.50	2487.04	3.01	0.12	2493.36	3.02	0.61
3	2440.47	3.12	0.60	2419.05	3.14	0.79	2427.43	3.10	1.37	2505.23	3.11	0.61	2484.20	3.00	0.23	2493.83	3.01	0.82
4	2444.24	3.21	0.78	2416.74	3.15	0.94	2427.63	3.08	1.65	2508.44	3.13	0.69	2481.43	2.99	0.33	2494.47	3.00	0.99
5	2448.18	3.12	0.88	2414.62	3.16	1.05	2427.89	3.16	1.92	2511.70	3.15	0.76	2478.73	2.98	0.40	2495.26	2.98	1.12
6	2452.28	3.13	0.97	2412.70	3.27	1.17	2428.19	3.04	2.00	2515.01	3.17	0.80	2476.11	2.97	0.46	2496.21	2.96	1.21
7	2456.54	3.13	1.03	2410.97	3.18	1.18	2428.56	3.01	2.07	2518.36	3.20	0.83	2473.57	2.97	0.50	2497.33	2.93	1.25
8	2460.96	3.14	1.06	2409.45	3.19	1.19	2428.97	2.98	2.07	2521.76	3.23	0.83	2471.12	2.96	0.52	2498.61	2.91	1.25
9	2465.53	3.14	1.06	2408.12	3.20	1.17	2429.45	2.95	2.01	2525.22	3.25	0.81	2468.77	2.96	0.52	2500.06	2.88	1.22
10	2470.24	3.15	1.03	2406.99	3.22	1.13	2429.98	2.91	1.90	2528.73	3.28	0.77	2466.52	2.97	0.51	2501.67	2.84	1.16
11	2475.08	3.15	0.98	2406.07	3.23	1.06	2430.58	2.87	1.75	2532.30	3.30	0.72	2464.39	2.96	0.49	2503.46	2.81	1.08
12	2480.06	3.15	0.90	2405.34	3.23	0.97	2431.24	2.83	1.58	2535.93	3.33	0.67	2462.37	2.96	0.45	2505.42	2.77	0.98
13	2485.15	3.12	0.81	2404.80	3.20	0.87	2431.97	2.78	1.39	2539.63	3.36	0.60	2460.49	2.96	0.41	2507.56	2.73	0.87
14	2490.26	2.76	0.64	2404.36	2.85	0.68	2432.76	2.73	1.21	2543.39	3.37	0.53	2458.75	2.96	0.37	2509.88	2.68	0.75
15	2496.09	2.59	0.53	2404.73	2.68	0.56	2433.63	2.68	1.02	2547.23	3.41	0.46	2457.17	2.96	0.32	2512.38	2.64	0.65
16	2501.45	3.06	0.54	2404.71	3.17	0.57	2434.59	2.62	0.85	2551.14	3.43	0.40	2455.74	2.95	0.27	2515.06	2.59	0.54
17	2507.02	3.14	0.47	2405.01	3.25	0.49	2435.62	2.56	0.70	2555.14	3.46	0.34	2454.49	2.96	0.23	2517.93	2.54	0.45
18	2512.73	3.16	0.40	2405.54	3.29	0.42	2436.75	2.50	0.56	2559.23	3.48	0.28	2453.42	2.96	0.19	2520.99	2.49	0.36
19	2518.55	3.18	0.33	2406.30	3.32	0.34	2437.97	2.43	0.44	2563.42	3.50	0.23	2452.56	2.96	0.16	2524.25	2.44	0.29
20	2524.48	3.18	0.27	2407.29	3.33	0.28	2439.30	2.36	0.34	2567.70	3.52	0.19	2451.90	2.95	0.13	2527.70	2.38	0.23

TABLE CXII: D. Difference $v_r = 0 \rightarrow 1$ $v_{\theta} = 1 \rightarrow 0$ band (S_{vib} in 10^{-4} D², I in 10^{-22} cm/molecule).

TABLE CXIII: Far- and mid-infrared absorption spectrum of Li⁺–D₂. Line positions (ν , in cm⁻¹), vibrational factors of line strengths ($S_{\rm vib}$), and line intensities (I) at T=296 K in one rotational in four vibrational bands.

$K_a = 0 - 0$ $(b k) = (0 0) \rightarrow (0 0)$					$[v_r$	$v_{\theta} v_R] = [0]$	$[000] \rightarrow [000]$	0]				
		$K_a = 0 - 0$			$K_a = 1 - 1$			$K_a = 2 - 2$			$K_a = 3 - 3$	
	(bk)	$=(0\ 0) \rightarrow ($	(00)	(b k)	$=(11)\to($	11)	(b k)	$= (22) \to ($	22)	(bk)	$= (3\ 3) \to ($	(33)
		$R(J^e)$		R	$(J^e)/R(J^f)$)	R	$(J^e)/R(J^f$)	R	$(J^e)/R(J^f$)
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0	3.078	8.436	0.02									
1	6.154	8.442	0.18	6.044	8.435	0.06						
				6.245	8.436	0.06						
2	9.223	8.451	0.60	9.059	8.444	0.22	9.170	8.428	0.18			
				9.361	8.445	0.24	9.169	8.428	0.18			
3	12.283	8.464	1.34	12.066	8.457	0.53	12.215	8.440	0.56	12.127	8.415	0.08
				12.467	8.458	0.56	12.213	8.440	0.56	12.127	8.415	0.08
4	15.331	8.480	2.45	15.063	8.473	0.98	15.249	8.457	1.14	15.138	8.431	0.21
				15.561	8.475	1.04	15.246	8.457	1.14	15.138	8.431	0.21
5	18.364	8.500	3.90	18.046	8.492	1.59	18.270	8.477	1.91	18.136	8.451	0.39
				18.640	8.496	1.68	18.264	8.477	1.91	18.136	8.451	0.39
6	21.379	8.524	5.61	21.014	8.515	2.31	21.276	8.501	2.85	21.117	8.475	0.61
				21.701	8.521	2.43	21.266	8.500	2.85	21.117	8.475	0.61
7	24.373	8.552	7.48	23.962	8.542	3.10	24.263	8.528	3.88	24.078	8.502	0.85
				24.741	8.549	3.25	24.248	8.528	3.88	24.078	8.502	0.85
8	27.342	8.583	9.37	26.889	8.573	3.90	27.228	8.560	4.94	27.018	8.533	1.11
				27.757	8.582	4.09	27.208	8.560	4.93	27.018	8.533	1.11
9	30.285	8.619	11.16	29.791	8.608	4.67	30.170	8.596	5.95	29.932	8.568	1.35
				30.745	8.619	4.86	30.143	8.595	5.94	29.932	8.568	1.35
10	33.197	8.659	12.70	32.667	8.647	5.34	33.085	8.636	6.83	32.818	8.608	1.57
				33.703	8.660	5.53	33.049	8.635	6.81	32.819	8.608	1.57
11	36.076	8.703	13.90	35.512	8.690	5.87	35.970	8.680	7.52	35.673	8.651	1.74
				36.627	8.706	6.05	35.925	8.679	7.51	35.674	8.651	1.74
12	38.918	8.752	14.69	38.325	8.737	6.23	38.821	8.729	7.99	38.493	8.699	1.86
				39.515	8.756	6.39	38.765	8.728	7.98	38.496	8.699	1.87
13	41.721	8.805	15.04	41.102	8.789	6.41	41.637	8.783	8.22	41.277	8.752	1.93
				42.362	8.812	6.53	41.569	8.781	8.21	41.280	8.752	1.93
14	44.482	8.863	14.95	43.840	8.846	6.40	44.413	8.841	8.21	44.019	8.810	1.94
				45.166	8.872	6.47	44.332	8.839	8.19	44.024	8.810	1.94
15	47.196	8.926	14.48	46.536	8.907	6.23	47.146	8.905	7.98	46.717	8.872	1.89
				47.923	8.937	6.25	47.052	8.902	7.96	46.725	8.872	1.89
16	49.862	8.995	13.67	49.188	8.974	5.91	49.833	8.974	7.55	49.368	8.940	1.80
				50.629	9.008	5.88	49.724	8.970	7.54	49.378	8.940	1.80
17	52.475	9.068	12.60	51.791	9.046	5.47	52.470	9.049	6.99	51.967	9.014	1.67
				53.281	9.085	5.41	52.346	9.044	6.97	51.981	9.013	1.67
18	55.033	9.148	11.37	54.342	9.124	4.96	55.053	9.130	6.32	54.510	9.094	1.51
				55.876	9.168	4.86	54.914	9.124	6.30	54.530	9.093	1.51
19	57.532	9.234	10.05	56.838	9.208	4.40	57.578	9.217	5.59	56.992	9.180	1.34
				58.409	9.258	4.28	57.425	9.210	5.58	57.020	9.179	1.34
20	59.968	9.326	8.70	59.275	9.298	3.83	60.041	9.312	4.85	59.409	9.274	1.17
				60.876	9.354	3.69	59.873	9.302	4.85	59.449	9.271	1.17
21	62.338	9.425	7.40	61.650	9.395	3.27	62.437	9.414	4.13	61.753	9.375	1.00
				63.273	9.458	3.13	62.257	9.402	4.13	61.810	9.371	1.00
22	64.638	9.532	6.18	63.957	9.500	2.74	64.762	9.524	3.45	64.017	9.485	0.84
				65.596	9.570	2.60	64.570	9.510	3.45	64.100	9.479	0.84
23	66.863	9.647	5.07	66.194	9.612	2.26	67.010	9.642	2.84	66.185	9.605	0.69
				67.839	9.690	2.13	66.810	9.625	2.84	66.313	9.595	0.69
24	69.009	9.771	4.10	68.355	9.733	1.83	69.177	9.770	2.30	68.236	9.737	0.56
			-	69.998	9.820	1.71	68.969	9.750	2.30	68.443	9.722	0.56
25	71.071	9.904	3.26	70.435	9.864	1.47	71.255	9.907	1.83	70.116	9.878	0.45
-				72.068	9.960	1.35	71.045	9.884	1.83	70.482	9.859	0.45
				. =		2.50						

А.	Rotational	band	$(S_{\rm vib} in$	D^2, I	in 10^{-20}	cm/mole	cule).
----	------------	------	-------------------	----------	---------------	---------	--------

							$[v_r v_\theta v_R] =$	[000] -	$\rightarrow [0 \ 0 \ 1]$						
			K_a =	=0-0						1	$K_a = 1 - 1$				
		((b k) = (0	$(0) \rightarrow (00)$)					(b k) =	$(11) \rightarrow$	(11)			
		$R(J^e)$			$P(J^e)$		R(J	$V^e)/R(.$	$J^f)$	P($J^e)/P(J$	(f)	Q(J	$V^e)/Q(J^e)$	$^{f})$
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0	336.02	6.83	11.25												
1	338.68	6.65	21.83	330.06	7.20	11.40	339.14	6.66	7.10				333.59	7.01	7.30
							339.32	6.65	7.09				333.40	7.02	7.31
2	341.14	6.48	31.29	326.78	7.40	22.43	341.55	6.49	12.07	327.46	7.39	7.28	333.38	7.01	3.93
					- 01		341.82	6.47	12.03	327.25	7.41	7.28	332.79	7.05	3.94
3	343.38	6.32	39.24	323.31	7.61	32.58	343.76	6.33	15.98	324.04	7.60	12.55	333.06	7.00	2.63
4	345 40	6 16	45 43	319.63	7 83	41 49	344.09 345.75	0.31 6.18	13.89 18.97	323.72 320.43	7.02	12.00 16.84	332.63	7.09	2.04
4	545.40	0.10	40.40	515.05	1.05	41.42	346.15	6.15	18.82	319.99	7.84	16.80	330.69	7.14	1.91
5	347.20	6.01	49.71	315.76	8.06	48.61	347.52	6.03	21.06	316.63	8.03	20.25	332.09	6.99	1.44
							347.98	6.00	20.83	316.07	8.08	20.17	329.18	7.21	1.46
6	348.78	5.86	52.07	311.71	8.30	53.93	349.07	5.89	22.27	312.64	8.26	22.79	331.44	6.98	1.11
							349.58	5.85	21.95	311.95	8.32	22.64	327.38	7.30	1.13
7	350.13	5.72	52.62	307.46	8.55	57.29	350.40	5.75	22.67	308.46	8.51	24.43	330.66	6.97	0.86
							350.95	5.70	22.24	307.64	8.58	24.20	325.28	7.40	0.88
8	351.24	5.59	51.54	303.03	8.81	58.72	351.51	5.61	22.33	304.10	8.77	25.20	329.77	6.96	0.67
0	050 11	- 1-	40.11	000 41	0.00	-	352.08	5.56	21.81	303.14	8.85	24.89	322.88	7.51	0.69
9	352.11	5.45	49.11	298.41	9.09	58.35	352.38	5.48	21.38	299.55	9.04	25.18	328.76	6.94	0.52
10	250 75	5 20	45 69	202 61	0.28	56 42	352.97	5.43 5.25	20.78	298.45	9.13	24.78	320.19 227.61	7.65	0.54
10	552.75	0.52	43.02	295.01	9.50	30.45	353.01	0.00 5.30	19.90	294.00 203.58	9.32	24.40	327.01 317.20	0.95	0.41
11	353.13	5.19	41.41	288.63	9.69	53.22	353.41	5.23	18.19	235.58	9.62	23.16	326.34	6.91	0.40
	000110	0.10		200.00	0.00	00.22	354.01	5.17	17.48	288.53	9.76	22.61	313.93	7.99	0.33
12	353.27	5.07	36.76	283.47	10.02	49.05	353.56	5.10	16.22	284.84	9.94	21.43	324.92	6.89	0.24
							354.14	5.04	15.48	283.29	10.09	20.82	310.36	8.19	0.26
13	353.14	4.95	31.96	278.14	10.36	44.25	353.46	4.98	14.16	279.57	10.27	19.41	323.35	6.86	0.18
							354.01	4.92	13.43	277.87	10.45	18.75	306.51	8.42	0.20
14	352.75	4.83	27.24	272.63	10.73	39.11	353.11	4.86	12.12	274.13	10.63	17.22	321.63	6.84	0.14
							353.61	4.79	11.41	272.27	10.83	16.54	302.37	8.69	0.15
15	352.09	4.71	22.78	266.94	11.12	33.90	352.49	4.75	10.18	268.52	11.01	14.98	319.75	6.81	0.10
1.0	951 15	4 50	10.70	0.01 07	11 59	00.05	352.93	4.67	9.50	266.48	11.23	14.31	297.95	8.99	0.12
10	391.19	4.59	18.70	201.07	11.53	28.89	351.00 351.06	4.03	8.39 7.77	202.73	11.41 11.67	12.79	317.70	0.78	0.08
17	349 93	4 48	15.07	255.03	11.98	94 11	350.44	4.55	6 79	200.52 256.76	11.07	12.14 10.73	235.25 315.47	6.75	0.09
11	040.00	1.10	10.07	200.00	11.00	27.11	350.71	4.43	6.23	250.10 254.38	12.13	10.12	288.28	9.71	0.07
18	348.41	4.36	11.94	248.82	12.45	19.81	349.00	4.39	5.39	250.63	12.29	8.85	313.05	6.71	0.04
							349.15	4.31	4.91	248.05	12.62	8.29	283.02	10.15	0.05
19	346.59	4.25	9.29	242.42	12.96	16.01	347.28	4.27	4.21	244.31	12.78	7.18	310.43	6.67	0.03
							347.27	4.19	3.80	241.55	13.15	6.68	277.50	10.64	0.04
20	344.46	4.13	7.11	235.85	13.50	12.73	345.26	4.15	3.23	237.83	13.30	5.72	307.60	6.63	0.02
							345.08	4.07	2.89	234.86	13.71	5.29	271.71	11.22	0.03
21	342.01	4.01	5.36	229.09	14.09	9.96	342.94	4.02	2.44	231.16	13.85	4.49	304.54	6.58	0.01
							342.55	3.94	2.16	227.99	14.33	4.12	265.65	11.89	0.02
22	339.21	3.89	3.97	222.16	14.72	7.68	340.32	3.88	1.81	224.33	14.44	3.47	301.23	6.54	0.01
0.5	996 AC	9 77	9.00	015 00	15 /1	E 04	339.67	3.81	1.59	220.93	14.99	3.16	259.33	12.67	0.01
23	ə30.Ub	3.77	2.89	210.03	10.41	5.84	331.40 226 19	3.13 260	1.31	211.33 212.69	15.U/ 15.70	2.04 2.20	291.07 252 76	0.49 13.60	0.01
24	332 55	3.64	2.07	207 71	16 16	4.37	334 91	3.00 3.55	U 03	210.00 210.16	15.70	2.39 1.08	293.83	6 44	0.01
T.	002.00	0.01	2.01	201.11	10.10	1.01	332.82	3.53	0.81	206.23	16.48	1.78	245.96	14.74	0.01
25	328.64	3.51	1.46	200.19	16.97	3.22	330.81	3.30	0.63	202.85	16.37	1.46	289.70	6.40	0.00
							328.81	3.38	0.57	198.59	17.32	1.31	238.97	16.16	0.01

TABLE CXIII: B. Fundamental $v_R=0\rightarrow 1$ band (S_{vib} in $10^{-2} D^2$, I in $10^{-21} cm/molecule$).

							[$v_r v_\theta u$	$v_R] = [0.0]$	$[0] \rightarrow [00]$	1]							
				K	a = 2 - 2	2							K	a = 3 - 3				
				(b k) =	$(22) \rightarrow$	(22)							(b k) = ($(33) \rightarrow$	(33)			
	$R(J^{\epsilon}$	²) /R($J^f)$	P(J	$^{e}) / P(.$	$J^f)$	$Q(J^{e}$	$^{\circ}) /Q($	(J^f)	$R(J^e$) / R(.	$J^f)$	$P(J^{\epsilon}$	$^{2}) / P(J$	^f)	$Q(J^e$) /Q(.	$J^f)$
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
2	343.04	6.48	9.79				334.48	7.02	20.47									
	343.04	6.48	9.79				334.48	7.02	20.47									
3	345.27	6.32	16.58	325.31	7.59	10.19	333.87	7.03	13.70	347.07	6.29	2.36				335.73	7.01	7.53
	345.27	6.32	16.58	325.31	7.59	10.19	333.87	7.03	13.70	347.07	6.29	2.36				335.73	6.99	7.51
4	347.29	6.16	21.51	321.65	7.81	17.49	333.05	7.06	9.95	349.10	6.12	3.99	323.61	7.72	2.47	334.95	7.03	5.47
	347.28	6.16	21.51	321.66	7.81	17.49	333.06	7.06	9.95	349.10	6.12	3.99	323.61	7.74	2.48	334.95	7.02	5.47
5	349.08	6.01	24.92	317.81	8.04	23.00	332.03	7.08	7.53	350.92	5.95	5.10	319.81	7.93	4.25	333.96	7.04	4.14
	349.08	6.01	24.92	317.81	8.04	23.00	332.04	7.08	7.53	350.92	5.95	5.10	319.81	7.94	4.25	333.96	7.04	4.13
6	350.65	5.87	26.98	313.77	8.27	27.01	330.80	7.11	5.81	352.53	5.76	5.78	315.83	8.13	5.51	332.79	7.06	3.19
	350.65	5.87	26.98	313.77	8.27	27.01	330.82	7.11	5.81	352.53	5.76	5.78	315.83	8.13	5.51	332.79	7.06	3.19
7	351.99	5.73	27.85	309.53	8.52	29.66	329.36	7.15	4.53	353.94	5.54	6.07	311.67	8.31	6.33	331.42	7.06	2.48
	351.99	5.73	27.85	309.55	8.52	29.66	329.40	7.15	4.53	353.94	5.54	6.07	311.67	8.31	6.33	331.42	7.06	2.48
8	353.10	5.59	27.67	305.11	8.78	31.05	327.70	7.19	3.54	355.15	5.27	6.00	307.34	8.46	6.76	329.86	7.04	1.92
	353.10	5.59	27.68	305.13	8.78	31.05	327.77	7.18	3.54	355.15	5.27	6.00	307.34	8.46	6.76	329.86	7.04	1.92
9	353.96	5.45	26.64	300.50	9.06	31.31	325.83	7.23	2.77	356.18	4.88	5.57	302.84	8.56	6.83	328.13	6.96	1.48
	353.96	5.45	26.65	300.53	9.06	31.31	325.93	7.23	2.77	356.19	4.89	5.58	302.85	8.56	6.83	328.13	6.96	1.48
10	354.59	5.32	24.93	295.70	9.35	30.59	323.74	7.28	2.16	357.08	4.29	4.76	298.20	8.53	6.56	326.26	6.75	1.11
	354.59	5.32	24.95	295.74	9.34	30.59	323.88	7.27	2.16	357.08	4.30	4.77	298.20	8.54	6.56	326.25	6.74	1.11
11	354.96	5.19	22.76	290.71	9.65	29.07	321.42	7.34	1.67	357.92	3.39	3.55	293.43	8.27	5.92	324.27	6.28	0.80
	354.97	5.20	22.79	290.77	9.65	29.08	321.62	7.32	1.67	357.92	3.43	3.59	293.44	8.29	5.93	324.26	6.27	0.80
12	355.07	5.07	20.29	285.53	9.98	26.95	318.88	7.40	1.29	358.76	2.35	2.27	288.59	7.57	4.91	322.25	5.38	0.52
	355.09	5.07	20.33	285.62	9.97	26.97	319.15	7.37	1.29	358.76	2.41	2.33	288.59	7.59	4.92	322.24	5.33	0.52
13	354.92	4.95	17.71	280.17	10.32	24.42	316.10	7.46	0.98	355.51	3.46	2.97	283.75	6.16	3.54	320.27	4.16	0.31
	354.95	4.95	17.75	280.28	10.31	24.44	316.47	7.42	0.98	355.48	3.39	2.91	283.75	6.23	3.58	320.26	4.06	0.30
14	354.50	4.82	15.13	274.61	10.68	21.67	313.10	7.53	0.74	355.31	3.88	2.94	278.99	4.33	2.15	314.21	4.48	0.25
	354.55	4.83	15.18	274.76	10.67	21.69	313.57	7.48	0.74	355.29	3.81	2.89	278.98	4.46	2.22	314.22	4.59	0.25
15	353.80	4.71	12.68	268.87	11.07	18.84	309.85	7.60	0.56	354.73	4.08	2.67	270.21	8.27	3.42	311.28	5.32	0.22
	353.87	4.71	12.72	269.05	11.06	18.87	310.46	7.54	0.56	354.75	4.02	2.63	270.17	8.12	3.36	311.27	5.44	0.22
16	352.82	4.59	10.42	262.94	11.48	16.07	306.36	7.68	0.41	353.79	4.15	2.30	264.57	9.68	3.31	308.04	5.88	0.18
	352.92	4.60	10.47	263.17	11.47	16.10	307.12	7.60	0.41	353.86	4.10	2.27	264.54	9.55	3.27	307.99	5.99	0.18
17	351.54	4.47	8.41	256.82	11.92	13.46	302.62	7.77	0.30	352.48	4.14	1.90	258.64	10.72	2.98	304.51	6.26	0.14
	351.67	4.48	8.46	257.10	11.90	13.49	303.56	7.65	0.30	352.64	4.11	1.89	258.64	10.59	2.94	304.39	6.36	0.14
18	349.95	4.35	6.67	250.51	12.40	11.08	298.63	7.85	0.22	350.72	4.05	1.52	252.46	11.54	2.55	300.71	6.53	0.10
	350.13	4.36	6.71	250.85	12.37	11.11	299.76	7.71	0.22	351.08	4.07	1.53	252.50	11.43	2.53	300.46	6.60	0.10
19	348.04	4.24	5.19	244.01	12.91	8.96	294.38	7.95	0.16	348.35	3.80	1.15	246.00	12.24	2.11	296.62	6.73	0.08
	348.28	4.25	5.23	244.41	12.88	9.00	295.73	7.77	0.16	349.17	4.01	1.21	246.13	12.17	2.10	296.14	6.71	0.08
20	345.81	4.12	3.97	237.32	13.46	7.13	289.87	8.04	0.11	344.94	3.14	0.74	239.22	12.80	1.69	292.25	6.88	0.06
	346.12	4.13	4.01	237.79	13.42	7.17	291.45	7.83	0.11	346.87	3.92	0.94	239.53	12.87	1.70	291.27	6.53	0.05
21	343.23	4.00	2.99	230.42	14.05	5.59	285.09	8.14	0.08	348.77	1.80	0.34	231.95	12.94	1.29	287.56	6.98	0.04
	343.62	4.02	3.03	230.99	14.01	5.62	286.93	7.89	0.08	344.13	3.78	0.70	232.70	13.54	1.35	285.40	5.55	0.03
22	340.30	3.87	2.21	223.33	14.70	4.31	280.03	8.25	0.06	344.95	2.52	0.37	223.78	11.72	0.86	282.51	7.01	0.03
00	340.79	3.90	2.24	223.99	14.64	4.34	282.13	7.94	0.05	340.83	3.58	0.51	225.61	14.20	1.05	286.83	3.40	0.01
23	336.99	3.75	1.61	216.03	15.40	3.27	274.69	8.35	0.04	341.38	2.80	0.31	223.00	6.45	0.36	277.00	6.89	0.02
<i>.</i>	337.59	3.77	1.64	216.80	15.33	3.30	277.07	7.99	0.04	336.75	3.20	0.34	218.22	14.80	0.80	280.66	5.04	0.01
24	333.29	3.62	1.15	208.53	16.17	2.45	269.05	8.46	0.03	337.74	2.84	0.23	214.75	9.72	0.39	270.83	6.42	0.01
	334.02	3.65	1.17	209.41	16.08	2.48	271.71	8.04	0.03	331.42	2.52	0.20	210.42	15.19	0.59	274.79	5.88	0.01

								$[v_r v_r]$	$\theta v_R] =$	$[000] \rightarrow [$	010]							
				K_{a}	₁ =1-0)							K_{a}	a = 0 - 1	L			
				(b k) = ($(11) \rightarrow$	(10)							(b k) = ($00) \rightarrow$	(21)			
	Ι	$R(J^e)$		Ι	$\mathcal{P}(J^e)$		ζ	$Q(J^f)$			$R(J^e)$		I	$\mathcal{P}(J^e)$			$Q(J^e)$	
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0										491.20	0.99	2.69						
1	427.11	0.46	0.22	418.24	0.33	0.31	421.10	0.37	0.53	493.88	1.08	4.36				488.26	0.90	3.58
2	429.92	0.50	0.47	415.15	0.29	0.40	420.76	0.37	0.85	496.36	1.17	6.17	481.97	0.73	0.93	488.13	0.90	5.79
3	432.65	0.55	0.75	412.00	0.26	0.44	420.25	0.36	1.12	498.63	1.27	8.01	478.50	0.65	1.56	487.94	0.90	7.73
4	435.29	0.59	1.03	408.79	0.22	0.45	419.58	0.36	1.34	500.70	1.36	9.79	474.85	0.57	1.93	487.69	0.89	9.33
5	437.85	0.64	1.30	405.52	0.19	0.42	418.73	0.36	1.49	502.56	1.46	11.39	471.02	0.50	2.06	487.37	0.89	10.55
6	440.32	0.69	1.55	402.19	0.16	0.38	417.71	0.35	1.58	504.21	1.55	12.74	467.01	0.43	2.01	486.99	0.89	11.35
7	442.68	0.73	1.76	398.79	0.14	0.32	416.52	0.34	1.60	505.66	1.65	13.76	462.82	0.37	1.83	486.55	0.88	11.74
8	444.93	0.78	1.91	395.34	0.11	0.26	415.15	0.34	1.57	506.89	1.74	14.40	458.46	0.31	1.56	486.03	0.88	11.74
9	447.07	0.83	2.02	391.83	0.09	0.20	413.61	0.33	1.49	507.91	1.83	14.64	453.94	0.25	1.27	485.45	0.87	11.41
10	449.09	0.88	2.06	388.25	0.07	0.15	411.89	0.32	1.37	508.72	1.92	14.48	449.26	0.20	0.97	484.80	0.87	10.79
11	450.97	0.92	2.04	384.61	0.05	0.10	410.00	0.31	1.22	509.32	2.00	13.94	444.43	0.16	0.70	484.08	0.86	9.97
12	452.72	0.97	1.98	380.91	0.04	0.07	407.92	0.30	1.07	509.73	2.06	12.96	439.45	0.12	0.48	483.29	0.86	9.00
13	454.31	1.01	1.86	377.13	0.03	0.04	405.67	0.29	0.91	510.03	1.89	10.55	434.33	0.08	0.30	482.42	0.85	7.96
14	455.75	1.05	1.72	373.29	0.02	0.02	403.22	0.27	0.75	509.51	1.84	8.94	429.09	0.05	0.17	481.48	0.84	6.89
15	457.02	1.09	1.55	369.37	0.01	0.01	400.60	0.26	0.61	509.38	2.23	9.28	423.82	0.03	0.08	480.45	0.83	5.86
16	458.11	1.12	1.36	365.37	0.00	0.00	397.79	0.25	0.48	508.92	2.35	8.21	417.84	0.01	0.02	479.34	0.82	4.89
17	459.02	1.16	1.18	361.30	0.00	0.00	394.79	0.23	0.37	508.22	2.43	7.01	412.32	0.00	0.01	478.15	0.81	4.00
18	459.72	1.19	1.00	357.14	0.00	0.00	391.60	0.22	0.28	507.30	2.49	5.84	406.58	0.00	0.00	476.86	0.80	3.22
19	460.22	1.21	0.82	352.89	0.00	0.00	388.22	0.20	0.21	506.15	2.53	4.77	400.72	0.00	0.00	475.47	0.79	2.55
20	460.49	1.23	0.67	348.54	0.01	0.00	384.65	0.19	0.15	504.77	2.57	3.82	394.74	0.01	0.01	473.99	0.77	1.98
21	460.53	1.24	0.53	344.11	0.01	0.00	380.88	0.17	0.11	503.16	2.59	3.00	388.65	0.02	0.01	472.39	0.76	1.51
22	460.33	1.25	0.42	339.57	0.02	0.00	376.92	0.16	0.07	501.30	2.60	2.31	382.46	0.03	0.02	470.69	0.74	1.14
23	459.86	1.26	0.32	334.93	0.03	0.00	372.77	0.14	0.05	499.21	2.59	1.74	376.18	0.05	0.02	468.86	0.72	0.84
24	459.11	1.25	0.24	330.17	0.04	0.00	368.42	0.13	0.03	496.86	2.57	1.29	369.80	0.07	0.02	466.92	0.70	0.61
25	458.08	1.24	0.18	325.31	0.05	0.00	363.87	0.11	0.02	494.25	2.52	0.93	363.34	0.10	0.02	464.85	0.67	0.43

TABLE CXIII: C. Fundamental $v_{\theta}=0 \rightarrow 1$ band (S_{vib} in 10^{-3} D^2 , I in $10^{-22} \text{ cm/molecule}$).

TABLE CXIII: C. continued

				K_{c}	a = 1 - 2	2							K_a	=2-3				
				(b k) = ($(11) \rightarrow$	(32)							(b k) = (2	$(2) \rightarrow$	(43)			
	$R(J^e$) / R(.	$J^f)$	$P(J^{\epsilon}$	P(J)/P(J)	$^{If})$	$Q(J^{\epsilon}$	$^{2})/Q(J$	$^{If})$	$R(J^{e}$	ϵ) $/R($	$J^f)$	$P(J^{\epsilon}$	P(J = 1)/P(J = 1)	$I^f)$	$Q(J^{\epsilon}$	$^{2})/Q(J$	(f)
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
1	572.46	1.61	3.37															
-	572.36	1.61	3.37				2 00 (1											
2	575.18	1.73	3.93				566.41	1.37	1.52	660.71 660.71	2.17	11.19						
2	577 70	1.74	5.95 4 54	557 36	1.09	0.91	566 12	1.37	1.52 9.54	663 11	2.17	11.19				651 54	1 58	2.60
3	577 10	1.65	4.54	556 75	1.02	0.21	565 52	1.30	2.54 2.54	663 11	2.37	12.00				651.54	1.50	2.09
4	580.29	1.96	5.11	554.05	0.91	0.40	565.73	1.36	3.31	665.34	2.57	12.52 13.50	639.32	0.95	0.21	650.90	1.58	4.55
-	579.29	1.98	5.11	553.05	0.92	0.40	564.72	1.37	3.31	665.34	2.57	13.49	639.33	0.95	0.21	650.90	1.58	4.55
5	582.68	2.07	5.59	550.66	0.80	0.52	565.23	1.35	3.87	667.39	2.77	14.54	635.65	0.83	0.41	650.09	1.57	5.86
	581.17	2.09	5.59	549.16	0.82	0.53	563.73	1.37	3.88	667.40	2.77	14.52	635.66	0.82	0.41	650.10	1.57	5.85
6	584.94	2.16	5.93	547.19	0.70	0.58	564.63	1.34	4.23	669.24	2.97	15.34	631.82	0.71	0.53	649.12	1.56	6.72
	582.83	2.19	5.93	545.09	0.72	0.58	562.54	1.36	4.24	669.26	2.97	15.32	631.83	0.71	0.53	649.13	1.55	6.70
7	587.06	2.24	6.09	543.62	0.60	0.57	563.91	1.32	4.39	670.89	3.18	15.84	627.84	0.60	0.58	647.97	1.54	7.20
	584.26	2.28	6.08	540.83	0.62	0.57	561.14	1.35	4.40	670.94	3.17	15.80	627.87	0.60	0.58	647.99	1.53	7.15
8	589.02	2.28	6.02	539.96	0.51	0.52	563.08	1.29	4.35	672.32	3.38	16.00	623.70	0.51	0.57	646.65	1.52	7.33
	585.44	2.34	6.02	536.39	0.53	0.53	559.53	1.32	4.37	672.42	3.36	15.95	623.75	0.50	0.56	646.67	1.50	7.23
9	590.81	2.26	5.68	536.21	0.41	0.43	562.11	1.24	4.13	673.50	3.56	15.74	619.40	0.43	0.51	645.15	1.50	7.17
	586.35	2.33	5.68	531.76	0.44	0.45	557.70	1.28	4.14	673.69	3.56	15.75	619.48	0.42	0.50	645.15	1.45	6.95
10	592.35	2.13	4.98	532.34	0.32	0.34	560.99	1.16	3.70	674.33	3.66	14.85	614.92	0.36	0.44	643.46	1.46	6.76
	586.93	2.21	4.98	526.94	0.35	0.35	555.63	1.21	3.71	674.74	3.74	15.21	615.06	0.34	0.42	643.41	1.36	6.30
11	593.58	1.81	3.88	528.35	0.23	0.23	559.65	1.02	3.04	674.58	3.42	12.52	610.24	0.30	0.36	641.57	1.42	6.16
	587.12	1.90	3.89	521.90	0.26	0.25	553.27	1.07	3.05	675.56	3.92	14.36	610.49	0.27	0.33	641.36	1.20	5.18
12	594.40	1.38	2.65	524.18	0.14	0.13	558.03	0.80	2.19	678.61	1.60	5.22	605.27	0.25	0.29	639.47	1.37	5.43
10	586.83	1.46	2.66	516.60	0.17	0.15	550.53	0.84	2.18	676.13	4.08	13.25	605.77	0.21	0.25	638.78	0.84	3.33
13	598.90	1.80	3.08	519.75	0.06	0.05	556.04	0.55	1.34	678.34	2.69	7.63	599.79	0.21	0.23	637.14	1.30	4.61
14	590.17	1.94	3.12	510.98	0.08	0.00	547.35 EE7.80	0.57	1.31	070.41 679.05	4.20	8.04	500.87	0.10	0.18	640.00	1.30	4.04
14	580.03	2.00	3.04 3.15	504.97	0.01	0.01	547.89	1.06	2.10 2.13	676.20	3.30 4.96	0.04 10.36	595.15 505.70	0.00	0.00	636.00	1.20	3.74
15	600.83	2.27	2.60	513.06	0.02	0.01	556.07	1.00	2.13	678.08	3.67	7 54	502.20	0.12	0.12	631.67	1.04	4.02 2.87
10	589 54	2.12 2.47	2.03	502.64	0.21 0.21	0.14	544 77	1.10	2.04	675.94	4 20	8.63	590.51	0.01	0.01	634 21	1.58	4.28
16	601.58	1.99	2.11	509.54	0.21	0.12	554.31	1.17	1.84	677.72	3.92	6.69	586.69	0.01	0.00	628.42	0.90	2.03
	588.97	2.56	2.50	496.84	0.19	0.10	541.60	1.29	1.85	675.01	3.96	6.75	584.99	0.06	0.04	631.39	1.57	3.59
17	602.04	1.47	1.29	505.11	0.22	0.10	552.48	1.21	1.58	677.13	4.10	5.73	581.10	0.00	0.00	624.72	0.68	1.27
	588.18	2.55	2.04	490.99	0.17	0.07	538.25	1.34	1.58	673.48	3.50	4.88	579.16	0.04	0.02	628.46	1.54	2.93
18	601.71	0.21	0.15	500.60	0.28	0.11	550.53	1.23	1.31	676.27	4.24	4.78	575.42	0.00	0.00	620.44	0.45	0.68
	587.15	2.39	1.54	485.06	0.17	0.06	534.62	1.35	1.29	680.10	1.93	2.19	572.94	0.02	0.01	625.35	1.51	2.33
19	604.82	7.01	4.05	495.91	0.58	0.18	548.44	1.24	1.07	675.11	4.33	3.88	569.60	0.00	0.00	624.35	1.24	1.54
	585.81	1.96	1.00	479.02	0.18	0.05	530.21	1.18	0.90	678.55	2.54	2.30	566.22	0.01	0.01	622.05	1.46	1.82
20	604.33	5.57	2.54	490.54	2.30	0.58	546.14	1.23	0.85	673.60	4.30	3.02	563.64	0.01	0.00	620.14	1.32	1.30
	591.43	8.32	3.38	472.87	0.23	0.05	529.25	0.89	0.54	676.91	3.02	2.14	567.76	0.04	0.01	618.52	1.41	1.39
21	604.05	5.03	1.79	488.71	2.28	0.45	543.42	1.17	0.63	671.87	4.43	2.40	557.49	0.03	0.01	615.88	1.34	1.02
	585.78	9.21	2.87	466.53	0.41	0.07	524.72	1.16	0.54	675.07	3.35	1.84	561.26	0.05	0.01	614.72	1.34	1.03
22	603.63	4.80	1.32	483.41	0.86	0.13	539.16	0.74	0.31	669.66	4.40	1.82	551.12	0.05	0.01	611.48	1.31	0.77
	582.51	7.10	1.68	459.81	1.25	0.16	520.44	1.23	0.44	672.98	3.53	1.48	554.78	0.08	0.02	610.77	1.28	0.76
23	602.98	4.70	0.98	478.44	0.57	0.07	540.51	0.94	0.30	667.05	4.30	1.34	544.67	0.09	0.01	606.88	1.25	0.55
	580.05	5.96	1.06	451.61	5.42	0.52	516.08	1.25	0.33	670.55	3.57	1.13	548.25	0.10	0.02	606.43	1.21	0.54
24	602.06	4.66	0.73	473.48	0.49	0.04	537.45	1.06	0.25	663.97	4.13	0.95	537.89	0.12	0.01	602.01	1.15	0.38
	577.58	5.47	0.72	449.07	1.67	0.12	511.55	1.24	0.25	667.71	3.47	0.81	541.60	0.13	0.02	601.77	1.12	0.37
25	600.81	4.66	0.54	468.43	0.49	0.03	534.46	1.09	0.19	660.37	3.89	0.66	530.86	0.15	0.01	596.80	1.03	0.25
	574.93	5.20	0.50	442.21	0.82	0.04	506.82	1.23	0.18	664.38	3.22	0.55	534.77	0.16	0.01	596.73	1.01	0.25

							$[v_r v_\theta v_R] =$	[0 0 0] —	→ [0 0 2]						
			$K_a =$	=0-0						K	a = 1 - 1				
		(b k = (0 0)	$(0 0) \rightarrow (0 0)$						(b k) =	$(11) \rightarrow$	(11)			
		$R(J^e)$			$P(J^e)$		R(.	$J^e)/R(J^e)$	$I^f)$	P(.	$J^e)/P(J^e)$	$I^f)$	Q(J	e)/Q(J)	$^{f})$
J	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι	ν	$S_{\rm vib}$	Ι
0	632.00	1.32	4.86												
1	634.25	1.32	9.57	626.26	1.34	4.80	635.36	1.31	3.09				630.22	1.32	3.09
2	636.07	1.31	13.94	622.77	1.35	9.34	637.15	1.31 1.31	5.34	624.08	1.34	3.01	629.57	1.32 1.32	1.66
3	637.46	1.31	17.81	618.87	1.37	13.44	637.37 638.52	$1.31 \\ 1.31$	5.35 7.20	623.87 620.25	$1.34 \\ 1.35$	$2.99 \\ 5.13$	629.01 628.61	$1.31 \\ 1.32$	$1.65 \\ 1.11$
0	001110	1.01	11101	010.01	1.01	10111	638.78	1.31	7.23	619.91	1.35	5.10	627.48	1.30	1.09
4	638.42	1.31	21.02	614.56	1.38	16.95	639.47	1.31	8.73	616.02	1.37	6.83	627.32	1.33	0.81
5	638 95	1.32	23 50	609 85	1 40	19 77	639.76 640.00	$1.32 \\ 1.31$	8.75 9.91	615.54 611.39	$1.36 \\ 1.39$	6.77 8.16	625.45 625.70	1.29 1.33	0.78
0	000.00	1.02	20.00	000100	1.10	10111	640.30	1.33	9.93	610.75	1.38	8.06	622.91	1.28	0.58
6	639.03	1.32	25.19	604.73	1.43	21.82	640.09	1.32	10.73	606.36	1.41	9.13	623.76	1.33	0.47
							640.39	1.34	10.75	605.56	1.40	8.99	619.86	1.26	0.44
7	638.67	1.33	26.08	599.21	1.45	23.11	639.76	1.33	11.22	600.94	1.43	9.75	621.47	1.33	0.37
8	637 86	1 34	26.23	593 28	1 48	23.64	638.98	1.35 1.35	11.21 11.37	599.96 595.12	1.43 1.46	9.57 10.04	618.85	1.24 1.32	0.34
0	051.00	1.04	20.20	030.20	1.40	20.04	639.21	1.35 1.37	11.37 11.34	593.95	1.40	9.82	612.23	1.52 1.21	0.23 0.25
9	636.59	1.35	25.71	586.96	1.51	23.48	637.75	1.37	11.24	588.91	1.49	10.02	615.88	1.31	0.22
							637.92	1.39	11.17	587.53	1.48	9.76	607.66	1.17	0.19
10	634.85	1.37	24.61	580.23	1.55	22.73	636.08	1.39	10.85	582.30	1.52	9.74	612.56	1.30	0.17
11	622 65	1.20	22.06	579 11	1 50	91 FO	636.17	1.41	10.74	580.71	1.52	9.44	602.58	1.12	0.14
11	052.05	1.59	23.00	373.11	1.58	21.00	633.95	1.41 1 44	10.27	575.50 573.48	1.50 1.56	9.24 8.92	596 99	1.27 1.06	0.13
12	629.96	1.41	21.18	565.58	1.63	19.90	631.36	1.45	9.55	567.90	1.60	8.58	604.84	1.24	0.10
							631.20	1.47	9.33	565.84	1.60	8.24	590.90	0.98	0.07
13	626.78	1.43	19.09	557.65	1.68	18.06	628.31	1.49	8.74	560.11	1.64	7.80	600.42	1.18	0.07
14	692 10	1 46	16 01	E 40 22	1 79	16 09	627.98	1.51	8.46	557.79	1.64	7.46 6.06	584.31	0.86	0.05
14	025.10	1.40	10.91	349.52	1.75	10.08	624.79 624.26	1.54 1.55	7.90	549 33	1.09 1.70	0.90 6.63	595.01 577.22	$1.10 \\ 0.71$	0.05
15	618.90	1.49	14.73	540.57	1.79	14.07	620.81	1.62	7.08	543.36	1.74	6.09	590.40	0.98	0.03
							620.02	1.60	6.64	540.46	1.75	5.78	569.64	0.49	0.01
16	614.19	1.53	12.62	531.42	1.85	12.11	616.40	1.73	6.36	534.41	1.79	5.23	584.80	0.82	0.02
1 8	000.00		10.05	501.05	1.00	10.05	615.26	1.67	5.76	531.17	1.81	4.95	561.58	0.22	0.00
17	608.93	1.57	10.65	521.85	1.92	10.25	600 00	1.93 1.75	5.87 4.96	525.09 521 47	1.84	4.41 4.17			
18	603.13	1.61	8.86	511.85	2.00	8.55	607.15	2.30	$\frac{4.90}{5.71}$	515.43	1.88	3.62			
							604.19	1.87	4.26	511.35	1.95	3.46			
19	596.75	1.66	7.26	501.43	2.09	7.03	598.74	0.27	0.54	505.54	1.86	2.84			
							597.94	2.05	3.71	500.83	2.02	2.81			
20	589.78	1.72	5.87	490.56	2.18	5.70	593.87 501.42	0.47	0.74	495.97	1.50	1.79			
21	582.19	1.78	4.69	479.25	2.29	4.56	591.43 580.38	$\frac{2.39}{1.09}$	1.30	489.91 482.63	2.09	1.28			
	002.10	1.1.0	1.00	110120		100	585.78	2.63	2.87	478.65	2.14	1.74			
22	573.96	1.85	3.70	467.47	2.41	3.60	573.48	1.41	1.28	472.94	1.34	0.92			
							573.92	0.62	0.51	467.28	2.03	1.24			
23	565.06	1.92	2.88	455.21	2.55	2.81	565.29	1.59	1.09	454.77	1.64	0.82			
24	555.45	2.01	2.22	442.46	2.70	2.16	556 12	1.73	0.49 0.87	400.91 443.33	1.18 2.23	0.53 0.82			
	000.10	2.01		112.10		2.10	558.06	0.65	0.29	440.49	1.98	0.64			
25	545.09	2.11	1.69	429.19	2.88	1.65	546.07	1.85	0.68	430.74	2.60	0.69			
							550.56	0.36	0.12	428.21	1.98	0.46			

TABLE CXIII: D. Overtone $v_R=0\rightarrow 2$ band ($S_{\rm vib}$ in 10^{-3} D², I in 10^{-22} cm/molecule).

				K	a = 2 - 2				
				(b k) = ($(2\ 2) \rightarrow$	(22)			
2	640.07	1.22	4.05				632.14	1.30	8.54
	640.07	1.22	4.05				632.14	1.30	8.53
3	641.46	1.21	6.94	622.97	1.33	4.09	630.90	1.34	5.86
	641.46	1.21	6.94	622.97	1.33	4.09	630.90	1.34	5.86
4	642.41	1.21	9.13	618.69	1.35	7.00	629.24	1.39	4.39
	642.41	1.21	9.13	618.69	1.35	7.00	629.24	1.39	4.39
5	642.94	1.20	10.75	613.99	1.38	9.18	627.16	1.44	3.44
	642.94	1.20	10.75	614.00	1.38	9.18	627.17	1.44	3.44
6	643.02	1.20	11.87	608.89	1.40	10.76	624.66	1.50	2.76
	643.02	1.20	11.87	608.90	1.40	10.76	624.68	1.50	2.76
7	642.66	1.21	12.53	603.39	1.43	11.80	621.74	1.57	2.23
	642.67	1.21	12.52	603.41	1.43	11.80	621.77	1.57	2.23
8	641.84	1.22	12.77	597.48	1.46	12.33	618.38	1.63	1.81
	641.86	1.22	12.76	597.51	1.46	12.34	618.43	1.64	1.82
9	640.57	1.23	12.64	591.17	1.49	12.43	614.59	1.71	1.47
	640.59	1.23	12.63	591.21	1.49	12.44	614.67	1.71	1.47
10	638.82	1.24	12.20	584.44	1.52	12.15	610.37	1.78	1.19
	638.86	1.24	12.19	584.51	1.52	12.16	610.48	1.78	1.19
11	636.59	1.26	11.51	577.31	1.56	11.57	605.69	1.85	0.95
	636.66	1.26	11.50	577.40	1.56	11.58	605.85	1.86	0.96
12	633.88	1.28	10.64	569.76	1.60	10.76	600.57	1.93	0.76
	633.97	1.28	10.63	569.89	1.60	10.77	600.79	1.94	0.76
13	630.66	1.31	9.65	561.80	1.64	9.80	594.99	2.01	0.60
	630.79	1.30	9.64	561.97	1.64	9.81	595.28	2.02	0.60
14	626.93	1.34	8.59	553.42	1.69	8.75	588.94	2.09	0.47
	627.11	1.33	8.58	553.64	1.69	8.76	589.31	2.10	0.47
15	622.67	1.37	7.52	544.61	1.75	7.67	582.41	2.17	0.36
10	622.91	1.30	7.51	544.89	1.75	7.69	582.89	2.19	0.37
10	017.87	1.40	0.48 6.47	030.37 E2E 72	1.81	0.01	575.40	2.20	0.28
17	610 51	1.40	0.47 5.40	000.70 EDE 60	1.01	0.02 5.60	575.99	2.20	0.20
17	612.01	1.44	5.49	525.09 526 14	1.07	5.60	568 61	2.30	0.21 0.21
18	606 57	1.44	1 58	515 57	1.07	1.68	550.87	2.57	0.21
10	607.08	1.49	4.58	516 11	1.95	4.08	560 74	2.40 2.47	0.10
19	600.02	1.40	3 77	504.99	2.03	3.85	551 33	2.41	0.10
10	600.62	1.54	3 77	505.65	2.00	3.86	552 35	2.50 2.57	0.12
20	592.85	1.59	3.05	493 94	2.00 2.13	3.12	542.00	2.61	0.12
	593.66	1.58	3.06	494.74	2.13	3.14	543.43	2.68	0.09
21	585.03	1.65	2.44	482.40	2.24	2.50	532.63	2.77	0.06
	586.02	1.64	2.45	483.37	2.23	2.51	533.97	2.80	0.06
22	576.52	1.71	1.92	470.38	2.36	1.97	522.43	2.89	0.04
	577.73	1.71	1.93	471.53	2.35	1.99	523.93	2.92	0.05
23	567.28	1.78	1.50	457.83	2.49	1.54	511.63	3.02	0.03
	568.76	1.78	1.51	459.19	2.48	1.55	513.29	3.04	0.03
24	557.27	1.86	1.15	444.75	2.65	1.19	500.22	3.17	0.02
	559.07	1.86	1.16	446.35	2.64	1.20	502.00	3.17	0.02
25	546.43	1.94	0.87	431.10	2.82	0.91	488.16	3.32	0.02
	548.62	1.94	0.89	432.98	2.81	0.92	490.03	3.31	0.02

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 849.60 1.06 5.38 1 852.22 1.04 10.45 843.67 1.09 5.44 875.07 0.94 3.17 2 854.60 1.02 14.99 840.37 1.11 10.69 877.12 0.90 5.25 863.63 1.06 3.42 3 856.75 1.00 18.83 836.84 1.13 15.52 878.83 0.86 6.74 859.97 1.08 5.89	869.89 1.04 3.49 869.58 1.06 3.55 12 869.66 1.12 2.01 18 868.73 1.17 2.10 39 869.30 1.24 1.50 03 867.46 1.34 1.60 38 868.78 1.45 1.27 07 865.76 1.58 1.37 39 867.95 1.68 1.11 12 863.64 1.90 1.24 14 867.34 1.42 0.73
1 852.22 1.04 10.45 843.67 1.09 5.44 875.07 0.94 3.17 2 854.60 1.02 14.99 840.37 1.11 10.69 877.12 0.90 5.25 863.63 1.06 3.42 3 856.75 1.00 18.83 836.84 1.13 15.52 878.83 0.86 6.74 859.97 1.08 5.89	869.89 1.04 3.49 869.58 1.06 3.55 42 869.66 1.12 2.01 48 868.73 1.17 2.10 48 869.30 1.24 1.50 39 867.46 1.34 1.60 38 868.78 1.45 1.27 39 867.95 1.68 1.31 39 867.95 1.68 1.11 42 863.64 1.90 1.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
878.06 0.85 4.92 863.54 1.08 3.48 3 856.75 1.00 18.83 836.84 1.13 15.52 878.83 0.86 6.74 859.97 1.08 5.89	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$5 \ 650.75 \ 1.00 \ 10.65 \ 650.64 \ 1.15 \ 15.52 \ 676.65 \ 0.60 \ 0.14 \ 655.57 \ 1.06 \ 5.65$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
880.24 0.74 5.80 860.00 1.11 6.03	88 868.78 1.45 1.27 07 865.76 1.58 1.37 39 867.95 1.68 1.11 12 863.64 1.90 1.24 11 867.34 1.42 0.73
4 858.65 0.98 21.84 833.09 1.15 19.71 880.21 0.81 7.71 856.00 1.10 7.88	07 865.76 1.58 1.37 39 867.95 1.68 1.11 42 863.64 1.90 1.24 11 867.34 1.42 0.73
882.01 0.51 4.79 856.23 1.13 8.07	39 867.95 1.68 1.11 12 863.64 1.90 1.24 11 867.34 1.42 0.73
5 860.30 0.97 23.95 829.13 1.17 23.11 881.24 0.76 8.17 851.71 1.10 9.39	12 863.64 1.90 1.24 11 867.34 1.42 0.73
883.88 0.41 4.33 852.21 1.12 9.42	11 867.34 1.42 0.73
6 861.70 0.95 25.16 824.95 1.18 25.62 881.91 0.71 8.16 847.10 1.11 10.41	
884.62 0.25 2.92 847.81 0.94 8.76	6 861.10 2.32 1.17
7 862.84 0.93 25.51 820.56 1.20 27.20 882.21 0.64 7.66 842.18 1.10 10.92	92 865.71 2.36 0.94
889.22 0.80 9.48 843.54 0.75 7.33	33 858.12 2.85 1.11
8 863.72 0.92 25.09 815.95 1.22 <u>27.86</u> 882.11 0.55 6.65 836.94 1.08 10.92	92 868.04 0.03 0.01
890.28 0.90 10.69 838.18 0.69 6.86	36 854.69 3.47 1.05
9 864.32 0.90 24.04 811.12 1.24 27.67 881.53 0.43 5.06 831.36 1.05 10.39	39 866.95 0.09 0.02
891.16 0.86 10.05 836.72 0.74 7.19	19 850.79 4.12 0.97
10 864.65 0.89 22.51 806.09 1.26 26.74 883.51 0.18 2.04 825.43 0.97 9.24	24 865.80 0.22 0.04
891.87 0.85 9.36 831.77 0.92 8.54	54 846.36 4.54 0.83
11 864.68 0.88 20.69 800.84 1.27 25.23 881.64 0.33 3.43 819.08 0.83 7.32	32 864.59 0.33 0.05
892.37 0.83 8.48 826.71 1.03 8.89	39 844.42 1.12 0.16
12 804.41 0.89 18.95 (95.37 1.29 23.29 879.90 0.38 3.61 815.33 0.28 2.23	23 863.27 0.42 0.05
032.02 0.80 7.46 621.34 1.10 6.04	04 030.09 0.00 0.09
15 804.07 0.01 11.05 789.09 1.52 21.10 877.90 0.58 5.22 807.80 0.59 4.21 809.62 0.79 6.46 216.22 1.15 2.05	$11 \ 001.05 \ 0.52 \ 0.05$
14 863 11 0 78 12 86 783 77 1 36 18 96 875 70 0 36 2 66 800 47 0 75 4 70	70 860.25 0.02 0.49
14 303.11 0.78 12.80 763.77 1.50 16.90 875.70 0.50 2.00 800.47 0.75 4.70 809.37 0.76 5.47 810.75 1.90 7.97	0 800.25 0.00 0.04 0.07 826.87 8.35 0.51
15 861 04 0 78 11 05 777 87 1 03 12 20 873 08 0 33 2 00 703 02 0 81 4 38	37 820.87 8.59 0.91 38 858 51 0.69 0.04
801.84 0.76 11.05 11.05 12.25 015.06 0.55 2.05 755.02 0.61 4.56	30 820.51 0.03 0.04 39 820.55 10.71 0.49
16 860 46 0 77 9 20 771 43 1 29 12 93 870 07 0 29 1 58 785 32 0 83 3 78	73 020.00 10.11 0.43
891.00 0.71 3.70 799.28 1.26 5.49	49 813.85 13.23 0.45
17 858.65 0.75 7.49 764.88 1.32 10.96 866.65 0.26 1.15 777.36 0.83 3.11	11 854.51 0.88 0.02
889.87 0.69 2.96 793.28 1.28 4.61	31 806.75 15.97 0.39
18 856.50 0.74 5.99 758.12 1.34 9.04 862.79 0.22 0.80 769.09 0.81 2.47	47 852.22 0.97 0.02
888.42 0.67 2.33 787.09 1.31 3.80	30 799.23 18.97 0.34
19 854.02 0.72 4.71 751.14 1.36 7.30 858.47 0.18 0.54 760.52 0.78 1.91	91 849.71 1.07 0.02
886.64 0.64 1.81 780.71 1.33 3.08	08 791.28 22.21 0.28
20 851.17 0.70 3.63 743.94 1.37 5.80 853.66 0.15 0.34 751.61 0.74 1.44	44 846.97 1.17 0.01
884.51 0.62 1.38 774.14 1.34 2.45	45 782.90 25.70 0.23
21 847.97 0.69 2.75 736.52 1.38 4.53 848.32 0.11 0.20 742.35 0.70 1.05	05 843.97 1.28 0.01
882.02 0.60 1.03 767.36 1.36 1.92	92 774.05 29.36 0.19
22 844.38 0.66 2.05 728.87 1.38 3.48 842.42 0.08 0.11 732.73 0.65 0.75	75 840.71 1.38 0.01
879.14 0.58 0.76 760.37 1.37 1.48	48 764.72 33.10 0.15
23 840.41 0.64 1.50 720.99 1.38 2.63 835.89 0.05 0.05 722.72 0.60 0.52	52 837.14 1.50 0.01
875.85 0.56 0.56 753.15 1.38 1.12	2 754.87 36.72 0.11
24 836.03 0.62 1.08 712.88 1.38 1.96 828.64 0.03 0.02 712.27 0.54 0.35	35 833.26 1.62 0.00
872.14 0.52 0.39 745.71 1.39 0.84	34 744.45 39.92 0.08

TABLE CXIII: E. Overtone $v_{\theta}=0 \rightarrow 2$ band (S_{vib} in 10^{-3} D^2 , I in $10^{-22} \text{ cm/molecule}$).

	$K_a = 2 - 2$								
				(b k) = ($(2\ 2) \rightarrow$	(42)			
2	928.47	0.81	4.06				920.13	0.92	9.08
	928.48	0.81	4.05				920.13	0.92	9.08
3	930.40	0.79	6.83	910.96	0.91	4.27	919.31	0.97	6.43
	930.43	0.79	6.83	910.96	0.91	4.27	919.30	0.97	6.43
4	932.04	0.77	8.80	907.09	0.93	7.32	918.21	1.05	5.03
	932.09	0.77	8.80	907.10	0.93	7.32	918.19	1.05	5.04
5	933.35	0.75	10.12	902.94	0.94	9.60	916.83	1.15	4.16
	933.46	0.75	10.12	902.97	0.94	9.61	916.79	1.15	4.17
6	934.34	0.73	10.85	898.52	0.95	11.21	915.18	1.27	3.56
	934.54	0.73	10.86	898.58	0.95	11.24	915.10	1.28	3.57
7	934.97	0.71	11.02	893.81	0.96	12.21	913.25	1.43	3.11
	935.32	0.71	11.09	893.93	0.96	12.28	913.09	1.44	3.13
8	935.16	0.67	10.55	888.80	0.96	12.62	911.03	1.62	2.76
	935.79	0.69	10.87	889.02	0.97	12.76	910.74	1.64	2.79
9	934.62	0.54	8.43	883.48	0.95	12.40	908.52	1.86	2.47
	935.93	0.66	10.26	883.86	0.97	12.73	907.99	1.87	2.48
10	936.23	0.41	6.05	877.76	0.90	11.34	905.70	2.14	2.21
	935.68	0.62	9.24	878.44	0.97	12.24	904.53	1.94	2.00
11	935.02	0.51	7.15	871.36	0.69	8.07	902.51	2.46	1.96
	934.84	0.53	7.38	872.74	0.96	11.30	903.26	1.30	1.04
12	933.71	0.52	6.65	867.18	0.81	8.67	898.75	2.64	1.62
	936.73	0.28	3.51	866.70	0.91	9.80	899.22	2.16	1.33
13	932.05	0.51	5.77	860.23	0.97	9.30	897.75	1.25	0.59
	935.04	0.42	4.73	860.15	0.74	7.17	895.11	2.75	1.29
14	929.90	0.46	4.59	853.25	1.00	8.40	893.18	2.57	0.92
	933.49	0.45	4.44	856.40	0.68	5.79	890.70	3.31	1.18
15	927.44	0.46	3.90	846.00	1.00	7.24	888.79	3.51	0.94
	931.76	0.44	3.75	849.14	0.93	6.78	885.85	3.74	1.00
16	924.37	0.43	3.08	838.34	0.94	5.72	884.25	4.34	0.86
	929.75	0.42	3.01	842.11	1.00	6.12	880.76	4.56	0.90
17	920.77	0.40	2.37	830.46	0.99	4.96	879.46	5.20	0.76
	927.42	0.38	2.31	834.98	1.02	5.16	875.11	5.32	0.77
18	916.60	0.37	1.77	822.07	0.97	3.96	874.37	6.15	0.65
	924.72	0.35	1.71	827.68	1.02	4.20	869.00	6.15	0.65
19	911.81	0.33	1.29	813.25	0.95	3.10	868.97	7.20	0.55
	921.62	0.31	1.21	820.16	1.01	3.33	862.38	7.07	0.54
20	906.37	0.30	0.92	803.97	0.92	2.37	863.21	8.37	0.46
	918.08	0.26	0.82	812.38	0.99	2.57	855.22	8.08	0.44

Li^+-D_2 versus Li^+-H_2

 $\begin{array}{c} {\rm An \ analysis} \\ {\rm of} \\ {\rm individual \ line \ strengths, \ intensities} \\ {\rm and} \\ {\rm integrated \ vibrational \ band \ intensities} \end{array}$

The lines are specified in Table CXIV below. The intensities $I_{i\to f}(T=296\text{K})$ of the eight lines in the nearinfrared (m=1-8) and the seven lines in the far- and mid-infrared are shown relative to the intensity of the 'ref' line of each complex, which is the line in the $v_r=0\to1$ band. The colored bars show relations between the three factors of $I_{i\to f}$: the line strength $S_{i\to f}$, the transition frequency $\nu_{i\to f}$, and the population factor $P_{i\to f}=P_i(T)[1-\exp(-hc\nu_{i\to f}/k_BT)]$, see Eq. (7).

		Li ⁺ -D ₂						Li ⁺ -	H_2		
m	band	subb♭	$B(J^p)$	${{E_{\rm i}}^{\sharp}\atop{\rm cm}^{-1}}$	$ \begin{array}{l} \nu_{i ightarrow f} \\ cm^{-1} \end{array} $	$\stackrel{I_{i \to f}^{\natural}}{\text{cm/molecule}}$	subl	$b^{\flat} B(J^p)$	${{E_{\rm i}}^{\sharp}\atop{\rm cm}^{-1}}$	$ \begin{array}{l} \nu_{i ightarrow f} \\ cm^{-1} \end{array} $	$\begin{array}{c} I_{i \rightarrow f}^{\ \natural} \\ cm/molecule \end{array}$
1	$[000]\! ightarrow\![110]$	0–1	$Q(7^e)$	85.813	3403.81	$1.85(-21)^{\diamondsuit}$	1-0	$Q(6^f)$	167.894	4586.96	7.86(-21)
2	$\rightarrow [200]$	0–0	$R(7^e)$	85.813	5733.73	9.55(-22)	1 - 1	$R(6^e)$	164.797	7897.00	4.62(-21)
3	$\rightarrow [120]$	0–0	$P(9^e)$	137.528	3737.50	3.26(-22)	1 - 1	$P(7^f)$	202.571	5197.45	1.93(-21)
4	$\rightarrow [1 \ 1 \ 1]$	0 - 1	$Q(7^e)$	85.813	3704.98	1.18(-22)	1-0	$Q(10^{f})$	335.079	4902.94	1.31(-21)
5	$\rightarrow [1 \ 0 \ 1]$	0–0	$P(9^e)$	137.528	3216.43	$1.89(-23)^{\dagger}$	1 - 1	$P(8^f)$	242.039	4410.04	9.19(-23)
6	$[001] \! ightarrow \! [101]$	0–0	$R(8^e)$	435.939	2943.46	6.10(-21)	1 - 1	$R(6^e)$	563.594	4084.65	1.53(-20)
7	$[010]\! ightarrow\![110]$	1 - 1	$R(8^e)$	591.469	2942.65	3.94(-21)	0-0	$R(6^e)$	691.524	4095.18	1.33(-20)
8	$[010]\!\rightarrow\![100]$	1 - 0	$Q(7^f)$	572.358	2428.56	2.07(-22)	0-1	$Q(6^e)$	691.521	3524.91	7.08(-22)
9	$[0\ 0\ 0] \! ightarrow \! [0\ 0\ 0]$	0–0	$R(13^e)$	276.004	41.72	1.50(-19)	1–1	$R(10^{f})$	335.079	53.41	1.17(-19)
10	$\rightarrow [0\ 0\ 1]$	0–0	$P(8^e)$	110.186	303.03	5.87(-20)	1 - 1	$P(7^e)$	198.466	365.13	7.13(-20)
11	$\rightarrow [0\ 1\ 0]$	2 - 3	$R(8^e)$	229.322	672.32	1.60(-21)	1-2	$R(4^e)$	111.645	889.12	1.03(-20)
12	$\rightarrow [0\ 2\ 0]$	0–0	$P(8^e)$	110.186	815.95	2.79(-21)	1 - 1	$P(7^f)$	202.571	1143.00	8.65(-21)
13	$\rightarrow [0\ 0\ 2]$	0–0	$R(8^e)$	110.186	637.86	2.62(-21)	1 - 1	$R(6^f)$	167.894	765.39	3.59(-21)
14	$[001] \! ightarrow \! [002]$	0–0	$P(9^e)$	461.425	263.06	2.23(-20)	1 - 1	$P(7^e)$	594.265	308.13	1.91(-20)
15	$\rightarrow [0 \ 0 \ 3]$	0–0	$R(8^e)$	435.939	561.45	1.78(-21)	1-1	$P(7^e)$	594.265	638.60	1.90(-21)
ref	$[000]\! ightarrow\![100]$	0–0	$R(8^e)$	110.186	2942.24	3.02(-20)	1 - 1	$R(6^e)$	164.797	4082.01	1.09(-19)
			$R(7^e)^*$	85.813	2939.38	3.02(-20)		$R(7^e)^*$	198.466	4086.48	1.07(-19)

TABLE CXIV. The most intense lines in several bands in the IR spectra of Li⁺–D₂ and Li⁺–H₂.

^b The subband $K_a = k_i - k_f$. ^{\ddagger} The energy of the initial state, i:= $[v_r v_\theta v_R] k J^p$, relative to the lowest level of the complex.

^{\ddagger} The used values of TIPS: Z(296)=4099.5 for Li⁺–D₂ and Z(296)=687.47 — for Li⁺–H₂. See Tables CV and BVII.

 \diamondsuit The numbers in parentheses are powers of 10.

[†] The most intense line in the subbands other than $K_a=3-3$ (which is heavily perturbed, see footnote g to Table CIII).

* The line of biggest height $\sigma(\nu = \nu_{i \to f}; 296)$ in the NIR; it is the reference line in the plots of the absorption cross-section of the complex, in Figs. 18, C4a–c — for Li⁺–D₂ and in Figs. 17–18, B6a–e — for Li⁺–H₂.

TABLE CXIVa. The ratios $\frac{\text{Li}^+-\text{H}_2}{\text{Li}^+-\text{D}_2}$ of intensities $I_{i\to f}(T=296\text{K})$ and of three factors of the intensities for selected lines from Table CXIV. The factors are as defined in Fig. C5 and in the text below.

$\rm Li^+-H_2/Li^+-D_2$					$\mathrm{Li^+-H_2/Li^+-D_2}$				
m	$I_{i \rightarrow f}$	$S_{i \to f} (S_{i \to f}^{vib} \clubsuit)$	$\nu_{i \rightarrow f}$	$P_{i \rightarrow f}$	m	$I_{i \to f}$	$S_{i \to f} (S_{i \to f}^{vib} \clubsuit)$	$\nu_{i \rightarrow f}$	$P_{i \rightarrow f}$
ref	3.61	$1.140 \ (1.496^a)$	1.387	2.286	9	0.78	$0.218 \ (0.279^d)$	1.280	2.787
5	4.86	1.977 (2.259)	1.371	1.794	10	1.21	$0.482 \ (0.562^d)$	1.205	2.092
1	4.25	$1.576 \ (1.819^b)$	1.348	2.001	11	6.41	0.894 (1.562)	1.322	5.419
3	5.94	$1.964 \ (2.577)$	1.391	2.173	12	3.11	1.148 (1.339)	1.401	1.932
2	4.84	$1.729 \ (2.017^c)$	1.377	2.031	13	1.37	$0.496 \ (0.651^d)$	1.200	2.301

a, b, c — close to the values of the mass factors c_1, c_1d_1 , and c_2 , respectively, defined in Fig. C4. d see comment (i) to Fig. C6b.

• Vibrational factors of line strengths

The vibrational factor of the strength $S_{i\to f}$ of transition from state i:= $[v_r v_\theta v_R] k J p$ to state f:= $[v'_r v'_\theta v'_R] k' J' p'$ is defined in the paper (Fig. 15) as

$$S_{i \to f}^{vib} = S_{i \to f} / S_{rot} (Jk \to J'k')$$

with $S_{rot} (Jk \to J'k') = (2J+1) |C(J1J', kk'-kk') f_{k'-k}^k|^2$. (C16)

Here, it should be explained that the $S_{\rm rot}$ is the square of the coefficient in front of the term $[\mathbf{d}^{\lambda}_{\Lambda}(R)]_{v'j',vj}$ in the sum of Eq. (20) for the biggest of the matrix elements $[_{\rm BF}\mathbf{d}^{J_{\rm f}p_{\rm f},J_{\rm i}p_{\rm i}}(R)]_{v'j'\lambda',vj\lambda}$ which contribute to a given $S_{\rm i\to f}$, namely, of the element with $\lambda = k$ and $\lambda' = k'$. Here $J_{\rm i} = J$, $J_{\rm f} = J'$, and obviously $\Lambda = k' - k$.

In subbands $K_a = k \rightarrow k$ (a-type transitions in asymmetric top molecules⁶),

$$S_{\rm rot}(Jk \to J'k) = J + 1 - \frac{k^2}{J+1}, \ J - \frac{k^2}{J}, \ \text{and} \ \frac{2J+1}{J^2+J}k^2,$$
 (C17)

since $f_0^k = 1$, and in subbands $K_a = k \rightarrow k \pm 1$ (b-type transitions),

$$[f_{\pm 1}^{k}]^{-2} \times S_{\rm rot}(Jk \to J'k \pm 1) = \frac{(J + 2\pm k)(J + 1\pm k)}{2(J+1)}, \frac{(J - 1\mp k)(J\mp k)}{2J},$$

and
$$\frac{(J + 1\pm k)(J\mp k)(2J+1)}{2(J+1)}$$
 (C18)

for J'=J+1, J'=J-1, and J'=J, respectively.

The S_{rot} s of Eq. (C17) are identical to the Hönl-London factors for parallel transitions in symmetric top molecules with $K=k^{6,8}$. Formulas (C18) differ from the Hönl-London formulas for perpendicular transitions⁸ by the presence of the factor $[f_{\pm 1}^k]^2$ which, except for the cases $[f_1^0]^2 = [f_{-1}^1]^2 = 1$, equals $\frac{1}{2}$.

Fig. C6. Vibrational factors of line strengths

C6a. The factors $S_{i\to f}^{\text{vib}}$ of line strengths in the six most intense bands of the spectra of the Li⁺-H₂ (D₂) complexes in the near-infrared range (the region of $v_r=0\to 1, 2$ excitations). The lines $R(J^p)$, $P(J^p)$ and $Q(J^p)$ for J<15 and p=e, f in two most intense subbands $K_a (=k_i\to k_f)$ of each band are shown. The strengths $S_{i\to f}$ represented by the factors are determined by the complete dipole moment vector of each complex, cf. Eq. (18)–(22). The $S^{\text{vib}s}$ in the right panel represent the strengths obtained when the nominally less important dipole component, i.e. the d_X for a-type transitions and the d_Z — for b-type transitions, is neglected. The values of $S_{\text{vib}s}$ for Li⁺-D₂ are multiplied by the mass factors $c_n d_m$ with the indices n and m adjusted to a given band $[v_r v_\theta v_R] \rightarrow [v'_r v'_\theta v'_R]$ as $n=v'_r-v_r$ and $m=|v'_\theta-v_\theta|+|v'_B-v_R|$.

Obviously, constant $S_{i\to f}^{\text{vib}}$ s would testify on adequacy of the respective Hönl-London factors in describing the *J*- and *k*- dependence of line strengths in a given band. The feature may be expected to occur if the strengths are overwhelmingly determined by one dipole component, the ro-vibrational couplings in the initial and final states are relatively weak⁹.

(i). In the *a*-type bands shown in the left panel, such situation occurs but only in the R- and P- branches. With growing J, the strengths of $Q(J^p)$ lines become more and more affected by the presence of d_X . This behavior may be described with Herman-Wallis coefficients for asymmetric top molecules¹⁰, see Fig. C8.

(ii). In the panel for the $[0\ 0\ 0] \rightarrow [1\ 2\ 0]$ band, the curves formed by the $S^{\text{vib}s}$ as functions of J depart dramatically from straight horizontal lines and are not smooth. There are indeed cases of rather strong λ - and j-mixing in the functions of the terminal states. In particular, the energy proximity of the states $[1\ 2\ 0]\ k=1\ J^e$ with the states $[1\ 1\ 2]\ k=0\ J^e$, and their crossing between $J^e=5$ and 6 (see Table BIV), is a favorable situation for the component d_X to contribute significant amounts to the strengths. The effect is the rapid growth which is seen for the Q-lines of the Li⁺-H₂ complex.

(iii). The mass factors $c_n d_m$ (all >1) describe reasonably well the $S^{\text{vib}s}$ in the NIR spectrum of Li⁺-H₂ relative to the $S^{\text{vib}s}$ in the corresponding bands in the spectrum of Li⁺-D₂ provided the interference between (amplitudes of transitions mediated by) different components/parts of the dipole moment vector is not too big. (More on the interference in the part of further text marked with \blacklozenge and in Figs. C6b and C7).

C6b. The factors $S_{i\to f}^{\text{vib}}$ of line strengths in selected bands in far- and mid-infrared ranges, in a purely rotational band, in the fundamental and first overtone bands in the *R*- and θ - modes.

The following observations should be made here:

(i). The relations between the $S_{i\rightarrow f}^{\text{vib}}$ s in the bands $[0\ 0\ 0]\rightarrow [0\ 0\ v_R]$ for $v_R'=0, 1, 2$ of the spectra of the two complexes are qualitatively different from the relations observed in the bands associated with the excitation of the other, especially r-, modes. The values for Li^+-D_2 are bigger because of the dipole matrix element $\langle v=0|D_{00}(r,R)|0\rangle_r$ being decisive; it is bigger for the complex with the heavier diatom (see Fig. 1b in the paper) due to the larger distance of the Li⁺ ion from the center-of-mass of the complex.

(ii). In the *b*-type band $[0\ 0\ 0] \rightarrow [0\ 1\ 0]$, the $S^{\text{vib}s}$ are affected by the nominally less important component d_Z much more than they are in the band $[0\ 0\ 0] \rightarrow [1\ 1\ 0]$. There are shifts between the values for the $K_a=0-1$ and 1-0 subbands which are so much different in the two complexes that undescribable by a single factor. However, the factor d_1 does fulfil such role very well if the $S^{\text{vib}}_{i\rightarrow f}s$ are obtained with the d_Z set to zero.

(iii). The impact of $d_Z - d_X$ interference on the $S^{\text{vib}s}$ of $Q(J^p)$ -lines in the $[0\ 0\ 0] \rightarrow [0\ 2\ 0]$ band is similar to that observed in $[0\ 0\ 0] \rightarrow [1\ 2\ 0]$.

An additional observation to make, in both parts of the present figure, concerns possible interference between the anisotropic ($\sim D_{20}$) and isotropic ($\sim D_{00}$) parts of the component d_Z (see in Fig. 1b and Eqs. (18)–(22) in the paper). Namely, in the right panel of Fig. C6a and in the bottom right panel of Fig. C6b one observes that the role of this interference is: (a) non-negligible (the shifts between the black and yellow symbols) and

(b) different in the two complexes (the shift between the black and light-blue versus the coincidence between the yellow and blue symbols).

		Li^+-H_2			Li^+-D_2	
$[v] \rightarrow [v^\prime]$	this work	Ref. [11]	rdev	this work	Ref. [11]	rdev
$[000] \rightarrow [000]$	*2.326	2.342	-0.7	8.436	8.423	0.2
$[001]{ o}[001]$	*2.935	2.987	-1.7	9.690	9.745	-2.9
$[010]{ o}[010]$	*2.517	2.529	-0.5	8.897	8.886	0.1
$[000]{ o}[001]$	*3.830(-2)	3.889(-2)	-1.5	*6.829(-2)	6.942(-2)	-1.5
$[001]{ o}[002]$	*8.667(-2)	8.930(-2)	-2.9	*1.485(-1)	1.525(-1)	-2.6
$[010]{ o}[011]$	*4.353(-2)	4.436(-2)	-1.9	*7.389(-2)	7.534(-2)	-1.9
$[000]{ o}[020]$	1.368(-3)	1.603(-3)	-14.7	1.056(-3)	1.272(-3)	-17.0
	$1.396 (-3)^b$		-12.9	1.139(-3)		-10.5
$[010]{ o}[030]$	4.013(-3)	6.009(-3)	-33.2	2.524(-3)	3.953(-3)	-36.1
	$4.669 (-3)^b$		-22.3	3.467(-3)		-12.3
$[000]{ o}[002]$	8.663(-4)	9.442(-4)	-8.2	1.322(-3)	1.514(-3)	-12.7
	$8.648(-4)^{b}$		-8.4	1.326(-3)		-12.4
$[000]{ o}[003]$	5.752(-5)	9.229(-5)	-37.7	5.094(-5)	6.803(-5)	-25.1
	$6.797 (-5)^b$		-26.4	5.066(-5)		-25.5
$[000]{ o}[010]$	3.278(-3)			9.888(-4)		
	$4.972(-3)^c$			$3.856 (-3)^c$		
$[000]{ o}[100]$	4.73(-3)	5.02(-3)	-5.8	3.17(-3)	3.32(-3)	-4.8
$[001]{ o}[101]$	4.66(-3)	4.97(-3)	-6.3	3.12(-3)	3.30(-3)	-5.4
$[010]{ o}[110]$	7.36(-3)	8.02(-3)	-8.2	4.39(-3)	4.68(-3)	-6.3
$[000]{ o}[200]$	1.05(-4)	7.90(-5)	32.9	5.24(-5)	3.96(-5)	32.4
$[000]{ o}[120]$	6.57(-5)	1.02(-4)	-35.3	2.52(-5)	4.05(-5)	-37.8
$[001]{ o}[100]$	1.03(-5)	1.32(-5)	-21.9	5.05(-6)	5.66(-6)	-10.8
$[000]{ o}[101]$	2.40(-6)	3.47(-6)	-30.9	1.32(-6)	1.91(-6)	-30.7
$[000]{ o}[102]$	1.78(-6)	2.58(-6)	-31.0	8.89(-7)	1.21(-6)	-26.5
$[000]{ o}[110]$	3.25(-4)			1.87(-4)		
	$2.93 (-4)^c$			$1.68 (-4)^c$		
$[000]{ o}[111]$	2.54(-5)			1.09(-5)		
$[010]{ o}[100]$	5.10(-4)			3.05(-4)		

TABLE CXV. Vibrational band strengths $(S_{[v] \to [v']}^a, \text{ in } D^2)$ in the infra-red absorption spectra of Li⁺–D₂ and Li⁺–H₂. A demonstration of consistency with results of Ref. [11]. 'rdev' denotes relative percentage deviation.

^{*a*} The numbers in columns 'this work' are the factors S^{vib} of the strengths of R(0) lines in the shown vibrational bands. The factors are actually the total strengths of these lines since $S_{\text{rot}}(0 \to 10)=1$ in the bands with $\Delta v_{\theta}=0, 2$, formed of *a*-type transitions, and $S_{\text{rot}}(0 \to 11)=1$ — in the bands with $\Delta v_{\theta}=\pm 1$.

The numbers listed in columns 'Ref. [11]' represent values of the strength $[\langle i|d_Z|f\rangle^2 + \langle i|d_X|f\rangle^2]$ used to obtain the intensities reported in Table 4 of that paper or the squares on the averages $\langle i|d_Z|i\rangle$ described in the text. Both $|i\rangle$ and $|f\rangle$ were taken there as purely vibrational bound state functions.

^b The numbers in the second lines are sums of the strengths obtained from two separate calculations in which one of the dipole components, d_X or d_Z , was set to zero. Not accounting for interference of amplitudes of transitions mediated by the two components, these numbers give approximate strengths, which are called 'direct'[•]. The 'direct' parts are actually the proper counterparts of the strengths generated in Ref. 11. The fact becomes visible in 'rdev' values when the interference plays a role, particularly in the bands with $\Delta v_{\theta}=2$. ^c Obtained from calculations with $d_Z=0$. See Figs. C6a,b, and C9.

* Counterparts of these numbers in Tables 6 and 7 of Ref. 3, obtained from an analytical fit to the ab initio data for the dipole component d_Z (the same data as used in this work), are substantially larger; their relative deviations from results of Ref. 11 range from above 50 to above 250% (when treating the factor of 10^{-4} in the unit given in the captions of the tables as a misprint). Certainly, the omission of d_X cannot explain such a big discrepancy. The fit of Ref. 3 turns out to be incorrect.

• 'Direct' and $d_Z - d_X$ interference parts of line strengths

Since the transition amplitude vector \mathbf{T} defined in Eqs. (19)–(20) can be written as the sum $\mathbf{T}=\mathbf{T}(d_Z)+\mathbf{T}(d_X)$, the strength $S_{i\to f}$ can be resolved as

$$S_{i \to f} = S_{i \to f}^{dir} + S_{i \to f}^{intf},$$
(C19)
where $S_{i \to f}^{dir} = \frac{\pi}{2} \Gamma \left[\mathbf{T}^{\dagger}(d_Z) \mathbf{T}(d_Z) + \mathbf{T}^{\dagger}(d_X) \mathbf{T}(d_X) \right] = S_{i \to f}^{dir}(d_Z) + S_{i \to f}^{dir}(d_X)$
and $S_{i \to f}^{intf} = \frac{\pi}{2} \Gamma \left[\mathbf{T}^{\dagger}(d_X) \mathbf{T}(d_Z) + \mathbf{T}^{\dagger}(d_Z) \mathbf{T}(d_X) \right].$

Obviously, the resolution applies also to bound \rightarrow bound transitions, in which cases the vector **T** contains one element $T=T(E_{\rm f}^B J_{\rm f} p_{\rm f}; E_{\rm i}^B J_{\rm i} p_{\rm i})$ and the factor $\frac{\pi}{2}\Gamma$ does not occur in the formulas for $S_{\rm i \rightarrow f}$ and for its 'dir' and 'intf' parts.

Fig. C7. Line strengths. Contributions of d_Z - d_X interference.

For the sake of clarity of the plots, the strengths are shown only for lines in one subband $K_a=k_i-k_f$ of each of the four selected bands and only for one parity p of the initial states in each branch (only one is possible if k_i and/or $k_f=0$).

 S_{ref} — the largest contribution to the line strengths in a given band, which is the $S^{\text{dir}}(d_Z)$ in the *a*- and the $S^{\text{dir}}(d_X)$ in the *b*-type bands. $S^{\text{dir}}/S_{\text{ref}}$ — shows the increase of the 'dir' parts of the strengths due to the inclusion of the second dipole component. The increase is: entirely negligible in the cases of R(J) and P(J) lines in the two *a*-type bands, rather small for all lines in the $[0\ 0\ 0] \rightarrow [1\ 1\ 0]$ band, and much bigger in the corresponding band in the FIR range.

The contribution of the $d_Z - d_X$ interference is shown by $S/S_{\rm ref} - S^{\rm dir}/S_{\rm ref}$, i.e. by the distance between the lines of the same color with and without circles. In absolute value, the 'intf' contribution nearly always overwhelms the 'dir' contribution of the nominally less important dipole moment component.

The largest interference (destructive, $S^{\text{intf}} < 0$) demonstrated in the figure occurs in the $[0\ 0\ 0] \rightarrow [0\ 1\ 0]$ band of Li⁺–D₂. Its impact on the cross-section $\sigma(\nu; T)$ and on the integrated band intensity is seen in Figs. C4d and C9, respectively. **Fig. C8.** Herman-Wallis type parametrization¹⁰ of $S_{i\to f}^{\text{vib}}$ s

$$S_{i \to f}^{\text{vib}} = \underbrace{S_{[v] \to [v']}(s_0)}_{S_0} \underbrace{F_{\text{HW}}(kJp \to k'J'p'; \{s_1, ..\})}_{[1 + \sum_{i=1}^7 s_i f_i(kJp \to k'J'p')]^2}, \quad (C20)$$

$$f_1 = \frac{1}{2}([J'] - [J]) := m_J, \quad f_3 = \frac{1}{2}([J'] + [J]), \quad f_2 = m_J^2,$$

$$f_5 = \frac{1}{2}(F' - F) := m_F, \quad f_4 = \frac{1}{2}(F' + F), \quad f_7 = m_F^2,$$

$$f_6 = m_J m_F,$$

$$[J] := J(J + 1) \quad \text{and} \quad F(kJp) := E([v]kJp) - E([v]J = 0).$$

$$J(J+1)$$
 and $F(kJp) := E([v]kJp) - E([v]J=0)$

The red lines join values obtained using formula (C20) with the parameters s_i listed in Table CXVI. In each panel of the figure, one red curve connects the fitted S^{vib} s of lines $B(J^p)$ for a given parity p in a given branch B(=R, P, Q) of a given subband K_a of the band shown in the panel. The p=e and p=f curves are clearly distinguishable only in the Q branches of $K_a=1-1$ subbands. Obviously, only one value of p is possible in subbands 0-0, 0-1, and 1-0.

The set of S^{vib} s represented by the symbols in each of the three panels in the row is the same as the set shown for the same band in Fig. 15 of the paper. Except for a few cases, the symbols lie on or very close to the fitted lines. For each of the three bands, the parameter s_0^2 of the fitted lines has indeed the meaning of the strength $S_{[v] \to [v']}$, as evidenced in Table CXVI. This provides a justification of the statement in the discussion of Fig. 15 that the strengths of lines in the three subbands of the three *a*-type bands can be well represented with the help of the Herman-Wallis coefficients derived in Ref. 10 for asymmetric top molecules.

Attempts to parametrize the entire set of $S^{\text{vib}s}$ shown in Fig. 15 for the band $[000] \rightarrow [110]$ were not successful because of too severely perturbed values occurring in the $K_a=1-2$ subband. The set was therefore limited to values

for subbands $K_a=0-1$ and 1-0. The parametrization of this set is possible, as shown in the second panel in the column of the present figure and in the fifth column of Table CXVI, but its quality is definitely lower than in the cases of the *a*-type bands.

Though the bottom panels may seem to testify to the contrary, the parametrization (C20) is actually unsuitable for the band $[000] \rightarrow [010]$. The argumentation is given in the comment to Table CXVI.

				$\rm Li^+-H_2$			
						d_2	z=0
	$[000] \rightarrow [100]$	$[000] \rightarrow [200]$	$[000] \rightarrow [001]$	$[000] \rightarrow [110]$	$[000] \rightarrow [010]$	$[000] \rightarrow [110]$	$[000] \rightarrow [010]$
$N_{\rm fit}{}^a$	187	181	187	79	73	83	80
$s_0 imes lpha^b lpha$	$2.17384(88)^f \\ 10^{3/2}$	1.02619(58) 100	$1.9919(14)\\10$	$\frac{1.8244(24)}{100}$	$\frac{1.53971}{10^{3/2}}(99)$	1.7038(15) 100	$2.1552(12) \\ 10^{3/2}$
$s_1 \times 10^{3c}$ $s_2 \times 10^{3c}$ $s_3 \times 10^{3c}$ $s_4 \times 10^{4d}$ $s_5 \times 10^{3d}$	16.18 (40) 0.539 (22) - 0.895 (14) - 2.293 (56) - 6.64 (17)	$\begin{array}{r} -24.30(49) \\ -1.370(32) \\ -1.820(30) \\ 6.31(13) \\ 9.90(20) \end{array}$	$\begin{array}{c} -1.99(55)\\ -0.606(39)\\ -0.201(34)\\ 0.513(44)\\ -5.80(23)\end{array}$	$\begin{array}{c} 1.04(13) \\ - \\ 0.236(18) \\ -2.007(67) \\ -0.313(20) \end{array}$	$\begin{array}{c} 4.291(77)\\ -0.910(12)\\ -0.1441(83)\\ -\\ 3.141(12)\end{array}$	$\begin{array}{c} -0.613(37)\\ 0.0348(58)\\ -0.2422(53)\\ -\\ -0.0642(69) \end{array}$	$\begin{array}{c} -1.683(34) \\ - \\ -0.2635(47) \\ - \\ 0.4275(59) \end{array}$
$s_6 \times 10^{4a}$ $s_7 \times 10^{5e}$	0.120 (79) —	-0.223(60)	1.317 (66) _	2.037 (31) -	3.692 (20) —	-0.371(28) 0.50(6)	-0.505(18) 0.78(4)
$\sigma \times \alpha^2 \times 10^{3gh}$	24.6	7.8	36.3	40.5	15.4	12.1	17.0
$S_{[\mathbf{v}] \to [\mathbf{v}']} \times \alpha^{2ih}$ $S_{[\mathbf{v}] \to [\mathbf{v}']}^{\text{cal}} \times \alpha^{2jh}$	4.725 4.735	1.053 1.049	3.968 3.830	3.328 3.246	2.371 3.278	2.903 2.926	4.644 4.972
				$\rm Li^+-D_2$			
N_{fit}	185	173	184	82	78	84	80
$s_0 imes lpha$	$\frac{1.77971}{10^{3/2}}(33)$	$2.29419(64) \\ 10^{5/2}$	2.65049(58) 10	$1.38285(67)\\100$	$\begin{array}{c} 0.7759(19) \\ 10^{3/2} \end{array}$	1.3033(10) 100	$\frac{1.95454}{10^{3/2}}(33)$
$s_1 \times 10^3$ $s_2 \times 10^3$ $s_3 \times 10^3$ $s_4 \times 10^3$	$12.51 (20) \\ 1.184 (87) \\ - 0.6322 (49) \\ - 0.2021 (28) \\ 0.05 (12) \\ 0.05 ($	-22.67(24) - $-1.007(10)$ 0.5579(66)	3.93(20) - 0.717(12) - 0.5144(90) 0.0764(24)	$\begin{array}{c} 0.879(52) \\ - \\ - 0.1921(75) \\ - 0.0515(45) \\ 0.010(10) \end{array}$	$31.17(12) \\ - \\ 0.929(19) \\ - 0.596(12) \\ 10.159(45)$	0.116 (36) 0.2246 (81) -0.2703 (46) -	$\begin{array}{c} -0.772(19)\\ 0.1673(24)\\ -0.2702(22)\\ -\\ 0.5501(27)\end{array}$
$s_5 \times 10^3$ $s_6 \times 10^3$ $s_7 \times 10^4$ $\sigma \times \alpha^2 \times 10^3$	$ \begin{array}{r} -8.05(13) \\ -1.21(11) \\ 4.18(38) \\ 7.2 \end{array} $	14.62 (16) - 0.993 (15) $3.162 (70)19.3$	-11.63(13) 0.1381(46) - 20.5	$ \begin{array}{r} -0.819(18) \\ 0.1581(27) \\ - \\ 9.3 \end{array} $	13.170 (45) 0.661 (17) $- 0.356 (71)4.2$	$\begin{array}{c} -0.397(14) \\ -0.0788(85) \\ 0.111(28) \\ 6.1 \end{array}$	$\begin{array}{c} 0.2781 \ (67) \\ -0.0408 \ (10) \\ - \\ 7.0 \end{array}$
$\begin{array}{c} S_{[\mathbf{v}] \rightarrow [\mathbf{v}']} \times \alpha^2 \\ S_{[\mathbf{v}] \rightarrow [\mathbf{v}']}^{\mathrm{cal}} \times \alpha^2 \end{array}$	$3.167 \\ 3.166$	5.263 5.237	7.025 6.829	$1.912 \\ 1.865$	$0.602 \\ 0.989$	$1.699 \\ 1.682$	$3.820 \\ 3.856$

TABLE CXVI. Parameters s_0, \ldots, s_7 from least-squares fits of formula (C20) to the factors $S_{i \to f}^{vib}$ of line strengths in several bands of the IR spectra of the Li⁺-H₂ (D₂) complexes.

^a The number of $S_{i \to f}^{\text{vib}}$ values (i:=[v]kJp, f:=[v']k'J'p') used in the fit for a given band [v] \rightarrow [v']. The values concern lines $R(J^p)$, $P(J^p)$, and $Q(J^p)$ for J=0,...,14 and p=e, f from three subbands $K_a=k\rightarrow k'$ (0-0, 1-1, 2-2) in the cases of the three *a*-type bands shown and from two subbands, $K_a=0-1$ and 1-0, in the cases the two *b*-type bands. Some values from the specified ranges were rejected in order to assure reasonable uncertainties of the fitting parameters.

 b The unit of the parameter s_0 is Debye. c Dimensionless parameters.

^d Given in cm since the rotational energies F(kJp) in the unit of cm⁻¹ are inserted. ^e Given in cm².

 f In parentheses are the estimated uncertainties of the parameters on the last decimal positions shown.

^g Root-mean-square deviation between fitted and calculated $S_{i \rightarrow f}^{vib}$ s. ^h In D².

 i The vibrational band strength resulting from the fit.

 j The calculated vibrational band strength; like in Table CXV, it is taken as the strength S of R(0) line.

The strength of a given band $[v] \rightarrow [v']$ obtained from the fit, $S_{[v] \rightarrow [v']} = p_0^2$, should be close to the calculated value $S_{[v] \rightarrow [v']}^{cal}$ if the semi-rigid asymmetric top model, underlaying the fit, describes adequately the impact of vibration-rotation interactions in the initial and final states on the transition strengths in the band.

The agreement appears quite satisfactory for all bands shown in the table except for $[0\ 0\ 0] \rightarrow [0\ 1\ 0]$ (discrepancies of 28 and 39% for Li⁺-H₂ and Li⁺-D₂, respectively). The impact of the rotation-vibration interactions on the strength of this band, nominally driven by the d_X dipole component, is magnified by the size of the interfering d_Z (see the comments to Fig. C4d, B6d, and C6b). One should thus conclude that this impact is too big to be meaningfully described by formula (C20).

Fig. C9. Integrated band intensities $I_{[v] \rightarrow [v']}(T)$

Table XII of the paper is appended here with a demonstration of temperature dependence of the integrated intensities of the various vibrational bands (the upper panels) and with information on adequacy of the following approximate formula¹² for the quantity in application to these bands,

$$I_{[v] \to [v']}^{\text{appr}}(T) = \left\{ \frac{2\pi^2}{3hc\epsilon_0} \right\} \nu_{[v] \to [v']} S_{[v] \to [v']} \underbrace{P_{[v]}(T) \left[1 - \exp(-\frac{hc\nu_{[v] \to [v']}}{k_B T}) \right]}_{:= \left\{ \right\} \nu_{[v] \to [v']} S_{[v] \to [v']} \underbrace{P_{[v] \to [v']}(T) \left[1 - \exp(-\frac{hc\nu_{[v] \to [v']}}{k_B T}) \right]}_{P_{[v] \to [v']}(T),$$
(C21)

where $\nu_{[v] \to [v']}$ is the band center as defined in Table XII, $S_{[v] \to [v']}$ — the band strength as defined in Table CXV, and $P_{[v]}(T)$ — the population of the initial vibrational state at temperature T, $P_{[v]}(T)=Z_{[v]}(T)/Z(T)$ with $Z_{[v]}$ denoting the sum of states belonging to [v], $\sum_{[v]} Z_{[v]}=Z$.

The simpler expression for $P_{[v]}(T)$ which is obtained under the assumption $Z(T)\approx Z_{vib}(T)Z_{rot}(T)$,

$$\tilde{P}_{[v]}(T) = \exp\left(-[E([v] J=0) - E([0] 0)]/k_BT\right)/Z_{vib}(T)$$

with $Z_{\rm vib}(T) = \sum_{[v]} \exp(-[E([v] J=0)-E([0] 0)]/k_B T)$, may be used in formula (C21) when $[v]=[0\ 0\ 0]$ but rather not, and certainly not at low Ts (<100 K), when [v] is an excited state. A demonstration of this fact is given in Fig. C9a.

Fig. C9a. A comparison of populations $P_{[v]}(T)$ with $\tilde{P}_{[v]}(T)$ at $T \leq 330$ K for $[v]=[0\ 0\ 0]$, $[0\ 0\ 1]$, and $[0\ 1\ 0]$.

The approximate formula (C21) appears to work reasonably, the relative deviations $I_{[v] \to [v']}^{appr}/I_{[v] \to [v']}-1$ within ± 10 %, for ten bands (of the sixteen) examined in the figure. These seem to be the bands in which the line strengths are predominantly determined by one dipole component, i.e. no substantial λ - and j- mixing in the initial and final states of the transitions occurs $\overset{\mathbf{r}}{\mathbf{Y}}$.

Thus, the temperature dependence of the 'exact' intensities $I_{[v]\to[v']}$ of these bands is reasonably represented by the factor $P_{[v]\to[v']}$ of Eq. (C21). The factor practically equals the population $P_{[v]}$ for the bands in the near-infrared at temperatures of interest here.

Naturally, the comparison of the corresponding bands of the Li⁺–H₂ and Li⁺–D₂ complexes with respect to the rotationally averaged quantity $I_{[v]\to[v']}$, which is made in Table CXVII, shows smaller differences than those shown in Table CXIVa from the comparison of the $I_{i\to f}s$ of the most intense rotational lines in the bands. The ratios $\frac{\text{Li}^+-\text{H}_2}{\text{Li}^+-\text{D}_2}$ of the factors $P_{[v]\to[v']}$, much smaller than those of the $P_{i\to f}s$, are mostly responsible for the fact.

TABLE CXVII. The ratios $\frac{\text{Li}^+ - \text{H}_2}{\text{Li}^+ - \text{D}_2}$ of intensities $I_{[v] \rightarrow [v']}^{\text{appr}}(296\text{K})$ and of three their factors, Eq. C21.

	${\rm Li^+-H_2/Li^+-D_2}$								
$[v]{\rightarrow}[v']$	$I^{\rm appr}_{[{\rm v}] \rightarrow [{\rm v}']}$	$S_{[\mathbf{v}] \rightarrow [\mathbf{v}']}$	$\nu_{[\mathbf{v}] \to [\mathbf{v}']}$	$P_{[\mathbf{v}] \rightarrow [\mathbf{v}']}$					
$[000] { ightarrow} [100]$	$2.38 (2.40)^a$	1.496	1.390	1.146					
\rightarrow [200]	3.17(3.24)	2.003	1.379	1.146					
$\rightarrow [110]$	2.76(2.77)	1.740	1.382	1.146					
$\rightarrow [001]$	0.84(0.87)	0.561	1.216	1.235					
$\rightarrow [002]$	0.92(0.95)	0.655	1.192	1.172					
$[001]{ o}[101]$	1.72(1.75)	1.491	1.399	0.823					
$\rightarrow [002]$	$0.60\ (0.63)$	0.584	1.165	0.887					
$[010]{ o}[110]$	1.29(1.33)	1.679	1.392	0.552					
$\rightarrow [100]$	1.29(1.34)	1.670	1.404	0.552					
$\rightarrow [011]$	0.40 (0.41)	0.589	1.149	0.585					

^{*a*} in parentheses are the ratios of the respective $I_{[v] \to [v']}$ es.

The facts supporting the conjecture: (i) In the bottom panels of Fig. 9 collected are the bands $[v] \rightarrow [v']$ for which large deviations $I_{[v] \rightarrow [v']}^{appr}/I_{[v] \rightarrow [v']}-1$ were found. In three of these bands, $[0\ 0\ 0] \rightarrow [1\ 2\ 0], [0\ 0\ 0] \rightarrow [0\ 2\ 0],$ and $[0\ 0\ 0] \rightarrow [0\ 1\ 0]$, strong $d_Z - d_X$ interference and accidental-degeneracy effects on the line strengths were demonstrated in Figs. C6–C7.

(ii) In the right bottom panel of Fig. 9, there is an indication that the big error of I^{appr} in application to $[0\,0\,0] \rightarrow [0\,1\,0]$ of Li⁺-D₂ (about -49% at $T\approx 330$ K) stems from inability to fully account for the big d_X - d_Z interference in this band. Namely, the yellow curve drawn in this panel shows that the error decreases substantially (to 0.8 % at 330 K) when the band strength $S_{[v]\rightarrow[v']}$ inserted into formula (C21) comes from calculations with the component d_Z turned off.

(iii) In the band $[0\ 0\ 0] \rightarrow [1\ 0\ 1]$, on which formula (C21) fails most severely, all three parts of the dipole moment vector, $\propto D_{0,0}$, $\propto D_{2,0}$, and $\propto D_{2,1}$ (cf. Fig. 1b), contribute significantly or non-negligibly. As shown in Fig. C9b, the intensities $I_{[000] \rightarrow [101]}(T)$ produced by each of the dipole moment parts directly (i.e. excluding the interference with the other two parts) assume comparable sizes at T>250. Quite different relation is seen between the analogous intensities of the band $[0\ 0\ 0] \rightarrow [1\ 0\ 0]$, on which formula (C21) works very well. Namely, the intensity $I_{[000] \rightarrow [100]}(\propto D_{0,0})$ dominates over the $I_{[000] \rightarrow [100]}(\propto D_{2,0})$ in the entire temperature range by a factor $\gtrsim 10$ and the intensity produced the component $d_X \propto D_{21}$ stays smaller by at least three orders of magnitude.

$$\begin{split} \textbf{Fig. C9b. Integrated intensities of bands } \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \\ \text{and } \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ of } \text{Li}^+ - \text{H}_2. & \text{A comparison of } \\ \text{direct contributions to the intensities produced} \\ \text{by the three parts of the dipole vector } \textbf{d}(r, R, \theta), \\ D_{L|\Lambda|}(r, R) P_L^{|\Lambda|}(\cos \theta) \text{ for } (L |\Lambda|) = (0 & 0), (2 & 0), \text{ and } (2 & 1). \\ I_{[000] \rightarrow [10v_R]} = \sum_{L, |\Lambda|} I_{[000] \rightarrow [v']}(\propto D_{L|\Lambda|}) + I_{[000] \rightarrow [v']}^{\text{intf}}; \end{split}$$

the interference contributions $I^{intf} \times (-1)$ are represented by the yellow lines in the figure.

- ¹ L. Wolniewicz, J. Chem. Phys. Phys. **103**, 1792 (1995); J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski and K. Pachucki, J. Chem. Theory Comput. **7**, 31053115 (2011).
- ² Part B of this material.
- ³ W. P. Kraemer and V. Špirko, Chem. Phys. **330**, 190 (2006).
- ⁴ A. J. Page and E. I. von Nagy-Felsobuki, J. Phys. Chem. A **111**, 4478 (2007).
- ⁵ J. K. G. Watson, J. Chem. Phys. **46**, 1935 (1967).
- ⁶ R. N. Zare, Angular Momentum. Understanding Spacial Aspects in Chemistry and Physics, (Wiley, New York, 1988).
- ⁷ C. D. Thompson, C. Emmeluth, B. L. J. Poad, G. H. Weddle, and E. J. Bieske, J. Chem. Phys. 125, 044310 (2006).
- ⁸ D. Papoušek and M. R. Aliev, *Molecular Vibrational-Rotational Spectra* (Elsevier, Amsterdam, 1982).
- ⁹ S. Carter, J. Senekowitsch, N. C. Handy, and P. Rosmus, Mol. Phys.65, 143 (1988).
- ¹⁰ J. K. G. Watson, J. Mol. Spectrosc. **153**, 211 (1992).
- ¹¹ V. P. Bulychev, K. M. Bulanin, and M. O. Bulanin, Opt. Spectrosc. 96, 205 (2004).
- ¹² R. R. Gamache, A. Goldman, JQSRT**69**, 389 (2001).