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A new invariant imbedding approximate solution algorithm related to the log-derivative method is derived. 
The method makes use of the symmetry of the scattering equations and is particularly well suited to problems 
with a first derivative term. Comparisons of efficiency are made in the use of this method on both a reactive 
scattering problem and a nondiabatic inelastic scattering problem. 

I. INTRODUCTION 

It appears that for scattering calculations hybrid 
methods have distinct advantages in efficiency.l In the 
asymptotic regions of the collision the approximate po
tential approaches are most efficient while in the strong
ly interacting regions approximate solution approaches 
appear to be more efficient. The present paper is part 
of a continuing effort to extend the hybrid method to re
active scattering problems. We concentrate on the de
velopment of the approximate solution approach for the 
close in region. The equations describing the reac
tive scattering processes in the close-coupling ap
proximation are, of course, ordinary second order 
differential equations but the boundary conditions are 
usually more general than in the case of inelastic pro
cesses. Moreover, first derivative terms are more 
likely to occur. The need to limit the number of cou
pled equations for a numerical treatment has given rise 
to the practice of using curvilinear coordinates to de
scribe the reactive system. For the same reason, basis 
sets which are more flexible than the diabatic ones must 
be employed to represent the total wave function along 
the reaction coordinate. The curvature of the reaction 
coordinate was eventually eliminated2 as the source of 
the first derivative coupling in the system of equations, 
but the possibility of including terms related to the re
action coordinate dependence of the basis functions still 
seems to be desirable for better handling of the transi
tion state regions of the potential surfaces. These are 
also the regions where the approximate solution approach 
should be more adVantageous than the approximate po
tential approach. Unfortunately, no effiCient and stable 
approximate solution-type procedure capable of solving 
the coupled equations for reactive collisions has been 
proposed so far. Thus, the task of primary importance 
for our investigations is to develop such a procedure. 

Proceeding in this direction, we started in a previous 
paper3 the project of extending the range of applicability 
of the log-derivative algorithm4 well known for its use
fulness in inelastic scattering calculations. In connec
tion with this project we have introduced a new invariant 

alThis work was supported by the Polish Ministry of Higher 
Education and Science within project MR. I. 5 and a grant from 
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imbedding-type propagator for systems of linear second 
order differential equations-the matrix L-one block 
of which cOincides with the log-derivative matrix. The 
original algorithm of Johnson4 has been supplied with the 
operations necessary for finding the entire L -propagator 
for the coupled equations in the diabatic representation.3 

The straightforward generalization of this method for 
the equations with first derivative coupling has been 
also carried out. 3 However, the algorithm, though com
petitive with others in some circumstances, seems to 
be too complicated for problems possessing symmetry 
properties, as is the case for coupled equations formu
lated in the nondiabatic representation. 

The goal of the present paper is to derive an algorithm 
which is more efficient in dealing with these equations. 
We achieve this goal by rederiving the previous general
ized version of the log-derivative method and by in
serting into it the relations for the propagator L ap
propriate for the nondiabatic representations. 

These relations are derived in Sec. II. The details 
of the new generalizationd the log-derivative method 
are described inSec. III and the resulting algorithm is 
given at the end of it. The last section contains a com
parison of this algorithm with two other L-propagator 
based algorithms. 

II. THE PROPAGATOR L FOR THE COUPLED 
EQUATIONS OF SCATTERING 

The time independent Schrodinger equation for a scat
tering problem is usually treated in the form of a cou
pled system of radial equations obtained by expanding the 
wave function in some complete set of basis functions for 
the internal coordinates. The bas is set may be chosen 
to depend parametrically on the radial coordinate x. 
Thus we may write 

>JI(x, y) = L 1)j(Y; x) l/!j(x) , 
j 

or in matr ix notation, 

>JI(x, y) =r{ (y; x) l/!(x) 

(1) 

(2) 

Here x is the separation parameter or radial coordinate 
and y is all of the internal coordinates of both colliding 
systems and the angular coordinates of the separation 
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vector. We are treating 1/ and I/J as column vectors with 
elements 1/ j and I/Jj, respectively. The complete basis 
set satisfies the orthonormality relation 

(3) 

where 1 is the unit matrix. The brackets denote inte
gration over all internal coordinates y and Eq. (3) holds 
for every value of x. For simplicity, we will restrict 
our discussion here to real basis sets, though no diffi
culty is encountered in working with complex basis func
tions. 

The SchrMinger equation (expressed in reduced 
units), 

(E - H) lit = (:; + E - H') lit = 0 , (4) 

can be replaced by the coupled system of ordinary dif
ferential equations, 

(5) 

with K and V standing for the matrix representations of 
the d 2/dx2 and E -H' operators, respectively, i. e., 

K=(1/ ~1/T)=l ~+2(1/~T) ~+(1/W) 
dr dr dx 

(6) 

V=(1/(E -H')1/T) (7) 

(dot denotes a derivative with respect to x). If the basis 
1/ is complete the operator K can be converted to the 
form 

( 
d 1)2 K= 1- +-A 

dx 2 

Equation (5) becomes equivalent to the equation 

D [I/J]=O , 

for the differential operator D, 

d2 d 
D = dx2 +A(x) dx +B(x) 

where 

B(x) = V(x) +1A(x) +t A 2(X) 

(8) 

(9) 

(10) 

(11) 

(12) 

Here we have made use of the fact that A is skew sym
metric, which follows from Eq. (3), giving 

AT = -A (13) 

and 

(14) 

The V matrix is symmetric. 

In general neither the matrix K nor the matrix V is 
diagonal. The exceptions are: the adiabatic case lead
ing to the diagonal matrix V and the diabatic cases where 
the operator K is represented by the matrix 1(d2/dx2). 

A change from the basis set T](Y; x) to the diabatic one 
can be performed by means of any transformation di
agonalizing the matrix K, given by Eq. (8). It is easy 
to see following Baer, et al. 5 that such a transforma-

tion should satisfy the differential equation 

(1 d~ + ~ A) 'T(x; x) = 0 (15) 

and the condition 

'T(x; x) = 1 (16) 

at an arbitrarily chosen point X. 

Using Eq. (13) we can show that the transformations 
'T are orthogonal, 

'TT (x; x) = 'T-l(x; Xl . 

In addition, they satisfy the following relations 

'T(x; Xl = 'T(x; Xl) 'T(Xl; x) , 

'T-l(x; x) = 'T(x; x) • 

The transformation of the basis set 

changes the expansion coefficients 

~(x) ='TT (x; x) I/J(x) 

(17) 

(18) 

(19) 

(20) 

(21) 

and implies also a transformation of the operator D, 

Dr='TT(X;x)D['T(x;X)] • (22) 

The coupled equations now take the form5 

(23) 

with 

(24) 

where 

Br(x) ='TT (x; x) V(x) 'T (x; x) (25) 

Using Eq. (18) it is easy to show that Eqs. (20)-(22) 
may be written, 

1/r (Y) ='TT (Xl; X) 1/rl (y) , 

Mx) = 'TT (Xl; Xl I/Jrl (x) , 

Dr = 'TT (Xl; x) Drl 'T(XI ; Xl 

(26) 

(27) 

(28) 

Now they express the connection between two diabatic 
basis sets and between the corresponding diabatic rep
resentations of the wave function and the E - H operator, 
respectively. 

The basic symmetry properties of the D and Dr oper
ators are: 

(0 l5 =DT
, where l5 denotes the adjoint operator which 

acting on a vector cpT gives 

d2 d 
15[cpT] = dx2 cpT - dx (cpT A) + cpT B (29) 

and DT is the transposed operator defined by the rela
tion 

DT [ cpT] '" (D [ cp ])T 

(ii) 

D~=D~ , 

where, 

(30) 

(31) 
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(32) 

Thus, taking into account the following relation6 satis
fied by any vectors zP and cfJ; 

(33) 

where 

(34) 

and its equivalent form for the operator Di ; 

ZP'!D-[cfJ-]-l5-[lJff]cfJ-=~W[ZP-, cfJ-] , x "X' X X x dx x X' 
(35) 

where 

w [ZPi' cfJi ] = W ['[(x; x) ZPi' '[(x; x) cfJi ] = ZP~ ~x - ~~ cfJi ; 
(36) 

we can state that 

d 
dx W[zp,cfJ]=O (37) 

and 

d 
d
- w [ZP-, cfJ-] =0 x r r 

(38) 

if zP and cfJ are solutions to Eq. (10) or, equivalently, if 
ZPi and cfJr are solutions to Eq. (23). 

The information collected above will be exploited now 
in the discussion of the properties of the propagator L 
for the coupled equations of scattering. The propagator 

(

L(1)(X' x") L(2)(X' XII)) 
L(x' , x") =' , 

L (3) (x' , x") L (4) (x', x") 
(39) 

for Eq. (10) is defined in Ref. 3 in the form 

( 

ZP'(X')) (L (1) (x'x") L(2)(X'X"))(ZP(x')) 

ZP'(x") = L (3)(X'X") L (4)(X'X") ZP(x") 
• (40) 

We may write L(x' x") in terms of the solution to the two 
point boundary problems, 

D [l/!"(x)] =0 , 

ZP'(x') = U and ZP'(x") = U 
to obtain 

L(X"x")=(.~+(X') ~-(X')) 
zP+ (x") ~-(x") 

L(x', x") = (-~ :(X') o ) + (,[(X'; Xl 
-~ A (x") 0 

(41) 

(42) 

(43) 

The analogously defined L propagator for Eq. (23) in the 
diabatic representation will be denoted by 

(44) 

and the solutions of the corresponding boundary value 
problems by ZP~(x). Notice 

~*W)r 

where according to Eq. (21) 

W)-=·rT(x,x)l/!" , 
r 

while ~ satisfies the boundary conditions 

(45) 

(46) 

~(x') = U and ZPi(x") = {~ . (47) 

Applying Eq. (37) to the solutions l/!"(x) we get the 
relations 

W[zp-,zp-] =0, W[zp+,zp+]=O, 

W[ZP",zP+]=C , 

where C is a constant matrix. 

(48) 

(49) 

From these relations the following symmetry proper
ties of the propagator L(x'; x") can be deduced: 

L (1) (x' , x") = [L (1) (x' , x")Y -A(x') , (50) 

L (4) (x', x") = [L <4l(x', x")Y -A (x") , 

L (2)(X', x") = - [L (3)(X', x")f • 

(51) 

(52) 

Analogously, Eq. (38), when applied to the solutions 
zp~, yields 

L~j)(x',x")=[L~l)(x',x")f, for i=1,4 , (53) 

L?)(x', x") = -[L?)(x', x"W (54) 

Specifying the connections between the ZP'(x) and ~(x) 
matrices, resulting from the form of the boundary con
ditions (42) and (47), and from Eq. (21); 

(55) 

(56) 

we can easily establish the relation showing the effect 
of the transformation Eq. (20) between the nondiabatic 
and diabatic basis sets on the L propagators for the cor
responding coupled equations. This relation is 

(57) 

The transformation between two diabatic representations for the L propagators take a form similar to that of 
Eqs. (26)-(28), 

L~I) = '[(x; Z) L!l) '[T (x; z), for i = 1-4 . (58) 

It is valid, of course, for any values of x and Z. 

Making use of this fact we can rewrite Eq. (57) for the blocks L (I) i = 1, 4 in the form 
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L (1) (x', x") = - t A(x') + L:.u (x', x") , 

L (4) (x' ,x") = -t A(x") + L:n (x', x") • 

(59a) 

(59b) 

Moreover, setting x = x" we can simplify this relation also for the two remaining blocks of L and we get, 

L (2l(x', x") = '['(x', x") L~~.'(x', x") , (59c) 

(59d) L (Sl(X', x") = L~~! (x', x") '['T (x', x") . 

The final question is how the basis set transformations affect the recurrence property of the L-propagators for the 
corresponding coupled equations. This property is expressed by the following relations: 

(

L(l)(X' x") L(2l(X' XII») (L(l)(X' z) 0 ) (L(2l(X' z) 0) (L(3l(X' z) , '=' +' l(x',z,x") , 
L (Sl(x', x") L (4) (x', x") 0 L (4l(Z, x") 0 L (3(Z, x") 0 

where l(x', z, x") is the 2 x 2 block matrix of the form 

l(x',z,x") = (-1 1) [L(4l(X',Z) -L(1)(Z,X")]-l 
-1 1 

and Z E [x', x"]. 

(61) 

As can be easily proven this relation is invariant with respect to the transformation Eq. (57), as well as to the 
transformation Eq. (58), provided that they are performed on the L propagators for all intervals involved. This 
is, of course, to be expected since the recurrence relations are known to be valid for any system of linear differ
ential equations and in fact they can be deriveds without making use of any particular properties of the coupling 
matrices. 

The structure of the above relation should, however, change slightly after applying the transformation (59). This 
is caused by the fact that the L propagators for different intervals are expressed now in different basis sets and 
therefore they are connected by different equations. The resulting relation is 

(

L!l'(X" x") L (2 l(x', x") ) _ (L~P (x', z) 0 ) 

L(3l(X',X") L:n(x',x") 0 L~n(z,x") 

l(x', z, x") + 
(

L(2l

0

(X',z) 0 ) (L(3l(X"Z) 0 ) 

L~N(z, x"} '['T (z; x") 0 'l'{z; x"} L~?:(z, x"} , 
(62) 

where 

(

-1 
l(x', z, x") = 

-1 
(63) 

Eqs. (61) and (63) are identical. This relation gives us 
the propagator L in a form which mixes the nondiabatic 
representation for the off-diagonal blocks with two dif
ferent diabatic representations for the diagonal blocks. 
These diabatic representations coincide with the non
diabatic representation of L [see Eqs. (59a) and (59b)] 
for the intervals at the boundaries at which the coupling 
matrix A vanishes, i. e., where the nondiabatic equa
tions really become diabatic ones. To maintain this 
convenient form of the propagator L after enlarging the 
interval [x', z] to the interval [x', x"] requires a proper 
choice of the diabatic representation of the L propagator 
in the interval [Z,X"]. This choice depends on the loca
tion of the point x". The matrices '[' occurring in the 
above relation account for the changes of the diabatic 
representation from interval to interval. 

III. AN ALGORITHM FOR SOLVING THE COUPLED 
EQUATIONS IN THE NONDIABATIC REPPESENTATION' 

As was mentioned in the Introduction we are interested 
here in deriving a new version of the log-derivative 

method which will be more efficient than the previous 
generalization of this method3 in solving the coupled 
equations in the nondiabatic representation. There are 
two steps in using an invariant imbedding method for 
solving a system of differential equations: 

(i) Propagating the solution from sector to sector to 
accumulate the propagator L for the entire integration 
range [x', x"]; and (ii) the numerical computation of the 
propagator for each small sector into which the range of 
integration was divided. 

We compute the sector propagators of step ii by the 
Simpson's rule modified for integrands with discontin
uous first derivatives7 just as we did in our previous 
paper. S In the present paper we concentrate on testing 
the possible ways of realizing step i. 

The direct way is to use the relations, Eq. (60) for 
the sector L propagators obtained from the discretized 
nondiabatic equations, as we considered previously. 3 

The second possibility is to use the relations Eq. (60) 
for the accumulation of the propagators L- (with fixed 
value of x throughout the integration rang~) for small 
sectors of [x' ,x"]. These propagators are determined 
by applying step ii to the appropriate diabatic equations. 
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This is exactly the procedure used in the original ver
sion of the log-derivative method and its supplement 
mentioned in the Introduction. In the usual implementa
tion x is chosen in the asymptotic region where the basis 
set is independent of the choice of x. If x is chosen in 
the interaction region, one must perform the transfor
mation at the end of the calculation using 'J'(x; x) obtained 
by solving Eqs. (15) and (16), in the interval [x',x"]. 

The idea of treating the nondiabatic coupled equations 
via the related diabatic equations is not new. It can be 
exploited in many different combinations of algorithms 
for solving the diabatic equations and algorithms for 
finding the transformation matrix 'J'. The combination 
involving the original log-derivative algorithm is men
tioned here with the purpose of testing it against the 
proposed new generalization of this algorithm for the 
nondiabatic equations. 

The essentially new element in the present generaliza
tion of the log-derivative method is the use of Eq. (62) 
to assemble the propagators L,;1+2(XI , XI+2) for sectors 
[XI' XI+2] covering the interval of interest [x', x"], i. e., 
xo=x', xJ/=x", and XI+2=x l +2h for 1=0, 2,4, ... M -2. 
The approximate formulas for these propagators neces-

6hL ( ) = (-7 + 2h2 B~I+2(XI) 
~1+2 XI' XI+2 

1 

and we introduce new matrices 

(

£(l) £(2») 
£I,p= I,p I,p ,for1=0,2,4, ••• 

£(3) £(4) 
I,p I,p 

p = 1 + 2k with k = 1, 2, 3, ... , defining them by the relation 

In the case p = 1 + 2 we get the express ions: 

£:!1+2 = - 7 + 2h2 V(x I) + 'J'(x I; XI+2) SI,I+2'J'T (XI; XI+2) , 

£l~1+2 = [( - 1 +SI,I+2)'f T (XI; x l+2)f , 
£(3) _ [£(2) ]T 

1,1+2-- 1,'+2 , 

£ l: l+2 = 14 - 4h2 V(x 1+2) - S 1,1+2 , 

where 

sary for a construction of an algorithm are obtained by 
applying step ii to the Eq. (23) for the matrices l/I~ with 
X =XI+2 satisfying the conditions Eq. (47) at the boundaries 
of the interval [XI' XI+2]. Adapting the results ofthe previ
ous paper3 [i. e., Eqs. (43a) -(43d) of Ref. 3] we can 
write the recursion formulas as 

+.!. ( 1 
2 -1 

(64) 

where 

(65) 

(66) 

(67) 

For computational purposes we transform these expres
sions to a simpler form 

(68) 

(69) 

(70a) 

(70b) 

(70c) 

(70d) 

(70e) 

In the derivation of these expressions use was made of the properties of 'f, Eqs. (17)-(19) and (59), the definition 
of B~I+2 [Eq. (25)] and of Eq. (52). 

On the basis of the Eq. (62) we establish the following formula to assemble the matrices £ 1,1+2 for 1 = 0, 2,4, ... , 
M-2: 

( 

£J:l+2 
_[£(2) ]T 

0,1+2 

£(2) ) (£U) 0,1+2 = 0, I 

£~:l+2 0 

o ) (£(2) + 0,1 

£::1+2 0 

J. Chern. Phys., Vol. 79, No. 12, 15 December 1983 
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where 

YO'I+Z=( 1 
-1 

The resulting matrix .,co,,v gives us, through the Eqs. 
(69) and (59), the propagator L(x', x") for the nondia
batic coupled equations [Eq. (10)]. 

For completion of the computational scheme we still 
need a procedure for finding the matrices '1'(x; XI+Z) at 
X=XI+l and x=xl . To this end, we rewrite Eqs. (15) and 
(16) with X=XI+Z in the integral equation form 

11~1+2 
'1'(x;xl+2)=1+"2 A(x')'1'(x';xl+2)dx' • 

~ 

(72) 

Discretizing it in the interval [X 1+ 2 - 2H, X I+2] with the 
aid of the Simpson formula 

'1'(X I+2 - 2H; XI+2) 

1 2 
= 1 + "2 L: wk (H)A(XI+2 - kH)r(XI+2 - kH; x l+Z) (73) 

".0 

with 

we obtain the algebraic equation for the matrices 
'1'(X I+1; x l +Z) and '1'(XI; x l +Z) by setting H = (h/2) and H = h, 
respectively. Inserting the unit matrix for '1'(XI+Z; x l+Z) 
and the approximate expression [resulting from applica
tion of the trapezoidal formula to Eq. (72)] for the ma
trix '1'(x 1+ (3/Z); x l+Z), XI+ (3/Z) = XI+Z -~ h, 

<[(XI+(3/Z); XI+Z) = [1 - ~ A(x 1+ (3/Z»)rl1 + ~ A (X 1+ 2)] 
(74a) 

we can derive from these equations the following formu
las: 

(74b) 

(74c) 

Finally, putting together all operations described above, 
we form the following algorithm for solving the nondia
batic coupled equations in terms of the propagator 
L(x';x"): 

(1) Divide the interval [x', x"] into M/2 sectors of 
length 2h; (2) calculate the matrices .,c~:~ for i = 1, 2,4 
for 1 = 2,4,6, ... ,M - 2-calculating at each of them: 
The matrices from the formulas 

'1'(X; XI+Z) at x=xz, XI+1 

V(x) at X=Xl+l' XI+Z 

B~I+Z(XI+l) 

s I,I+Z' .,c:: ~+2' i = 2, 4 

(74) 

(25) 

(70) 

and determining the matrices .,c~:~+2 for i = 1,2,4 from 
the recurrence relation (71); and (4) find the matrices 
L!~)(xo,x,v), L (2 )(xo,x,v), and L:~(xo,x,v) from Eq. (69) 
for [=0 andp=M, and the matrices L f11 (xo,x,v), 
L (4 )(xo,x,v), and Lf3)(xo,x,v) from Eqs. (59a)-(59d) 
and (52). 

IV. NUMERICAL TESTS 

Our numerical tests were designed to answer, at 
least in part, the following questions concerning the 
new algorithm for solving the coupled equations in the 
nondiabatic representation: 

(1) How much has our use of the symmetries of the 
problem in the present approach improved the effective
ness of the algorithm over that described in our previ
ous3 generalization of the log-derivative algorithm?; and 
(2) What practical advantages does the present approach 
offer as compared with the standard way of handling the 
first derivative coupling in the nondiabatic equations? 

In calculations related to the first question we solved 
one of the model problems constructed by Wu, Johnson, 
and Levine8,9 for the investigations of chemical reac
tions. Though the overall formulation of the reactive 
scattering problem by these authors did not have the 
usual symmetry properties of the nondiabatic coupled 
equations, the particular problem which we have chosen 
from their papers, i. e., the collinear model on potential 
surface V discussed in their8 Sec. IV, did. Thus, this 
was a suitable problem for testing our first generalized 
version of the log-derivative method against the standard 
method used by Wu and Levine, 9 which was done in Ref. 
3, as well as for comparing it with the new version 
proposed here. 

The results of this comparison are reported in Table 
I. We have reported solutions to the same problem by 
our previous generalization of the log-derivative meth
od3 denoted by (A) in Table I and the present generaliza
tion denoted by (B). Computation time are given and the 
problem is solved for various sized basis sets. From 
these results we can discern the following points: 

(i) The new symmetric approach is on average a fac
tor of 1. 6 faster than the approach which does not take 
advantage of symmetry. This factor indicates roughly 
the reduction of the number of operations required per 
sector by the present approach. 

(ii) By the present approach, the sum of the probabil
ities are equal to one and microscopic reversibility 
holds exactly, even when not enough basis functions 
are carried to converge the results. 

(iii) The (A) and (B) approaches do not at all agree 
for small basis sets. Equation (10) was derived from 
Eq. (5) assuming a complete basis set expansion. Both 
Eqs. (5) and (10) are exact equations for the scattering 
calculation. When they are approximated by truncating 
the basis set, however, they represent different ap
proximations. Thus with a small basis set we would 
not expect the two solutions to agree. As the size of 
the basis set is increased the two approximations should 
converge to the same result. 
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TABLE I. Results of testing the previous (A) and the present (B) generalized versions of the 
log-derivative method on the A +BC-AB +C collinear reaction model of Wu et al. (Ref. 8) at 
energy E =44 kcal/mol.a N-basis set sizeb; pR, pT -matrices of reflection and transmission 
probabilities"; ~1-sum of probabilities from the initial state I, ~1 = ~n (P:'1 + P~.I); t = execution 
time (in s) on VAX 11/780. 

(A) 
~1 

N pR pT 

2 0.1769(- 2) 0.6701(- 2) 0.7869 0.2093 0.999995 3 
0.6701(- 2) 0.3000(-1) 0.2046 0.7540 1.00000 

3 0.2358(- 2) 0.3317(- 2) 0.7939 0.2029 0.999983 6 
0.3310(- 2) 0.2591(-1) 0.2005 0.7679 1.000001 

4 0.2421(- 2) 0.3827(- 2) 0.7946 0.2016 0.999974 11 
0.3819(- 2) 0.3486(-1) 0.1991 0.7597 0.999993 

5 0.2450(- 2) 0.3854(- 2) 0.7951 0.2010 0.999972 18 
0.3845(- 2) 0.3612(-1) 0.1986 0.7590 0.999969 

6 0.2455(- 2) 0.3863(- 2) 0.7952 0.2010 0.999972 28 
0.3854(- 2) 0.3635(-1) 0.1985 0.7588 0.999971 

(B) 

2 0.1784(-2) 0.2495(- 2) 0.7974 0.1995 1.00000 2 
0.2495(- 2) 0.6434(- 2) 0.1984 0.7915 1.00000 

3 0.2843(- 2) 0.3543(- 2) 0.8036 0.1917 1.00000 4 
0.3543(- 2) 0.4944(-1) 0.1900 0.7553 1.00000 

4 0.2442(- 2) 0.3942(- 2) 0.7947 0.2014 1.00000 7 
0.3942(- 2) 0.3691(-1) 0.1989 0.7578 1.00000 

5 0.2461(- 2) 0.3854(- 2) 0.7952 0.2009 1.00000 11 
0.3854(- 2) 0.3638(-1) 0.1984 0.7589 1.00000 

6 0.2457(- 2) 0.3864(- 2) 0.7952 0.2010 1.00000 17 
0.3864(- 2) 0.3641(-1) 0.1985 0.7588 1.00000 

aln all cases the integration range was (- 4.2, 4.2) a. u. and the number of sectors M = 200. 
I>rn the asymptotic regions of the reaction coordinate the basis functions describe even vibrational 
states of the molecules. 

"Elements of these matrices are listed as: C,O 0, 2) 

2,0 2,2 

Whereas the difference between both methods stated in 
the last point is only a manifestation of the lack of con
vergence of the results with respect to the size of the 
basis set employed, the remaining points testify con
vincingly to the superiority of the new method in ap
plication to the nondiabatic coupled equations. 

Proceeding to the second question of our computational 
investigations we have changed the test problem to the 
collinear model of inelastic atom-diatom collision of 
Secrest and Johnson. 7 This choice was motivated by 
our wish to get at the same time some complementary 
information to the work by M. Baer et al." recommend
ing the adiabatic approach for studying vibrational. ex
citation problems. Several arguments have been found" 
in favor of this approach. The most important of them 
seems to be the high rate of convergence of the calcu
lated transition probabilities with respect to the basis 
set size. It was shown in the collinear model that this 
rate for the adiabatic basis can be considerably higher 
than for the asymptotic basis traditionally employed in 
that kind of problem. This gave the authors a good rea
son for expressing the opinion that the adiabatic ap
proach, despite some complications with the first deriva-

tive coupling, should lead to computational procedures 
much more efficient in solving at least some problems. 
The procedure used by them for solving the adiabatic 
coupled equations was just the standard one in the sense 
that it required only one transformation to the approri
ate diabatic representation for the entire problem. In 
support of the above opinion the authors pointed out the 
possibility of using repeatedly the same transformation 
to change the representation of the coupled equations 
for proble'ms differing only in values of total energy. 
We decided to follow this suggestion with the intent to 
learn how profitable it can be in combination with the 
standard (in the above sense) procedures as well as with 
our new algorithm for the nondiabatic coupled equations. 

Thus, solving the collinear collision model in the 
adiabatic representation,6 we tried our algorithm: 

(a) in its version from the preceding section but with 
additional operations for storing all calculated matrices 
'1', B, and V(x ,) for 1= 0,2,4, ... ,M, (b) in the abbreVi
ated version using the previously stored information, 
and the corresponding two versions of the standard-type 
procedure. This procedure was similar to that of Ref. 
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TABLE n. Some transition probabilities P j_ J for the collinear model of He + H2 collision obtained in the adiabatic 
(upper value) and the asymptotic approaches with different basis set sizes N. Total energy is E = 61i w. 

P j - J 
0-1 

N 
0-2 0-3 1-2 1-3 2-3 2-4 3-4 

7 0.4874 0.1593 0.1240(-1) 0.3852 0.9274(-1) 0.3202 0.1887(-1) 0.1329 
0.4887 0.1568 0.1195(-1) 0.3861 0.8848(-1) 0.3152 0.1690(-1) 0.1253 

8 0.4874 0.1593 0.1240(-1) 0.3852 0.9274(-1) 0.3202 0.1887(-1) 0.1329 
0.4875 0.1590 0.1235(-1) 0.3853 0.9226(-1) 0.3197 0.1869(-1) 0.1324 

9 0.4874 0.1593 0.1240(-1) 0.3853 0.9270(-1) 0.3202 0.1886(-1) 0.1329 

5 in the part concerning the determination of the trans
formation matrix, 11 but for the diabatic equations solver 
the log-derivative method of Johnson4 was used. In ver
sion (a) of this procedure all matrices r(x,;X) with 
x = XM and V(x ,) needed for finding the matrix Bi(x /) at 
l = 0,1,2, ... ,M were calculated, and the matrices Bi 
were stored for version (b) where no use was made of 
any subroutines related to the determination of the cou
pling matrix for the diabatic equations. 

We have repeated all calculations of Baer et al. 5 for 
the He + H2 system, including those based on the asymp
totic approach, where we also used the log-derivative 
algorithm. In Table II we list only those transition 
probabilities not given in Ref. 5. 

Our primary concern here is with the efficiency of our 
new algorithm as compared to the more standard ap
proach of Baer et al. 5 In Fig. 1 we plot time against 
basis set size. The dashed lines are for the method of 
Baer et al. and the solid lines represent the present 
algorithm. The curves marked A are calculations for 
a first energy for which all of the transformations must 
be computed. The curves marked B are for a second 
energy for which the transformations had been saved 
from a previous calculation. The dotted line gives the 
times for the standard diabatic approach as a function 
of basis size. From this figure we can make several 
interesting observations: 

(0 The new algorithm is much more efficient than the 
standard procedure when full versions are used and all 
operations needed for solving a given problem are per
formed. 

(ii) The improvement achieved by reusing some of the 
information from the previous runs, instead of calculating 
it every time, is much greater however, in the case of 
standard procedure. 5 

(iii) The abbreviated version (b) of the standard pro
cedure-the most efficient of the algorithms tested for 
solving the coupled equations in the adiabatic approach
appears to be approximately as fast as the log-derivative 
algorithm when applied to a basis set two larger. 

As a comment on the points (i) and (ii), we summarize 
again the similarities and the differences in the con
struction of the algorithms. 

In the derivation of both algorithms, the boundary val
ue problems related to the sector L propagators for the 

original nondiabatic coupled equations were transformed 
to the appropriate problems for the diabatic equations. 
These problems were next converted to the integral 
equations form and discretized by the Simpson quadra
ture formula in order to obtain approximate expressions 
for the sector propagators. The subsequent accumula
tion of these propagators is the essence of both algo
rithms. The difference in their form arises from the 
different choices of the diabatic representation, by which 
the original nondiabatic representation is replaced. In 
the standard algorithm we are dealing with only one di
abatic representation which is defined at once for all 
sectors. The accumulation of the sector propagators 
is performed entirely in this representation; no inter
mediate result must be transformed to the original 
representation. Therefore this part of the standard 
algorithm is very efficient and structurally independent 
of the part concerning the determination of the transfor-

t 
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FIG. 1. Execution time t vs basis set size N for the algorithm 
tested on the collinear model of He + H2 collision. The solid 
lines correspond to the new algorithm of this paper. the broken 
lines-to the standard procedure described in the text. A and 
B denote the full and the abbreviated versions of these algorithms. 
The dotted line corresponds to the or iginal log-derivative algor
ithm used in the asymptotic approach. 
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mation matrix. In the present algorithm different dia
batic representation are chosen for different sectors. 
This fact complicates to some degree, the process of the 
accumulation of the sector propagators .12 The determina
tion of the transformation matrices independently for each 
sector, however, turns out to be much less time consum
ing than the determination of one matrix for the entire 
interval in the standard algorithm. Thus, at the expense 
of some complications of one part, i. e., the part which 
remains in the abbreviated version (b), we gain quite a 
large improvement in the full version of the present 
algorithm. 

Point (iii) seems to confirm to some degree the ex
pectations of the authors of Ref. 5 concerning the com
putational advantages of the adiabatic approach. Due to 
the improvement achieved in the abbreviated version of 
the standard procedure the adiabatic approach becomes 
competitive to the asymptotic approach. In the model 
tested the basis size requirements of the asymptotic ap
proach usually exceeded the requirements of the adia
batic approach by more than two functions (see Baer et 
al. 5 for the detailed comparison). So, the adiabatic ap
proach was more efficient in computing the convergent 
results, but no cases was its superiority as large as one 
order of magnitude in the execution time. 

As was already mentioned, the abbreviated versions 
of the algorithms for solving the nondiabatic coupled 
equations are applicable to serial calculations performed 
for one collisional system at many total energies. It is 
not surprising that the abbreviated version of the gen
eralized log-derivative method does not compete with 
the abbreviated version of the standard method. Clearly, 
one would use a method which handles a first derivative 
term only for a case in which a first derivative term is 
necessary. Thus one should use the full approach, in
cluding the first derivative term, only when the first 
derivative term is intrinsically present, as in a reac
tive scattering problem or a curve crOSSing problem. 
The present approach might be useful also in solving 
the equations of the Perturbed Rotational State approxi
mation12 in the fully quantum mechanical form. 14 

In conclUSion, we would like to say that both algorithms 

tested here, i. e., the new generalization of the log-de
rivative method for the nondiabatic equations and the 
version for the diabatic equations in the standard ar
rangement for treating the first derivative coupling, 
reveal properties which encourage continuing investi
gation on applications of these algorithms. As invariant 
imbedding approximate solution algorithms, they are 
expected to be very useful in the reactive scattering 
calculations, where few procedures of this type have 
been tried so far. 

Work on including these algorithms into Walker's 
RXN1D programlO for solving collinear atom-diatom 
reactive problems is in progress. 
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