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A generalization of the log-derivative method is presented which is useful for both reactive and nonreactive 
scattering problems. In the coupled system of radial equations for this problem a first derivative term is 
included for complete generality. Thus, this method may be used when, as is often the case in reactive or 
curve crossing problems, the equations contain a first derivative term. When no first derivative term is present 
and no reactive channels are present, the method reduces to the standard log-derivative method. A reactive 
scattering problem is solved as an example. 

INTRODUCTION 

A recent studyl has shown that for most scattering 
calculations a hybrid method is the most efficient. The 
close range part of the problem is most efficiently 
handled by an approximate solution approach while the 
long range part of the interaction ie best handled by an a 
approximate potential approach. 2-5 The invariant im­
bedding technique, because of its great stability, 6-9 is 
the most convenient in practice. The various techniques 
have been discussed in detail in the literature6 so it is 
unnecessary to expand on them here. The VIVAS pro­
gram 7•10 is a hybrid program of this sort, which uses 
the log-derivative method 8 for the close in part of the po­
tential and variant of the R-matrix method? for the long 
range part. This program is ideally suited for inelastic 
scattering problems for which the radial Schrodinger 
equation contains no first derivative term. 

Reactive scattering problems may be treated by the R­
matrix method or its variant used in VIVAS. The R­
matrix method is efficient because it allows a large step 
size in regions in which the interaction potential is slow­
ly varying. In the close in and nonclassical region, a 
method such as the log-derivative is preferable. This 
type of approach always requires a small step size but 
the computational effort per step is less than that re­
quired in the it-matrix method. Thus there is a need 
to generalize the log-derivative method to reactive scat­
tering. Often reactive problems are formulated in such 
a way that a first derivative term appears in the radial 
equations. This first derivative term shows up in the 
adiabatic formulation of inelastic scattering and curve 
crossing problems also. 

In the present paper we present a generalization of the 
log-derivative method which will handle any reactive or 
inelastic scattering problem. For problems in which no 
first derivative term appears and only inelastic channels 
are considered our algorithm reduces to the standard 
log-derivative method. 

a'This work was supported by the Polish Minstry of Higher 
Education and Science within project MR. 1.5 and a grant from 
the U. S. National Science Foundation. 

We begin by reviewing the existing propagators of solu­
tions to the general coupled radial equations for a scatter­
ing problem, and we introduce a new propagator L, 
which serves as the basic quantity in the derivation. 
Enough details are given in the derivation so that it is 
obvious how one may modify the method for special pur­
poses. No derivation was given in the original publica­
tion of the log-derivative method, 8.11 and as a result such 
simple procedures as changing step size during a calcu­
lation are obscure. 

I. PROPAGATORS FOR THE SOLUTION OF THE 
SCHRODINGER EQUATION 

The most general form taken by the equations for reac­
tive or inelastic scattering is 

[:; + A{r) d~ + B{r)] Ij!{r) = 0 , (1) 

where we have included the energy and potential matrix 
together in the matrix B{r). The problem is usually 
formulated such that the matrix A{r) is zero. Such a 
formulation of course Simplifies the problem, but it is 
not always a convenient thing to do. In the adiabatic 
representation of these problems this first derivative 
term arises naturally. Since the method discussed 
here handles such a term conveniently we carry it in 
this derivation, though, as we shall shOW, the technique 
Simplifies somewhat when the A matrix is zero. A so­
lution to Eq. (1) is a vector function and the complete 
set of solution vectors is the solution matrix Ij!{r). In 
general the matrices A, B, and lj! are infinite, but in 
practice we truncate the basis set at some convenient 
number N and henceforth we will assume that they are 
NxN matrices. 

We will call a propagator in an interval [r', r"] a 
(2Nx 2N) block matrix which connects values of any 
solution of Eq. (1), Ij! and its derivative lj!' at the end­
points r' and r". The standard propagator, well known 
from the theory of differential equations, is the Cauchy 
matrix 12 

,,=(~~:) 
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for which the defining relation takes the form 

(

I/J(r' ')\ (&11 (r", r') &12 (r", r'~ (I/J(r')\ (2) 

I/J' (r")) = &13 (r", r') &14(r", r')) I/J'(r')} 

the existence of which is guaranteed in all intervals [r', 
rtf) where the matrices A(r) and B(r) are continuous func­
tions of r. The basic properties of &1 are 

&1(x",x')=&1(x",y)&1(y,x') for yE[X',x"] , (3) 

n(x', x')= 1 . (4) 

The determination of the fundamental solutions forming 
the matrix n(x", x') requires solving of an appropriate 
number of initial value problems for the system of equa­
tions [Eq. (1)) in the interval [x', x"). There are a 
number of other types of propagators but they all are 
intimately involved with boundary value problems rather 
than initial value problems for the system [Eq. (1 )). 
They are called invariant imbedding type propagators. 
The invariant imbedding process consists of solving a 
series of simple problems imbedded in the space of the 
complete problem. The inherent stability of these tech­
niques derives from the fact that the bounded scattering 
amplitude of intermediate problems rather than the 
wave function for the entire system is propagated through 
the space. The quantities used in the original formula­
tion of the invariant imbedding technique13 -the "renec­
tion" and "transmission" matrices Y" and Z" form the 
propagator 

(~ ~) 
satisfying the following relation for any solution I/J: 

(
I/J'(X')\ (Y+(X" x") Z-(x', x")\ (I/J(X') \ (5) 

I/J(x") ) - Z+(x', x") Y'(x', x")) I/J'(x")} . 

Another type of invariant imbedding propagator is the 
matrix cR introduced by Zvijac, Light et al. 3-5 in their 
widely used method for solving coupled equations for 
scattering. The matrix 

~~(::) 
fulfills its propagation role through the relation 

( I/J(r'~ (cR1(X', x") cR2(x', X")) (I/J'(X')\ 

I/J(x")} -\cR3(x', x") cR4(x', x") I/J' (x")) . 

For the purpose of the present paper, we define here 
still another propagator -a matrix 

L = (L(1)L(2\ 
L(3)L(4) ) 

by rewriting the above relation in the form 

(6) 

(
I/J'(X')\ (L(1)(X" x") L(2)(x', x"~(I/J(x')\ (7) 

I/J'(x")} - L (3)(x', x") L (4)(x', x")) \I/J(x")} 

The specific form of the boundary value problems to 
which any of the above listed invariant imbedding type 
propagators is related can be easily established on the 

basis of the defining relations [Eqs. (5)-(7)]. 

In particular, the relation [Eq. (7)] suggests as a way 
for the evaluation of the matrix L(x', x"), solving of the 
following boundary value problems for the matrices 
I/J+(x) and I/J-(x): 

[~+A(X) d~ +B(X)] I/J"(x) = 0 , (8a) 

I/J"(x')= {: I/J"(x") = {~ (8b) 

The derivatives of these matrices at the endpOints of 
the interval [x', x"] can be identified as 

ljJ"'(x') = , ljJ"'(x") = } . 
\

L (1)(x', x") (L (3)(x', x'1 

L (2)(X', x") 1 L (4)(x', x'1 
(9) 

As a direct consequence of the fact that solutions of par­
ticular boundary value problems do not always exist, all 
invariant imbedding type propagators fail to exist for 
some intervals [x', x"]. This is the well-known problem 
of singularities in the invariant imbedding approach. 14-18 

Fortunately, this problem can be easily overcome, at 
least in scattering calculations. 

Obviously, each of the above mentioned propagators is 
related to all others. Consequently, the basic proper­
ties of the standard propagator n [Eqs. (3) and (4)) can 
be expressed in terms of the properties of any other 
propagator. In that way we can get the well-known re­
currence relations for the matrices Y" and Z" (listed, 
e. g., in Ref. 17) as well as the cR-matrix propagation 
relations derived originally by Zvijac and Light. 3 The 
relevant relations for the matrix L will be given below. 
To begin with we specify the connection of the matrix L 
with the standard propagator n: 

L(x', x")=L[&1(x", x')) . (10) 

This is done by defining the operation L as the following 
rearrangement of a 2Nx2N block matrix 

(11) 

From this definition it follows that: 

LL=I. (12) 

Thus, acting L on both sides of Eq. (3) we get the formu­
la 

L(x',x")=L{L[L(y,x")). L[L(x',y))}, (13) 

which after performing the necessary matrix operations, 
leads to the following recurrence relations for the blocks 
L (I) (x', x"), i = I, 2, 3, 4: 

L(i)(x', x")=L(1)(x' ,y) _ L(2)(x' ,y)l(x',y, x")L(3)(x',y) , 
(14a) 

L(2)(X' , x") = L (2)(x', y)1 (x', y, x")L l2l(y, x") , (14b) 
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L(3J(X', x") = _L(3J(y, x")1(x',y, x")L(3J(x',y) , 

L(4J(x', x")=LW(y, x") 

+ L(3J(y, x")1(x',y, x")L(2J(y, x") , 

where 

1(x', y, x") = [L 14J(x', y) _ L (1 J(y, x")]-1 • 

(14c) 

(14d) 

(15) 

In addition, from Eqs. (4), (10), and (11) we obtain 

, , (_1 
L(x ,x )= 

-1 
~ c, 

(16) 

where c is a constant: c - 00. 

The L matrix can be simply related to the other invari­
ant imbedding formulations. For example, the relation 
to the <R matrices is given by 

L(x', x")= [<R(x', x")]-1 (17) 

and fUrther 

<R(x', x") = i(~i(x", x')] , 

where 

(18) 

(19) 

In consequence of Eq. (18), the recurrence relations for 
the matrix L must have the same structure as the appro­
priate relations for the matrix <R. Indeed, 

<R(x', x") = i[U(x", x')] = i[{i(x", y )~1(y, x')] 

=i{i[<R(y,x")]. il<R(x',y)]}. (20) 

The existence of a connection between the matrices 
L, r, and Z~ enables us to apply the same procedure 
as descr ibed in Ref. 18 to convert the recurrence rela­
tions [Eqs. (14a)-(14d)] to the following differential form 
in the limit of (x" - y) - 0: 

d~ L(1J(x',y)= _L(2J(X',y)A2(y)L(3J(x',y) , (21a) 

d~ L(2J(x' ,y)= _L(2J(x',y)[Al(y)+A2(y)L(4J(x',y)] , 

(21b) 

:y L(3J(x ' ,y)=[A4(y) _L(4J(x' ,y)A2(y)]L(3J(x ' ,y) , (21c) 

d 
dy L(4J(X', y) = A3(y) + A4(Y )L«(J(x' ,y) 

_L(4J(X', y )A1 (y) 

_L(4J(x' ,y)A
2
(y)L(4J(x ' ,y) . (21d) 

The AI> i = 1, 2, 3, 4, denote blocks of the coupling 
matrix in the system of first order differential equa­
tions equivalent to the system Eq. (1), i. e., 

(22) 

In conclusion of this section we should point out that 
the new propagator L is an extension of the log-deriva­
tive matrix L D, which is defined by the relation 

Tp'(x) = LD¢(x) , 

where ~(x) is a solution of Eq. (1) satisfying the initial 
condition: ¢(x') = O. Indeed, if one substitutes ~ into 
Eq. (7) one can see that LD=LW. For inelastic scat­
tering L (4) alone is sufficient. Thus, we may propagate 
L(4) using only Eq. (14d) and the present method be­
comes the generalization of the log-derivative method 
for equations containing a first derivative. 

II. AN ALGORITHM FOR THE MATRIX L 

In an attempt to construct an algorithm for the matrix 
L(x', x") we will follow the same idea that was fOllowed 
many times in cases of other algorithms, i. e., we will 
apply the appropriate recurrence relations to approxi­
mate propagators for subsequent small sectors of the 
interval [x', x' ']. The crucial point in the realization of 
this idea, influencing the final shape and properties of the 
entire algorithm, is, of course, the evaluation of the 
sector propagators. From the two approaches to this 
task mentioned in the Introduction, we decided to apply 
here the approximate solution approach. We start by 
choosing a discretization procedure to the boundary value 
problems for the sector L matrices. 

As a preparatory step to a description of our choice 
we convert the Eq. (8) to the integral equation form us­
ing the Green's function technique. Thus, treating the 
second derivative term as the homogeneous part of the 
Eq. (8a) and denoting by 41+(x) and 41-(x) the diagonal ma­
trices defined by 

d2 
(fXl 41~(x) = 0 , (23a) 

41~(X')={~ , (23b) 

we get 

l/J~(x) = cp~(x) - r" Wlcp-(X<)cp+(x» 
",' 

x[B(yW(y)+A(YW'(y)]dy, (24a) 

f "''' d 
~'(x)=cp~'(x) -:<' W-1 dx [cp-(x<)41+(x»] 

x[B(y)l/J~(y) +A(yW'(y)]dy , (24b) 

where 

(25) 

and x< is the lesser of x and y, with a similar definition 
for x)' In Eq. (25) we have made use of the fact that cpo 
and cp- are diagonal. As a 2N by N order matrix equa­
tion, 

+~(x) = .p~(x) - f"''' n(x, y )P(y )+~(y) dy • 
x' 

Above we use the abbreviated notation 

w'~ (::) +,~ (;:) fo'Y~+, -, 

P= (B,A) , 

G(x, y) = {W
1
.p+(X)CP-(y) 

Wl<j>-(X)cp+(y) 

for y<x, 

for y > x, 

(26) 

(27) 
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After dividing the interval [x', x"] into sectors [x I, X 1+2] of 
length 2h, i. e. ; x 1+2 - X 1= 2h for 1 = 0, 2, 4, ... , 2M - 2 
and xo=x', x" =xzAi; we may analogously formulate the 
problems related to the sector propagators L(x" x

'
+2): 

1"'+2 
'+;,hZ(X) = wt 1+2 (X) - G,,1+2(X, Y )P(y )it;,1+2(y) dy • 

"I 
(28) 

The subscripts in the Green's function G
'
,1+2(X,y) indi­

cate that it is formed from the solUtions CP~,'+2(x) of the 
Eqs. (23a)-(23b) in the interval [x" X 1+2]' Now, rewrit­
ing the integrals from the above equations in the abbre­
viated form 

5.
1'1+2 

K(x,y)dy, 
"I 

we evaluate them approximately at 

x =x
" 

X,+to X'+2' (X
'
+l = X'+2 - h = x, + h) 

by means of the formula19 

J"'+2 h 
K(x/l y )dy -3" [K(x" x,) + 4K(x" X,.l) +K(x" X,+2)] 

"I 

(29) 

which differs from the standard Simpson rule by the 
additional term C, 

(30) 

necessary in the case of an integrand having a discon­
tinuous first derivative. This term must be included if 
one wishes to preserve the accuracy of the Simpson 
formula. After inserting the explicit form of K(x I+ft y) 
into Eq. (30) and performing some elementary operations 
we obtain the expressions 

or 

C(X
'
+l) = aQ(x ,+l)+;, 1+2(x

'
+l) , 

where 

h2 

a=6" ' 

- ( B Q-
-B' +AB 

(31 ) 

(32) 

(33) 

(34) 

Equation (32) is derived with the help of Eq. (8a). Thus, 
in consequence of the above discretization procedure we 
arrive at the algebraic equations for the matrices 

itt,+Z(X,) at x, =x
" 

X,+ft x'+2 , 

+t'+2(X,)= wt 1+2 (x, ) 

-2: w"GI,'+2(x/lx,,)P(x,,)~ I+Z(X,,) 
~I ' 

(35) 

where 

or 

F~"+2(X,)= <l>~,'+2(x,) 

-f w "n ,,1+2(X/I x,,)P(x,,)Q(X,,)F,,1+2(X,,) "e, 
for matrices F,,'+2(x,) defined as 

FL.2(x,) = [Q(x, )]-I+~,,+Z(X,) , 

where 

Q(x,)= [1 + 6",+laQX/)]-1 • 

(36) 

(37) 

(38) 

(39) 

The approximate sector L matrices that we are seeking 
will be hereafter denoted by 

(40) 

Of course, they are related also to the matrices F~,'+2 
introduced above by 

r",+2(X ,)=l1 ) , 
(1) 
1,1+2 

Fj,I+2(X,) = ( 0 ), 
L IZ) 

I,I+Z 

Fi,I+2(x
'
+2)= ( 1 ) 

L ~~~+z 

(41a) 

(41b) 

(41c) 

(41d) 

The determination of the L 1,1+2 matrices, being now a 
matter of solving Eq. (37), is much simpUfied by in­
serting the Green's function G,.,+2(x" x,,) constructed 
according to Eq. (27) with CP;.1+2 having the form 

+ ( x - X 1+2 _ () X - X I 
CPI,I+2 x)=x X 1, CP"I+Z X X x 1. 

,- I+Z 1+2 - I 
(42) 

As a result of solving Eq. (37) we get the following form­
ulas for the matrices L~~~+2j i = 1, 2, 3, 4: 

hL~~~+z=(1-s,rl[-1+~(1-hS'+lrl(1-sl+I)+hS,] , 
(43a) 

hL~~~+2 =Hl -s,r1(1 -hS,•1r1 (1 +S'+I) , (43b) 

hL~~l+2= -~(1 +s,+zr1(1 -hs,+1r1 (1 -s'+I) , (43c) 

hL~!:+2 = (1 + s 1+2f
1 {1 - H1 - hS,+1r1 (1 + s /01) - hS,02] , 

(43d) 
where 

(S",s")=w,,P(x,,)Q(x,,) for k=l, 1+1, 1+2, 

w,,=~ (1 + 0",,+1) • 

Equations (43a)-(43d) give us the means of computing 
the L matrix over a small region. The algorithm 

Lo.1+2 = i{i[L 1.1~2]· i[Lo, ,]} , (44) 

with the initial condition 
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(

-1 
Lo.o= 

-1 
for c» 1 (45) 

gives us a method of solving the general scattering prob­
lem, or, in general, the boundary value problem asso­
ciated with Eq. (1). As it stands this is an extremely 
complex and cumbersome algorithm. A much more 
efficient algorithm can be obtained by carrying the deri­
vation a step further. 

To accomplish this we first show that the formulas 
given by Eq. (43) can be obtained by the transformation 

L 1.1+2 = i{i[i 1+1.1+2]' if i ,.,+l]) . (46) 

The matrices i r • r +1 for r = I, I + 1 are defined analogous· 
ly to the matrices L 1,1+2' Eq. (41), but in terms of the 
solutions F:.r+l of the following algebraic equations: 

F:.r+l (XI) = <I>;.r+l (Xl) 

(47) 

for i=r,r+1 and r=I,I+l. 

The <I>:.r+l and Gr•r+1 matrices are constructed from the 
solutions of Eq. (23) in the interval [xr' xr+tl, i. e., from 
the matrices 

+ () X - xr+l 1 <Pr.r+l X = --h-- , (48a) 

- () X - xr 1 <Pr.r+l x =-h- . (48b) 

It should be pointed out that the matrices Lr.r+l for r = I, 
t + 1 cannot be considered as the approximate L propaga­
tors in the corresponding halfsectors. This is because 
of the fact that the matrices Q(x,,) present in Eqs. (46) 
contain contributions from both halves of the sectors. 
The straightforward way of verifying the relation [Eq. 
(46)] is to insert into it the following formulas for the 
matrices i r • r +h r = I, I + 1, obtained by solving Eq. 
(47): 

-(2) 1 (1 )-1 Lr.r+l =}i -Sr , 

-(0 -(3) • 
Lr.r+l = - Lr.r+l (1 - hSr+1) , 

where 

_ (L (1) L (2») l- . 
L(3) i W 

Now we can replace one operation [Eq. 
lowing two operations: 

LO.I+l=i[i(il.'+l)· i(Lo•,)] , 

LO.I+2=i[i(il+1.'+2)· i(io•,+1)] . 

(49a) 

(49b) 

(49c) 

(49d) 

(50) 

(44)] with the fol-

(51a) 

(51b) 

The first of them defines the matrix i for any odd num­
bered halfsector; the second operation can be checked 
by inserting Eq. (46) and Eq. (12) into the right-hard 
side of Eq. (44): 

i[i(i l+1.,+2)· i(i
'
.I+1)' i(Lo.,)] 

= i{i(i l+1•,+2)ii[i(i 1.I+l)i(Lo•,)]} • (52) 

In this way we have also shown that the global matrix L (for 
any number of sectors) can be built by an accumulation 
of the appropriate matrices for subsequent half-sectors. 
This completes the description of the basic ideas involved 
in the derivation of our algorithm. 

To specify the final form of this algorithm, we intro­
duce working quantities matrices .e~1l i = 1, 2, 3, 4, re­
lated to the matrices L~~L for k =0, 2, ... , 2M through the 
formulas 

.e~1) =L~!L 

.e~2)=hL~~L 

.e~3) = (1 + s,,)L~~L , 

.e~4) =[h(l-s,,)L~!L+ 1-hS"r1 
, 

(53a) 

(53b) 

(53c) 

(53d) 

and through the analogous formulas to the matrices 
-(0 -
L o." for k = 1, 3, 5, ... , 2M -1. The final shape of our 
algorithm is 

.e(11) - - .e(12)( ~ -!: B) (54a) - h 3 0 , 

(2) ( h yl 
.e1 = 1-3 Ao) , 

.e(13 ) --~ 
- h ' 

.e14) =0 , 

and 

.e~1> = .e~l - .el!1.e~31 , 

.e~2) = .el!l.e~l for k = 2,3, ... ,2M , 
and 

(54b) 

(54c) 

(54d) 

(54e) 

(54f) 

(54g) 

.e~41 = (Y" -.e~~lrl (Z" -1) for k = 1, 2, •.. ,2M - 1 , 
(54h) 

where 

Z"=2(1-s,,r1
, 

Y,,=Z,,(l-hS,,) , 

(S", s,,)= w"(B,,, Air) 

( 1 +a,.B" 

x \ _ a ,,(B~ _ A,.B,,) 

B,,=B(r,,) , A,,=A(r,,), 

Finally, 

L~!~ =.e~) , 

L(2) _~ .e(2) 
O.M- h M 

(3) ( h yl (3) 
LO.M= 1 +3AM} .eM , 

for k = 0, 2, ... ,2M , 

for k=l,3, ... ,2M -1 . 

(55) 

(56) 

(58) 

(59) 

(60a) 

(60b) 

(60c) 
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w 1 ( h A )-1 [1 h
2 

I> (uJ 
LO.M =Ii 1 + 3 M -3" BM - .... M-l , (6Od) 

where M=2M 

The starting expressions for the matrices .£(1), i. e. , 
Eqs. (54a)-(54d), result directly from Eq. (45) in the 
case of .£~41, and from the relation 

in. 1 = i[i(Lo•1)i(Lo•0)] (61) 

in the cases of the matrices .£1 1
' for i = 1, 2, 3. Where­

as setting the initial values for .£(2) and .£(3) matrices 
at the point Xl is only a matter of convenience, the addi­
tion in Eq. (61) must be definitely performed analytically 
for the matrix .£p'. This is because of the structure 
of the relation Eq. (14a) which for large values of L(x', 
y), i. e., for L(x',y)=Lo•o, would lead to a loss of ac­
curacy in numerical calculations. In the back transfor­
mation to the matrices LW, i. e., in Eqs. (60), per­
formed at the end of the calculations, when k = 2M, use 
is made of the fact that for even values of k we have 

(62) 

Equation (6Od) includes additionally the operation Eq. 
(54h) for k = 2M. 

The algorithm we have presented here will solve the 
general boundary value problem which is the solution 
to Eq. (1). In particular, it solves the reactive scatter­
ing problem when the radial equation contains first 
derivative terms. If one is interested only in the inelas­
tic scattering problem the algorithm is much simpler. 
In that case, only L~~~ is of interest. One starts with 
Eq. (54d) and iterates using Eq. (54b) until k = 2M -1 
and finishes with Eq. (60d). The other .£~I) for i * 4 are 
not needed. 

In scattering calculations, usually one uses a radial 
equation with no first derivative and the B matrix is 
symmetric. In this special case 

(63) 

the algorithm Simplifies greatly. The exact and approx­
imate propagators, L(xo, x k) and LO.k', respectively, re­
veal the following symmetry properties: 

[L (Il]T =L(1l f . 1 4 or z= , 

and 

Moreover, we have 

Sk=O, Sk=W~k(1+C'i~krl. 

Thus, defining the quantities r ll, tk, and Zk as 

t _.£(31 __ !..[1>(21]T 
k- k - h .... k , 

we get from Eqs. (54) and (60), 

zii1 =0, 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70a) 

1 
tl = -Ii ' 

1 h 
rl = -Ji +3 Bo , 

and 

zk=2-2hSk-Z~1 fork=1,2, .•.• M-1, 

tk = z;_lltlr-l , 

r k=rk_l +htf_ltk for k=2, 3, ... ,M. 

(70b) 

(70c) 

(71a) 

(71b) 

(71c) 

Finally, 

L~~~ =rM , 

L~~~= -t~ , 

L~~k = til , 

(72a) 

(72b) 

(72c) 

w 1 (h2 -1 \ ( LO.M=Ji 1-3"BM -ZM-1). 72d) 

The part containing the Eqs. (70a), (71a), and (72d) is 
recognized as the log-derivative algorithm of Johnson. 8 

The basic formulas of this algorithm are known rather 
in the form l1 

[ 
h2 ,-1 

Zk= - 6 + 0.125 + 48 B kJ - Z;~l 

fork=1,3,5, ... ,M-l, (73) 

for k = 2,4,6, ... ,M - 2. (74) 

The above is easy to obtain after substitution of Eqs. 
(66) and (59) into Eq. (71a). The Zk and that in Ref. 11 
are the Z k of Ref. 8 plus 1. 

III. NUMERICAL TEST AND CONCLUDING REMARKS 

In order to test the derived algorithm we applied it to 
solving the problem considered by Wu et al. 20 in their 
studies of chemical reactions. This is the boundary 
value problem 

[~+A(X) d~ + B(X)}P(X) = 0 , (75a) 

(75b) 

l{i(X) x'::" exp(ikPx)T , (75c) 

describing collinear A + BC - AB + C reaction in the 
close coupling approximation (formulated in an adiabatic 
representation of wave function): 

lim A(x)=O, 

kR and k P are constant diagonal matrices. The formu­
las for the evaluation of the A(x) and B(x) matrices at 
any x and other details concerning the derivation of the 
above problem from the quantum mechanical principles 
are given in Refs. 20 and 21. We have repeated a part 
of the calculations presented in Sec. 4 of Ref. 20, de­
voted to the role of so-called nonadiabatic static cou­
pling in creating resonances in chemical reactions. The 
solutions of the problem Eqs. (75) were sought in the 
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TABLE I. Probability matrices ~ and pT for collinear reaction on potential surface V of Ref. 
20. 

E a ~ ~ pTc 'J:- O/'J:- 2
d to 

(A)f 39 3 0.4311(-1) 0.8719 0.999990 6 
0.8500(-1) 

4 0.4308(-1) 0.8708 0.999986 11 
0.8610(-1) 

5 0.4308(-1) 0.8707 0.999986 18 
0.8624(-1) 

44 5 0.2450(- 2) 0.3854(-2) 0.7951 0.2010 0.999972 18 
0.3845(- 2) 0.3612(-1) 0.1986 0.7590 0.999969 

6 0.2455(- 2) 0.3863(- 2) 0.7952 0.2010 0.999972 28 
0.3854(- 2) 0.3635(-1) 0.1985 0.7588 0.999971 

(B)g 39 3 0.4312(-1) 0.8718 0.999963 13 
0.8501(-1) 

4 0.4309(-1) 0.8708 0.999963 24 
0.8610(-1) 

5 0.4309(-1) 0.8706 0.999963 40 
0.8624(-1) 

44 5 0.2456(- 2) 0.3857(- 2) 0.7950 0.2010 0.999926 40 
0.3856(- 2) 0.3616(-1) 0.1986 0.7589 0.999975 

6 0.2461(- 2) 0.3866(- 2) 0.7951 0.2009 0.999926 62 
0.3866(- 2) 0.3639(-1) 0.1985 0.7588 0.999975 

aE-total energy (in kcal/mol). 
bN-number of vibrational states included. Only states with the same parity are coupled in this 
problem. 

cElements of pR and pT matrices are: (~:~ ~:~). 
d'J:-r = ~(J~.r +P~.l)· 
·t-ex~cution time (in s) on VAX .... 
fResults by method of this paper. 
gResults by method of Ref. 21. 

form of matrices pT and pR, 

These matrices give probabilities of all possible vibra­
tional transitions in the reactive system with and with­
out simultaneous change of the chemical structure of 
the diatomic molecule, respectively. Our procedure 
of evaluation of these probabilities consisted of finding 
the prppagator L(x_ .. , x ... ) for the system [Eq. (75a)]. 
The matrices Rand T were then obtained by means 
of the transformation resulting from insertion of the 
matrices l/!(x ... ), l/!(x ... ) and their derivatives into Eq. 
(7). With this procedure we have reconstructed the 
overall energy dependence of the p~.n probabilities 
plotted in Fig. 7(a) of Ref. 20. 

For a more detailed testing of our method, we per­
formed also calculations by the method described ill 
Ref. 21. In this method, the' probabilities were ex­
tracted from the standard propagator, determined with 
the aid of the Runge-Kutta algorithm. A sample of the 
results obtained by both methods .is given in Table I. 
The agreement between the corresponding probabilities 
from parts (A) and (B) of this table confirms the cor­
rectness of our algorithm for the matrix L. The values 
of sums of probabilities Lr calculated for each case in­
dicate that the conservation of the probability flux is not 
automatically guaranteed by either method. Therefore, 
these sums may serve to some extent as measures of the 
accuracy of the numerical integration. 

Though both methods are of the fourth order, the step­
size requirements in solving a given ·problem may be 
quite different. This is because of the fact that, in con­
trast to the Runge-Kutta, any invariant imbedding type 
of propagator is determined not by solving the system 
of linear differential equations but by solving a related 
but structurally different system of equations. The 
algorithm for the matrix L can be, in fact, considered 
as an algorithm for an integration of the differential 
equations [Eqs. (21)]. 

In the cases reported in Table I, the same accuracy, 
of the results obtained by both methods was reached at 
the expense of using three times smaller step size in the 
Runge-Kutta method (B). Thus, the method (A) turned 
out to be more efficient in these cases. But, as the last 
column of the table Shows, this superiority is not so 
large that it can always be expected. One must take 
into account, however, that in these test cases there was 
little need for exploiting the major advantage of our 
method: its complete llumerical stability. 

A more exhaustive estimation of the method developed 
for the matrix L requires, of course, further investi­
gations. The essential question arises as to whether 
these investigations should be undertaken at the pres­
ent stage of this method. Obviously, the answer de­
pends on the properties of the problems to be solved. 
As was already stated, the method is formulated for 
systems of linear differential equations of general 
form-no symmetry restrictions on coupling matrices 
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are imposed. Such general equations occurred in some 
early papers on the quantum mechanical description of 
chemical reactions. 22 In recent years, however, fac­
torizatlon23 of the wa~e function allows the same prob­
lems to be formulated in a much more symmetrical 
form. The general algorithm we have described does 
not require such symmetrization. It is possible that our 
algorithm could be simplified for matrices which have 
symmetry properties. In the special case described 
at the end of the preceding section, the use of the sym­
metry of the B matrix along with the absence of the first 
derivative term lead to great Simplification. This gave 
a direct extension of the log-derivative method. This 
algorithm is, in our opinion, ideally suited for collinear 
reactive scattering problems formulated in the quasi­
adiabatic representation. It would also be useful, at 
least for providing more flexibility in handling these 
problems, to have a Simple method for solving the ap­
propriate equations in the adiabatic representation. 
These are, of course, equations with first derivative 
coupling. The coupling matrix, however, is skew­
symmetric and this fact should be somehow exploited 
in deriving a Simpler version of our general algorithm. 
Investigations in this direction will be undertaken in the 
near future. 
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