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The notion of collision time-delay as an interpretation of the energy derivative of the scatter-
ing phase shift has been introduced to the literature by Wigner in 1955, Ref. 1. A generalization
of this notion to inelastic collisions is the life-time matrix Q introduced by Smith, Ref. 2. The
basic formula for this quantity is its relation to the scattering S-matrix

Q(E) = ı~S†
E(E)S(E) , (A1)

the subscript ‘E’ denotes hereafter the derivative with respect to the energy. The relation
was derived by Smith within the frame of stationary scattering states and was later proved
and generalized to N>2-body scattering within the formal, time-dependent theory3–5. More
recent formal considerations of this relation appeared in connection with the theory of sojourn
time operators7. Applications of the life-time matrix concern various branches and aspects
of scattering physics, such as thermodynamics of interacting gases8,9, resonances in atom-
diatom reactive scattering10–13, tunneling through reaction barriers14, quasi-bound states of
diatomic molecules15,16, atom-diatom van der Waals complexes17–19, resonances in electron-
molecule scattering20–22. In the majority of these applications the basic formula, Eq. (A1), was
exploited for numerical evaluation of the life-time matrix. The energy derivative of the S ma-
trix was determined via numerical differentiation16,17,21 or directly19,23–27. Formulas explicitly
involving scattering functions within the interaction region were exploited in Refs. 15 and 19
in the context of one channel and multichannel scattering, respectively. In this summary, the
formula of Ref. 19, called ‘a useful formula for the matrix Q’, plays the central role.

First, a derivation of the formula is presented. Next, it is used in an analysis of the energy
dependence of the matrix Q near an isolated resonance. Of particular concern are some weak
effects in this dependence which modify the basic Lorentzian profiles. The practical impli-
cations of the analysis are described. The final part concerns numerical implementation of
the approach. A formula for Tr QE is derived. A smooth-variable-discretization (SVD) ver-
sion of the log-derivative method is presented for evaluation of first- and second-order free-free
transition amplitudes which appear in the formulas for Q and Tr QE .

Introductory information. A nonreactive scattering system is considered and a set of or-
thogonal coordinates is used: x denotes the scattering coordinate, strictly, the distance between
colliding subsystems, (ranging from 0 to ∞), and y is a collection of ‘internal’ coordinates, de-
scribing bounded modes of motion in the system. The other relevant characteristics of the
chosen (x, y) coordinates are: the xx-th component of the metric tensor equals 1 and the
Jacobian assumes a factorized form, J(x, y)=c(x)j(y).

The Hamiltonian H for the scattering system consists, of course, of a ‘free’ part, H0, and
of interaction potential, V , which vanishes when x→∞. It is assumed that the subsystems
move practically freely, i.e., V (x, y)≈0, when x≥x∞. The part of H0(x, y), having the form

Kx=− ~2

2µ
1

c(x)
∂
∂x
c(x) ∂

∂x
, where µ is the reduced mass of the subsystems, can be identified as the

kinetic energy operator of x-motion; the remaining part, H int(x, y), can be thus termed the
internal Hamiltonian.

In multichannel scattering at a given energy E, there are No>1 states of H int which are
accessible, i.e., open, as initial and final states. If ǫi denotes the energy of i-th state then the
relation E−ǫi=(~ki)

2/2µ>0 holds for i=1, . . . , No, meaning that there is some energy available
to translational (x-) motion of noninteracting subsystems. ki is the wavenumber associated
with this motion. The functions of the scattering states of H (of outgoing-wave type) which

evolve from the No states of H0 are collected in the vector Ψ
(+)

1×No

(E; x, y).

For application of Green’s theorem, the configuration space of the scattering system is
divided with a surface x=x̄ in two regions, termed the ‘internal’ (x≤x̄) and the ‘external’
(x≥x̄) region, respectively. The division is formally arbitrary but the choice x̄=x∞ is preferred
as being the most convenient practically. With this choice, the internal and external regions
become the ‘interaction’ and the ‘asymptotic’ regions, respectively.

In both the internal and the external regions a close-coupling representation of the scattering



functions is adopted,

Ψ
(+)

(E; x, y) = Φ̃
1×N

(y; x) F
(+)

N×No

(E; x) , (A2)

using an orthogonal basis in the y-coordinates, strictly, Φ̃(y; x):=c−1/2(x)Φ(y; x) and
[
Φ|Φ

]
=I

with
[
X|Y

]
:=
∫
dy j(y)X†Y . The basis Φ(y; x) may be modified along the scattering coordi-

nate but it becomes diabatic, i.e., ∂
∂x
Φ(y; x)≈0, in the asymptotic region, where it should be

built of eigenfunctions of H int. Columns of F
(+)

(E; x) are, of course, solutions of the coupled
equations [

EI −H(x)
]
F (E; x) = 0 , (A3)

in which the N×N matrix operator EI−H(x):=c(x)
[
Φ̃|(E−H)Φ̃

]
takes the form

EI −H(x) = 1
2µ
[−p2

x + ~
2w(E, x)] , (A4)

where
px=−ı~

[
I d

dx
+α(x)

]
with α(x):=

[
Φ| ∂

∂x
Φ
]

(A5)

and w(E; x) is a real symmetric matrix,

w(E; x) = 2µ
~2
[EI−ǫ(x)]+

[
∂
∂x
Φ|Φ

][
Φ| ∂

∂x
Φ
]
−
[

∂
∂x
Φ| ∂

∂x
Φ
]
:= b(E; x) +∆(x) , (A6)

becoming diagonal in the asymptotic region, where ∆(x)=0, and constant at infinity, i.e.,[
b(E; x)]i,j=δi,j [E−ǫi(x)] −→

x→∞
δi,jk

2
i for i=1, . . . , N . ( k2

i=−|ki|2 for i>No).

The matrix F
(+)

(E; x) vanishes at point x0 chosen close to 0, i.e. deeply inside classically
forbidden region. In the external region, it is explicitly related to the scattering matrix S

F
(+)

(E; x) = O−(E; x)−O+(E; x)S(E) ; (A7)

O±
N×No

(E; x) are solutions of Eq. (A3) which satisfy the conditions

[
O±(x)

]
i,j

−→
x→∞

δi,jv
−1/2
i exp[±ı(kix+ . . .)] , (A8)

where the dots stand for x-independent phase factors and the factor v
−1/2
i with vi:=~ki/µ

serves to assure the normalization of the solutions to the unit flux. Using the flux operator28

through the surface x=x̄, C(x̄; x, y)= ı
~
[H(x, y), Θ(x−x̄)] , where Θ(x)=1 (0) for x≥ (<) 0 , and

its representation in the basis Φ̃, C(x̄; x):=c(x)
[
Φ̃|C(x̄) Φ̃

]
,

C(x̄; x) = 1
2µ

[
δ(x−x̄)px + pxδ(x−x̄)

]
, (A9)

one can state the normalization properties of the matrices O±(E; x) as

(
Oε|C(x̄)Oε′

)
= δε,ε′(δε,+ − δε,−)Io for any x̄ , (A10)

where
(
X|Y

)
:=
∫
dxX†Y and Io denotes No×No unit matrix.

The scattering states of in-going wave type, Ψ
(−)

(E; x, y), are represented in the basis Φ̃

by functions F
(−)

(E; x) The equality F
(−)

(E; x)=F
(+) ∗(E; x) may be assumed in view of time-

reversal invariance of H . Also, S=ST . Thus, the relation takes place

Ψ
(+)

= −Ψ
(−)

S . (A11)

It is consistent with the well-known relation of scattering theory between ‘in’ and ‘out’ station-
ary scattering states, presented usually in the ‘energy normalization’ (cf. Ref. 29, chap. 7.2.3),

since the conversion is: Ψ
(±)

=±
√
2π~
ı

Ψ
(±)

energy.



When describing the energy dependence of the scattering states, it is convenient to use the
following matrix Green function, cf. Ref. 30,

G
(+)

(E, x̄; x, x′) := 〈x|G(+)

(E, x̄) |x′〉 := 〈x|
[
P [x0,x̄](EI−H)− L+(E, x̄)

]−1|x′〉 (A12)

which involves the Bloch operator31

L+(E, x̄; x) := ı~
2µ
δ(x−x̄)[px + ı~l+(E, x̄)] (A13)

with the boundary condition matrix l+(E, x̄) giving

(
φ|L+(x̄)Õ

+)
= 0

for the N×N solution matrix Õ
+
(E; x):

Õ
+

i j(E; x)=O+
i j(E; x) for j≤No,

Õ
+

i j(E; x) −→
x→∞

δi,jv
−1/2
j exp(−|kj|x) for j>No ,

and for arbitrary N×1 matrix φ(x). P [x0,x̄] denotes the projector on the internal part of the
x-coordinate, P [x0,x̄]=Θ(x̄−x)Θ(x−x0).

Using the operator G
(+)

(E, x̄), one can write

F
(+)

(E; x) = −G
(+)

(E, x̄)L+(E, x̄)F
(+)

(E) (x) for x ∈ [x0, x̄] .

Thus, one gets the following formulas for the energy derivatives in the internal region (all
arguments are omitted for clarity)

G
(+)

E = −G
(+)

(P [x0,x̄]I −L+
E)G

(+)

, (A14)

F
(+)

E = −G
(+)

(P [x0,x̄]F
(+)

+L+F
(+)

E ) . (A15)

The second terms in these formulas can explicitly be written as

G
(+)

L+
EG

(+

(x, x′) = − 1
~2
F

(+)

(x)C
−+

F
(−) †(x′) , (A16)

G
(+)

L+F
(+)

E (x) = ı
~
F

(+)

(x)(C
−− −C

−+

S) , (A17)

where the C’s stand for the following matrix elements of the flux operator

Cε ε′(E, x̄) := ı~
(
Oε

E |C(x̄)Oε′
)

for ε, ε′=+,− . (A18)

Finally, the formula expressing the Green theorem should written

〈Ψ2|
[
P [x0,x̄] , E−H

]
Ψ1〉 =

(
F 2|
[
P [x0,x̄] , EI−H

]
F 1

)
= ı~

(
F 2|C(x̄)F 1

)
; (A19)

Ψi for i=1, 2 denote here any functions of the (x, y) coordinates which vanish at x0 and are

representable in the basis Φ̃(y; x), i.e., Ψi(x, y)=Φ̃(y; x)F i(x) and F i(x0)=0. After dividing
the flux operator in the following way,

C(x̄; x)= 1
ı~

[
L+(x̄; x)−L− †(x̄; x)

]
,

where L− is defined by Eq. (A13) with l−:=l+ † standing in place of l+, the formula (A19)

can be rearranged to show that the space restricted Green operator G
(+)

(E, x̄), defined in Eq.



(A12), and its analogue G
(−)

(E, x̄), involving the operator L−, satisfy the usual ‘hermicity’
relation

G
(+)

(E, x̄)=G
(−) †(E, x̄) .

The useful formula for the matrix Q is obtained by applying the Green theorem to

functions Ψ1:=Ψ
(+)

and Ψ2:=Ψ
(+)

E in the interaction region (x̄=x∞) and consists of two terms,

Q(E) = A(E, x∞)−B(E, x∞) . (A20)

In accordance with their origin, the terms may be called, respectively, the ‘volume term’,

A(E, x∞) = 〈Ψ(+)

(E)|P [x0,x∞] Ψ
(+)

(E)〉 = (F
(+)

(E)|P [x0,x∞]F
(+)

(E)) , (A21)

and the ‘surface term’,
B(E, x∞) = S†(E) C(E, x∞) S(E) , (A22)

where S†:=(Io, −S†) and C:=
(
C

−−

C
−+

C
+−

C
++

)
is a hermitian matrix built of the matrices

Cε ε′(E, x∞), cf. Eq. (A18), which are diagonal and

C
−−

=C
−− ∗=C

++

,

as it can be deduced from Eqs. (A8) and (A10). The two terms of the formula reflect Smith’s
definition of collision-time delay2. The matrix A, strictly its trace, has the meaning of an
average sojourn time of the scattering system within the interaction region7 confined by the
surface x=x∞. Therefore, the name ‘soujourn-time matrix’ is alternatively assigned to A.
The matrix B does not have such a strict interpretation. It acquires, however, the meaning
of the time of free passage of the system through the confined region when the size of the
region grows ad infinitum (x∞−→∞) and all oscillatory terms are removed (by an appropriate
averaging, cf. Refs. 2,3).

Resonance decomposition of the matrix Q. It what follows an analysis of energy
dependence of the matrix Q in vicinity of an isolated resonance is presented. Use is made
of the well-known results of the Feshbach resonance theory32. Two kinds of partitioning of
the scattering states are essential in the theory. The first is the partitioning into mutually
orthogonal open and closed channel parts,

|Ψ(+)〉=(Po+Pc) |Ψ
(+)〉=|Ψ(+)

o 〉+|Ψ(+)

c 〉 . (A23)

Such partitioning is easily realized in the close-coupling approximation to the states using the
asymptotic (diabatic) basis dΦ=Φ(y). At a given energy E, each basis functions is easily
ascribable to either open or closed scattering channel, i.e. dΦ

1×N
=
(
dΦo
1×No

dΦc
1×Nc

)
. Thus, the

projectors Po and Pc are represented by the matrices

dP o=

(
Io 0
0 0

)
and dP c=

(
0 0
0 Ic

)
, respectively.

The non-diabatic basis Φ(y; x) is related at each x to the basis dΦ through an orthogonal
matrix Υ(x) (see Sec. IIC). In this basis, the representation of the projectors Pa for a=o, c
takes the form of the non-diagonal matrices Pa(x)=ΥT (x) dPaΥ(x). The respective parts of

the functions F
(+)

(x) are F
(+)

a (x)=Pa(x)F
(+)

(x).

The consequence of the partitioning (A23) for the matrix A is

A(E, x∞) = Ao(E, x∞) +Ac(E) . (A24)



The L2 character of closed channel components of the scattering functions is reflected here by
the fact that the matrix Ac does not depend on x∞. Thus, when exploiting the ‘useful formula’,
Eq. (A20), one gets readily the matrix Q decomposed into open and closed channel parts

Q(E) = Qo(E) +Ac(E) with Qo(E) := Ao(E, x∞)−B(E, x∞) . (A25)

The decomposition may be expected to be advantageous in the analysis of resonances which
arise from bound states in the closed channel subspace, i.e., of the Feshbach-type resonances.
At this point one may note that diagonal elements of the matrix Ac are the quantities which
are analyzed in the amplitude method for multichannel resonances proposed by Dalgarno and
co-workers33.

The second partitioning of the scattering states is into parts which vary rapidly (‘r’) and
slowly (‘d’) with the energy in the vicinity of a bound state in the closed channel subspace,

|Ψ(+)

a 〉 = |Ψ(+)

a 〉d + |Ψ(+)

a 〉r for a=o, c . (A26)

The arising four parts of the scattering states, |Ψ(+)

a (E)〉α for a=o, c and α=r, d, are determined
by the following equations:

|Ψ(+)

c (E)〉r = |Ψ(B)

s 〉 a(+)

s (E) , (E
(B)

s −Hc c) |Ψ
(B)

s 〉 = 0 ,

|Ψ(+)

c (E)〉d = G̃c(E)Hc o |Ψ
(+)

o (E)〉 with G̃c (E) :=
∑
n 6=s

|Ψ(B)

n 〉〈Ψ(B)

n |
E−E(B)

n

,

|Ψ(+)

o (E)〉r = G̃
(+)

o (E)Ho c |Ψ
(+)

c (E)〉r with G̃
(+)

o (E) :=
1

E(+)−H̃o(E)
,

(
E

+−H̃o(E)
)
|Ψ(+)

o 〉d = 0 ,

where Ha a′ := PaHPa′ for a, a′=o, c ,

H̃o(E) := Ho o + V opt(E) ,

V opt(E) := Ho c G̃c(E)Hc o .

and the vector of amplitudes of the largest, i.e., the closed channel resonance part is

a
(+)

s (E) = −ı

√
~γ(E)

E−Er(E)+ ı
2
Γ(E)

,

where Er = E
(B)

s + Eshft with Eshft = Re〈Ψ(B)

s |Hc o G̃
(+)

o (E)Ho c|Ψ
(B)〉 ,

Γ(E) = γ(E)γ†(E) and γ(E) = ı√
~
〈Ψ(B)

s |Hc o |Ψ
(+)

o (E)〉d .

Obviously, this way of the ‘r-d’ partitioning is valid for energies E close to the bound state
energy E

(B)

s provided it is well separated from E
(B)

n 6=s. The well-known result of the theory is the
decomposition of the matrix S into contributions of direct and resonance scattering

S(E) = Sd(E) + Sr(E) with Sr(E) = −ı
γT(E)γ(E)

E − Er(E) + ı
2
Γ(E)

(A27)

and Sd being the S-matrix which determines the asymptotic behavior of the functions

〈x, y|Ψ(+)

o (E)〉d. The quantities Sd, γ, and Er are, of course, the components of the for-
mula which vary slowly with the energy. When this variation is neglected, the approximate



formula for the matrix S is obtained on which several of the widely-used procedures17,34 for
detection and parametrization of resonances are based.

Advantages of exploiting the collision-time delay matrix for the determination of resonance
characteristics have been noted by several authors, e.g. in Ref. 21. Approximate resonance
formula for Q, of Breit-Wigner type, has been derived in Ref. 17 from the approximate formula
for S by resorting to so-called ‘special orthogonality properties’.

In this text, formally exact isolated resonance decomposition of the collision-time delay
matrix will be described. Providing an insight into the origin and structure of slowly varying
components, it is instructive in devising some corrections to the Breit-Wigner type formula for
Q.

The exact decomposition of the collision-time delay matrix resulting from the Feshbach
theory reads

Q(E) = Qd(E) +Qr(E) + q(E) (A28)

where

Qd = ı~
(
Sd

E

)†
Sd , Qr =

(
a

(+)

s

)†
a

(+)

s , (A29)

q = qr r + qr d + qd r , (A30)

with

qr r = −Qr
[
Eshft

E + ı
2
(γ∗γT

E − γ∗
Eγ

T )
]
, (A31)

qr d =
(
qd r
)†

= − ~γ†γ∗
E

E − Er − ı
2
Γ
Sd . (A32)

This decomposition can be derived starting either from Eq. (A1) or from Eq. (A20). In the
former case, an expression for SE is derived first, by differentiation of Eqs. (A27) and by
making use of the relation

γ†=Sd †γT (A33)

which is the ‘special orthogonality relation’ of Ref. 17; actually it stems from Eq. (A11).

In the latter case, the derivation refers directly to the equations defining the |Ψ(+)

a 〉α-parts
of the states, and to the equations satisfied by the energy derivatives of the open channel

parts, |Ψ(+)

o,E〉α for α=r, d. These equations are exploited together with the Green theorem,

Eq. (A19), for converting the matrices Aαβ
o :=α〈Ψ(+)

o |P [x0,x∞] |Ψ
(+)

o 〉β into expressions which

involve Sα and Sβ- parts of S. In the course of the derivation, the following formula for the
matrix Qd — analogue of Eq. (A20) for Q — is obtained

Qd = Ad d
o −Bd d − ad d , (A34)

where ad d:=d〈Ψ(+)

o | V opt
E |Ψ(+)

o 〉d and Bd d:= Sd † C Sd with Sd †:=
(
Io , −Sd †).

The full outcome of the derivation, summarized in Schemes I and II, is the detailed res-
olution of the open and closed-channel parts of the matrix Q into resonance, direct, and
direct-resonance interference terms.



Scheme 1.

Analysis of energy dependence of collision time delay matrix, Q=A−B, near Feshbach
resonance. Decomposition of open and closed channel parts into direct, resonance, and d-r
interference contributions.

Qd := Ã
d − Bd d a) = Qd + ad d − ad d

Q̃
r

:= Ã
r − Br r = qr r + ar r + Qr − ar r

Q̃
d−r

:= Ã
d−r − (Bd r+Br d) = qd r+qr d + ad r+ar d − (ad r+ar d)

Q = A − B = Qd + q + a + Qr − a

Q = Qo + Ac

a) Bαβ:= Sα † C Sβ for α, β=d, r; Sd †:=(I, −Sd †); Sr †:=(0I, −Sr †); see Eq. (A22)

Scheme 2.

Analysis of energy dependence of the sojourn time ma-
trix A near Feshbach resonance. Decomposition of
open and closed channel parts into direct, resonance,
and d-r interference contributions.

Ã
d

:= Ad d
o

a) + b) −→ (−ad d)

Ã
r

:= Ar r
o + Ar r

c
c) + (−ar r)

Ã
d−r

:= Ad r
o +Ar d

o + d) + (−ad r−ar d)

A = Ao + Ac

a) Aαβ
a :=α〈Ψ(+)

a |P [0,R∞] Ψ
(+)

a 〉β for a=o, c and α, β=d, r

b) Ad d
c =−∑

α,β

aαβ :=−∑
αβ

α〈Ψ(+)

o |V opt
E Ψ

(+)

o 〉β see Eq. (A35)

c) Ar r
c =Qr, see Scheme 1; d) Ad r

c =Ar d
c

†=0I



The resolution of the closed-channel part of Q is

Ac(E) = Qr(E)− a(E) , (A35)

where
a := 〈Ψ(+)

o | V opt
E |Ψ(+)

o 〉 = −d〈Ψ(+)

c |Ψ(+)

c 〉d .
It is not surprising that the resonance term Qr appears in this part. Some comments are
necessary, however, on the other terms that appear in Ac and in Q.

The term a is shown to arise solely from distant resonances, i.e., from n6=s bound states
in the closed channel subspace. They contribute indirectly, via coupling to the open channel

subspace, since there is no d-r interference within the closed channel subspace, d〈Ψ(+)

c |Ψ(+)

c 〉r=0.
The counterpart of a in the entire matrix Q, i.e. the sum Qd+q, encompasses a combination of
effects. Qd is a contribution of direct scattering governed by the effective Hamiltonian within
the open channel subspace which accounts for the presence of the distant resonances in the
closed channel subspace. The term q, arises due to d-r and r-r interference within the open
channel subspace.

Relative strength of the corresponding terms in the matrices Q(E) and Ac(E) can be es-
timated by inspection of the formulas for traces of these matrices. The formula for TrQ(E)
reads

TrQ(E) := T (E) = TrQd +
~Γ(1+g) + 2e(E−Er)

(E−Er)2 + (Γ/2)2
, (A36)

where

g = Re〈Ψ(B)

s |Hc o G̃
(+)

o P [x0,x∞] G̃
(+)

o Ho c |Ψ
(B)

s 〉+ gc

− 1

4~
γ
(
Q̃

d
+ S̃d † C S̃d)

γ† ,

e = Re〈Ψ(B)

s |Hc o G̃
(+)

o P [x0,x∞] |Ψ
(+)

o 〉d d〈Ψ(+)

o |Ho c |Ψ
(B)

s 〉+ ec

− ı
2
γ
(
C

−+

Sd−Sd †C
+−)

γ† ,

where Q̃
d
:=Qd+ad d , S̃d †

:=(Io, S
d †), and the symbols gc and ec denote the following expres-

sions

gc = −Re〈Ψ(B)

s |Hc o G̃
(+)

o V opt
E G̃

(+)

o Ho c |Ψ
(B)

s 〉+ 1
4~
γad dγ† , (A37)

ec = −Re〈Ψ(B)

s |Hc o G̃
(+)

o V opt
E |Ψ(+)

o 〉d d〈Ψ(+)

o |Ho c |Ψ
(B)

s 〉 . (A38)

The formula for TrAc(E) has an analogous structure

TrAc(E) := Tc(E) = −Trad d +
~Γ(1+gc) + 2ec(E−Er)

(E−Er)2 + (Γ/2)2
. (A39)

[In the derivation of the above formulas, use has been made of Eqs. (A14)–(A17). Obviously,

when referring to the Hamiltonian H̃o, the equations (A14)-(A15) should involve the term
P [x0,x̄](I−V

opt
E ) in place of the term P [x0,x̄]I].

In both formulas, (A36) and (A39), the quantities weakly dependent on the energy are
written without the argument E. From now on they are called ‘parameters’. Besides the basic
resonance parameters, the energy Er and the width Γ, there are the profile parameters: the
resonance profile parameters, e and g (or ec and gc), and the background profile parameter,
TrQd (or −Trad d).

Since none of the resonance profile parameters would appear in the approximation of narrow
and isolated resonance [Tc(E) is then a perfect Breit-Wigner profile, without any background]



the strength of these parameters, in particular, of the asymmetry parameters, e or ec, is an
indication of departure from this approximation. The departure is definitely larger in the
T (E) profile than in the Tc(E) profile. This becomes evident when one compares the order
of dependence of the parameters on the o-c coupling, Ho c=H†

c o [the coupling should be small,
of course]. There are four o-c couplings involved in the formulas for ec and gc whereas only
two Ho c’s are involved in the additional terms of the formulas for e and g. On the basis of
this observation one may conjuncture that more accurate values of the resonance energy and
width can be extracted from the calculated Tc(E) profile than from the T (E) profile. The
conjuncture is further supported by the fact that the parameters g and gc are rather hard to
separate from Γ in practice.

The above analysis shows that the best way of exploitation of the collision-time delay ma-
trix for the determination of energies and widths of isolated resonances of (predominantly)
Feshbach-type is the following: to calculate the Ac-part of the matrix Q and to adopt the
parametrization of the profile Tc(E) indicated by Eq. (A39) (except the parameter gc should
better be omitted.)

Since Γ=
No∑
i=1

Γi, where Γi denotes a partial width, the following formula applied to individual

diagonal elements of Ac(E),

[
Ac(E)

]
i, i

≈ ci +
~Γi + ei(E − Er)

(E − Er)2 + (Γ/2)2
. (A40)

gives a way of determination of the partial widths.
Obviously, in cases of multichannel resonances resulting (exclusively or predominantly)

from a tunneling mechanism, the decomposition into open and closed channel parts may not be
useful and then the entire matrix Q should be analyzed. However, valid and recommendable
remains the way of proceeding described above for Ac, i.e., the parametrization of the profile
T (E) and of the diagonal elements of Q(E).

A comment on numerical implementation of the collision time delay approach to
determination of resonances. It is certainly advantageous not to have to differentiate numer-
ically the functions which vary rapidly. Such an advantage in evaluation of the matrix Q(E)
at energies in resonance regions is offered by the ‘useful formula’, Eq. (A20). The energy
derivatives appear explicitly only in the ‘surface term’ B of this formula. These derivatives
can be done analytically, however, (by exploiting the properties of the Riccati-Hankel functions
of which the matrices O±(x∞) are built). While looking for resonance profiles in the function
Tc(E) or T (E), cf. Eqs. (A36) and (A39), it is advantageous when also derivatives of these
functions can be determined in a way not requiring numerical differentiation. To this end the
following formula, derived from Eqs. (A15) and (A17), can be used

d
dE

Tc(E) = −2ReTr
(
F

(+)|P cP [x0,x∞]G
(+)

P [x0,x∞]P cF
(+))− 2

~
ImTrAcC

−+

S . (A41)

When the projectors P c are removed and Ac is replaced with A, the formula gives
TrAE(E, x∞). For evaluation of TE(E),

TE(E) = TrAE(E, x∞)− TrBE(E, x∞) , (A42)

the respective expression for the surface term is also needed. It reads

TrBE = −2ReTr (C
++

E −C
−+

E S)− 2
~
ImTrQC

−+

S . (A43)

Again, the energy derivatives involved in this expression can be done analytically.



The second-order free-free transition amplitudes

(
F

(+)|P [x0,x∞]κG
(+)

P [x0,x∞]κF
(+))

:= A(2)(x∞) , (A44)

with κ standing here for P c or I, can be evaluated with the help of the L- matrix (generalized
log-derivative) propagation method.

The matrix Green function used in the L-matrix formulation of the transition amplitudes35,

G0(E, x̄; x, x′) := 〈x|
[
2µ
~2

P [x0,x̄](EI−H)− L0(x̄)
]−1|x′〉 , (A45)

involves a different Bloch operator than the function G
(+)

(E, x̄; x, x′), cf. Eq. (A13), namely,

L0(x̄, x) = −
(
ı
~
px

)†
δ(x−x̄) .

The relation between the two Green functions is (cf. Ref. 36)

G
(+)

(E, x̄; x, x′) = 2µ
~2

{
G0(E, x̄; x, x′) +Ψ(E, x̄; x) [l+(E, x̄)− L4(E; x̄)]−1Ψ(E, x̄; x′)

}
,

where Ψ(E, x̄; x) satisfies the equation

[EI −H(x)]Ψ(E, x̄; x) = 0I (A46)

and the conditions Ψ(E, x̄; x0) = 0I , Ψ(E, x̄; x̄) = I ,

and L4 is the 4-th block of the symmetrized L-propagator for Eq. (A46), cf. Ref. 40,

L4(E; x̄) = ı
~
pxΨ(E, x̄; x=x̄) . (A47)

Thus, the first-order free-free transition amplitudes (A and Ac) associated with the matrix Q

and the second-order amplitudes associated with the energy derivative of Q can be expressed
in terms of the quantities associated with the L-matrix formalism as

A = [F
(+)

(x∞)]† J F
(+)

(x∞) , (A48)

A(2) = 2µ
~2

[F
(+)

(x∞)]†
{
J (2) + J [l+(x∞)− L4(x∞)]−1 J

}
F

(+)

(x∞) , (A49)

where J and J (2) are the integrals J−,− and J−,0(−), respectively, in the notation of Ref. 36,

J =

x∞∫

x0

dx [Ψ(x∞; x)]T κ(x)Ψ(x∞; x) , (A50)

J (2) =

x∞∫

x0

dx [Ψ(x∞; x)]T κ(x)

x∞∫

x0

dx′ G0(x∞; x, x′)κ(x′)Ψ(x∞; x′) , (A51)

and F
(+)

(x∞) has the form (A7). (For clarity, the dependence on E is not explicitly shown
here).



Smooth-Variable-Discretization log-derivative method

for ....



... evaluation of free-free transition amplitudes

The integrals J and J (2), Eqs. (A50)-(A51), are evaluated simultaneously with the matrix
L4(x∞), Eq. (A47). The formulas read:

z−1
0 = 0I , u0 =

h2

3
κ0 , u

(2)
0 = 0I , (A52)

u
(2)
l = OT

l−1,l [u
(2)
l ] Ol−1,l +

{
g
(2)
l

0I

for l = 1, 3, . . . , 2L−1,

for l = 2, 4, . . . , 2L,
(A53)

ul = OT
l−1,l [u

(1)
l ] Ol−1,l +

{
g
(1)
l

2h2

3
κl

for l odd,

for l even,
(A54)

zl = − OT
l−1,l z

−1
l−1 Ol−1,l +

{
−6I + gl

2I − 2h2

3
bl

for l odd,

for l even,
(A55)

J (2)= u
(2)
2L/h , (A56)

J = (u2L − h2

3
κ2L)/h , (A57)

L4 = (z2L − I + h2

3
b2L)/h , (A58)

where gl = [1
8
I+h2

48
bl]

−1 , (A59)

g
(1)
l = h2

48
gl κl gl , (A60)

g
(2)
l = h2

48
gl κl g

(1)
l , (A61)

[u
(1)
l ] = z−1

l−1 ul−1 z
−1
l−1 , (A62)

[u
(2)
l ] = z−1

l−1 {u
(2)
l−1 z

−1
l−1 − ul−1 [u

(1)
l ]} , (A63)

bl=b(xl) , κl=κ(xl) , xl=x0+lh , x2L=x∞ , (A64)

and Ol−1,l is the overlap matrix between the bases Φ(y; x)

at the endpoints of the interval [xl−1, xl] ,

Ol−1,l=
[
Φ(xl−1) |Φ(xl)

]
. (A65)

... evaluation of bound-free transition amplitudes

j(E; x∞) =

x∞∫

x0

dx [Ψ(E, x∞; x)]T τ (x)
N×1

, (A66)

where τ (x) is a vector of square-integrable functions, and Ψ(E, x∞; x) — the solution of the
problem (A46). The integral j is also evaluated simultaneously with the matrix L4(x∞).
The algorithm is presented separately as it can be applied to a broader range of tasks than
the one emerging from this work: the evaluation of the bound-resonance photo-transition
amplitudes T(Eres

f Jfpf ;E
B
i Jipi) defined in Eqs. (19)–(22) of the paper. Obviously, the T

is obtained as [F
(+)

(E; x∞)]† j(E; x∞) for E=Eres and the vector τ (x) is taken in the form
ΥT (x)d(x)F (EB; x).



The formulas of the algorithm are:

z−1
0 = 0I , u0 =

h2

3
τ 0 , (A67)

ul = OT
l−1,l z

−1
l−1ul−1 +

{
h2

6
glτ l

2h2

3
τ l

for l odd,

for l even,
(A68)

zl = Eq. (A55)

j = (u2L − h2

3
τ 2L)/h , (A69)

L4 = Eq. (A58) ,

where τ l=τ (xl) , gl and Ol−1,l are as defined in Eqs. (A59) and (A65). (A70)

As mentioned in the paper, the present SVD version of the generalized log-derivative method
has been obtained by a slight modification of the version which was proposed in Ref. 38 for
equations in quasi-diabatic representations39. That quasi-diabatic version, in turn, is a sim-
plified realization of the idea presented in Ref. 40: to exploit symmetry properties of coupled
equations in non-diabatic representations within the generalized log-derivative propagation
scheme41. The simplification was achieved by replacing the ‘addition’ of the L-propagators
over the sectors [x2p−2, x2p], given in Eqs. (64)–(67) of Ref. 40, with addition of the following
effective L-propagators over halves of the sectors42

hLl−1,l =

(
−I+h2Sl−1 tl−1,l

−tTl−1,l I−h2Sl

)
for l=2p−1, 2p and p=1, . . . , L,

where Sl=ωl[I+h2ηlwl]
−1wl with ωl=

2
3
(1
3
) and ηl=

1
6
(0) for l odd (even)

and tl−1,l is the transformation removing locally the first-derivative coupling term 2α(x) d
dx

from Eq. (A3), determined as solution at x=xl−1 of the initial-value problem

pxt(x; x)=0 and t(x; x)=I with the initial condition posed at x=xl .

The conversion of the quasi-diabatic to the SVD algorithms consists in the following two
operations:

(i) replacing the first-derivative-coupling-removing transformations tl−1,l with the overlaps
Ol−1,l for l=1, . . . , 2L and

(ii) removing the term ∆l from the matrices wl=bl+∆l, cf. Eq. (A6).

Obviously, these operations are identities in the limit of completeness of the basis Φ(y; x)
because of the equalities tl−1,l= Ol−1,l and ∆(x)=0 becoming then true. Correctness of the
algorithms obtained by these operations when the basis is incomplete (truncated) requires
actually proof. The proof43 consists in showing that formulas (A52)–(A58) and (A67)–(A70)

lead, in the h→0 limit, to correct differential equations for the matrices L4(x̄), J(x̄), J
(2)(x̄),

and the vector j(x̄) as functions of x̄ [the latter three come from replacing x∞ with x̄ in
Eqs. (A50)–(A51) and (A66)],

d
dx̄

L4(x̄) = −b(x̄)−∆(x̄)− L2
4(x̄) +αT(x̄) L4(x̄) + L4(x̄)α(x̄) , (A71)

d
dx̄
J(x̄) = κ(x̄) +

[
αT(x̄)− L4(x̄)

]
J(x̄) + J(x̄)

[
α(x̄)− L4(x̄)

]
, (A72)

d
dx̄
J (2)(x̄) = −J2(x̄) +

[
αT(x̄)− L4(x̄)

]
J (2)(x̄) + J (2)(x̄)

[
α(x̄)− L4(x̄)

]
, (A73)

d
dx̄
j(x̄) = τ (x̄) +

[
αT(x̄)− L4(x̄)

]
j(x̄) . (A74)



Indeed, the term ∆ appears, as it should, in the equation for the matrix L4. It becomes
extracted in the derivation from the nonorthogonality relation of the overlap matrices,

OT(x̄; x̄+h) O(x̄; x̄+h) = I + h2∆(x̄) + o(h2) . (A75)

Obviously, the SVD algorithms can easily be ‘reduced’ to the diabatic versions36,48 [which
were also exploited in this work, in the part of calculations using the BF-diabatic representa-
tion]. Namely, all the overlaps Ol,l−1 should be set to I and all the bl’s should be replaced
with 2µ

~2
[EI−

BF
WJp(R)] at the grid-points Rl.

Three digressions:

I. One may note that the three equations (A71)–(A73) can be written as

d
dx̄
L(x̄) = −B(x̄) − L2(x̄) + AT(x̄)L(x̄) + L(x̄)A(x̄) , (A76)

where the symbols L, B and A denote the following 3×3 block-matrices

L =




L4 J J (2)

0 L4 J

0 0 L4


 , B =



b+∆ −κ 0

0 b+∆ −κ

0 0 b+∆


 , A =



α 0 0

0 α 0

0 0 α


 .

L has the meaning of the (symmetrized) log-derivative matrix of solutions of the following equation

[EI−H(x)]F(x)=0 with H =



H −κ 0

0 H −κ

0 0 H


 and I =



I 0 0

0 I 0

0 0 I


 . (A77)

The block-structure of this equation resembles the arrangement-channel quantum mechanics44. Here,

the arrangement channels are artificially created as copies of the single physical arrangement channel

and the coupling between them

V(x) =



0 −κ(x) 0

0 0 −κ(x)

0 0 0


 has the feature: V

3=0 .

Exploitation of such nilpotent couplings is the essence of the artificial channel method of determination

of transition amplitudes proposed by Shapiro, Ref. 45.

As Eq. (A76) suggests, formulas (A53)–(A68) of the present algorithm, concerning the evaluation of the

integrals J and J (2), can be derived from the basic formulas (A55) for the log-derivative L4 by applying

them to the artificial coupled equations (A77) and by exploiting group-properties of triangular matrices.

Indeed, the respective working quantity Zl := hL(xl)+I−h2Sl with Sl = ωl[I+h2ηlB̃l]
−1B̃l

and B̃l =



bl −κl 0

0 bl −κl

0 0 bl


 contains the four working quantities of the algorithm (A52)–(A58),

Zl =



zl ul u

(2)
l

0 zl ul

0 0 zl


 .

Defining the block-matrix Ol−1,l = diag
(
Ol−1,l, Ol−1,l, Ol−1,l

)
, one gets the entire algorithm encoded

in the following three lines

Z
−1
0 = 0I , (A78)

Zl = 2(I−h2
Sl) − O

T
l−1,l Z

−1
l−1 Ol−1,l for l=1, . . . , 2L, (A79)

L(x2L) = (Z2L−I−h2

3 B̃2L)/h . (A80)



II. Eqs. (A76)–(A77) also suggest that the algorithm (A52)–(A58) is applicable to more general free-free

transitions than considered here, namely, to transitions whose initial and final multichannel continuum

states are not the same. Calculations on collision-induced absorption (CIA) in molecular gases46 and

state-to-state calculations on radiative-charge transfer in ionic atom + diatom systems47 are examples of

tasks which require evaluations of numerous transition amplitudes of this kind.

Obtaining the free-free transition amplitude

J if := =

x∞∫

x0

dx [Ψi(Ei, x∞;x)]T κ(x)Ψf(Ef , x∞;x)

in which Ψi and Ψf are solutions of the boundary-value problem (A46) for operators [EiI−H i] and

[EfI−H f ], respectively, is equivalent to determining the log-derivative matrix L=

(
Li
4 J if

0 Lf
4

)
from the

artificial equation

[E−H]F=0 in which H=

(
H i(x) −κ(x)

0 H f(x)

)
and E=

(
EiI 0

0 EfI

)
.

Thus, application of the above algorithm to evaluation of the integral J if consists in:

(i) propagating simultaneously two independent quantities zf
l and zf

l , related to Li
4 and Lf

4, respectively,

according to formula (A55) adjusted to the appropriate operator [EiI−H i] or [EfI−H f ], cf. Eqs. (A4)–

(A6), and

(ii) propagating the quantity ul, related now to J if , according to the following modified version of formula

(A68)

ul = OiT
l−1,l z

i−1
l−1 ul−1 z

f −1
l−1 Of

l−1,l +





h2

48 g
i
l κl g

f
l

2h2

3 κl

.

III. The algorithm for the integral j, formulas (A67)–(A70), can be cast into the form (almost) identical

with (A78)–(A80) if one redefines the blackboard bold symbols as follows:

L =

(
L4 j

0 0

)
, B̃l =

(
bl −τ l

0 0

)
, Zl =

(
zl ul

0 1

)
, Ol−1,l =

(
Ol−1,l 0

0 1

)
.

The present definition of L requires that only formula (A78) be modified to: Z
−1
0 =

(
0I 0

0 1

)
.



Fig. A1. Convergence tests of SVD log-derivative method

in determination of predissociating states of Li+–oH2
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Convergence with respect to the SF-adiabatic basis size M (≤N) in the determination of the energies

Eres and the total widths Γ of exemplary states predissociating a) rotationally, and b) vibrationally, and

in the determination of the populations Pj=Γ0,j/Γ of j levels of H2 due to decay of a vr=1 state. In

each case shown, the ‘complete’ adiabatic basis (M=N) was constructed by including 28 vj channels,

with v=0−3 and j∈[0, 13], into the original BF-diabatic basis. This set of channels together with the

restriction λmax=5 gives N=144 basis functions ΦJMp
vjλ or ΦJMp

vjl̄
for states with Je≥5, N=124 functions

for Je=4 and N=116 — for Jf≥5 states. Errors of the results due to truncation of the SF-adiabatic

bases from N to M are shown with the red symbols. The grey symbols show errors of results obtained

with the BF-diabatic bases that included Mch lowest vj channels. The corresponding numbers of the

included v j λ states can be read on the axes with the label ‘M ’.
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and in the diabatic log-derivative algorithms.

‘exc’ denotes result yielded by a given algorithm

and a given size M of the respective basis when

the step size h=0.01Å is used.

Generally, errors of results generated with the

SVD algorithm behave the same as the accumu-

lated discretization error of the diabatic version,

i.e. they scale like C×h4 with nearly the same

scaling factor C. A departure from this behavior

may occur if the adiabatic basis is truncated too

drastically, like from N=144 to M=12 in the case

shown in the left panels or from N=124 to M=22

in the case of the right panels.

The conclusions of the tests:

(i) In comparison with typical sizes of the BF-diabatic basis used in the determination of
states of the complex with vr=0−1, i.e. N∈120−150, the SF-adiabatic basis can be
truncated by a factor of two, at least, without a risk of producing errors of the energies
larger than ∼0.001 cm−1 and errors of the widths larger than ∼0.1%.

(ii) Constant step sizes can be used in the SVD algorithm, practically the same as in the
diabatic version.



Fig. A2. Li++oH2. Hamiltonian matrices in BF-diabatic and SF-adiabatic

representations, cf. Eqs. (9)-(14) of the paper,
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elements, describing rotational (middle panel) and Coriolis (bottom) couplings, are all smooth functions.

Right: the corresponding adiabatic potentials and the non-adiabatic first-derivative couplings. The

couplings exhibit several sharp peaks due to weakly avoided crossings of the adiabatic potentials. Treating

these couplings directly, like in the quasi-diabatic method, would certainly require step sizes carefully

adjusted and, on average, much smaller than needed for integration of the coupled equations in the

diabatic representation. This underscores the profit of using the SVD approach described in conclusion (ii)

of the tests reported in Fig. A1.
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