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The paper presents a theoretical study of the low-energy dynamics of the radiative charge transfer
(RCT) reaction He+(2S) + H2(X 1�+

g ) → He(1S) + H+
2 (X 2�+

g ) + hν extending our previous stud-

ies on radiative association of HeH+
2 [F. Mrugała, V. Špirko, and W. P. Kraemer, J. Chem. Phys.

118, 10547 (2003); F. Mrugała and W. P. Kraemer, ibid. 122, 224321 (2005)]. The calculations ac-
count for the vibrational and rotational motions of the H2/H+

2 diatomics and for the atom-diatom
complex formation in the reactant and the product channels of the RCT reaction. Continuum states
of He+ + H2(v = 0, j = 0) in the collision energy range ∼10−7–18.6 meV and all quasi-bound
states of the He+ − H2(para; v = 0) complex formed in this range are taken into account. Close-
coupling calculations are performed to determine rates of radiative transitions from these states to
the continuum and quasi-bound states of the He + H+

2 system in the energy range extending up
to ∼0.16 eV above the opening of the HeH+ + H arrangement channel. From the detailed state-
to-state calculated characteristics global functions of the RCT reaction, such as cross-section σ (E),
emission intensity I(ν, T), and rate constant k(T) are derived, and are presented together with their
counterparts for the radiative association (RA) reaction He+(2S) + H2(X 1�+

g ) → HeH+
2 (X 2A′)

+ hν. The rate constant kRCT is approximately 20 times larger than kRA at the considered temper-
atures, 0.1 μK–50 K. Formation of rotational Feshbach resonances in the reactant channel plays an
important role in both reactions. Transitions mediated by these resonances contribute more than 70%
to the respective rates. An extension of the one-dimensional optical potential model is developed to
allow inclusion of all three vibrational modes in the atom-diatom system. This three-dimensional
optical potential model is used to check to which extent the state-to-state RCT rate constant is in-
fluenced by the possibility to access ground state continuum levels well above the opening of the
HeH++ H arrangement channel. The results indicate that these transitions contribute about 30%
to the “true” rate constant kRCT whereas their impact on the populations of the vibration-rotational
states of the product H+

2 ion is only minor. Present theoretical rate constant functions kRCT(T) ob-
tained at different approximation levels are compared to experimental data: 1–1.1 × 10−14 s−1 cm3 at
T = 15–35 K and ∼7.5 × 10−15 s−1 cm3 at 40 K [M. M. Schauer, S. R. Jefferts, S. E. Barlow, and G.
H. Dunn, J. Chem. Phys. 91, 4593 (1989)]. The most reliable theoretical values of kRCT, obtained by
combining results from the state-to-state and the optical potential calculations, are between 2.5 and
3.5 times larger than these experimental numbers. Possible sources for discrepancies are discussed.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793986]

I. INTRODUCTION

The reaction of He+ ions with H2 has attracted inter-
est of experimenters and theoreticians since many decades.1

Earlier experiments have favored dissociative charge transfer
(DCT) to be the predominant reaction channel in low-energy
collisions

He+(2S) + H2(X 1�+
g ) −→ He(1S) + H(2S) + H+, (1)

and effective rate coefficients for this binary reaction in the
range 10–13–10−14 cm3 s−1 were obtained experimentally2–4

and theoretically.5

a)Electronic mail: felicja@phys.uni.torun.pl.

However, after detecting from theoretical calculations6 a
shallow He+–H2 ion-molecule polarization well on the poten-
tial energy surface (PES) of the first excited electronic state
of the HeH+

2 ion and due to experimental observation7 of H+
2

ions in thermal collisions of He+ with H2, Hopper postulated8

that radiative charge transfer (RCT) occurs as alternative re-
action in these collisions

He+(2S) + H2(X 1�+
g ) −→ He(1S) + H+

2 (X 2�+
g ) + hν. (2)

He actually suggested that the reaction proceeds via a
three-step collision-radiative mechanism where the first step
(2a) is the formation of the polarization state6, 8

He+(2S) + H2(X 1�+
g ) −→ He+ − H2(A 2A′), (2a)
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He+ − H2(A 2A′) −→ He − H+
2 (X 2A′) + hν, (2b)

He − H+
2 (X 2A′) −→ He(1S) + H+

2 (X 2�+
g ) + KE. (2c)

The second step (2b) in this scheme consists in radiative
transitions from the initially formed polarization state He+–
H2 on the excited state potential to levels on the ground
state potential. At geometries close to the C2v minimum of
the upper state with RHe−H2 � 5 a.u. and RHH � 1.4 a.u.,
the potential energy of the lower state is ∼0.8 eV above
its lowest dissociation asymptote He(11S) + H+

2 (X 2�+
g , v′

= 0), but ∼0.1 eV below the other higher dissociation asymp-
tote HeH+(X 1�+, v′′ = 0) + H(12S). Therefore, the radia-
tive mechanism was expected to lead exclusively to He(1S)
+ H+

2 (X 2�+
g , v′).

The third step (2c) finally consists in the decay of the
ground state complex. For this step Hopper argued that, due
to the large difference between the initial RHH � 1.4 a.u. and
the HH bond length of 2.00 a.u. in the H+

2 ion, the partitioning
of the available 0.8 eV of potential energy is expected to be to
about 50% in the H+

2 vibrational mode with a peak at v′ = 2
and to about the other half in the product kinetic energy and a
small fraction in H+

2 rotational energy due to tendency of the
He to pull H+

2 towards a linear conformation minimizing the
repulsion as the products separate.

In his study Hopper used a simple argument to derive the
rate coefficient for reaction (2): Taking the experimentally de-
termined total thermal disappearance rate for He+ ions from
Refs. 3 and 4 as k � 10−13 cm3 s−1 and subtracting the value
for the tunneling DCT reaction derived by Preston et al.5 in
their model calculations, a rate coefficient for the RCT reac-
tion of kRCT ≈ 7.5 × 10−14 cm3 s−1 was obtained. This was
considered as an upper limit due to the approximations made
in the calculations of Ref. 5. Apart from this theoretical esti-
mate the rate coefficient of reaction (2) was also determined
experimentally9 employing a beam cell collision technique
and measuring absolute cross sections for the appearance of
H+

2 ions in low-energy collisions. A value as large as kRCT

= 1.48 × 10−13 cm3 s−1 was derived from this experiment.
There has been some controversy about the reliability of these
results and those obtained in previous studies and the relative
importance of the DCT versus RCT reaction channels in these
collisions.10, 11 An attempt to clarify the situation12 arrived fi-
nally at the conclusion that more detailed experimental stud-
ies especially on the branching ratio between dissociative and
radiative charge transfer channels and more rigorous theoret-
ical state-to-state calculations are required.

In a more recent experiment using an ion trap technique
the rate coefficients for the radiative and dissociative charge
transfer reactions were measured by Schauer et al.13 at tem-
peratures below 40 K. For the RCT reaction, the rate coeffi-
cient values were measured within 1.0 to 1.1 × 10−14 cm3 s−1

at temperatures between 15 and 35 K and ∼7.5 × 10−15

cm3 s−1 at 40 K.
A theoretical rationale for these experimental findings

was found in a study by Kimura and Lane.14 In the model
they have adopted in their calculations, the H2 molecule was
assumed to be a structureless particle and radiative transitions
from the (He+ relative to H2) vibrational continuum of the

excited state to all continuum and bound vibrational levels
of the ground electronic state were accounted for by means
of the one-dimensional optical potential model. Further, the
assumption was made that the rate of the accompanying ra-
diative association (RA) reaction

He+(2S) + H2(X 1�+
g ) −→ HeH+

2 (X 2A′) + hν (3)

is negligibly small. Obviously, this model could not account
for the rotational predissociation mechanism in the formation
of the He+–H2 complex within the excited state potential well
which is an important part of the Hopper scheme. However,
since the rate coefficients for the RCT + RA reaction calcu-
lated by Kimura and Lane14 appeared to be reasonably con-
sistent with the experimental values measured for the RCT re-
action, the agreement was used in the discussion by Schauer
et al.13 as an argument that initial complex formation plays
only a minor role in the RCT reaction. Actually, if this would
prove to be true, the reaction would be a one-step (or direct)
radiative reaction rather than a three-step associative-radiative
process as postulated by Hopper.

The role of states of the He+–H2 complex formed by
inverse rotational predissociation (Feshbach resonances) as
well as those formed by tunneling through centrifugal barriers
(shape resonances) was in the focus of our preceding state-to-
state study15 of the RA reaction (3). It was demonstrated there
that Feshbach resonances play an absolutely crucial role in
the dynamics of this reaction at low temperatures. There can-
not be any doubt that their contribution to the RCT reaction
should be equally important.

In Hopper’s scheme the second reaction step (2b) is de-
scribed making use of the Franck-Condon principle. Accord-
ing to this approximation vertical transitions take place from
the C2v minimum of the excited state potential down to the
so-called Franck-Condon point16 on the ground state poten-
tial. The conclusions derived from this picture are that the
HeH+(X 1�+, v′′ = 0) + H(12S) asymptotic level cannot be
accessed in the radiative transitions, further that the wave-
length of the emitted photons should be at maximum about
153 nm, and that the H+

2 fragments should be vibrationally
excited. These theoretical conclusions were corroborated by
the experimental findings that H+

2 ions were indeed observed
in thermal collisions of He+ with H2 whereas HeH+ was not
found in the experimental setup used in these measurements.7

Hopper’s theoretical assumptions about the mechanism of the
transition step (2b) are nevertheless essentially approximative
and need therefore to be investigated in further detail. First
of all, (i) what are the consequences for the RCT reaction if
the restriction of applying the Franck-Condon principle for
the radiative transitions is released. The further questions are:
(ii) what is the role of the radiative transitions to the contin-
uum states of the ground state complex He − H+

2 as com-
pared to transitions to the quasi-bound states; and (iii) what
is the impact of interactions in the dissociation step (2c) tak-
ing place on the ground state potential on populations of the
vibrational and rotational states of the product ions H+

2 . In
fact, it has been demonstrated that so-called final state inter-
actions can dramatically change predictions based on sim-
ple Franck-Condon principle considerations.17 Concerning
the question about the role of transitions to continuum versus
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quasi-bound states on the ground-state potential, our detailed
calculations18 of the RA reaction

He(1S) + H+
2 (X 2�+

g ) −→ HeH+
2 (X 2A′) + hν (4)

(taking place entirely on the ground state potential surface)
have shown that ro-vibrational resonances on this potential
are in their majority short-living and can hardly be distin-
guished from the continuum states. Although only a small
energy range of about 300 cm−1 above the lowest dissocia-
tion threshold He + H+

2 (v′ = 0, j ′ = 0) was scanned in that
study, one may expect that at higher energies the distinction
between resonance and continuum states will become even
more problematic.

It is the intention of the present study to check and pos-
sibly verify the reaction scheme proposed by Hopper. This
implies to confirm the importance of inverse rotational pre-
dissociation for the formation of the He+–H2 complex in the
first step (2a) of the RCT reaction and to investigate critically
steps (2b) and (2c) which in Hopper’s version of the reaction
scheme acquire a more approximate character due to the use
of the Franck-Condon picture.

For this purpose extensive dynamics calculations are per-
formed in which two kinds of approaches are exploited. First,
a detailed state-to-states approach is applied. It relies essen-
tially on the theoretical model which was used in our previous
studies of the radiative association reaction (4), in Ref. 18, and
of the two-state reaction (3), in Ref. 15. These studies are re-
ferred to hereafter as Papers I and II, respectively.

A detailed overview of the quantum theory of radiative
association in application to atom-diatom systems was pre-
sented in Paper I. Apart from treating the association as an
effect of weak interaction with the radiation field, three ma-
jor assumptions are made in the theory to describe the initial
and final molecular states in the process: (1) the nuclear mo-
tions take place entirely on single potential energy surfaces,
i.e., tunneling and diabatic transitions to other potentials are
excluded, (2) the initial scattering states lie close to the low-
est atom-diatom dissociation limit of the triatomic reactant
system and are therefore not affected by higher fragmentation
limits on this PES, (3) spin-rotation and hyperfine interactions
can be ignored.

The RA studies of Papers I and II were based on the ab
initio electronic structure calculations.19, 20 Details of the cal-
culations of the potential energy data of the ground and first
excited states of the HeH+

2 ion over a wide range of geome-
tries including their respective lowest dissociation channels
together with the associated electric dipole moments and the
transition moments connecting the two states are given there.
The potential energy functions and transition moment func-
tions used as input in the dynamics calculations were obtained
from fits of appropriate Legendre polynomial expansions to
the ab initio calculated data points. Actually, these functions
have been prepared to serve also as input for calculations un-
dertaken here—on the state-to-state description of the RCT
reaction.

Formally, the final states in the RCT, i.e., the continuum
and quasi-bound states of the He + H+

2 complex, can lie even
as high as 2.65 eV above the lowest dissociation limit of the
ground-state PES of HeH+

2 . So, the HeH++ H fragmenta-

tion limit of this PES, which lies only 0.8 eV higher than the
lowest limit, can formally affect the final states. They can be
partially depopulated by the proton transfer (pT) reaction, He
+ H+

2 −→HeH+ + H. The production of the HeH+ ions from
the He+ + H2 reactant pairs on the excited-state PES via this
secondary reaction on the ground-state PES is called here “in-
direct radiative atom transfer” (iRaT). [Direct atom transfer is
known not to occur in thermal He++ H2 collisions.5, 6] The
question about the consequences of going beyond the strict
application of the Franck-Condon principle in step (2b) of
Hopper’s scheme should thus be specified to the following:
(i′) how the population of the entire final-state energy range
in the RCT really looks like, in particular, how far above the
Franck-Condon point16 it extends, (i′′) how (im)probable the
iRaT branch of the reaction can be.

Within the approach adopted from the previous RA stud-
ies, questions (i)-(iii) can be answered but not rigorously. The
used ground-state PES is not sufficient for a rigorous treat-
ment of the dynamics of the He + H+

2 system in the high
energy range, certainly not for inclusion of the rearrangement
transitions. Hence, the additional assumption is necessarily
made in the present state-to-state study of the RCT: (4) the
He + H+

2 product system can be treated as chemically non-
reactive not only below but also in some energy range above
the threshold for the pT reaction. The detailed characteristics
actually calculated are the rates of radiative transitions from
the continuum states of the He+ + H2(v = 0, j = 0) reactant
pair in the collision energy range ∼10−7–18.6 meV and from
all quasi-bound states of the He++H2(para; v = 0) com-
plex formed in this range to all continuum and quasi-bound
states of the He + H+

2 charge-transferred system in the en-
ergy range extending from the He + H+

2 (v′ = 0, j ′ = 0) dis-
sociation asymptote (E′ = 0) up to ∼0.16 eV above the open-
ing of the HeH+ + H arrangement channel [at E′ = 0.8 eV
(6487 cm−1)]. Adequacy of assumption (4) in these calcula-
tions is proved using the literature information21 on dynamics
of the pT reaction.

In addition to this state-to-state treatment an attempt is
also made here to investigate more explicitly how much the
rate constant of the RCT process is affected by radiative tran-
sitions to ground state continuum levels well above the re-
arrangement threshold. For this purpose an extended version
of the original one-dimensional optical potential method22–24

widely used in calculations of atom-atom RCT + RA reac-
tions is developed. In this generalization to the present atom-
diatom system all three vibrational modes of the triatomic
HeH+

2 complex are taken into account. The extended version
is thus labeled as three-dimensional optical potential (3D opti-
cal potential) model. The model rigorously treats the dynam-
ics on the excited-state PES and requires only a part of the
ground-state PES, accurately determined in Ref. 19, to ac-
count for the spontaneous emission. With this new 3D gen-
eralized optical potential concept the gross reaction rate con-
stant for the total radiative reaction RCT + RA + iRaT can
be obtained where the contribution from the RA reaction (3)
is separately available from the previous calculations of Pa-
per II. Comparison of these 3D optical potential results with
those obtained from the state-to-state calculations provides an
estimate to which extent transitions to the higher ground state
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continuum levels and the iRaT reaction contribute to the to-
tal radiative rate. The usefulness of the 3D optical model is
further demonstrated when extensions to larger temperature
ranges are considered in this study.

The formulas for the RCT rate constant, the emis-
sion spectrum, and radiative widths of long-living rotation-
vibration resonances are presented in Sec. II. Section III gives
an overall description of the state-to-state calculations done
in the course of the study. The computational approach ap-
plied in the calculations is generally the same as described
in Paper I, i.e., the standard formulation of Close-Coupling
equations for an atom-diatom system in a Body-Fixed refer-
ence frame using a diabatic basis set (CC-BF-diabatic) plus a
Coriolis coupling reducing (CCr) approximation. In Sec. IV,
the 3D generalization of the optical potential model is pre-
sented in a “complete” and a “projected” (on definite final-
state subspaces) version. Especially this projected version is
useful for a comparison with the state-to-state results. Some
details of the calculations performed within both the state-
to-state and the optical potential approaches and a short de-
scription of the accompanying extended investigations of the
He+–H2 and He–H+

2 complexes are given in Sec. V.
The main results of the present calculations are finally

summarized and discussed in Sec. VI. This includes: an anal-
ysis of the state-to-state transition rates and the photon emis-
sion spectra, cross-section results in different energy regimes,
a detailed discussion and comparison of different contribu-
tions to the rate constants, and finally an analysis of vibra-
tional and rotational-state populations of the product H+

2 ion.
Supplementary material25 attached to this paper provides ad-
ditional detailed information. It is organized in parts: part A
collecting details on the state-to-state description of the RCT,
part B with details on the 3D optical potential model and re-
sults obtained with its help, and part C concerning the predis-
sociation of the He+ – H2 complex.

Consistent with the abbreviations used in Papers I and II,
the reactant and the product channels of the RCT reaction are
assigned as “A” and “X” channels, respectively, throughout
the present paper.

II. THEORY OUTLINE

A. Rate constant

The RCT reaction (2) is considered to take place in a gas
mixture at thermal equilibrium with temperature T. It is de-
scribed by the rate equation

d

dt
nHe+H+

2
= k nH2 nHe+ (5)

in which n denotes the number density of the subscribed
species and k is the rate constant,

k =
∑
I=0,1

∑
vj

∑
v′j ′

kI
vj→v′j ′ . (6)

where The kI
vj→v′j ′ gives here the rate of formation of the

He + H+
2 (I ) pairs in states with final vibration-rotation en-

ergies ε′
v′j ′ of the H+

2 (I ) subunit obtained in transitions from
the reactant system He++ H2(I) with the initial vibration-

rotation energies εvj of the H2(I) subunit, where I = 0, 1 are
the values for the nuclear spin. The rate constant kI

vj→v′j ′ is
obtained as function of T by Boltzmann-averaging over the
initial and integrating over the final states the free-free transi-
tion rate ∂2

∂E ∂E′ R
I (E, vj ; E′, v′j ′) dE dE′. This is the prob-

ability per unit of time for the formation of the pairs He
+ H+

2 (I ; v′j ′) under the conditions that the energy of relative
translational motion of He+ and H2 together with the internal
energy εvj yield the total energy of the reactants (in the center-
of-mass system) in the range [E, E + dE] and that the total
energy of the products is in the range [E′, E′ + dE′]. The en-
ergy of the emitted photons is [Eph, Eph + d(E–E′)], where Eph

= E–E′ + �E and �E is the separation between the thresh-
olds He+ + H2(v = 0, j = 0) and He + H+

2 (v′ = 0, j ′ = 0)
(at which the energies E = ε00 and E′ = ε′

00 are set to zero).
Thus

kI
vj→v′j ′ (T ) =

∫ Emax

εvj

dE P I (E, T )

×
∫ E′

max

ε′
v′j ′

dE′ ∂2RI (E, vj ; E′, v′j ′)
∂E ∂E′ , (7)

PI(E, T) denotes here the appropriate population factor of the
reactant states,

P I (E, T ) = gI

Z(T )

(
2π¯2

μkBT

)3/2

exp(−E/kBT ), (8)

where Z(T ) = ∑
v j gj (2j + 1) exp(−εvj /kBT ) with gj

= g0 = 1 for j even and gj = g1 = 3 for j odd, μ is the re-
duced mass of the He+ + H2 system, and kB is the Boltzmann
constant. The value of the first upper integration limit Emax in
Eq. (7) depends on the factor PI(E, T). For sub-thermal col-
lision processes with maximum temperatures of ∼50 K the
population of states above threshold extends only over a very
small energy range, the integration limit is thus rather small:
Emax ≈ 20 meV. The second integration limit E′

max, on the
other hand, should formally be as large as the dissociation en-
ergy of the H+

2 ion from its ground vibration-rotation state,
2.651 eV (Ref. 26). However, whereas according to Hopper’s
considerations a much smaller value for E′

max would be suf-
ficient in practice, in the present application it is assumed
that E′

max extends at least up to the threshold of the proton
transfer reaction He + H+

2 (v′, j ′) → HeH+(v′′, j ′′) + H at
E′ = ε′′

00 = 0.8 eV (6487 cm−1).

B. Emission intensity

The photon emission in the RCT reaction is globally
characterized by the intensity I(T ) which is the power emit-
ted at temperature T by unit volume of the gas when nH2

= nHe+ = 1. A more detailed characteristics of interest here is
the spectral density of emission II (Eph, T ), the quantity ap-
pearing in the resolution I(T ) = ∑

I=0,1

∫
II (Eph, T ) dEph

and obtained as

II (Eph, T ) =
∫

dE P I (E, T ) Eph

×
∑
vj

∑
v′j ′

∂2RI (E, vj ; Ê′, v′j ′)
∂E ∂E′ , (9)



104315-5 F. Mrugała and W. P. Kraemer J. Chem. Phys. 138, 104315 (2013)

where Ê′ ≡ E + �E − Eph. In the following II (Eph, T ) is
referred to as “photon emission spectrum at temperature T.”

C. Cross-sections

The quantity ∂2

∂E ∂E′ R
I (E, vj ; E′, v′j ′), multiplied by

a simple kinematic factor involving the wave-number kvj

= √
2μ(E − εvj )/¯, gives the photon-energy-differential

cross-section for vj → v′j ′ transition at the reactant
energy E,

∂σ I
vj→v′j ′ (E,Eph)

∂Eph
= 2π2¯

k2
vj

∂2RI (E, vj ; Ê′, v′j ′)
∂E ∂E′ . (10)

Upon summation over the final diatomic states (v′, j ′)
or/and integration over the photon energy Eph one gets the
cross-sections ∂

∂Eph
σ I

vj (E,Eph) , σ I
vj→c′ (E), and σ I

vj (E). The
first quantity is the most detailed characteristic of the pho-
ton emission spectrum in the RCT reaction which will be de-
termined in the present calculations. The other cross-sections
will be determined in order to record the populations of the
product states v′ and j′ in the reaction.

D. Free-free transition rates

The evaluation of the introduced characteristics of the
RCT reaction is obviously facilitated by applying the partial-
wave expansion to the initial and final atom + diatom states.

The free-free transition rate ∂2

∂E ∂E′ R
I (E, vj ; E′, v′j ′)

dE dE′ becomes resolved into independent contributions of
transitions between initial and final partial scattering states
characterized by the total angular momentum and the spectro-
scopic parity quantum numbers (J, p) and (J′, p′), respectively,

∂2RI (E, vj ; E′, v′j ′)
∂E ∂E′

=
∑

J

∑
p=±1

(2J + 1)
J+1∑

J ′=J−1

∂2RI (EJp, vj ; E′J ′p′, v′j ′)
∂E ∂E′ ,

(11)

where p′ = p(−1)J+J ′+1 and p = ±1. The individual partial
double-differential transition rate (per units of initial and final
energies) is given by the expression

∂2RI (EJp, vj ; E′J ′p′, v′j ′)
∂E ∂E′

= 4

3¯4c3
(E − E′+�E)3

∑
l,l′

|T I
v′j ′l′;vjl(E

′J ′p′; EJp)|2,

(12)

where T I
v′j ′l′;vjl(E

′J ′p′; EJp) denotes the reduced matrix el-
ements of the appropriate transition dipole moment vector
{dq; q = − 1, 0, 1, defined in terms of SF components dx,
dy, and dz (see Sec. III)}

T I
v′j ′l′; vjl(E

′J ′p′; EJp)

=
√

2J ′+1

2J+1

〈E′−J ′M ′p′, v′j ′l′|dq |E+JMp, vjl〉
C(J1J ′,MqM ′)

, (13)

|E+JMp, vjl〉 denotes the energy-normalized partial scat-
tering state of the He++ H2 system with M being the
quantum number of the projection of the total angular mo-
mentum on the space-fixed z-axis; the numbers behind the
comma (vjl) characterize the state before scattering, l spec-
ifies the angular momentum of the relative motion. Analo-
gously, |E′−J ′M ′p′, v′j ′l′〉 denotes partial scattering state of
the He + H+

2 system; the superscripts of E and E′ are the
standard notation for the outgoing- and ingoing-wave bound-
ary conditions satisfied by the scattering states. C(. . . , . . . )
denotes the Clebsch-Gordan coefficient. c in Eq. (12) is the
speed of light. Occasionally, T I

v′j ′l′;vjl(E
′J ′p′; EJp) is re-

ferred to as free-free phototransition amplitude.

E. Resonance-background resolution

The quantities ∂2

∂E ∂E′ R(EJp, vj ; E′J ′p′, v′j ′) (the in-
dex I is omitted hereafter) are highly nonuniform func-
tions of the energies E and E′ reflecting the existence of
resonances with widely varying lifetime characteristics (see
Ref. 25). A special treatment is needed in cases of sharp
features which appear in both the E and E′ dependencies
due to long-living resonances. Let us denote these reso-
nances with the symbols RJp

n and R′J ′p′
m , respectively. The

index n (m) enumerates resonance energies EJp res (E′J ′p′ res)
within a given partial state J p (J′p′). The treatment con-
sists essentially in two approximations applied successively
to the initial or/and to the final partial scattering states in
the phototransition amplitude Tv′j ′l′; vjl(E′J ′p′; EJp) when

E ≈ E
Jp res
n or/and E′ ≈ E

′J ′p′ res
m . First, the isolated reso-

nance approximation27 is applied. In case of RJp
n it gives:

|E+JMp, vjl〉 ≈ |EBQ

n JMp〉aJMp

n,vjl (E) where |EBQ

n JMp〉 is
a bound state of the Hamiltonian of the reactant system
within an appropriate subspace Q, chosen so that E

BQ

n

≈ Eres
n , and the function

∑
l |aJp

n,vj l(E)|2 is a Lorentzian

with the maximum 2	
Jp

n,vj /π (	Jp
n )2 at Eres

n and the width

at half-maximum 	
Jp
n = ∑

vj 	
Jp

n,vj . The 	’s characterize

dissociative decay of RJp
n , caused by molecular interac-

tions only. Next, a possibility of spontaneous emission from
the resonance being competitive to the dissociative decay
is taken care of by adding an appropriate imaginary part
− ı

2	
Jp rad
n to the energy Eres in the factor a

Jp

n,vj l(E). The
operation (termed “the implicit optical potential approach”
in Ref. 28) enlarges the width of the related Lorentzian to
	

Jp
n +	

Jp rad
n . The broadened profile is denoted below with

the symbol p
Jp

n,vj (E). The arising phototransition amplitudes
of bound-free, free-bound, and bound-bound types are de-
noted as Tv′j ′l′(E′J ′p′; EBQ

n Jp), Tvjl(E
′BQ′
m J ′p′; EJp), and

T (E
′BQ′
m J ′p′; EBQ

n Jp), respectively. The final result is the fol-
lowing approximate resolution:

∂2R(EJp, vj ; E′J ′p′, v′j ′)
∂E ∂E′ ≈ ∂2R

RCT(res)
vj→v′j ′ (EJp; E′J ′p′)

∂E ∂E′

+∂2R
RCT(bck)
vj→v′j ′ (EJp; E′J ′p′)

∂E ∂E′ ,

(14)
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where the parts RCT(res) and RCT(bck) accumulate contri-
butions of RCT transitions which, respectively, do or do not
proceed via the long-living resonances in the A channel. Both
parts account for all resonance and continuum final states of
the transitions in the X channel. Thus,

∂2R
RCT(res)
vj→v′j ′ (EJp; E′J ′p′)

∂E ∂E′

=
∑

n

p
Jp

n,vj (E)
1

¯

∂	RCT
n,v′j ′(Jp; E′J ′p′)

∂E′ , (15)

where

∂	RCT
n,v′j ′ (Jp; E′J ′p′)

∂E′ = ∂	̃RCT
n,v′j ′ (Jp,E′J ′p′)

∂E′

+
∑
m

	RA
n,m(Jp; J ′p′) p

′J ′p′
m,v′j ′ (E′),

(16)

p
Jp

n,vj (E)

= 1

2π

	
Jp

n,vj(
E − E

Jp res
n

)2+ 1
4

(
	

Jp
n + 	

Jp RCT+iRaT
n + 	

Jp RA
n

)2 ,

(17)

p
′J ′p′
m,v′j ′ (E′) ≈ 	

′J ′p′
m,v′j ′

	
′J ′p′
m + 	

′J ′p′ RA
m

δ(E′ − E′J ′p′ res
m ). (18)

All 	’s labeled with RCT, RA or RCT + iRaT
have the meaning of radiative widths of resonances.

∂
∂E′ 	̃

RCT
n,v′j ′ (Jp; E′J ′p′)dE′ is the width of resonance RJp

n due
to transitions to continuum and non-sharp resonance states
([E′, E′ + dE′]J ′p′, v′j ′),

∂	̃RCT
n,v′j ′ (Jp; E′J ′p′)

∂E′

= 4

3¯4c3

(
EJp res

n − E′ + �E
)3

×
∑

l′

∣∣Tv′j ′l′
(
E′J ′p′; EBQ

n Jp
)∣∣2

. (19)

	RA
n,m(Jp; J ′p′) involves the amplitude T (E

′BQ′
m J ′p′; EBQ

n Jp)

and describes the association of RJp
n into R′J ′p′

m . The factor
p

′J ′p′
m,v′j ′ (E′) obviously accounts for the subsequent dissociative

decay of the latter resonance. 	Jp RCT
n is the total width of RJp

n

due to all allowed transitions which yield free H+
2 ions and He

atoms,

	Jp RCT
n =

∑
v′j ′

	
Jp RCT
n,v′j ′ =

∑
v′j ′

∫ E′
max

ε′
v′j ′

∂	
Jp RCT
n,v′j ′ (E′)

∂E′ dE′,

(20)
and

∂

∂E′ 	
Jp RCT
n,v′j ′ (E′) =

J+1∑
J ′=J−1

∂

∂E′ 	
RCT
n,v′j ′(Jp; E′J ′p′). (21)

	
Jp RCT+iRaT
n is the total width of RJp

n due to the transitions to
all continuum states in the X channel, 0 ≤ E′ ≤ 2.651 eV.
Transitions to states in the energy range above the threshold
for the proton transfer reaction (E′ > 6487 cm−1) can lead to
the formation of HeH+(v′′, j ′′) ions, i.e., effectively this looks
like a direct radiative atom transfer reaction. As stressed in the
Introduction, the reaction actually proceeds in two steps via
radiative transitions to highly lying X-state continuum levels
followed by proton transfer along the rearrangement channel.
The term iRaT is therefore used for this reaction path.

Finally, 	Jp RA
n is the total width of RJp

n due to transitions
to (truly) bound states of the HeH+

2 ion,

	Jp RA
n =

∑
B

	
Jp RA
n,B +

∑
J ′

∑
m

	RA
n,m(Jp; J ′p′)

× 	
′J ′p′ RA
m

	
′J ′p′
m + 	

′J ′p′ RA
m

, (22)

B enumerates the states reached directly from RJp
n and the

second term is an estimation of indirect association via the
long-living X-channel resonances.

The content of the part RCT(bck) is described by the
formula

∂2R
RCT(bck)
vj→v′j ′ (EJp; E′J ′p′)

∂E ∂E′

= ∂2R̃RCT
vj,v′j ′(EJp; E′J ′p′)

∂E ∂E′

+
∑
m

∂RRA
vj,m(EJp; J ′p′)

∂E
p

′J ′p′
m,v′j ′ (E′), (23)

where the first term is the quantity defined in Eqs. (12) and
(13) after subtraction of the sharp features attributed to res-
onances {RJp

n } and {R′J ′p′
m }, and ∂

∂E
RRA

vj,m(EJp; J ′p′) in the
second term, when multiplied by dE, gives the rate of associ-
ation into resonance R′J ′p′

m of reactants being initially in states
([E,E + dE]Jp, vj ). This rate is defined in terms of the pho-
totransition amplitudes Tvjl(E

′BQ′
m J ′p′; EJp) (see Paper I).

The resolution (14) inserted into Eqs. (10), (9), and
(7) gives the corresponding resolutions of the cross-section

∂
∂Eph

σvj→v′j ′(E,Eph), of the emission spectrum I(Eph, T ), of
the rate constant kvj→v′j ′ , and of the quantities derived from
these by the operations

∫
dEph,

∑
j ′ , and

∑
v′ .

III. DESCRIPTION OF RCT IN THE CC-BF-DIABATIC
APPROACH

The coordinates used to describe the configurations of
the nuclear centers in the reactant and products systems are
r, R, and θ—the lengths and the angle between the Jacobi
vectors r and R which join, respectively, the protons and the
center-of-mass of the protons with the He nucleus. The ori-
entation of the plane of the three nuclei is described by az-
imuthal (φR) and spherical (θR) angles of the vector R with
respect to a space-fixed (SF) reference frame Oxyz with the
origin O at the center-of-mass of H–H–He and by angle (ψ)
of rotation of the plane around R. Euler rotations of the SF
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frame over the angles φR, θR, and ψ give a body-fixed (BF)
reference frame OXYZ with the axis Z aligned to R and the
axis Y perpendicular the plane of the nuclei. In the coordi-
nates r, R, (ψ, θ ) := r̂B, and (φR, θR) := R̂, the Hamiltonian
Hs for vibration-rotation-translation motion of the reactant (s
= A) and product (s = X) systems takes the form

H s(r, R, r̂B, R̂) = 1

2μ

[
p2(R) + C2(R̂, r̂B)

R2

]
+H s

HH(r, r̂B) + V s(r, R, θ ) (24)

with H s
HH(r, r̂B) = 1

2μHH
[p2(r)+ 1

r2 j2(̂rB)] + V s
HH(r), where

p(c) = ¯
ı
( ∂
∂c

+ 1
c
) for c = R, r are the radial momentum

operators and the operator in the angular coordinates has
the structure C2 = J2+j2−2jJ in which J and j denote the
total angular momentum and the rotational momentum of
the HH subunit, respectively. The meaning of the operator
j J is precisely described in Ref. 29. The μ’s denote the
respective reduced masses. V s

HH(r) and V s(r, R, θ ) for s
= A (X) denote, respectively, the potential of the H2 molecule
(H+

2 ion) and the interaction potential with the He+ ion (He
atom). These potentials are extracted from the PESes of the
ground and first excited electronic states of the HeH+

2 ion
given in Ref. 19. The interaction potentials are represented
by the expansions V s(r, R, θ ) = ∑Ls

max
L=0 V s

L(r, R) PL(cos θ )
with Ls

max = 4 (10) for s = A (X), where PL denotes the
Legendre polynomial of Lth order (see Fig. 1(a) and Ref. 25,
Fig. A1).

In the functions 〈R, y|Es ±JMp, vjl〉 of the partial scat-
tering states of the system s, the dependence on the coordi-
nates y = (r, r̂B, R̂) is represented by the standard diabatic
basis �

s JMp

1×Ns (y); the individual basis function �
s JMp

vjλ (y) is
an eigenfunction of the operators J2, Jz, I (spatial inversion),
J 2

Z (= j 2
Z), j2, and Hs

HH to eigenvalues ¯2J(J + 1), ¯M, p(−1)J,
¯2λ2, ¯2j(j + 1), and εs

vj , respectively. Even (odd) j’s occur in
the basis for I = 0 (1), the values of λ change in step of 1 from
1+p

2 (p = ±1) to min[λs
max, min(J,j)], and v = 0, 1, . . . vs

max.
The values of vs

max, j s
max, and λs

max for s = A and s = X are
specified in Sec. V.

Denoting with �
s (±)JMp

1×N s
o

(E; r, R) the set of functions of
the states |Es ±JMp, (vjl)i〉 for all open scattering channels
(vjl)i , i = 1 . . . , N s

o, one obtains

�s (±)JMp(E; r, R) = 1

R
�s JMp

1×N s
(r, r̂B, R̂) Fs(±)Jp

N s×N s
o

(E; R) Us Jp.

Here Us Jp is the transformation from the basis �s JMp to
its space-fixed counterpart (involving eigenfunctions of l2

instead of j 2
Z) and the radial functions Fs (±)Jp(E; R) are

determined by solving the CC-BF equations, i.e., the time-
independent Schrödinger equation with the Hamiltonian
matrix

[Hs Jp(R)]ṽj̃ λ̃; vjλ = −δṽj̃ λ̃; vjλ

¯2

2μ

d2

dR2
+ [Ws Jp(R)]ṽj̃ λ̃; vjλ,

(25)
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FIG. 1. Some properties of the electronic structure input. (a) Strength
functions of the interaction potentials in the A and X channels from their

Legendre-polynomial expansions: V s(r, R, θ ) = ∑Ls
max

L=0 V s
L(r, R) PL(cos θ )

with LA
max = 4 (10) for s = A (X). Shown are average values of the largest

two V s
L(r, R) functions in the ground ro-vibrational states of H+

2 and H2 for s
= X and A, respectively, and matrix elements of V X

L=2 between v′ and v′ − 1
states of H+

2 (blue lines). (b) Strength functions of the Z-component of the
electric dipole vector for A → X transitions from its expansion: dZ(r, R, θ )
= ∑2

L=0 DL(r, R)PL(cos θ ). Shown are matrix elements of DL(r, R) between
functions of v = 0 j = 0 state of H2 and v′ = 0 − 3 j ′ = 0 states of H+

2 .

where

[Ws Jp(R)]ṽj̃ λ̃; vjλ = δṽ,vδj̃ ,j

¯2

2μR2
[cJp(j )]λ̃,λ

+ δλ̃,λ [δṽ,vδj̃ ,j εs
vj + V s λ

ṽj̃ , vj (R)], (26)

see Fig. 2 and Ref. 25, Fig. A2. The non-zero ele-
ments [cJp(j )]λ̃,λ, for λ̃ = λ and λ̃ = λ ± 1, are the coeffi-
cients of the centrifugal potentials and of the Coriolis cou-
plings, respectively, and V s λ

ṽj̃ , vj (R) is the potential coupling∑
L〈ṽj̃ |V s

L(r, R)|vj 〉
r
gλ

L(j, j̃ ) with the rotational factor

gλ
L(j̃ , j ) = (−1)LC(j̃Lj, λ0λ)C(jLj̃ , 000). (27)

In the following text, the subscript s is omitted when its value
is A and prime is used instead of X. The symbols |vj 〉 and | 〉′
are used to distinguish between states of H2 and H+

2 .
The free-free phototransition amplitude of Eq. (13) is ob-

tained as

Tv′j ′l′; vjl(E
′J ′p′; EJp)= [U′J ′p′ T〈F′(−)J ′p′

(E′)|
× dJ ′p′ Jp|F(+)Jp(E)〉R UJp]v′j ′l′; vjl,

(28)
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FIG. 2. Selected effective potentials WJe

vjλ;vjλ(R) for (a) low and (b) high J values, see Eq. (26), energies of the lowest resonances supported by the potentials

(red lines), and effective potentials W ′J ′e
v′j ′λ′ ;v′j ′λ′ (R) governing dynamics of the product system in states which are accessed in radiative transitions from the

resonances by virtue of the selection/propensity rules �J = ± 1, �j = 0, and �λ = 0. The latter potentials are shown relative to their respective asymptote
ε′
v′j ′=0. The yellow arrows indicate the ranges of the product continuum states which should most strongly be populated in transitions from the resonances

(b k vR J ) = (2 2 2 5), (2 2 0 18), and (0 0 1 20). They are predicted by a model in which the transitions amplitudes are evaluated using only the (v j λ) = (0 b k)
component of resonance function and single component continuum functions within the potentials W ′J ′e

v′bk;v′bk
(R) for v′ = 0 − 3. The yellow wavy lines represent

squared modula of the continuum functions.

where

dJ ′p′ Jp(R) = 〈�′ J ′M ′p′ |dq |�JMp〉y
√

2J ′+1
C(J1J ′,MqM ′)

√
2J+1

and dq(R, y) = dZ(r, R, θ ) D1
0,q (φR, θR, ψ) with D1

0,q denot-
ing element of Wigner rotation matrix.30 It is assumed that
dX component of the dipole vector d(r, R) can be totally ne-
glected. Thus,

[dJ ′p′ Jp(R)]v′j ′λ′; vjλ = C(J1J ′, λ0λ′)

×
∑

L=0,2

′〈v′j ′|DL(r, R)|vj 〉r gλ
L(j ′, j ),

(29)

where the functions DL(r, R) come from the expansion of
dZ(r, R, θ ) in terms of the Legendre polynomials PL(cos θ )
(see Fig. 1(b)).

IV. 3D OPTICAL POTENTIAL MODEL

A. “Complete” version

The Hamiltonian matrices HJp(R) which describe in the
CC-BF-diabatic representation the low-energy dynamics of
the He+ + H2 system in the A channel are augmented with
skew-hermitian parts − ı

2
optWJp(R) whose role is to account

for the total quenching of the He+ ions due to the radiative
transitions to the X channel, i.e., to all continuum and bound
states, E′ ∈ [−1763.5, ∼21 400] cm−1.

The quenching due to the joint reaction RA + RCT
+ iRaT (:=trad) is described by the optical potential (see

Fig. B2 of Ref. 25)

optV (r, R, θ ) = − ı

2

4

3c3¯3
d2

Z(r, R, θ ) �V (r, R, θ ) (30)

in which �V = �E + V A − V
X

with V
X = V X+V X

HH rep-
resents the average energy of emitted photons. It may be
viewed as a 3D generalization of the optical potential widely
used in calculations on the radiative reactions in atomic
systems.22–24, 31–33 The elements of the matrix optWJp(R)
= 2ı〈�JMp| optV |�JMp〉

y
(see Fig. 3) are evaluated using the

formula

[optWJp(R)]ṽj̃ λ̃; vjλ = 4

3c3¯3
δλ̃,λ [[dλ(R)]†

× [�Vλ(R)]3 dλ(R)]ṽj̃ ; vj , (31)

where
[dλ(R)]ṽj̃ ; vj =

∑
L

〈ṽj̃ |DL(r, R)|vj 〉
r
gλ

L(j̃ , j ), (32)

and
[�Vλ(R)]ṽj̃ ; vj =

∑
L

〈ṽj̃ |V A
L (r, R) − V

X

L (r, R)

× |vj 〉
r
gλ

L(j̃ , j ) + δṽ,vδj̃ ,j �E. (33)

Like in cases of molecular potentials, these elements do not
depend on the quantum number J and do not mix states with
different values of λ. The latter property is not an effect of
the approximation d2 ≈ d2

Z; it would also hold true when the
component d2

X were included. (Appropriate formulas will be
presented elsewhere.)

The Schrödinger equation with the non-hermitian Hamil-
tonian HJp(R) − ı

2
optWJp(R) is solved for the scattering
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FIG. 3. Examples of complex effective potentials V Je

vjλ; vjλ(R) = [WJ e
(R) +

iImVJ e
(R)]vjλ; vjλ that appear in the present implementation of the opti-

cal potential approach. The unlabeled yellow lines represent the matrix el-
ements optWvjλ; vjλ(R) = −2Im[VJ e

(R)]vjλ; vjλ of the 3D optical potential
in the BF-diabatic basis, see Eq. (31). The lines labeled with Xnr show the
respective matrix elements opt

X4
WJe

vjλ; vjλ(R) of the optical potential projected
onto the nonreactive subspace of the X channel, see Eq. (37).

matrix SJp(E) and the unitarity defect of this matrix is con-
verted to the rate ∂

∂E
Rtrad

vj (EJp) dE of the radiative quenching
from states ([E,E + dE]Jp, vj ),

∂

∂E
Rtrad

vj (EJp) = 1

2π¯

∑
l

[I − SJp †SJp(E)]vjl; vjl . (34)

In the vicinity of resonance RJp
n ,

∂

∂E
Rtrad

vj (EJp) = ∂

∂E
R

trad(bck)
vj (EJp) + p

Jp

n,vj (E)
1

¯
	Jp trad

n ,

(35)
where the first term on rhs represents a background, a slowly
varying function of the energy E, and p

Jp

n,vj (E) in the second
term is the Lorentzian defined in Eq. (17), having the width
at half maximum determined by both the dissociative 	

Jp
n

and the total radiative width 	
Jp trad
n = 	

Jp RCT+iRaT
n + 	

Jp RA
n

of the resonance. It should be noted that the “broadened”
Lorentzian p

Jp

n,vj (E) appears here without the extra opera-
tion described in Sec. II E. This is due to the fact that the
matter-radiation interaction included into the optical potential
is treated on equal footing with the molecular interactions,
i.e., not as a perturbation (see Table BI of Ref. 25). Practically,
the widths 	

Jp trad
n together with the other parameters (EJp res

n

and 	J
n,vj ) of the profile p

Jp

n,vj (E) are extracted from the values

of ∂
∂E

Rtrad
vj (EJp) calculated according to Eq. (34) by a least-

squares fitting to the formula (35) with the E-dependence of
the background term represented by a second order polyno-
mial (details in Eqs. (B7)–(B12) and Table BV of Ref. 25).

The rates ∂
∂E

Rtrad
vj (EJp), the resonance widths

	
Jp trad
n , the related cross-sections: partial σ trad

vj (EJp)

= 2π2¯
k2
vj

∂
∂E

Rtrad
vj (EJp) and total σ trad

vj =∑
Jp(2J + 1)

× σ trad
vj (Jp), and the rate constant

ktrad
vj (T )=

∫ Emax

εvj

P j (E, T )
∑

J

∑
p

(2J+1)
∂

∂E
Rtrad

vj (EJp) dE

(36)

are believed to represent fully convergent characteristics of
the total radiative quenching of the He+ ions in low energy
collisions with the H2 molecules. Upon subtraction of the re-
spective quantities for the RA reaction, determined rigorously
in paper II, convergent values are obtained for the global char-
acteristics of the RCT + iRaT reaction such as σ RCT+iRaT

vj (E)

and kRCT+iRaT
vj (T ).

B. XNv ′ projected version

Of much help in completing the task of the present study
turns out here to be a version of the 3D optical potential called
“XNv′ projected.” It is designated to provide an inexpensive
way to monitor the convergence of the global characteristics
of the radiative A → X processes with increasing size of the
basis �′ J ′M ′p′

used to describe the terminal states in the pro-
cesses. Savings result from omitting the determination and
the subsequent integration of the E′-resolved transition rates
which would be necessary for each basis size when the state-
to-state approach were exploited. In this version (see Fig. 3),

opt
XN

v′
WJp(R) = 4

3c3¯3

J+1∑
J ′=|J−1|

[dJ ′p′ Jp(R)]†

× [�VJ ′p′
(R)]3 dJ ′p′ Jp(R), (37)

where dJ ′p′ Jp(R) is the transition dipole matrix defined in
Eq. (29) and

�VJ ′p′
(R) = �EI + 〈�′ J ′M ′p′ |V A|�′ J ′M ′p′ 〉

y
− W′ J ′p′

(R)

(38)

represents average photon energy in transitions to the sub-
space of (all bound and a part of continuum) ro-vibrational
states in the channel X which is spanned by the basis �′ J ′M ′p′

including Nv′ (=v′
max+1) lowest v′ states of H+

2 , called the
XNv′ subspace. The subspace X4 is particularly important be-
cause the represented interval of the energy E′, with the upper
boundary E′

max(X4) � 7800 cm−1 (see Sec. V C), lies practi-
cally entirely below the threshold for the proton transfer re-
action. The probability of the iRaT via transitions to states
within the subinterval lying actually above the threshold,
6487–7800 cm−1, is estimated as nearly 100 times smaller
than the probability of the RCT in transitions to states in the
entire 0–7800 cm−1 interval (details in Fig. A19). Therefore
the subspace X4 is called the ‘nonreactive subspace’ and is al-
ternatively denoted with Xnr. The dependence of �VJ ′p′

(R)
on the quantum number J′ comes from the presence of the ki-
netic energy term (∼cJ ′p′

/R2) in the matrix W′ J ′p′
(R). This

term plays some role in enhancing consistency of results
from the model with results from the state-to-state approach
(details in Eqs. (B4)–(B6) and Figs. B3 and B4 of Ref. 25).
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Instead of solving the coupled equations with the matri-
ces WJp(R) − ı

2
opt
XNv′W

Jp(R), the distorted-wave approxima-
tion is applied to account for the opt-part giving the following
formulas:

� for the rate of radiative transitions from the A-channel
continuum states ([E, E + dE]Jp) to the XNv′ subspace,

∂

∂E
R(→XN

v′ )(EJp) dE = 1

¯
Tr 〈F(+)Jp(E)|

× opt
XN

v′
WJp |F(+)Jp(E)〉 dE,

(39)

where F(+)Jp(E; R) denotes N × No matrix of radial
functions of the A-channel state determined within the
state-to-state approach, i.e., by solving the CC equa-
tions with the matrix WJp(R),

� for the width of the A-channel resonance RJp
n due to

the radiative decay to the XNv′ subspace

	
Jp

n (→XN
v′ ) = 〈FB Jp

n | opt
XN

v′
WJp |FB Jp

n 〉, (40)

where FB Jp
n (En; R) denotes N-dim. vector of radial

functions of a bound state which approximates the
resonance.

V. CALCULATIONS

The calculations within the state-to-state approach of
Sec. III are designed to eventually provide the temperature
averaged characteristics of the RCT reaction for temperatures
not substantially exceeding 40 K. As already pointed out, the
range of the reactant energy [0, Emax] which is appreciably
populated at such temperatures is rather small: setting Emax

= 150 cm−1 is practically sufficient. In this range, only the
v = 0 j = 0 channel of the He++ H2(I = 0) reactants is open.
At thermal equilibrium, the reaction with the ortho-hydrogen
becomes possible at E > ε01(=118.4 cm−1) and therefore the
contribution of the v = 0 j = 1 channel to the rate function
k(T) may be expected to be totally insignificant at tempera-
tures below 20 K. Actually, this contribution is neglected in
the entire temperature range scanned which is 0.1 μK–50 K.

The calculations within the optical potential approach of
Sec. IV A are designed to provide fully convergent values of
the rate constant of the RCT + RA + iRaT reaction for tem-
peratures up to 100 K. The range of the energy E covered in
these calculations extends from 10−8 up to 354 cm−1 (the ε0 2

threshold).
In the whole of the calculations done in this work, three

major stages can be distinguished. They are briefly described
in Subsections V A–V C.

A. Dynamics in the A channel: He+ +H2

The dynamics was investigated in our previous work (Pa-
per II) in the range of E up to 300 cm−1. The pattern of en-
ergy levels of bound and quasi-bound states of the He+ – H2

complex found in the range is typical of weakly bound atom-
diatom complexes of intermediate anisotropy strength and

T-shaped equilibrium geometry. The states are fully
assignable with the set of six quantum numbers vr , b, k, vR ,
J, and p. Of the four approximate numbers, vr and b correlate
with the v and j state of the H2 subunit, respectively, k denotes
the nearly preserved value of the quantum number λ, and vR

describes the atom-diatom vibrations.
In this work, the previous calculations on the He+– H2

complex are extended to achieve the following specific goals:
(i) to determine energies and dissociative widths of all quasi-
bound states in the range up to the v = 0 j = 2 threshold
and of “vibrational” (J = k) states associated with several
higher thresholds (j = 4 and v = 1 j = 0 − 4), (ii) to com-
pare properties of rotational and vibrational predissociation
of the complex, (iii) to rationalize correlations of the rota-
tional predissociation widths with the quantum numbers as-
signed to the states. Calculations concerning goals (i) and (ii)
are performed within the approach of Sec. III using the ba-
sis size controlling parameters: vmax = 3, jmax = 13, and λmax

= min (3, b + 1). To realize goal (iii), an adiabatic represen-
tation of the A-channel Hamiltonian is constructed, via diag-
onalization of the matrix WJp(R) of Eq. (26), and within this
representation, the perturbative resonance theory of Fano34

and Mies35 is implemented. The treatment extends the pop-
ular adiabatic bender model19, 36 in that it accounts for the
associated nonadiabatic bending-stretching couplings which
drive the predissociation (details are given in part C of
Ref. 25).

B. Dynamics in the X channel: He + H+
2

The dynamics on the present PES was previously inves-
tigated in the following aspects. First, energies of J′ = 0–2
bound states, energies and widths of J′ = k′ = 0 resonances
in the range of the energy E′ up to ∼2200 cm−1 were deter-
mined and presented together with the PES itself in Ref. 19.
All bound states [E′ < 0 (58.2) for I = 0 (1)] and all non-broad
resonances (	′ < 1 cm−1) in the subrange up to 300 cm−1

were determined in the calculations on the RA reaction (4)
in Paper I. Second, the role of the Coriolis coupling and the
separability of vibrational modes of motion in the bound and
long-living resonance states was tested by applying different
decoupling schemes18, 19 and the natural expansion analysis.15

In this work, the X-channel dynamics is characterized to
a much wider extent. One of the motivating facts is that know-
ing all sharp resonances R′J ′p′

and also other, broader, struc-
tures in the energy density of continuum states (E′J′p′) for the
E′ range up to ∼6500 cm−1 and for J′ values up to ∼20 is
necessary/requisite for the evaluation of the A → X transition
amplitudes according to the theory of Sec. II E. Since no ap-
proximate scheme could be devised for a reliable prediction of
the structures, the most straightforward (and tedious) way is
adopted. Namely, for each needed J′ value (and parity p′) the
lifetime matrix37 Q′J ′p′

, more specifically, its maximal eigen-
value q

′J ′p′
max is determined as function of E′ from the solutions

F′J ′p′
(E′; R) of the Schrödinger equation with the Hamilto-

nian H′J ′p′
(R) at a grid of points E′

i covering the entire range
of interest with the spacing E′

i+1 − E′
i of 0.5 (1.0) cm−1 for J′

≤ (>)10. Peaks found in the function q
′J ′p′
max (E′), if narrower

than 1 cm−1, are next analyzed for the positions E′J ′p′res and
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widths 	′J ′p′
of the pertinent resonances using the procedure

of Ref. 38.
The second motivation for an extended study of dynam-

ics of the He + H+
2 system is the need for information which

can aid an analysis of the calculated final-state specific char-
acteristics of the RCT. Accompanying goals are: (i) to iden-
tify quasi-bound states of the He–H+

2 complex which pre-
dominantly decay by vibrational predissociation, to verify the
previous predictions,19 and (ii) to further expose the differ-
ences between this complex and its charged-transferred coun-
terpart. For these goals, the functions � ′(+)J ′M ′p′

(E′; r, R) are
inspected for the degree of mixing of different λ′, v′, and
j′ components at resonance energies E′ = E′J ′p′res, for the
nodal patterns in the θ and R dependencies within the strong-
interaction region (R ≤ 4 Å). Quantities suitable for display-
ing the properties are introduced by referring to the concept of
the sojourn-time39 of collision system in a confined region of
the configuration space (details are given in Eqs. (A1)–(A10)
of Ref. 25).

In all the lifetime and sojourn-time calculations, the basis
�′J ′M ′p′

is built of the (v′ j ′) states spanning the nonreactive
subspace X4 of the X channel as defined in Sec. IV B, i.e.,
v′

max = 3 and j ′
max = 14. The parameter λ′

max controlling the
CCr approximation is set to 4 (adequacy of the approximation
is tested in Fig. A17 of Ref. 25). This basis, also called “X4

basis,” leads to maximally N′ = 136 coupled (v′j ′λ′) states.

C. Radiative A −→ X transitions

The free-free transition amplitudes Tv′j ′l′;vjl

(E′J ′p′; EJp), Eqs. (13) and (28), are evaluated for
v = 0, j = 0, J = 0–20, and J′ = J ± 1 at sets of the
energy points {Ei,E

′
i ′ }M M ′

i=1, i ′=1 chosen to cover the E range
of 10−7–150 cm−1 and the E′ range of 0.1–7800 cm−1, in
calculations for the X4 subspace, or the range of 0.1–11 000
cm−1—in calculations for the X6 subspace (with v′

max = 5
and max N′ = 199; see Fig. A18 of Ref. 25). Evaluation
of the J′ = J amplitudes is skipped because they are very
small. The number M of Ei points changes slightly with the
value of J and is ∼15–25. The grid of E′

i ′ points, adapted
to the behavior of the function q ′J ′e

max(E′), depends in turn
strongly on the value of J′. On average, about 1500 points are
used to cover the X4 interval in J′ < 10 cases. The number
M′ decreases to about 800 when J′ > 16. To cover the X6

interval, the numbers M′ for the different J′s are increased by
about 300 to 200.

In the considered range of the energy E, there are 48
sharp resonances RJp

n with n = (b k vR) that pertain to quasi-
bound states of the He+–H2(I = 0) complex. Their J values
range from 0 to 22, p = 1, and b = 0, 2. For transitions from
these resonances, the amplitudes Tv′j ′l′(E′J ′p′; EBQ

n Jp) are
evaluated for all allowed final J′ values. The grids of E′

i ′ points
are even denser than in the evaluation of the free-free ampli-
tudes. For example, about 2000 (2300) points in the X4 (X6)
intervals are used when 2 ≤ J′ ≤ 5.

The energy interval associated here with each basis (sub-
space) XN ′

v
is not quite arbitrary. The integrations over the

energy E′ of the width and rate functions determined with

each basis XN ′
v

should be converged with respect to the up-
per integration limit E′

max(XN ′
v
) in order to achieve consis-

tency with results of the respective XN ′
v

projected version of
the optical potential model. Because of this requirement, the
limit for the X4 subspace cannot be exactly at the threshold
ε′′

00 = 6487 cm−1.
In the (truly) nonreactive range of E′ (<6487 cm−1) about

30 sharp resonances R′J ′p′
m are found with J′ = 1–20, p′ = ± 1,

and k′ ≤ 3. To include transitions to these resonances, the
free-resonance amplitudes T00J (E′BQ′ J ′p′ = 1; EJp = 1) at
Ei points used in the respective free-free cases and all non-

zero resonance-resonance amplitudes T (E
′BQ′
m J ′p′; E

EBQ

n Jp)
are evaluated.

All the transition amplitude evaluations necessary in the
state-to-state part of the study as well as all the S matrix eval-
uations within the optical potential model are performed with
the help of the log-derivative method40 and its versions gen-
eralized to inhomogeneous coupled equations.41, 42

VI. RESULTS AND DISCUSSION

The discussion focuses on results obtained at the main
stage of the calculations—for the A → X transitions. Re-
sults of the calculations described in Secs. V A and V B are
only quoted to support several points of the discussion. Their
full presentation is enclosed in the supplementary material.25

All results presented here in Secs. VI A–VI C, VI D 1, and
VI F concern transitions from states of the He+ + H2 system
below the ε01 threshold. Thus, always (v j ) = (0 0) and p = 1;
these values are omitted in most of the symbols used in these
subsections.

A. State-to-state transition rates

Starting first with the A-channel continuum Fig. 4 gives
examples of the calculated (J, J′)- resolved doubly differential
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FIG. 4. Energy differential rates ∂2

∂E∂E′ RRCT(bck)(EJ ; E′J ′) for free→free
+ resonance transitions specified in the labels. The energy E is given (in
cm−1) relative to the He+ + H2(v = 0, j = 0) threshold and the energy E′
is given relative to He + H+

2 (v′ = 0, j ′ = 0). The sticks in the upper part
of the figure show the positions of the v′ j ′ thresholds and the threshold
for the rearrangement He + H+

2 → H + HeH+ reaction. In the inset are
the populations Pc′ (EJ ; J ′)×100% of rotational (c′ = j′) and vibrational (c′
= v′) states of the H+

2 ion resulting from the shown transitions, see Eq. (41).
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rates ∂2

∂E ∂E′ R
RCT(bck)(EJ ; E′J ′),

∂2

∂E ∂E′ R
RCT(bck)(EJ ; E′J ′)

=
∑
v′

∑
j ′

∂2R
RCT(bck)
00→v′j ′ (EJp = 1; E′J ′p′)

∂E ∂E′

=
∑
v′

∂2

∂E ∂E′ R
RCT(bck)
→v′ (EJ ; E′J ′)

=
∑
j ′

∂2

∂E ∂E′ R
RCT(bck)
→j ′ (EJ ; E′J ′),

as functions of the X-channel energy E′ for two A-channel
energies E and for two values of J. The low J functions dis-
play broad peaks around the v′ thresholds with superimposed
sharper peaks of various heights whereas for the high J value
peaks are shifted considerably towards higher energies E′ and
the shape of the peaks is smoother. The broad features, es-
pecially their parts lying above the v′ thresholds are due to
free-free transitions. The sharp peaks originate from transi-
tions to the X-channel resonances with dissociative widths 	

of the order of 0.1 cm−1.
Comparing among each other the gray peak areas asso-

ciated with the subsequent v′ thresholds one notices that the
v′ = 0 peak is smaller than the v′ = 1 − 3 peaks. This also
holds for the high J results (light blue peaks). The sizes of
the v′ peaks in the rate functions directly reflect the relative
magnitude of the v = 0 → v′ = 0, 1, 2, 3 matrix elements of
the A → X electric dipole transition function plotted in Fig. 1.
The fact that the v = 0 → v′ = 0 element is smaller than the
others is due to the large difference in the bond distances of
H2 compared to H+

2 .
In the inset of Fig. 4, populations Pc′ (EJ ; J ′) of vibra-

tional (c′ = v′) and rotational (c′ = j′) states of the H+
2 ion

are shown resulting from the three (E J) → J′ transitions of
the figure. The populations are defined as the ratios of the
E′-integrated rates in the range, i.e., in the Xnr subspace,

Pc′ (EJ ; J ′)= ∂

∂E
R

RCTnr(bck)
→c′ (EJ ; J ′)

/
∂

∂E
RRCTnr(bck)(EJ ; J ′)

for c′ = v′, j ′. (41)

The populations are at large R distances, where the H+
2 ion

does not interact with He.
The populations of vibrational states resulting from the

transitions J = 5 → J′ = 6 at E = 10 and E = 100 cm−1

do not reflect the relation between the v′ peaks in the respec-
tive rate functions. The values of Pv′=0 are larger than those
of Pv′=1 which can be interpreted as a result of inelastic ro-
vibrational transitions in the X channel. As shown in Fig. 1(a),
the strength of the potential couplings 〈v′|V X

L=2|v′ − 1〉
r

driv-
ing these transitions is substantial. For high J′ values the re-
gion of inelasticity becomes shielded by the centrifugal poten-
tials and the peak population is therefore not shifted to v′ = 0.

The populations of rotational states of the H+
2 ions are

also affected by the inelastic transitions in the X channel. They
would be more strongly peaked at j′ = 0 if they were only
determined by properties of the initial states (dominated by

    

   

 

j’=0 j’=0 j’=0 j’=04 6

tot
j’=0
j’=2
j’=4

6

4

2

0
    

∂/
∂E

ph
σ*

10
9   (

A
2 /c

m
-1

)

 

v’=0 v’=1 v’=2 v’=3

E=10, J=5e       tot
v’=0
v’=1
v’=2

-6000-4000-20000

 

Eph - ΔE  (cm-1)

tot
j’=0
j’=2
j’=4

6

4

2

0
-6000-4000-20000

∂/
∂E

ph
σ*

6*
10

9

Eph - ΔE  (cm-1)

b)

a)

b’)

a’)

E=100, J=18e      tot
v’=0
v’=1
v’=2

FIG. 5. (a) and (b) Partial photon-energy-differential cross-sections
∂

∂Eph
σRCT(bck)(EJ ; Eph) for two (E J)-states of the reactant system

He+ + H2(v = 0, j = 0) and their resolutions into cross-sections
∂

∂Eph
σ

RCT(bck)
→v′ (EJ ; Eph) and ∂

∂Eph
σ

RCT(bck)
→j ′ (EJ ; Eph) which describe tran-

sitions to specific v′- and j′-states of the product ion H+
2 . The histograms

are built of average values of the cross-sections in the intervals �Eph
= 50 cm−1. The photon energy is shown relative to the separation �E
= 74 507 cm−1 between the thresholds He+ + H2(v = 0, j = 0) and He
+ H+

2 (v′ = 0, j ′ = 0).

j = 0 component) and by the propensity rules, �j = 0 and
�λ = 0, resulting from the properties of the A → X transition
dipole vector field d(r, R, θ ). The fact that d here is parallel
to the body-fixed Z axis is obviously the cause of preserving
λ in the transitions (see Sec. III). The tendency to preserve
the rotational j state is caused by small anisotropy of dZ(r, R,
θ ). It is shown in Fig. 1(b) that the L = 2 anisotropy strength
function 〈DL=2(r, R)〉

r
is smaller than the L = 0 function at R

values within the well of the A-state PES by a factor ranging
from ∼10 at R = 2 Å to ∼2 at R = 4 Å.

A more detailed analysis of the influence of X-channel
interactions on the v′- and j′-state populations in transitions
from the A-channel continuum is presented in Fig. 5. For two
of the states (E J) shown in Fig. 4, plots are shown of the
photon-energy-differential cross-sections

∂

∂Eph
σ RCT(bck)(EJ ; Eph)

= π2¯3

μE

J+1∑
J ′=J−1

∂2

∂E ∂E′ R
RCT(bck)(EJ ; Ê′J ′) (42)

and their resolutions
∂

∂Eph
σ RCT(bck)(EJ ; Eph) =

∑
c′

∂

∂Eph
σ

RCT(bck)
→c′ (EJ ; Eph)

for c′ = v′, j ′.

If vibrationally inelastic transitions did not occur in the X
channel, the blue, red, and gray colored areas of the peaks
in the left panels of the figure would have clear cuts at the
thresholds v′ = 1, v′ = 2, and v′ = 3, respectively. The ac-
tual situation, however, is different, especially in the small J
case (upper left panel). The blue areas occurring within the
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peaks above the v′ = 1 threshold added to the blue area be-
low this threshold amount to the largest population Pv′ (E, J )
of the state v′ = 0,

Pc′ (E, J ) = ∂

∂E
R

RCTnr(bck)
→c′ (E, J )

/
∂

∂E
RRCTnr(bck)(E, J )

for c′ = v′, j ′. (43)

In the high J(=18) case (Fig. 5(b)), the largest peaks, v′ = 1
and v′ = 2, become filled almost entirely with red and gray
colors, respectively. Consequently, the sizes of these peaks
decide on the v′-state population and the maximum popula-
tion shifts to v′ = 1.

Similarly, without rotationally inelastic transitions oc-
curring in the X-channel, all peaks in the right panels of
Fig. 5 would be nearly 100% blue which would mean an al-
most complete reflection of the population of j = 0 state of
the reactant H2 molecule into the population of j′ = 0 state of
the product H+

2 ion. In fact, however, the peaks for the j′ = 0
population arrive here only at ∼40%.

In analogy to the transitions from the continuum states,
transitions from the A-channel resonances are characterized in
Figs. 6 and 7. Figure 6 gives examples of the width functions

∂
∂E′ 	

J RCT
n (E′, J ′),

∂

∂E′ 	
J RCT
n (E′, J ′) =

∑
v′

∑
j ′

∂	RCT
n,v′j ′ (Jp = 1; E′J ′p′)

∂E′ ,

for J → J′ = J ± 1 transitions from four selected resonances
RJ

n . n denotes here the three approximate quantum numbers
(b k vR). In the inset the populations of v′ and j′ states are
shown resulting from the (n J) → J′ transitions to the entire
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FIG. 6. Width functions ∂
∂E′ 	J RCT

n (E′J ′) of selected quasi-bound states
of the He+–H2(v = 0) complex. (n J ) = (b k vR J p = 1). (Inset) The re-
lated populations (in %) of rotational and vibrational states of H+

2 obtained

from the integrated widths, Pc′ (nJ ; J ′) = 	
J RCTnr
n,c′ (J ′)/	

J RCTnr
n (J ′) for c′

= j ′, v′. (Bottom) The profiles due to resonance-free transitions obtained
from the model calculations presented in Fig. 2, disregarding ro-vibrational
inelasticity in the product channel.
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FIG. 7. (a) and (b) Widths ∂
∂E′ 	J RCT

n (E′) and ∂
∂E′ 	J RCT

n,c′ (E′) for c′ = v′

= 0 − 3 and c′ = j′ = 0–4 of two exemplary quasi-bound states (n J )
= (b k vR J p = 1) of the He+–H2(v = 0) complex as functions of energy
E′ in the decay channel He+H+

2 . The histograms are built of average values
of the functions in the intervals �E′ = 50 cm−1.

E′-energy range displayed (the Xnr subspace),

Pc′ (nJ ; J ′) = 	
J RCTnr
n,c′ (J ′)

/
	J RCTnr

n (J ′) for c′ = v′, j ′.
(44)

Generally, the shapes of the width functions and of the cor-
responding populations Pj ′ are more diversified compared to
those in Fig. 4. This demonstrates the impact of the proper-
ties of the initial resonance state functions at R values in the
range ∼2 − 4 Å. Differences between the characteristics of
resonances with different quantum numbers n are more pro-
nounced compared to changes among continuum functions
within the E-energy range 10–100 cm−1.

The overall dependence of the width functions
∂

∂E′ 	
J RCT
n (E′, J ′) on the quantum number J is essen-

tially the same as in Fig. 4: structures surrounding the j′

= 2 thresholds, sharply peaked in their lower energy halves,
occur in the two low J (=5) cases whereas broad peaks,
shifted considerably above the thresholds, occur in the two
high J (=18, 20) cases. This is due to the large differences in
the minimum geometries of the A- and X-channel potentials
(RA

min − RX
min = 0.81 Å and θA

min − θX
min = π

2 ). Therefore, the
wells in the effective potentials WJ

vjλ=j ;vjj (R), which are the
deepest compared to their λ < j counterparts, fill up with
growing J less quickly than the wells W ′J ′

v′j ′λ′=j ′; v′j ′j ′ (R),
the shallowest compared to the λ′ < j′ wells, fill up with
growing J′. If the well WJ

v=0bk;0bk(R) supporting a given
resonance (b k vR J ) lies over the wells of the potentials
W ′J ′

v′j ′=b λ′=k;v′bk(R) for J′ = J ± 1, J (as it occurs in the cases
of the J = 5 and J′ = 6 potentials shown in Fig. 2(a)), the
radiative transitions can terminate in the continuum states
above the asymptotes of the lower potentials as well as in the
resonance states lying below these asymptotes. The width
functions are then combinations of resonance-resonance and
resonance-free profiles. This is the case for the functions
of the J = 5 resonances shown in Fig. 6. In the cases of
high J resonances (2 2 0 18) and (0 0 1 20), the respective
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effective potentials W ′J ′
v′bb;v′bb(R) for b = 2, 0 are purely

repulsive as shown in Fig. 2(b). The positions and shapes of
the resonance-free profiles in the width functions become
essentially determined by the reflection principle.17, 43

Obviously, the occurrence of the resonance-resonance
parts in the width functions is mediated by the off-diagonal
elements of the matrices W′J ′

(R). Therefore, information on
any details of these parts, such as positions of the sharp peaks,
for example, cannot be deduced from inspection of the ef-
fective potentials. The shapes of the resonance-free parts of
the width functions could, in principle, be explained with
the help of a model in which the transition amplitudes were
evaluated using only the largest radial component of exact
resonance function, (v j λ) = (0 b k), and single component
continuum functions within the potentials W ′J ′

v′bk;v′bk(R) for
v′ = 0−3. However, a comparison of profiles resulting from
such a model, shown in the bottom of Fig. 6, with the profiles
in the main panel of this figure reveals that the inelasticity in
the X-channel continuum states cannot always be neglected.
Inelasticity is certainly important in the case of the b = 0 res-
onance shown in the figure. The violet peaks obtained from
the model are visibly shifted from the positions in the ex-
act profile. Neglect of the rotational couplings W ′J ′

v′00;v′20(R)
is mostly responsible for this shift. The positions of the peaks
in the width functions of the (2 2 0 18) resonance are, in turn,
very well reproduced by the simple model. This is because
the j′ = b = 2 λ′ = k = 2 state cannot directly mix with the j′

= 0 state and the possible mixing with the j′ = 4 λ′ = 2 state
is much smaller.

The rotational inelasticity in the X channel manifests it-
self in the populations Pj ′ (nJ ; J ′) even more clearly than in
the resonance width functions. The violet curve in the inset
of Fig. 6 representing the populations due to transitions from
the b = 0 resonance, (0 0 1 20), looks very much the same as
the curves in the inset of Fig. 4. As already mentioned in the
discussion of that figure, the tendency to preserve the j = b
= 0 rotational state of the diatomic subunit in the radiative A
→ X transitions is substantially weakened by the mixing of
j′ = 0 and j′ = 2 λ′ = 0 states in the X channel. The prob-
ability Pj ′=2 that the product ion will be in the j′ = 2 state
becomes nearly as big as Pj ′=0. All Pj ′ (nJ ; J ′) curves that
pertain to b = 2 resonances are clearly peaked at j′ = 2. The
�j = 0 propensity is thus generally stronger than in the cases
when the initial state is a b = 0 resonance or a continuum
state.

To describe the role of the �λ = 0 rule, it is helpful
to think of the radiative transitions from a given resonance
(b = 2 k vR J ) as proceeding in two stages. At the first stage,
the He + H+

2 system is reached in the interaction region (small
R’s) where the j′ = 2 λ′ = k components of its continuum
states are populated and then, at the stage of departure of the
H+

2 ions from the He atoms, these components are depopu-
lated by rotational, ro-vibrational, and Coriolis interactions.
The degree of this depopulation depends mainly on how ef-
fective the mixing of j′ = 2 with j′ = 0 state is. It is most
effective when k = 0 and most ineffective when k = 2 [as
indicated by the values 1√

5
and 0 assumed for λ′ = 0 and λ′

= 2, respectively, by the rotational factor gλ′
L=2(0, 2) that en-

ters the coupling elements W ′J ′
v′′ 0λ′;v′2λ′ , according to Eqs. (26)

and (27)]. This leads to the different heights of the Pj ′=2 peaks
in Fig. 6 (and in Fig. 18(d)).

The populations Pv′ (nJ ; J ′) do not exhibit any strik-
ing correlation with the quantum numbers n = (b k vR). The
correlation with the number J is qualitatively the same
as described above in the discussion of the populations
Pv′ (EJ ; J ′).

Figure 7 shows two examples of the width functions
summed up over the final J’s, ∂

∂E′ 	
J RCT
n (E′), and their two

resolutions into parts that describe decay of the shown reso-
nances into channels He + H+

2 (v′) and He + H+
2 (j ′), respec-

tively, cf. Eqs. (19) and (21),

∂

∂E′ 	
J RCT
n (E′) =

∑
c′

∂

∂E′ 	
J RCT
n,c′ (E′) for c′ = v′, j ′.

The chosen examples, (2 2 2 5) (upper panels) and (0 0 1 20),
are representative of b = 2 and b = 0 resonances and, si-
multaneously, of low and high J cases. The latter distinction
is relevant when the resonance decay into v′ channels is to
be described. Actually, such description is not necessary here
because it would be mostly a repetition of what was said in
the comment to Fig. 5.

Comparing the resolutions presented in Figs. 7(a) and
7(b) to those in Figs. 5(a) and 5(b) (cf. also Figs. A15 and
A16 in Ref. 25), one comes to the conclusion that the popu-
lations of vibrational states of the H+

2 ion in the radiative A
→ X transitions are practically insensitive to the character of
the initial state of the reactants, continuum or resonance state,
shape (b = 0) or Feshbach resonance (b = 2). In turn, in-
specting the populations of rotational states of the product ion
from various states of the reactants, such as the resolutions in
the right panels of Figs. 5 and 7 and the plots of Pj ′ (nJ ) =
	

J RCTnr
n,j ′ /	J RCTnr

n and Pj ′ (E, J ) in Fig. 18(b) and Fig. A15a
of Ref. 25, a clear distinction between the initial b = 2 reso-
nances on the one hand and the initial b = 0 resonances and
continuum (E, J) states on the other hand is observed. The ex-
cited j′ = 2 state is preferably populated in the former cases,
Pj ′=2 > 40% and Pj ′=2/Pj ′ =2 > 2 (when k > 0). In the latter
cases, two states j′ = 0 and j′ = 2 are populated with compa-
rable probability, Pj ′=0 � Pj ′=2 ≈ 30%−40%, when J > 5 or
the state j′ = 0 is preferred, Pj ′=0/Pj ′=2 � 1.5, when J ≤ 2.

B. Emission spectra

Under this heading presented are quantities which in-
volve summation/averaging of the characteristics of the in-
dividual state-to-state transitions over the initial states only.

Figure 8 shows the photon-energy-differential cross-
section ∂

∂Eph
σ RCT(E,Eph) for the photon energy Eph–�E ∈

[−7800, 150] cm−1 as function of the reactant energy in
the entire range considered, E ∈ [0, 150] cm−1. The back-
ground part of this cross-section is the sum of the partial
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FIG. 8. Cross-section for the RCTnr reaction ∂
∂Eph

σ00(E, Eph) as function of reactant (E) and photon (Eph) energies. �E = 74 507 cm−1.

cross-sections of Eq. (42),

∂

∂Eph
σ RCT(bck)(E,Eph)

=
20∑

J=0

(2J + 1)
∂

∂Eph
σ RCT(bck)(EJ ; Eph),

and its resonance part is the sum of profiles of all 48 sharp
resonances RJ e

n which are listed in Table I, cf. Eqs. (10) and
(15)–(20),

∂

∂Eph
σ RCT(res)(E,Eph)

= π2¯3

μE

∑
J n

(2J + 1) pJ
n,00(E)

∂

∂E′ 	
J RCT
n (Ê′).

The two parts of the cross-section surface are exposed, respec-
tively, in the right and left panels of Fig. 8 (note the difference
in the scale factor of the third axis). The hills of the back-
ground part, the shadows parallel to the E axis, extend over
the positions of the v′ j ′ = 0 − 4 thresholds for v′ = 0 − 3
on the Eph axis. Thus, even the broad peaks of the individual

rate functions ∂2

∂E∂E′ R
RCT(bck)(EJ ; E′) are not washed out but

merely broadened by the summation over the partial states.
Obviously, the sharp resonance peaks survive this operation
even better. They appear in the left panel as steep “mountains”
with highly irregular tops.

Integration over the energy E of the cross-section
∂

∂Eph
σ RCT(E,Eph) multiplied by Eph× μE

π2¯3 and by the Boltz-
mann factor P(E, T) gives the spectral density of photon emis-
sion from the RCT reaction at temperature T, Eq. (9). The
spectrum I(Eph, T ) at T = 20 K from the RCTnr, i.e., for
Eph–�E ∈ [−7800, 0] cm−1, is presented together with the
spectrum from the RA reaction in Fig. 9. Due to the applied
averaging over the subsequent intervals �Eph = 50 cm−1, the
spectrum has a simple appearance of broad, regularly spaced
peaks, with centers at the photon energies nearly equal to the
separations of the v′ j ′ = 2 thresholds in the product channel,
for v′ = 0, 1, 2, 3, from the v = 0 j = 0 threshold in the reac-
tant channel. The highest is the v′ = 1 peak, with top intensity

at Eph ≈ 72 180 cm−1. The peak near the v′ = 2 threshold,
expected by Hooper to be the highest one, is actually the sec-
ond highest. Moreover, the photon-wave length correspond-
ing to this peak—142.8 nm—is smaller than Hopper’s pre-
diction (152 nm) mostly because it also accounts for the well
depth of the A-state PES relative to the v = 0 j = 0 threshold
which is 3351 cm−1 (see Fig. B2b of Ref. 25). The transitions
are from the near threshold region, not from the bottom of the
well.

The RA spectrum appears in the wing of the v′ = 0
peak as two rather narrow columns of disparate heights, the
higher being about 1.5 times lower than the main v′ = 0 peak.
Very similar features also appear in the wing of the v′ = 1
peak. Their counterparts in the v′ = 2, 3 peaks are barely dis-
cernible. This reflects the properties of the energy level struc-
tures of the He–H+

2 (I = 0) complex below the subsequent v′

thresholds (see Tables AI– AV and Figs. A8– A12 of Ref. 25).
All peaks in Fig. 9 are covered with two colors in the

proportion which reflects the contributions of transitions from
two groups of the reactant states, the continuum states and
b = 0 resonances in one group (light blue) and the b = 2
resonances in the other. The contribution of the latter group is
definitely larger.

The total colored area in the range of negative energies
Eph–�E gives the emission intensity IRCTnr = 37.1 × 10−33

W cm3. The gray and blue areas at Eph–�E > 0 taken to-
gether represent the intensity IRA = 2.0 × 10−33 W cm3. The
b = 2 resonance contribution to IRCT+IRA is as large as
75%. Nearly 50% of this contribution is made by the two near
threshold resonances (2 2 2 5) and (2 1 1 4).

C. Transition rates partially summed-up
over final states

Results to be presented in this subsection concern rates
of radiative transitions from individual reactant states, partial
continuum or quasi-bound, to specific manifolds of product
states.
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TABLE I. The lowest quasi-bound states of the He+ − H2(I = 0) complex. Energies Eres, dissociative widths
	 (both in cm−1), and radiative widths (in 10−6 cm−1): 	RA, 	RCTnr , and 	RCT.. obtained in the state-to-state
approach, and 	RCT+RA+iRaT := 	trad—from the 3D optical potential model. Comparison of the X4-projected
version of the optical potential model with the state-to-state approach in terms of percentage deviations �

= (x3Dopt/x − 1) × 100% for x = 	RA + 	RCTnr .

State A → X4 A → X6 A → X

b k vR J Eresa 	a 	RAa 	RCTnr b � 	RCT..c 	trad

2 0 0 6 17.61 1.2 (−2) 8.34 91.9 0.0 117.8 154.2
7 42.19 5.8 (−2) 7.79 94.5 1.5 120.9 160.3
8 68.51 7.7 (−2) 6.60 93.6 0.2 119.3 154.7
9 114.6 2.2 (−2) 5.97 87.0 0.6 110.8 143.1

10 146.96 1.2 (−2) 4.96 87.1 0.4 110.7 141.4
2 1 0 12 1.54 ∼0d 3.70e 109.2 − 0.2 137.6 171.5

13 44.2 0.2 3.11 96.6 − 0.6 121.6 167.8
14 89.8 0.2 1.99 100.8 0.1 126.9 161.2
15 137.8 2.3 (−1) 0.32 101.2 − 0.9 123.2 153.9

2 1 1 4 5.25 1.7 (−2) 6.18 90.0 0.1 114.7 151.3
5 20.66 2.4 (−2) 6.13 88.1 0.1 112.4 149.4
6 39.18 3.0 (−2) 6.22 89.7 0.1 114.3 147.3
7 60.89 3.2 (−2) 6.23 84.3 0.1 107.1 145.5
8 85.95 3.0 (−2) 5.52 88.1 0.0 112.4 144.1
9 97.2 0.1 5.10 89.4 − 0.5 113.4 145.9

10 127.8 1.3 (−1) 1.47 87.2 − 0.5 109.7 136.4
2 2 0 17 15.52 ∼0d 0.05 116.2 0.4 144.9 175.4

18 77.55 1.3 (−2) 0.02 108.3 0.6 135.7 163.7
19 142.3 5.5 (−1) 0.00 103.6 0.8 129.7 156.3

2 2 1 13 33.26 4.7 (−2) 0.20f 97.8 0.1 122.7 150.5
14 76.92 8.9 (−2) 0.10 92.5 0.2 115.9 142.1
15 122.8 1.3 (−1) 0.00 87.5 − 0.3 109.8 134.0

2 2 2 5 1.68 2.9 (−3) 3.48 79.8 0.9 100.9 126.9
6 19.23 3.1 (−2) 6.36 83.9 0.7 107.2 139.0
7 38.12 1.8 (−3) 1.95 80.3 0.6 101.2 123.8
8 60.50 8.4 (−3) 1.61 75.5 1.2 95.5 118.2
9 85.34 1.7 (−2) 0.33 74.3 0.6 93.3 113.6

10 112.47 2.8 (−2) 0.27 71.0 0.6 89.2 108.8
11 141.80 4.3 (−2) 0.13 62.8 0.4 79.0 103.6

2 0 1 0 139.57 2.0 (−2) 6.98 69.8 0.5 89.8 118.5
1 142.30 2.2 (−2) 6.89 69.2 1.1 88.7 117.3
2 147.76 2.6 (−2) 6.53 65.4 0.9 83.2 115.0

2 2 3 2 126.46 6.9 (−5) 3.42 53.7 1.1 68.4 87.4
3 133.51 3.4 (−4) 2.52 53.9 1.0 68.2 86.2
4 142.84 1.0 (−3) 2.16 53.2 0.9 68.1 84.6

2 1 2 1 152.04 5.0 (−4) 5.10 60.3 0.3 77.1 100.6
0 0 7 3 0.32 9.7 (−2) 0.5 0.7 0.8

4 1.0 0.7 g

6 6 1.7 1.0 (−1) 1.2 1.9 2.4
7 3.5 1.5 g

5 8 2.16 0.7 (−3) 0.13 4.9 0.2 6.2 7.5
9 7.2 1.1 g

4 11 11.1 0.1 0.09 7.9 1.3 10.0 12.6
12 21 4.2 g

3 13 7.96 1.2 (−7) 0.15f 22.7 1.1 28.6 34.8
14 29.0h 2.7 (−1) 0.06 14.9 1.0 18.7 22.8
15 48.5 5.6 g

2 16 24.65 3.6 (−6) 0.01 35.4 0.5 44.4 53.5
17 58.5 0.2 0.00 25.8 0.3 32.5 39.2
18 89.3 5.1 g

1 19 50.69 2.3 (−6) 0.00 52.3 0.1 65.5 78.8
20 101.02 4.5 (−2) 0.00 41.4 0.1 51.9 63.0
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TABLE I. (Continued.)

State A → X4 A → X6 A → X

b k vR J Eresa 	a 	RAa 	RCTnr b � 	RCT..c 	trad

0 21 19.72 ∼0d 0.00 82.1 0.5 102.2 123.5
22 89.11 3.4 (−7) 0.00 72.9 0.8 90.3 109.5

aMost of these results were presented graphically in Fig. 4 of Ref. 15.
bAccounts for transitions to the nonreactive subrange of the X-channel continuum, more specifically, to E′ ∈ [0, 7800] cm−1. The
contribution of iRaT in transitions to E′ ∈ [6487, 7800] cm−1 is estimated to be in most cases smaller than 1%, see Fig. A19 of
Ref. 25.
cThe symbol “..” added to the label RCT marks a contribution of iRaT in transitions to E′ ∈ [6487, 11 000] cm−1.
E′

max = 11 000 cm−1 is the upper limit of energies included into the subspace X6.
dDenotes extremely sharp resonance, 	 < 10−9 cm−1.
eThe number is nearly 1.5 times larger than that given in Ref. 15 (Table VI) because it accounts for an additional transition—to
the X channel resonance J ′ = 13, E′res = 14.3 cm−1 which decays almost entirely by spontaneous emission to bound states.
fThe number is nearly two times larger than that given in Ref. 15 because it additionally accounts for transitions to the two
long-living X-channel resonances: J ′ = 12, E′

res=10.5 cm−1, and J ′ = 14, E′res = 29.1 cm−1 (see Table III in Ref. 18). These
resonances decay by spontaneous emission with probabilities estimated as 0.94 and 0.05, respectively. The estimates are the ratios
	′rad/(	′+	′rad) obtained from the nonradiative and radiative (X → X) widths listed in Table III of Ref. 18.
gBroad resonance included into the background in the present calculations. See Fig. 10.
hThe position of this resonance was incorrectly listed in Table VI of Ref. 15.

1. Transitions from continuum states

Rates of transitions from the continuum states ([E,
E + dE] J) to all continuum states in the X4 subspace,

∂

∂E
RRCTnr(bck)(E, J ) =

∫ E′
max(X4)

0
dE′

J+1∑
J ′=J−1

∂2

∂E ∂E′

×RRCT(bck)(EJ ; E′J ′) (45)

with E′
max(X4) = 7800 cm−1, are plotted in Fig. 10(a) as func-

tions of the energy E for several values of J. The function
for a given J first rises from zero when the energy E ap-
proaches from below the top of the centrifugal barrier (EJ

cbr)
in the effective potential WJ

000;000(R), then eventually has a
peak if there is a shape resonance in the top region, and fi-
nally approaches a value which remains nearly constant up to

the end of the E range shown. The plateau values of differ-
ent J functions are nearly the same. Adding to the rate func-
tions (45) their counterparts for transitions to the X-channel
bound states15 would not introduce any visible change to
Fig. 10(a). Upon a closer inspection, the plateau values of the
different J functions would be found to coincide even slightly
better. Thus, apart from the peaks, the behavior of the rate
functions in Fig. 10(a) can be approximated by the following
formula: [

∂

∂E
RRCTnr(bck) + ∂

∂E
RRA(bck)

]
(E, J )

≈ �
(
E − EJ

cbr

) 1

2π¯
pRCTnr+RA, (46)

where �(..) denotes the Heaviside unit-step function and
pRCTnr+RA ≈ 2.7 × 10−6 is the probability of radiative
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RRCTnr(bck)(E, J ) for J = 4–19 as functions of energy of the reactants He+ + H2(v = 0, j = 0). The labels of the broad peaks are
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000;000(R) for J = 4–20. (b) Values of the rates ∂
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values of ∂
∂E

RRA(bck)(E, J ) versus the rates ∂
∂E

R bck
(→XN

v′ )(E, J ) obtained from the optical potential model, Eq. (39), for Nv′ = 4 and for Nv′ > 4. Symbols at

the position denoted by “t” represent the total radiative rates ∂
∂E

Rtrad(bck)(E, J ) obtained from the “complete” version of the 3D optical potential, Eqs. (34)
and (35).

transitions from continuum reactant states to the “nonreac-
tive” subspace of the product continuum and bound states.
The RA contribution to the probability is pRA ≈ 1.1 × 10−7

for J = 0–6 and decreases rapidly when J grows further, as-
suming values of ∼3 × 10−8, ∼8 × 10−10, and 0 for J = 10,
15, and ≥23, respectively.

Figure 10(b) shows how the rates of radiative transitions
from reactant continuum states change when the subspace
XNv′ of product states enlarges from the “nonreactive” sub-
space X4 up to the entire X channel, defined above as covering
the E′-energy range of [−1763.5, ∼ 21 400] cm−1. Namely,
the rates increase by a factor which is nearly independent of
the energy E and the number J of the states and converges
to the value of ∼1.52. In consequence, ptrad—the total ra-
diative transition probability from any continuum state (E, J)
which lies above the centrifugal barrier EJ

cbr attains the value
of ∼4.1 × 10−6. A close value (of ∼3.95 × 10−6) is obtained
when one inspects the classical counterparts of the probabil-
ities ptrad(E, J ) = 2π¯ ∂

∂E
Rtrad(bck)(E, J ), evaluated accord-

ing to the formula44

ptrad(E, b) = 2
∫ ∞

Rtrn

dR
A(R)

{2[E − Eb2/R2 − V (R)]/μ}1/2
,

(47)
in which the transition rate function A(R) and the potential
V (R) are taken as 1

¯
optW000;000(R) [Eq. (31)] and WJ=0

000;000(R),
respectively. b denotes the impact parameter, and Rtrn(E, b) is
the turning point at which the velocity {. . . }1/2 vanishes.

Figure 11 focuses on the behavior of the rates
∂

∂E
Rrad(E, J ) at energies below the centrifugal barriers EJ

cbr,
which are disregarded in the analysis of Fig. 10. The behavior
is demonstrated to be consistent with Wigner’s threshold laws
for reaction probabilities

2π¯
∂

∂E
Rrad(E, J ) ∼

E�EJ
cbr

Crad
J EJ+1/2. (48)

The coefficients Crad
J=0 (in units of E−1/2 and E in cm−1) are

8.65 × 10−6, 5.45 × 10−6, and 2.49 × 10−7 for rad = trad,
RCTnr, and RA, respectively. The calculated values of Crad

J>0
are given in Ref. 25. Obviously, there is no EJ=0

cbr and EJ=1
cbr

may be used in Eq. (48) to describe the range of thresh-
old behavior of J = 0 rates. The value of EJ=1

cbr which is
0.037 cm−1 serves hereafter as a rough boundary between
“cold” and “subthermal” energy ranges. Using this terminol-
ogy, the two other facts that emerge from Fig. 11 and Eq. (48)
may be stated: (i) there is no quasi-bound state of the reac-
tant system in the cold range, (ii) the relation between the rate
functions ∂

∂E
Rrad(E, J ) for rad=trad and rad = RCTnr +RA

remains the same as in the subthermal range, i.e., their ratio
stays close to 1.52.
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RCTnr, RA as functions of reactants energy in the range 10−7–10 cm−1. The
sticks in the lower right corner show the heights of the centrifugal barriers
in the effective potentials WJe

000;000(R) for J = 1, . . . , 9. The sharp peaks in
the red lines are the lowest b = 2 resonances, the other peaks are b = 0
resonances, see Table I.
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2. Transitions from quasi-bound states

Consistent with Eq. (15), counterparts of functions (45)
for radiative transitions from long-living resonances RJ

n are
the sums of Lorentzians

∂

∂E
Rrad(res)(E, J )= 1

2π¯

∑
n

	J
n 	J rad

n

(E − EJ res
n )2+ 1

4 (	J
n +	J trad

n )2
,

(49)
where rad = RCTnr, RA, RCT + iRaT indicates the consid-
ered subspace of final states of the transitions. Table I gives
a list of parameters of these functions for sharp resonances
(b k vR J ) := (n J ) that are most important in the present sim-
ulations (b = 0, 2 resonances in the [0, Emax] range). Together
with the energies Eres and the dissociative widths 	 four sets
of radiative widths 	rad: for rad = RA, RCTnr, RCT.. and trad
are listed. All these widths except 	trad were obtained within
the state-to-state approach, i.e., via prior determination of the
functions ∂

∂E′ 	
J rad
n (E′).

The widths 	RCT.. account for transitions to continuum
states in the subspace X6. The symbol “..” in the label signifies
a probable admixture of the iRaT since E′

max(X6) ≈ 11 000
cm−1 lies well above the threshold for this reaction. The val-
ues of 	J RCT..

n together with their resolutions into 	J RCT..
n,c′ for

c′ = v′, j ′ will be used later to assess reliability of the popu-
lations Pc′ (nJ ) determined in the calculations that accounted
only for transitions to the subspace Xnr, see Eq. (44).

The widths 	trad implicitly account for the resonance de-
cay to the entire channel X and serve therefore here as refer-
ence to estimate the magnitude of the contribution of transi-
tions excluded in the calculations of the widths 	RCTnr + 	RA,
i.e., transitions to the subspace X\Xnr which represents nearly
60% of the X-channel energy range. According to Table I, the
contribution is only of the size of ∼35% and is practically the
same for all resonances. Of the same magnitude is also the
contribution brought to the rates ∂

∂E
Rtrad(bck)(E, J ) by transi-

tions from the initial continuum states to the subspace X\Xnr,
as indicated by the value of 1 − pRCTnr+RA/ptrad.

Comparing the widths 	RA and 	trad in Table I it becomes
obvious that association into bound states of the HeH+

2 ion
contributes little to the radiative decay of the resonances (at
most 5.5%–6%) in the cases of low J resonances (2 0 1 0–2)
and (2 0 0 6). and the role of the RA becomes even smaller
with growing J of the initial state.15

3. Optical-potential versus state-to-state results

The above estimates are important for conclusions of
the present study. The fact that the used reference data 	trad

and ∂
∂E

Rtrad(bck)(E, J ) are obtained from the optical poten-
tial model may raise some criticism. The model is applied
here, probably for the first time, in the context of 3D colli-
sion dynamics. Essential to the application are the approxi-
mate formulas (33) and (38) which relate the energies of the
emitted photons to the matrix elements of the potentials in-
volved in the bases �JMp and �′ J ′M ′p′

, respectively. Apart
from noticing that the classical idea of the Mulliken difference
potential45 is exploited in this model, no rigorous theoretical
justification of the formulas can be offered. It is therefore req-

uisite to demonstrate that results from the present implemen-
tation of the optical potential model are reasonably consistent
with results from the quantum-mechanical state-to-state ap-
proach. This is done by enclosing into all tables of this paper
the relative percentage deviations � = (x3Dopt/x–1) × 100%
between values of the presented characteristics obtained from
the state-to-state calculations and from the X4 projected ver-
sion of the optical potential model. Moreover, results obtained
from the state-to-state and the optical potential calculations
with the basis X6 are compared graphically in several figures.

In Table I the values of the widths 	RCTnr + 	RCT := x

and 	(→X4) := x3Dopt are compared. In the majority of cases
the deviations are small, |�| � 1%. Deviations of the
same size occur between the values 	RCT.. + 	RA listed in
Table I and their 3Dopt counterparts 	(→X6). This is shown in
Fig. 12(a).

The main purpose of Fig. 12 is to demonstrate that the
widths 	(→XN

v′ ) converge with increasing Nv′ towards the val-

ues 	trad obtained by the “complete” optical potential. The
rate of this convergence is practically independent of the
quantum numbers (b k vR J ) of the resonances and is actually
also independent of any initial state (resonance or flat contin-
uum). Plots of ∂

∂E
R bck

(→XN
v′ )(E, J )/ ∂

∂E
Rtrad(bck)(E, J ) as func-

tions of Nv′ for the (E, J) cases shown in Fig. 10(b) would
be hardly distinguishable from the plots of 	(→Nv′ )/	trad in
Fig. 12(b). This is because all the initial states of the radia-
tive transitions considered here correlate with v = 0 state of
free H2 which is only weakly distorted by interaction with
He+ at R-distances where the transitions take place. The con-
vergence of the transition characteristics is nearly completely
determined by the same factor in all cases, which is the ac-
curacy of approximating the v = 0 function of H2 in the ba-
sis of v′ = 0, . . . , Nv′ − 1 functions of H+

2 (blue curves in
Fig. 12(b)).

D. Cross-sections

1. At energies E < ε01

The characteristics to be presented here summarize
all important partial contributions to the background,
∂

∂E
Rrad(bck)(E, J ) for J = 0–20, with the contributions

(49) of all important sharp resonances (b = 0, 2 k vR J ), for
J = 0–22.

The total cross-sections σ rad for rad = RCTnr, RA, trad
are plotted as functions of the energy E in Figs. 13 and 14 and
listed for selected energies in Table II. All resonances from
Table I except those with 	 � 	trad show up as peaks in the
cross-section functions. In every function, the peaks grow out
of a background which decreases slowly with growing E. The
backgrounds of the functions σ trad(E) and σ RCTnr (E) are seen
to decrease with nearly the same rate whereas the background
of the function σ RA(E) decreases evidently faster.

Figure 14 more clearly displays this difference. The
energy dependence of the cross-sections σ rad(bck) for rad
= RCTnr + RA and rad =trad is demonstrated to be well de-
scribed by the formula of the Langevin capture model,46, 47

prad σ cpt(E), in which the values of prad are as estimated in
the discussion of Fig. 10 and the capture cross-section σ cpt(E)
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is obtained by interpolating between the values σ (E = EJ
cbr)

= π ¯
2 J (J+1)
2μ EJ

cbr
that correspond to the top points (RJ

cbr, E
J
cbr) of

the centrifugal barriers in the potentials WJ
000;000(R) for J = 4–

20. At energies larger than 7 cm−1, the capture cross-section

takes the form σ cpt(E) ≈ ςE−1/2 with ς = 1374 Å
2×

√
cm−1

(or 10.47 a2
0

√
EH ). The decrease with collision energy like

E−1/2 is typical of ion-molecule reactions without threshold.47

The departure from this behavior which is seen in Fig. 14 at
energies below 7 cm−1 is most likely an effect of improper
functional representation of long-range tail of the potential
V A (see Fig. A2b of Ref. 25).

The energy dependence of the cross-section σ RA(bck) is
not describable by the capture model because the probability
pRA cannot be treated as a constant in the summation over
the partial (J) contributions. Due to the rapid decrease of this

probability with increasing J from 10 to 23 the cross-section
σ RA(bck) decreases faster than E−1/2. The dependence becomes
close to E−1 at energies above 20 cm−1, σ RA(bck)(E) ≈ c/E0.96

with c = 4.2×10−4 Å
2

cm−0.96.
The light green curves in Fig. 13 represent estimates of

the cross-sections for the iRaT and the “true” RCT obtained
as

σ∼iRaT(E) = P pT×[σ trad − σ RCTnr − σ RA](E)

≈ P pT×
[

1 − pRCTnr+RA

ptrad

]
σ trad(E) (50)

and as σ∼RCT = σ trad–σ RA–σ∼iRaT, respectively. The sym-
bol P pT denotes a fraction of states in the subspace X\Xnr

reached in radiative transitions from the A channel that would
pertain to the system HeH+ + H rather than to He + H+

2

TABLE II. Cross-sections σ (in 10−4Å2) for RA, RCTnr, and RA + RCT + iRaT := trad reactions at selected energies E (in cm−1) below the ε01 threshold.
Contributions to σRCTnr and σ trad of transitions from continuum states of reactants (bck). Comparison of results from the state-to-state approach and from the
X4 projected version of the 3D optical potential model in terms of � = (x3Dopt/x − 1) × 100% for x = σRCTnr + σRA.

σRCTnr σ trada σRCTnr σ trada

E σRAb tot bck � tot bck E σRAb tot bck � tot bck

5 2.03 32.5 15.0 0.3 53.5 23.9 50 0.10 6.6 6.4 − 1.0 10.0 9.7d

7.2 0.73 20.5 20.2d 1.8 32.6 32.0d 60 0.14 5.9 4.7 0.5 9.2 7.3
10 0.41 11.9 11.2 2.8 19.1 17.8 70 0.10 4.9 4.5 0.8 7.6 6.9

0.0c +0.2c

15 0.30 9.5 9.2 1.5 15.0 14.6 80 0.06 4.4 4.2 1.2 6.8 6.4
25 0.19 7.8 7.5 1.7 12.2 11.8 90 0.84 57.5 6.1d 0.6 91.5 9.3d

40 0.21 7.0 6.0 0.9 11.1 9.3 100 0.05 4.2 3.8 1.0 6.5 5.9
+0.3e +0.4c +0.2e +0.3c

aAssuming that contribution of the iRaT can be described as P pT×(σ trad − σ RCTnr − σ RA) with P pT ∈ [0.15, 0.30] (see the text and Fig. A19 of Ref. 25), an estimated cross-section
for the RCT is obtained as [1 − P pT×(1 − 1

1.52 )]σ trad − σ RA := σ∼RCT.
bAt E > 20, the “bck” contribution can be described as σ RA(bck)(E) ≈ 4.2/E0.96.
cDeviation of σ trad(bck)(E) from the value of the capture model, ptrad × ς /E1/2 with ptradς = 56.3 in the present units (or 42.9 × 10−6 a2

0E
1/2
H ). See Fig. 14.

dEffect of non-monotonicity due to included broad resonance, see Table I and Fig. 10.
eDeviation of [σ RCTnr(bck)+σ RA(bck)](E) from the capture model value of 37.1/E1/2.
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if the proton transferred channel were not artificially closed
on the X-state PES used (see Fig. A0 of Ref. 25). By com-
bining the information obtained in the present study on the
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FIG. 14. Total radiative cross-sections σ rad(E) for rad = RCTnr + RA and
rad = RCT + iRaT + RA:=trad as functions of reactant energy in the sub-
thermal range below ε01 compared to the cross-section pradσ cpt(E) of the
Langevin capture model.46, 47 Dots represent values of the capture cross-

section σ cpt(E = EJ
cbr) = π

¯2 J (J+1)
2μ EJ

cbr
determined from the heights EJ

cbr of

the centrifugal barriers in the potentials WJ
000;000(R) for J = 5–17. The red

line shows the function ς/
√

E with ς = 1374 Å
2×

√
cm−1 fitted to values

of σ cpt(E = EJ
cbr) for J = 9–20. The green line, close to the ptradσ cpt(E)

line, represents results from the classical formula 2π
∫

ptrad(E, b) bdb with
ptrad(E, b) given by (47). Also shown is the cross-section σRA(E) to which
the capture model does not apply. Crosses represent approximate values

of σRA(bck)(E = EJ
cbr) evaluated as ¯2π

2μEJ
cbr

∑J

J̃=0(2J̃ + 1) pRA(J̃ ). The con-

stant probabilities pRCTnr+RA = 2.7 × 10−6 and ptrad = 4.1 × 10−6, and
the J-dependent pRA are deduced from plateau values of the respective rate
functions ∂

∂E
Rrad(bck)(E, J ), see Fig. 10(a) and Eq. (46). Note that the cross-

sections σRA and σRA(bck) are enlarged 50 times in the figure.

populations of the states in the subspace (Figs. 10(b) and 12)
with the information available in the literature21 on the prob-
abilities of the proton transfer reaction the value of P pT is
estimated as 0.15–0.3 (see Fig. A19 of Ref. 25 for details).
Thus, the cross-section for the iRaT is obtained at each energy
E as the fraction of ∼5%–10% of the total radiative cross-
section σ trad. The fact that σ∼iRaT(E) is larger than σ RA(E)
seems realistic. The resulting estimate of the background
part of σ∼RCT(E) is pσ cpt(E)–σ RA(bck)(E) with p = 3.68–3.89
× 10−6. Using the approximate formulas from the previous
paragraphs of this subsection one easily evaluates the ratio
σ∼RCT(bck)(E)/σ∼trad(bck)(E). It indicates that the RCT consti-
tutes about 88%–94% of the total radiative reaction RCT +
RA + iRaT. The final estimate, given in Sec. VI E, is only
slightly lower.

The shapes of the cross-section functions σ rad(E) for rad
= RCTnr, RA, trad simplify enormously in the cold energy
range where they are composed of a few lowest partial rates
∂

∂E
Rrad(E, J ) in the form (48). At energies below 0.001 cm−1

(ultra-cold range),

σ rad(E) ≈ ¯
2π

2μ
Crad

J=0 E−1/2. (51)

An illustrative plot is enclosed in Ref. 25 (Fig. B6a). The
plot also shows that the capture model, i.e., pradσ cpt(E), ad-
equately describes the background of σ rad(E) down to an en-
ergy of about 0.5 cm−1 where no less than three partial rates
(J = 0–2) contribute.

2. At energies ε01 < E < ε02

As mentioned in Sec. V, the majority of calculations for
this energy range are done using the optical potential model.
The results, describing the total radiative quenching of He+
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in the range ε01 − ε02 related to quasi-bound states of the He+ −H2 complex, see Tables BI−BIII and Fig. B6b of Ref. 25.

in collisions with H2(v = 0, j ), are generated for both open
channels in the collisions, j = 0 and j = 1. The main goal is
to compensate for the omission of the j = 1 channel in the
state-to-state calculations and to estimate the respective con-
tribution to the rate constant for the “true” RCT.

Figure 15 shows the cross-sections σ trad
0j (E) for j = 0,

1 as functions of E ∈ [118.4, 350] cm−1. Details on vari-
ous contributions to these quantities are provided in Fig. B7a
of Ref. 25. The backgrounds of the partial cross-sections,
σ

trad(bck)
0j (EJp) = ¯3π2

μ(E−ε0j )
∂

∂E
R

trad(bck)
0 j (EJp), are shown to be-

have consistently with the capture model, i.e.,

∂

∂E
R

trad(bck)
0 j (EJp) ≈

min(j,J )∑
λ=(1−p)/2

�
(
E − E

Jpjl(λ)
cbr − ε0 j

)
× 1

2π¯
ptrad. (52)

Here EJpjl(λ) denotes barrier top in an appropriate adia-
batic potential eJp

v=0j l(R) which correlates with the potential

W
Jp

0jλ;0jλ(R) through the relation l(λ) = J + j+ 1−p

2 −2λ. The

result of the summation
∑

J,p(2J+1)σ trad(bck)
0j (EJp) appears

as simple as

σ
trad(bck)
0j (E) ≈ (2j + 1) ptrad σ cpt(E − ε0j ), (53)

where σ cpt is the capture cross-section introduced in Subsec-
tion VI D 1. This formula approximates well the function
σ

trad(bck)
01 (E) in the entire range shown in Fig. 15 except very

near the threshold ε01. The behavior of σ trad
01 (E) in the thresh-

old region is analyzed in Fig. B6b of Ref. 25.
Rich structures of peaks emerge from the backgrounds

of the cross-sections in Fig. 15. They represent quasi-bound
states of the complexes He+ − H2(I) for I = 0, 1 that live
longer than 5 ps (	 < 1 cm−1). Altogether there are 269
such states in the range [ε01, ε02]. The characteristics of the
states used as parameters of the individual Lorentzian profiles
in the cross-sections, i.e., the energies Eres and the widths 	

and 	trad, are presented in Fig. B7b and in Tables BII–BIV of
Ref. 25. The set of the widths 	trad of the quasi-bound states is
completed with respective widths of all (603) bound states of
the complex (Tables BV–BIX) in order to better see the cor-
relations with the quantum numbers assigned to the states. It
is found that the correlations are reasonably well represented
by the formula

	J trad
b k vR

≈ ϒ(vR, vθ ) −
2∑

m=1

γm(vR, vθ )×[J (J + 1) − k2]m,

where vθ = b − k. The parameter ϒ assumes the value of
∼250 × 10−6 cm−1 for vR = vθ = 0, diminishes rapidly with
growing vR and much less rapidly with growing vθ The pa-
rameter γ 1 is of the size of 2 × 10−7 cm−1 (further details are
given in Fig. B8 of Ref. 25).

E. Rate constants

Upon Boltzmann averaging of the cross-sections σ trad
0j (E)

for j = 0, 1 and σ rad
00 (E) for rad = RCTnr, RA, the respective

rate constants krad
0j (T ) are obtained as functions of tempera-

ture in the range 1 μK−100 K. These functions are presented
in Figs. 16 and 17 and in Table III under symbols krad

I=0 and
krad
I=1 for j = 0 and j = 1, respectively. Additionally, the ther-

mal averaging of the cross-sections σ trad
0j (E) for j = 0, 1 is per-

formed in a way which better conforms the conditions of the
experiment of Ref. 13, namely, assuming constant 3:1 popu-
lation ratio of I = 1 and I = 0 states or so called “normal”
hydrogen in the gas mixture with the He+ ions. Appropriate
counterparts of the functions ktrad

I (T ) for I = 0, 1 are obtained
as

nk
trad
I (T ) = ktrad

I (T )
Z(T )

4ZI (T )
, (54)

where Z = ∑
I gIZI and

∑
I gI = 4, see Eq. (8). They are

also presented in Fig. 16 and in Table III.
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TABLE III. Rate constants k (in 10−15 s−1 cm3) for reactions RA, RCTnr, RCT.., and RA + RCT + iRaT(:=trad) at selected temperatures T from the range
2–50 K. Contributions of transitions from continuum states (bck) and from selected groups of resonances in reactant channel. Results from the state-to-state
approach (A → X4 and A → X6) and from the 3D optical potential model. Comparison of the X4 projected version of the model with the state-to-state approach
in terms of � = (x3Dop/x − 1) × 100% for x = kRCTnr +kRA. Under the symbol nktrad listed are values of the rate constant for the RA + RCT + iRaT in gas
mixtures with “normal” H2.

A → X4 A → X6 A → X

kRA
I=0 k

RCTnr
I=0 � kRCT..

I=0 kRA+RCT+iRaT
I=0 ktrad

I=1 nktrad

T tota bckb totc bckd rese b = 0 totf bck res b = 0 totg bckh resi b = 1 j

2 3.16 0.37 70.7 3.4 5.7 0.8 89.8 113.2 5.7 9.3 41.6
5 2.39 0.31 49.1 4.3 3.8 0.7 62.4 79.3 7.0 6.0 39.1
7 2.03 0.28 40.3 4.5 3.1 0.7 51.3 65.3 7.3 4.9 37.3
10 1.73 0.25 33.5 4.7 2.5 0.7 42.6 54.4 7.5 4.0 35.4
15 1.46 0.22 28.8 4.8 2.1 0.6 36.6 46.7 7.7 3.3 33.5
20 1.30 0.21 26.6 4.9 1.8 0.6 33.8 43.2 7.8 2.9 0.1 32.1
25 1.17 0.20 25.2 4.9 1.7 0.6 32.0 40.9 7.8 2.6 0.3 0.1 31.0
30 1.05 0.19 23.9 4.9 1.5 0.5 30.3 38.7 7.7 2.4 0.8 0.2 0.1 30.1
35 0.94 0.18 22.4 4.7 1.4 0.5 28.4 36.3 7.4 2.2 1.7 0.5 0.3 29.3
40 0.83 0.16 20.7 4.4 1.3 0.4 26.1 33.6 7.1 2.0 2.9 0.9 0.4 28.6
45 0.73 0.15 18.8 4.1 1.2 0.4 23.8 30.8 6.7 1.8 4.2 1.3 0.6 28.0
50 0.64 0.14 17.0 3.8 1.0 0.4 21.5 28.1 6.2 1.7 5.6 1.8 0.8 27.5

aThe values differ slightly (by 4% at most) from those listed in Table X of Ref. 15. This is mostly because: (i) the present numbers account additionally for transitions to the six very
sharp X-channel resonances which are listed in Table III of Ref. 18 (j even case), (ii) the contributions of the A-channel resonances are reevaluated using the “cutting factor” 	/(	
+ 	RA + RCT + iRaT) in place of 	/(	 + 	RA).
bAt T > 10 K, can be approximated by 0.374 × T −0.192/Z(T ) := kRA(bck)(T ) with Z(T) defined in Eq. (8) and truncated to 1 + 9 exp (−170.31/T) + 5 exp (−509.37/T).
cTemperature dependence of resonance part (“tot”−“bck”) can be described at T > 15 K (see Fig. 17(b)) as: 46.9×T −0.255/Z(T ):=kRCTnr(res)(T ).
dAnalytical representation at T > 10 K is: BRCTnr+RA/Z(T ) − kRA(bck)(T ) := kRCTnr(bck)(T ) with BRCTnr+RA = 5.1 matching well the value of

√
2
μ

ς×pRCTnr+RA = 5.0, where ς is

the parameter of the capture cross-section presented in Fig. 14.
eContribution of the twelve sharp b = 0 resonances listed in Table I.
fAssuming that the iRaT contribution is P pT×(ktrad − kRCTnr − kRA) with P pT ∈ [0.15, 0.3] (see footnote a in Table II), the rate kRCT

I=0 is estimated to constitute about 87%−92% of
the value of ktrad

I=0 for a given T.
gAbout 87%−92% of the value of ktrad

I=1 for a given T is estimated to be the rate kRCT
I=1 . See footnote f.

hAdded to k
trad(bck)
I=0 in the tenth column gives the total background part nearly constant at T > 20 K: ktrad(bck)(T ) = B trad = 7.9. The respective value from the capture cross-section is

7.6.
iContribution of about forty b = 1 resonances which occur in the energy range of 118.37−350 cm−1. See Fig. B7b of Ref. 25.
j At T > 15 K, the contribution nk

trad
I=1(T ) constitutes a nearly constant fraction of ∼2/3 of the values of nktrad(T). The “bck” contribution is nearly the same as ktrad(bck), see Fig. 16(b).

More details on the function nktrad(T) in the range T = 5–100 K are given in Fig. B9 and in Tables BX– BXI of Ref. 25.

Figure 16(a) shows the rate constant function of the to-
tal radiative quenching of the He+ ions from the gas mixture
with “equilibrium” hydrogen, ktrad(T ) = ktrad

I=0(T )+ktrad
I=1(T ),

and compares the magnitudes and shapes of its various parts
in the entire temperature range considered. At temperatures
below 1 mK, the function ktrad(T) as well as its parts kRCTnr (T )
and kRA(T) are constant

krad(T ) ≈ ¯2π

2μ3/2
Crad

J=0 ;

the respective values are 4.56, 2.88, and 0.13× 10−16 s−1 cm3.
At temperature between 1 mK and 2 K, the function ktrad(T)
rapidly grows due to increasing involvement of reactant states
other than the J = 0 state. Transitions from J = 1–3 continuum
states enlarge the background part of the function by a factor
about 10 and transitions from the lowest resonances, in par-
ticular from the (2 2 2 5) state, build up a peak whose height
at T = 2 K exceeds more than ten times the value of the back-
ground. At higher temperatures, 10 < T < 100 K, transitions
from all included continuum states together with transitions
from the shape resonances (b = 0 and b = 1 states) produce
a nearly constant “bck+shp” part of ktrad(T) whereas the con-
tribution of the Feshbach resonances (b = 2 and b = 3 states)

decreases roughly like T−2/5 (see Fig. B9 and Tables BX– BXI
of Ref. 25 for a more detailed description).

At temperatures below 20 K, the function ktrad(T) practi-
cally describes the quenching due to collisions with H2(I = 0)
only; the constituent ktrad

I=1 is totally negligible (see Table III
and Fig. 16(b)). One may wonder how the quenching at these
low temperatures would look like if the gas mixture contained
pure ortho-hydrogen. This is answered in Fig. 16(a) by show-
ing the rate constant function ok

trad(T ) = 4
3 nk

trad
I=1(T ). Its over-

all shape in the range T < 1 K is quite similar to the shape
of the function ktrad(T) but two significant shifts occur: the
cold limit of oktrad lies higher, at 7.54 × 10−16 s−1 cm3, and
the peak appears at a lower temperature, of ∼10 mK. This
peak is built by transitions from b = 1 resonances, predom-
inantly from the (1 1 8 2e) resonance which lies only 0.008
cm−1 above the ε01 threshold (see Fig. B6b and Table BIII of
Ref. 25). At temperatures around 1 K, transitions from b = 3
resonances (see Table BIV of Ref. 25) begin to build a sec-
ond, though much lower peak in the function oktrad(T), with
maximum value of ∼30 × 10−15 s−1 cm3 attained near 10 K.

Figure 16(b) gives an expanded view of the function
ktrad(T) and of its parts in the temperature range 10–100 K
and additionally shows two sets of curves and symbols which
serve the following two purposes: (i) a comparison of ktrad(T)
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FIG. 16. (a) Rate constants of the radiative reactions RCT + RA
+ iRaT(:=trad), RCTnr, and RA determined as functions of temperature in
the present study: ktrad(T)—in the range 1μ K−100 K (from the 3D optical
potential model), kRCTnr (T ) and kRA(T)—in the subranges 1 μK−10 mK and
2−50 K (from the state-to-state approach). Note that the values of kRA are
enlarged 20 times in the figure. Also shown are the contributions to ktrad(T)
of transitions from the reactant continuum states (bck) and shape resonances
(b = 0 and b = 1 states). The violet curves are for the RCT + RA + iRaT
in gas mixtures with pure ortho-H2. (b) Rate constant ktrad(T) and its vari-
ous components in the range 10−100 K plus the function nktrad(T) and its
respective components describing the RCT + RA + iRaT in gas mixtures
with “normal” hydrogen. “∼RCT”—an estimated contribution of RCT to
nktrad (see Fig. A19a of Ref. 25). “Classical”—obtained from the classical
cross-section shown in Fig. 14. Comparison with results from the 1D optical
potential model of Ref. 14 and with the available experimental data (red sym-
bols): the values of kRCT determined in Ref. 13 (dots) and the upper limits for
kRCT + iRaT determined in Refs. 3, 4, and 12 (downward arrows).

with the rate constant function for the quenching of the He+

ions from mixtures with the “normal” hydrogen, nk
trad(T )

= ∑
I nk

trad
I (T ), and (ii) a confrontation of both functions

with the available experimental data3, 4, 12, 13 and the previous
theoretical simulation.14

The rate constant nktrad(T) takes a clearly smaller value
than its “equilibrium” counterpart ktrad(T), 35.4 versus 54.4
× 10−15 s−1 cm3, at the lower border of the T interval shown
in Fig. 16(b) but it decreases less rapidly inside the interval
and becomes by only ∼6% smaller at the upper border, 22.9
versus 24.4 × 10−15 s−1 cm3. Actually, the background parts
of the two functions are almost identical and nearly constant
within the entire interval 10–100 K,

nk
trad(bck)(T ) ≈ ktrad(bck)(T ) ≈

√
2

μ
ς ptrad,

which is a consequence of the validity of the capture model,
Eq. (53). The common background is quite close to the rate
constant curve which is obtained from the classical cross-
section plotted in Fig. 14. Thus, the difference between the
functions nktrad(T) and ktrad(T) appears here as a purely quan-
tum effect since it almost entirely stems from the involvement
of the A-channel resonances in the RCT + RA + iRaT re-
action. The resonance parts of the functions, nktrad(res)(T) and
ktrad(res)(T), differ in values at T = 10 K like 27.9 and 46.9
× 10−15 s−1 cm3 and in shapes within the 10–100 K interval
like T−0.26 and T−0.41.
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FIG. 17. (a) Rate constant kRCT(T) in the temperature range 10−50 K (the
green area labeled ∼RCT) obtained from the calculated rate constant func-
tions (black and yellow lines) kRA

I=0+1(T ), k
RCTnr
I=0 (T ), and kRCT+RA+iRaT

I=0+1 (T )
under the assumption (see text and Fig. A19 of Ref. 25) that the values of
kiRaT(T) are within the range shown by the green strip labeled ∼iRaT. Com-
parison of the estimated “bck + shp” part of kRCT(T) (excluding the Feshbach
resonance contributions) with the experimental data of Ref. 13. The nearly
coincident yellow and black lines show rate constants due to transitions to
the X4 and X6 subspaces obtained from the XNv′ -projected optical potential
and the state-to-state approaches. (b) Rate constant of the RCT due to transi-
tions to the nonreactive subspace of the X channel. The colored areas under
the kRCTnr (T ) curve (black solid line) show contributions of transitions from
the A-channel continuum (free), sharp shape (b = 0), and Feshbach (b = 2)
resonances. The latter contribution is resolved into parts showing the role of
two kinds of final states of the transitions: the X-channel continuum and res-
onance states. The gray pointed lines show the analytical fits (described in
Table III): kRCTnr(bck)(T ) and kRCTnr(res)(T ) + kRCTnr(bck)(T ).

Of particular interest in the present study are the contri-
butions of the Feshbach versus shape resonances in the reac-
tant channel. They can be estimated by comparing the curves
labeled in Fig. 16(b) “I = 0 + I = 1,” “bck + shp,” and
“bck,” those drawn in yellow color—for ktrad, and in violet—
for nktrad. The shape resonances are seen to contribute approx-
imately one fourth to the “bck+shp” value of ktrad which is
∼10−14 cm3 s−1. The Feshbach resonances enlarge this value
by a factor which varies from nearly 5 at T = 10 K to nearly
2.5 at 100 K. It has to be noticed, however, that at tempera-
tures T � 10 K the rate constant ktrad sensitively depends on
positions of the near threshold b = 2 resonances, like (2 2 2 5)
and (2 1 1 4). A slight correction of the potential V A can eas-
ily shift these resonances below the threshold. The high peak
at T = 2 K would then disappear and the values at T = 10 −
15 K would diminish even by 50% (see Fig. B9d of Ref. 25).
But even when taking a slight inaccuracy of the upper state
potential into account, one can safely conclude that no less
than 70% of the magnitude of the rate constant ktrad at tem-
peratures 15−40 K are due to transitions from the Feshbach
resonances. The contribution decreases from ∼70% to ∼60%
with T increasing from 40 to 100 K.

A comparison of the violet and yellow “bck + shp”
curves in Fig. 16(b) reveals that the shape resonances make
actually a somewhat larger contribution to the rate constant
nktrad than to ktrad. So, the decreased values of nktrad are just
due to the involvement of the Feshbach resonances. More
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precisely, the decrease is caused by the fact that the average
position of b = 3 states relative to the threshold ε01 is higher
than the average position of b = 2 states relative to ε00. Fur-
ther details on nktrad versus ktrad are given in Fig. B9 and in
Tables BX–BXI of Ref. 25. Here, it should be emphasized
that the percentage contribution of the Feshbach resonances
to the rate constant nktrad is still large, i.e., ∼60 % in the entire
10–100 K range.

The “bck+shp” part of ktrad(T) [or nktrad(T)] is the clos-
est counterpart of results which are obtainable for the entire
rate constant function from one-dimensional optical potential
models, see Figs. B1 and B2 and Table BI of Ref. 25. Indeed,
this part of nktrad(T) agrees very well with the results from the
model calculations of Kimura and Lane14 shown in the figure.
The agreement is an important aspect in the present theoreti-
cal argumentation to characterize the RCT reaction.

As already indicated by the state-to-state calculations, it
is especially the benefit from applying the present extended
version of the optical potential model that the rate constant
for the radiative quenching of the He+ ions from the mixture
with the H2 molecules can be safely determined. This pro-
vides the basis for demonstrating the importance of the quasi-
bound b = 2 and b = 3 states formed by the reactants. The
large increase in the rate constant due to these resonance states
is fully consistent with Hopper’s hypothesis about the role of
rotational predissociation as a possible initial step of the RCT
reaction but it is in conflict with the experimental findings
of Schauer et al.13 Their values for the rate constant of the
RCT reaction at temperatures in the range 15–40 K are far
below the nktrad(T) curve in Fig. 16(b). But they coincide well
with the present “bck + shp” curve(s). On the background of
the present results it becomes therefore evident that the con-
clusion by Schauer et al. “that radiative charge transfer does
not involve complex formation” cannot be maintained. Even
if inaccuracies in the potential determinations and the effects
of approximations in the dynamics calculations are critically
taken into account, there cannot be any doubt about the im-
portance of Feshbach resonances in this process.

Actually, the rate constant nk∼RCT (see Fig. A19 of
Ref. 25 and Fig. 17(a)) rather than nktrad should be com-
pared to the experimental results of Ref. 13 which reduces the
discrepancy, however, only slightly. The relative deviations
[nk

∼RCT/kRCT
expt − 1]×100% are of the size of 150% –250%.

There is, on the other hand, an example for a fairly good
agreement between the present results and earlier experimen-
tal findings. The values of the rate constant ktrad at tempera-
tures in the range 80−100 K appear to be close to the upper
bound for the rate of production of the H+

2 and HeH+ ions
in He+ +H2 collisions obtained experimentally by Johnsen
et al.3, 4 These measurements are quoted in Fig. 16(b) by the
two downward arrows. The same upper bound has also been
referred to by Schauer et al.13 to demonstrate consistency with
the earlier experiments. Surprisingly, in their Fig. 4 this bound
is substantially lowered.48

Figure 17(a) presents a resolution of the rate constant
ktrad(T) into contributions of the three participating reactions
in the temperature range 10–50 K. The resolution is made
using the state-to-state results for the RA and RCTnr reactions
and the estimation for the iRaT which is described in

Sec. VI D 1. Translated to rate constant, Eq. (50)
gives k∼iRaT(T) = f(T)ktrad(T) with f (T ) = P pT×[1
− k

RCTnr+RA
I=0 (T )/ktrad

I=0(T )]. This estimate and the corre-
sponding estimates of the “true” RCT rate constant k∼RCT

= (1 − f)ktrad − kRA, and of its “bck + shp” part are shown
in the figure by the light green strips. The contributions of
k∼RCT, k∼iRaT, and kRA to the values of ktrad are: ∼87%−92%,
∼10%−5%, and ∼3%−2%, respectively. At T < 40 K, the
calculated values of k

RCTnr
I=0 constitute approximately two

thirds of the estimated values of k∼RCT.
Figure 17(b) shows a resolution of the rate constant

k
RCTnr
I=0 (T ) for T ∈ [10, 50] K into contributions depending

on the character of individual states of the radiative A → Xnr

transitions: either resonance (b = 2 or b = 0) or continuum
(free) states in the A channel and either resonance or contin-
uum states in the Xnr subspace of the X channel. The largest
contribution, of about 40%, is due to b = 2 → free transitions.
Resonance-resonance transitions play a comparable role, but
are definitely not as dominating as was expected by Hopper.
This is due to the fact that the X-channel resonances are gener-
ally shorter-living, less discernible from continuum, than their
A-channel counterparts (see Figs. A3–A13 and Tables AI–AV
of Ref. 25). It should be noticed here, however, that the res-
olution of the entire b = 2 resonance contribution into the
A(b = 2) → X(free) and A(b = 2) → X(resonance) parts pre-
sented in the figure is actually somewhat artificial. It has been
obtained by dividing the range of integration over the energy
E′ of the respective width functions ∂	/∂E′, i.e., the range
0 − E′

max(X4), into two subranges that included halves of the
intervals between the subsequent εv′, j ′=2 thresholds lying, re-
spectively, above and below these thresholds for v′ = 0 − 3.

F. Populations of final states

1. As functions of energy E < ε01

Populations of vibrational and rotational states of the H+
2

ion produced in transitions from individual resonance and
continuum states of the He+ +H2(v = 0, j = 0) reactants
(examples displayed in Figs. 4–6, and Ref. 25, Fig. A16) are
discussed here in the form summarized—as the ratios of the
cross-sections,

Pc′ (E) = σ
RCTnr
→c′ (E)/σ RCTnr (E) for c′ = v′, j ′.

In this form they are presented in Fig. 18 for four selected val-
ues of the energy E, including one from the ultra-cold range.

The populations Pv′ (E) for v′ = 0 − 3 in Fig. 18(a) do
not differ much from the “individual” populations Pv′ (EJ ; J ′)
and Pv′ (nJ ; J ′) shown in Figs. 4 and 6. Practically indepen-
dently of E, the populations are Pv′=0 ≈ Pv′=1 ≈ 30% − 35%
and Pv′=2 ≈ 20%.

The maximum of Pv′ occurs at the two lowest states,
not at v′ = 2. As pointed out previously, this is an effect of
vibrational inelasticity in the X channel. However, the effect
is probably overestimated in the figure due to the limitation
of the manifold of product states to the Xnr subspace. It can be
expected that radiative transitions to the subspace X\Xnr will
populate also v′>3 states and that subsequent inelastic transi-
tions from this subspace will enhance populations of v′ = 3, 2
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FIG. 18. Populations Pc′ (E) = σ→c′ (E)/σ (E) of a) vibrational (c′ = v′)
and (b) rotational (c′ = j′) states of the product ion H+

2 of the RCTnr re-
action (v′

max = 3) for three energies E of the reactants in the subthermal
range, chosen to be close (filled red squares) and far from b = 2 reso-
nance positions (black symbols), and for E = 0.001 cm−1 representing the
ultra-cold range. At the latter energy, the total cross-section is σRCTnr (E)

≈ π¯2

2μ
CRCTnr

J=0 ×E−1/2 ≈ 2.15×10−4+3/2 Å
2
. The values of σRCTnr (E) for the

other energies can be found in Table II. The gray symbols show the popula-
tions due to transitions to the X6 subspace of the X channel (v′

max = 5). (c)
Population of j′ = 0 and j′ = 2 states in transitions from continuum states
(E, J). Dependence on the number J. (d) Comparison of j′-state populations
from decay of b = 2 and b = 0 resonances. The values of the total widths 	

are listed in Table I, in the column 	RCTnr . See also Figs. A16 and A18 of
Ref. 25.

states in Xnr. In the “true” RCT the states v′ = 0 − 3 will
therefore be more evenly populated compared to what is
shown with the dark symbols in Fig. 18. A shift of the
maximum population to v′ = 2, however, does not seem to
be likely. This is indicated by the gray symbols in Fig. 18(a)
representing populations due to transitions to the subspace
X6, which cover about 80% of all transitions contributing to
the “true” RCT (according to the estimations of Ref. 25, Fig.
A19a).

The populations Pj ′ (E) shown in Fig. 18(b) for E
= 0.001, 10, and 100 cm−1 have shapes that are character-
istic of transitions from continuum states and b = 0 reso-
nances. This is obvious for transitions at the energy E = 0.001
cm−1 since Pj ′ (E) ≈ Pj ′ (E, J = 0) in the ultra-cold range.
At this energy, the j′-state population is clearly peaked at the
lowest state, Pj ′=0 ≈ 40% while Pj ′=2 ≈ 25%. The two low-
est j′ states dominate at the energies E = 10 and 100 cm−1:
Pj ′=0 ≈ 35% and Pj ′=2�Pj ′=0. As was stated at the end of
Sec. VI A and as illustrated in panel (c) of the present fig-
ure, such populations occur in transitions from partial con-
tinuum (E, J) states when J > 5. Indeed, the largest contribu-
tions to the total cross-sections at the two energies E = 10 and
100 cm−1 are made by the partial cross-sections for J = 9 and
J = 18, respectively.

However, at energies approaching b = 2 resonance po-
sitions, such as E = 20 cm−1, the relation between the two
dominant populations becomes reversed: Pj ′=2 � Pj ′=0. Ob-
viously, at energies very close to these resonances, Pj ′=2(E)
≈ 	

RCTnr
j ′ /	RCTnr and, as shown in Fig. 18(d), the population
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FIG. 19. (Upper) Temperature averaged populations Pc′ (T )
= k00→c′ (T )/k(T ) of vibrational (c′ = v′) and rotational (c′ = j′)
states of H+

2 ions produced in the RCTnr reaction at temperatures T ∈ [10,
50] K. The values of k(T) are listed in Table III (in the column “tot” of
k

RCTnr
I=0 ) and plotted in Fig. 17. The gray lines show populations due to

transitions to the X6 subspace of the X channel. (Lower) Populations of the
product ion states in the RCTnr reaction from the reactant continuum states
at temperatures T ∈ [10, 50] K (black lines, the upper T axis) compared to
the populations at cold temperatures (blue lines). The values of kbck(T) in the
subthermal range are listed in Table III (the fifth column); the values in the
cold range are plotted in Fig. 16(a) (the “RCTnr” line).

of the state j′ = 2 dominates over population of any other j′

state.

2. As functions of temperature T∈ [10−7 − 50] K

The populations as functions of temperature are defined
as

Pc′ (T ) = k
RCTnr
→c′ (T )/kRCTnr (T ) for c′ = v′, j ′

and are shown in Fig. 19 for the two temperature intervals:
10 − 50 K and 10−7 − 10−3 K. In addition, the figure presents
the populations P

RCT..

c′ (T ) which result from the A → X6 re-
action (shown as gray lines in the upper panel) and the pop-
ulations P bck

c′ (T ) obtained just from the background parts of
the rate constant functions for the RCTnr (black lines in lower
panels). P bck

c′ = Pc′ for T < 10−3 K. All the populations turn
out to be nearly constant within the subthermal and the ultra-
cold temperature intervals.

The populations Pv′ (T ) in the temperature range
10–50 K are close to those in Fig. 18 represented by the func-
tions Pv′ (E) for E = 10, 100 cm−1, namely, Pv′ ≈ 36% −
39%, 34%, 18% − 19%, and 9% − 10% for v′ = 0, 1, 2, and
3, respectively. Only slightly different are the correspond-
ing values of P bck

v′ at temperatures in the subthermal as well
as in the ultra-cold interval, P bck

v′ ≈ 35%, 20%, and 11% for
v′ = 0 − 1, 2, and 3, respectively. Transitions from the rota-
tional resonances in the A channel which are accounted for
by the Pv′ values but excluded from the P bck

v′ values have thus
rather little effect on the population of vibrational states of the
product ion.

Transitions to the “reactive subspace” of the X channel
can in principle change the populations Pv′ as was pointed
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out previously. Comparison with the values of P RCT..
v′ in the

upper left panel of Fig. 19 shows that the populations of the v′

= 0 − 1 states are lowered (to ≈30%) whereas the population
of v′ = 2 state remains at the level of ≈19%. This shows that
transitions to the X\X6 subspace in the “true” RCT can be
expected to reduce the difference between the two populations
by one half at most.

The populations of the j′ states are shown in the right
panels of Fig. 19. The values of Pj ′ (T ) at T ∈ [10, 50] K
are: ≈41%–43% , 16%–19%, and 12% for j′ = 2, 0, and
4, respectively. The big population of the excited j′ = 2
state could only be produced by transitions from the b = 2
resonances. This should be evident from the discussion of
Sec. VI A and is, in addition, illustrated here by a compari-
son with the populations P bck

j ′ (T ). At temperatures in the sub-
thermal interval P bck

j ′=0 � P bck
j ′=2 ≈ 35%, i.e., these values are

determined by transitions from b = 0 resonance and high J
continuum states. At cold temperatures, when no A-channel
resonance participates in the radiative transitions, the popula-
tion of j′ = 0 state becomes dominant, P bck

j ′=0(= P0) ≈ 40%.
The maximal populations Pv′=0,1 and Pj ′=2 are identified

by red lines in Fig. 19 to underline that they are at variance
with Hopper’s predictions (maximum at v′ = 2 and j′ = 0,
respectively). An explanation for the present maximum popu-
lation results can be obtained with the aid of the X4 projected
version of the optical potential model (details in Figs. B4c–
B4e of Ref. 25). The populations extracted from the model,
denoted by optPc′ for c′ = v′, j ′, obviously disregard the im-
pact of vibrationally and rotationally inelastic transitions in
the X channel. The populations optPv′ nearly match Hopper’s
prediction. The value for v′ = 2 state is very close to the max-
imal value, for v′ = 1 state, and the value for v′ = 0 state is
the smallest.

This is in contrast to the role of the X-channel interactions
in the case of rotational states. The populations optPj ′ have an
even higher maximum at j′ = 2 state compared to the pop-
ulations Pj ′ which is even more inconsistent with Hopper’s
prediction. The fact that the population of rotational states of
the H+

2 ion has its maximum at j′ = 2 and not at j′ = 0 has
to be attributed to the dominance of b = 2 k > 0 resonances
in the A channel and to the strong tendency to preserve the
quantum number k in transitions to the X channel.

VII. CONCLUSIONS

Accurate state-to-state calculations are performed to
study the radiative charge transfer process originating from
subthermal collisions of He+ with H2 and to evaluate the re-
action scheme proposed by Hopper8 characterizing RCT as
opposed to DCT.

These calculations demonstrate clearly the importance
of complex formation on the A-state potential via the rota-
tional predissociation mechanism. This is in full support of
Hopper’s postulate8 about the first step (2a) in his RCT reac-
tion scheme but disagrees with the comment in Ref. 13 that
“radiative charge transfer does not involve complex forma-
tion.” Actually transitions from these Feshbach resonances (b
= 2) contribute to about 75% to the total rate constant kRCT

in the temperature range ∼10–40 K. The remaining 25% are
due to transitions from A-channel free states as well as from
shape resonances (b = 0) which contribute only about 5%–
8%. Among the transitions from Feshbach resonances it turns
out that those to X-channel resonances are equally important
as those to X-channel free states.

In Hopper’s scheme the second reaction step (2b) is de-
scribed making use of the Franck-Condon principle with the
consequence that maximum photon emission is predicted to
occur at 153 nm and that H+

2 fragments should be vibra-
tionally excited with a peak at v′ = 2. Actually, from the state-
to-state calculations the photon emission spectrum is obtained
with broad peaks centered at transition energies to states of
the He + H+

2 system near the v′ j ′ = 2 thresholds for v′ =
0, 1, 2, 3, where the highest peak occurs for v′ = 1 and the
peak for v′ = 2 is slightly smaller. The corresponding photon
wave-lengths are 138.6 and 142.8 nm. The vibrational state
population of the H+

2 fragments does not reflect the relations
between the peak sizes in the emission spectrum, however.
The ions occur mostly in the two lowest states, with the per-
centage populations Pv′=0 � Pv′=1 ≈ 40% − 30% while the
fraction of the ions in the v′ = 2 state is only Pv′ ≈ 20%. This
demonstrates the importance of vibrationally inelastic transi-
tions in the X channel.

The rotational state population among the H+
2 ions pro-

duced at temperatures ∼10–50 K is also at variance with Hop-
per’s expectation since Pj ′=0 ≈ 20% while the maximum is
Pj ′=2 ≈ 40%. The big population of j′ = 2 state is caused by
transitions from b = 2 k > 0 resonances. At very low tem-
peratures, T < 1 mK, when transitions from the A-channel
resonances are totally unimportant, the j′-state population is
different: the maximum occurs at the lowest state, as expected
by Hopper, Pj ′=0 ≈ 40%, and Pj ′=2 ≈ 25%.

The rate constant determination within the present state-
to-state approach suffers from the fact that transitions to
high lying X-channel states cannot rigorously be taken into
account25 and limitation to a non-reactive part (RCTnr) misses
their non-negligible contributions. The compromise (∼RCT)
introduced in this study takes advantage from the possibil-
ity to calculate the total radiative quenching rate (ktrad) of
He+ ions within the 3D optical potential approach. The val-
ues k∼RCT estimated as ∼90% of the calculated ktrad are de-
rived correcting this value using the known contribution from
the RA reaction (3)15 and an estimated iRaT effect. The large
discrepancy, however, between these k∼RCT values and the ex-
perimentally determined results of Schauer et al.13 cannot be
attributed to inaccuracies in the basic potential calculations19

or uncertainties in the iRaT estimate. Comparison of the var-
ious contributions to the RCT rate constant with the experi-
mental findings13 and the results of the model calculations14

of Kimura and Lane demonstrates clearly that the large dif-
ference is mostly due to inclusion of the effect of rotational
Feshbach resonances in the present theoretical RCT study.

It is an advantageous feature of the 3D version of the op-
tical potential model that it can account for rotational (and vi-
brational) Feshbach resonances in the reactant channel, more
precisely, the version can provide decay rate of any, Feshbach
or shape, resonance in atom + diatom collisions due to spon-
taneous emission to a lower electronic state. Application of
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the 3D model facilitated an extension of the temperature range
scanned in the state-to-state study to higher temperatures, up
to 100 K. The values of the rate constant function ktrad(T) ob-
tained for T ∈ [80, 100] K, with above 60% contribution from
about 240 rotational b = 2 and b = 3 resonances, are close
to the experimentally derived upper bound for the rate of pro-
duction of the H+

2 and HeH+ ions in He+ + H2 collisions.3, 4
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A. SUPPLEMENTARY MATERIAL — PART A

RADIATIVE CHARGE TRANSFER

He+ + H2 −→ He + H+
2 + hν

STATE-TO-STATE DESCRIPTION
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Fig. A0. Electronic structure input

— limitations on accuracy of state-to-state description
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Fig. A0a. Potential energy surfaces for the ground (X) and first excited (A) electronic states of HeH+
2 from

Ref. 1 and Body-Fixed Z-component of electric dipole vector field for A→X transitions from Ref. 2, V A(r, R, θ),

V X(r, R, θ), and dBF
Z (r, R, θ), respectively. r and R denote the lengths of the Jacobi vectors r and R for the

He+H2 system, with r joining the H-nuclei, and θ denotes the angle between the vectors. Shown are contour plots

of 2D cuts of the surfaces at θ=π
2 and θ=0 (for V X). The contours of V A and V X are drawn in step of 0.1 eV and

cover the ranges -0.4 – 0 (zero at He+ + H2(v=0, j=0)) and -0.4 – 2 eV (zero at He + H+
2 (v=0, j=0)), respectively.

The thicker blue lines show the zero-energy contours in the two cuts of V X and the violet contours are for the

energy 0.8 eV which on exact X-state PESes is nearly coincident with the position of the H + HeH+(v=0, j=0)

threshold. On the present PES, the entrance to this channel is closed by an artificial wall (indicated by the red

question mark). The contours of dZ are drawn in step of 0.025 ea0 and cover the range 0–0.85. The three thicker

contours (starting from the rightmost) are for 0.1, 0.3, and 0.7 ea0, respectively.

The zero-energy contour of V A indicates approximately the range of the r coordinate which is
occupied by the reactants at low collision energies. It also indicates the part of the lower surface
which is reached by vertical transitions from the reactant states. This is the only part of V X

which is needed to evaluate the characteristics of the total radiative reaction RCT+RA+iRaT
within the optical potential model. Sufficient accuracy of this part is documented in Fig. A0b.

The artificial wall arises on the surface V X because the analytical fit of Ref. 1 is used here beyond
the r-coordinate range which was sampled in the ab initio calculations of V X in that work. This
is made for underscoring the fact that the rearrangement scattering He+H+

2 → HeH++H is not
possible on the present surface, or in other words, that the surface is insufficient for rigorous
determination of continuum states of the He+H+

2 system at energies at which the rearrangement
in the reality occurs. Determining the states within a possibly accurate inelastic scattering
approach seems the best that could be done in this situation. Moreover, when judging adequacy
of the applied approach one should keep in mind that the proton transfer reaction is only a
secondary process in relation to the radiative reaction which is in the focus of the study. It
belongs to effects of the final-state interactions, like the vibrational and rotational de-excitation
of the H+

2 ions discussed in the paper. Even among these effects the significance of the proton
transfer appears rather low (see Fig. A19b). Thus, the necessarily limited treatment of the
X-state dynamics is believed to be reasonable in some energy range above the rearrangement
threshold and at least tolerable in the entire range accessible in the radiative A→X transitions.
To strengthen this belief one may recall the following. The main limitation of the entire state-
to-state approach applied in the study is the impossibility to separate out the contribution of
the iRaT process from the calculated rate constant kRCT+iRaT (the proton transfer is a part
of the iRaT). According to the theoretical estimations and the experimental evidence existing
before, quoted in the Introduction, the contribution should be negligible. The estimate obtained
here (see Fig. A19b) — kiRaT/kRCT+iRaT.10% — confirms that even if the iRaT is not totally
negligible its rigorous description could be skipped, at least in the first state-to-state simulations.
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Fig. A0b. 1D cuts of the sur-

faces V A(r, R, θ) and V X(r, R, θ) at

R=R∞=40Å compared to the accurate po-

tentials of H2 and H+
2 , respectively, calcu-

lated in Refs. 4 and 5.

In the left panels, the potentials are shifted on the energy scale so that the lowest (v=0) vibrational levels in

them coincide. The actual separation between the v=0 level in V A(R∞) and in V X(R∞), accounted for in the

right panel, is ∆E=74507 cm−1. χv=0(r) denotes the radial function of v=0 state of H2. The state is only weakly

disturbed by interaction with He+, so the probability density along the r coordinate in low energy states of the

reactants is well represented by |χv=0(r)|2.

The potentials extracted from the asymptotic regions of the A- and X-state PESes of HeHH+

appear consistent with the accurate potentials of H2 and H+
2 , respectively, up to energies close to

the positions of v=4 levels. Substantial inaccuracies arise at higher energies, in the large r parts
of the potentials: V A(R∞) becomes too high, and V X(R∞) becomes too low. The inaccuracy of
V A is obviously inconsequential to the description of the radiative reactions at collision energies
of interest in the study (below ∼350 cm−1). The inaccuracy of V X certainly impairs the X-
state-energy resolved characteristics, like the width functions ∂

∂E′Γ shown in Fig. A18. More
specifically, the peaks in these functions which are associated with the v′>4 thresholds may be
shifted down, even by more than 1000 cm−1, as displayed in Fig. A0c, and also the overall sizes
of these peaks may be disturbed, as it follows from Fig. A0d and Fig. 12. However, despite these
inaccurate shapes, the integrated values of these functions summarize to the global characteristics
of the RCT+iRaT reaction which should be essentially correct. As it can be deduced from Figs.
10b and 12 of the paper (see also comments to Fig. A18), the global characteristics of the
RCT+iRaT+RA depend on the potential V X only through the difference V A−V X+∆E which
is involved in the construction of the optical potential and only in the short r range indicated
here by the plot of |χv=0(r)|2. The right panel of Fig. A0b (the yellow curve) suggests that
accuracy of the optical potential in the important range is indeed satisfactory.
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rate functions of H2 and H+
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Fig. A1. Electronic structure input

Details relevant to state-to-state description of RCT

/when product states are in the non-reactive range/
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Fig. A1a. Potential energy surfaces of the X- and

A states of HeH+
2 . The anisotropy strength functions

V s
L(r, R) resulting from the Legendre-polynomial ex-

pansions of the interaction potentials

V s(r, R, θ) − V s(r, R→∞) =
∑

L

V s
L(r, R)PL(cos θ)

for s=X,A. Shown are the average values of the

largest three of these functions in the ground ro-

vibrational states of H+
2 and H2 for s=X and A, re-

spectively.

The differences between the two PESes in the
sign and strength of the L=2 terms exposed
by the red curves and the displacement of
minima of the L=0 curves play an important
role in the dynamics of the RCT reaction;
they influence strongly the emission spectra,
the relative sizes of resonance→resonance
and resonance→free contributions. See the
discussion of Figs. 6, 7, and A14.
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2 for s=X and of H2 for s=A.

The elements of V X
L>0 (the red curves) cause

sizeable ro-vibrational inelasticity in the
product channel of the RCT reaction and
have a significant impact on the population
of vibrational states of the H+

2 ions; Figs. 4,
6, A14-A16.
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dBF
Z (r, R, θ) =

∑

L=0,2

DL0(r, R)PL(cos θ) .

Shown are the matrix elements

〈v′j′|DL0(r, R)|vj〉r between functions of

v=0 j=0 state of H2 and v′=0−3 j′=0 states

of H+
2 . Changes for j=2 and/or j′=2 states

would hardly be visible on this plot.

Fig. A1d. Radial functions of v=0 j=0 state

of H2 and of v′=0−3 j′=0 states of H+
2 .

The overlapping between the v=0 and v′

functions,

|〈v′|v=0〉|=0.30, 0.40, 0.41, and 0.38 for

v′=0, 1, 2, and 3, respectively, is mostly

responsible for the relations between the

matrix elements plotted in Fig. A1c,

〈v′=2|D00|v=0〉r ∼ 〈v′=1| . . .〉r
> 〈v′=0| . . .〉r .



Fig. A2. Hamiltonians for reactant and product systems

inClose-CouplingBody-Fixed-diabatic representation∗
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Fig. A2a. Selected effective potentials governing dynamics of the systems, i.e. averages of
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Fig. A2b. Enlarged views of some effective potentials for the reactant system (black curves), energies

of resonances (b=2 k=2 and b=0 states of the He+−H2 complex‡) supported by the potentials (red lines),

and effective potentials of the product system (blue curves) pertaining to states populated in radiative

transitions from the resonances by virtue of the selection/propensity rules♯ ∆J=−1 and ∆λ=0. The yellow

arrow indicates ranges of the product continuum states which (according to the reflection principle8,9)

should most strongly be populated in transitions from the b=k=2 vR=0 J=18 resonance (i.e. states of

energies ∼530 cm−1 above the vibrational thresholds ε′v′ j′=0 for v′=0−3). The green curves in left panel

show potentials −C4

R4 + ~
2

2µ
J(J+1)

R2 with C4=2.779 a.u. The approximation W 0
000;000(R)≈−C4

R4 does not hold

beyond R=13 Å: the relative deviation rapidly reaches 50% and grows rapidly with R.

∗ see Ref. 3 (Sec. IV ); ‡ see Table I in the paper; ♯ see Figs. A13 and A14.



NOTATION
Symbols with and without prime are used in the figure labels and captions of this

material to denote the same quantities (quantum numbers) for the He++H2 and He+H+
2

systems, respectively.
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Fig. A2c. Selected effective potentials of He++H2 associated with the ε0 4 threshold (black curves),

energies of the lowest (vR=0) resonances supported by these potentials (red lines), and effective potentials of

He+H+
2 which are most important in the RCT from the resonances. Resonances supported by the potentials

W J
0jλ; 0jλ decay preferably to states governed by the potentials W ′J′

v′j′λ′; v′j′λ′ with j′=j and λ′=λ. (Note

that the latter potentials are shown relative to their respective ε′v′ j′ threshold). Yellow arrows indicate

positions of the main resonance-free peaks in the photon emission spectra as predicted by a simple one-

dimensional model which uses single potentials for the reactant and product systems, W J
044;044 and W ′J+1

v′44;v′44,

respectively. A confrontation of the predictions with the exact calculated spectra is given in Fig. A14.
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Fig. A2d. A comparison of the effective potentials in the BF-diabatic representation with the low-

est adiabatic potentials eJ
e

vjl(R) obtained by diagonalizing the matrix WJe

(R)={W Je

v jλ; ṽ j̃ λ̃
(R); v, ṽ=0−3,

j, j̃=0, 2, . . . , 14; λ, λ̃=0, 1, 2, 4}. For j≤4, eJ
e

vjl(R) −→
R→∞

εvj+
~
2

2µ l(l+1), where l is the angular momentum

quantum number of relative atom-diatom motion in the space-fixed (SF) reference frame, l=|J−j|, |J−j|+2,

. . . , J+j. The comparison exhibits the strength of rotational couplings in the systems. The respective

adiabatic representation of the Hamiltonian (given here the acronym CC-SF-adiabatic) was exploited in

perturbative calculations on rotational predissociation of the He+−H2 complex, see Fig. C5 (in part C).



SOJOURN-TIME ANALYSIS

— an extension of life-time matrix calculations

cf. Sec. IV of paper I (Ref. 3) and Sec. III of paper II (Ref. 7)

The notion of sojourn time of a collision system in the confined region of the configuration
space (see eg. Ref. 11) is directly connected with the collision-time delay or the life-time
matrix introduced by Smith, Ref. 10. The connection is exposed by the following formula for
the life-time matrix

1

2π~
QJp =

〈
Ψ

(+)JMp
∣∣P [0,R∞]Ψ

(+)JMp
〉
− ı~

〈
O−

E−O+
ES

∣∣ C(R∞) (O−−O+S)
〉
, (A1)

in which P [0,R∞ ] denotes the projector on the interval [0, R∞ ] of R-coordinate outside which
the atom-diatom interaction is practically negligible, C(R∞) is the operator of the probability
flux through the surface R=R∞,

C(R∞) =
1

2µ

[
δ(R−R∞)pR + pR δ(R−R∞)

]
with pR = −ı~I d

dR
,

the symbol Ψ
(+)JMp

1×No

(E; r,R) stands for the set of the partial scattering outgoing waves which

correspond to all possible initial scattering channels at the energy E, and the symbols O
±Jp

stand for the diagonal matrices of radial functions which appear in the asymptotic form of
Ψ

(+)JMp(E; r,R), see Eqs. (30)—(31) in paper I. The subscript E denotes the derivative with
respect to the energy. The ‘energy-normalization’ of the scattering functions is assumed.
The first term in formula (A1), specifically its trace

tJp(E;R∞) = 2π~Tr
〈
Ψ

(+)JMp(E)
∣∣P [0,R∞]Ψ

(+)JMp(E)
〉

(A2)

can be interpreted as the mean total sojourn time of the collision system in the interaction
region (‘total’ refers here to the summation over the initial channels). Sojourn time in a region
confined by a surface R=R is obtained simply by using the respective projector P [0,R].

Applying the CC-BF-diabatic approach of paper I to the states Ψ
(+)JMp(E; r,R), see

Eqs. (20)—(32) in paper I and Eqs. (17)—(18) in paper II,

Ψ
(+)JMp(E; r,R) =

1

R BF
ΦJMp(r, r̂B, R̂)

BF
F

(+)Jp(E;R)UJp

=
∑

λ

Ψ
(+)Jp
λ (E; r, R, θ) ΘJMp

λ (φR, θR, ψ) , (A3)

[
[
Ψ

(+)Jp
λ (E; r, R, θ)

]
vijili

=
√
2π

rR

∑
v

∑
j≥λ

χvj(r) Yjλ(θ, 0)
∑
λ̃

[
BF
F

(+)Jp(E;R)
]
vjλ,vijiλ̃

[
UJp(ji)

]
λ̃,li

]

one can easily make the following resolutions of the total sojourn time

tJp(E;R) =
∑

λ

tJpλ (E;R) =
∑

v

tJpv (E;R) =
∑

j

tJpj (E;R) (A4)

with



tJpλ (E;R) =

∫ R

0

dR
∑

v

∑

j≥λ

No∑

i=1

∣∣ f (+)Jp
vjλ (E, αi;R)

∣∣2 , (A5)

tJpj (E;R) =

∫ R

0

dR
∑

v

λmax∑

λ

No∑

i=1

. . . . . . , (A6)

tJpv (E;R) =

∫ R

0

dR
∑

j

λmax∑

λ

No∑

i=1

. . . . . . , (A7)

where

f
(+)Jp
βf

(E, αi;R) =
√
2π~×

[
BF
F

(+)Jp(E;R)UJp
]
f,i

for f=1, . . . , N, i=1, . . . , No ,

β and α denote the collections of the quantum numbers (v, j, λ) and (v, j, l), respectively.
λmax=min(j, J, 4). The symbol R is used hereafter to denote the confined region [0, R]. All the
other symbols have the same meaning as described in paper I.

The λ- components of the partial scattering states introduced in Eq. (A3) can be used to
define the following local sojourn times11 or ‘sojourn-time maps’

tJpλ (E;R, θ) = 2π~R2

∫
r2 drΨ

(+)Jp
λ (E; r, R, θ)

[
. . .

]†
. (A8)

These maps and the sojourn-time components tJpλ (E;R), tJpv (E;R), and tJpj (E;R) provide

information on (stationary) scattering states within the confined region [0, R] which is analogous
to the information provided on bound states by the probability densities ρλ(E

BJp;R, θ) and
the distributions ρλ(E

BJp), ρv(E
BJp), and ρj(E

BJp) defined in Sec. III.B of paper II. To
make the analogy even closer, one can introduce the following ‘normalized sojourn-times’

ρλ(EJp;R;R, θ) =
tJpλ (E;R, θ)

tJp(E;R)
, (A9)

ρc(EJp;R) =
tJpc (E;R)

tJp(E;R)
for c=λ, v, j . (A10)

These quantities are used in several plots of this material to display properties of continuum
and short-living resonance states of the He +H+

2 system in the wide energy range that can be
accessed in the studied RCT reaction.

Of some help in rationalizing the reaction outcome are the sojourn-times tJp(E, vi, ji;R)
and tJp(E, vi;R)=

∑
ji
tJp(E, vi, ji;R) which pertain to the collision system with specified initial

rotational and/or vibrational state of diatom. These times as well as their c=v, j, λ -components
are obtained from Eqs. (A4)-(A7) by omitting one or two of the sums denoted by the symbol∑

i(=
∑

vi

∑
ji

∑
li
).

A practical advantage of formula (A1) over the well-known relation of the lifetime matrix

to the partial scattering matrix, QJp=ı~SJp †
E SJp, has previously12 been pointed out. It stems

mostly from the fact that the sojourn-time matrix 〈Ψ(+)JMp(E)
∣∣ P [0,R∞]Ψ

(+)JMp(E)〉 can
be evaluated easily with the help of the popular invariant-imbedding methods, in particular
the log-derivative method13, omitting the stage of explicit determination of multichannel
scattering functions within the entire interaction region [0, R∞]. Obviously, this advantage
can not be taken, i.e. the scattering functions have to be explicitly determined if the various
resolutions of the total sojourn-time are of interest. However, these functions can be easily
generated if one uses algorithms that combine the log-derivative propagator with the Riccati
transformation technique, as originally proposed in Ref. 13 (Sec. 5.2.1).



A COMPARISON

of

REACTANT and PRODUCT SYSTEMS

He+ + H2 and He + H+
2



Fig. A3. He++H2 and He+H+
2 systems

at low energies

Properties of continuum and resonance functions

in short range of atom-diatom distances∗
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Upper panels: sojourn time tJp(E;R) of the two collision systems in the regions [0, R] specified in the labels as

function of collision energy, see Eq. (A2). The time is shown exemplarily for the systems being in the partial

scattering states (E J=8) of e symmetry.

Lower panels: λ- and j-mixing in the (E J=8e) states displayed by the ‘normalized sojourn-times’ ρλ(EJp;R)

and ρj(EJp;R), respectively, see Eqs. (A10).

∗ R.4 Å is the region of atom-diatom distances where the radiative transitions between the systems are

possible, i.e. the values of the electric dipole transition function are non-negligible, see Fig. A1c.

COMMENTS

The left panels illustrate the main properties of dynamics of the reactant system in the coor-
dinate and energy ranges which are important for the RCT reaction at temperatures below 50
K: j=0 state of H2 dominates in the functions of continuum states and of the shape resonances
[the leftmost peak in t(E)], j=2 state dominates in the functions of Feshbach resonances [the
peaks at E≅60, 68, and 86 cm−1].
The right panels show the product system in the analogous coordinate and energy ranges. Two
or three lowest rotational states of H+

2 (para) are strongly mixed in the functions of continuum
states and of short-living resonances [the peak at E ′≅90 cm−1]. The λ′-mixing is also substan-
tial.
The range of E′ shown here constitutes merely one per cent of the energy range which is accessed in the RCT

reaction, see Fig. A2a. An extension of the present comparison to higher energies is given in Fig. A7.



Fig. A4. λ- and j-mixing∗

in

A4a. quasi-bound states♯

of

He++H2(v=0)

(b k vR J)

k — max λ; b — max j
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♯See Table I in the paper for information on en-

ergies, dissociative and radiative widths of these

states.

A4b. long-living low energy

resonances♮

in

He+H+
2

 0

 20

 40

 60

 80

 100

43210

%

λ

 0

 20

 40

 60

 80

 100

     

%

 

 0

 20

 40

 60

 80

 100

     

%
 

 

 

 

 

 

 

14121086420

100

80

60

40

20

0

 %

j

k=2  E=29.6 J= 8
E=79.8 J= 9
E=67.9 J=12

 

 

 

 

 

 

       

100

80

60

40

20

0

 %

 

k=1  E=14.3 J=13
E=99.2 J=14
E=75.5 J=17

 

 

 

 

 

 

       

100

80

60

40

20

0

 %

 

k=0  E=23.4 J=11
E=10.5 J=12
E=29.1 J=14
E=83.7 J=18

♮ Most of the resonances shown have dissociative

lifetimes larger (or ≫) than 1 ns. See Table III in

paper I and Table VII in paper II.

COMMENT

There is almost no j-mixing in the states of the
He+−H2 complex; the peaks in ρj reach nearly
100% at j=2. The λ-mixing is also small,
except for cases of close proximity on the energy
scale of states characterized by the same J- and
different k-numbers; here the states (2 0 0 6)
and (2 2 2 6).
Strong perturbations in the structure of energy
levels of the complex due to Coriolis coupling
are displayed in Table CIV and in Fig. C3 (in
part C).
Both kinds of mixing are clearly larger in states
of the He+−H2 complex. Note the comparable
strength of two λ-components in the states
shown in the middle right panels.

∗ The mixing is displayed here in terms of the probability distributions ρλ(EBJp) and ρj(E
BJp) calculated from

bound-state functions approximating the resonances, see paper II.



Fig. A5. Quasi-bound states of He++H2(v=0)

Probability densities∗
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∗ Plotted are the leading λ-components of the probability densities ρ(EBJp;R, θ) calculated from bound-

state functions approximating the resonances. The contours are shown in step of 0.05 in the half of the

range of θ since ρ(..., θ)=ρ(..., 180◦−θ) for θ∈[90◦, 180◦].



Fig. A6. Long-living∗ low energy resonances in He+H+
2

Probability densities†
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∗ Lifetimes larger (or ≫) than 1 ns. See Table III in paper I.

† Plotted are the leading λ-components of the probability densities ρ(EBJp;R, θ) calculated from bound-state

functions approximating the resonances. See Table VII in paper II for an assignment of vibrational quantum

number vθ and vR to these functions, based on the analysis of their natural expansions.



Fig. A7. He++H2(I=0) and He+H+
2 (I=0) systems

at higher energies (up to v=1 j=4 thresholds)

Properties∗ of multichannel continuum and resonance functions

in short range of atom-diatom distances
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∗ The quantities plotted: the total sojourn times of the systems in the indicated confined regions [0, R] and the related

normalized components ρc(EJp;R) for c=λ, j, and v, all defined in Eqs. (A2) and (A10).

The results in the left panels are ‘exact’ — do not involve the CCr approximation, see Fig. A17.



COMMENTS

(i) The properties of the He++H2 system at energies E higher than 150 cm−1 have practically
no impact on the studied RCT reaction at temperatures below 50 K. The actual purpose of
enclosing here the plots for this system at higher energies is to facilitate the interpretation of
the plots for He +H+

2 .

(ii) It should be noted that the quantities ρc(EJp;R) for c=λ, j, and v are direct measures
of λ- j- and v-mixing due to atom-diatom interaction at energies below the first excited
threshold only (the fact exploited in Fig. A3). Above this threshold, the quantities reveal some
properties which actually pertain to non-interacting subsystems [a result of the summation
in Eq. (A2) over the scattering functions evolved from all possible, at a given total energy E,
initial states of the subsystems, identified here by the quantum numbers (v j λ)open]. These
are the properties displayed by the base lines of all functions plotted in the left panels:
a) the step-like behavior at the thresholds; the total sojourn time t jumps up because of the
appearance of a new state with very slow translational motion of the subsystems,
b) the ordering of the components ρj>ρj−2> . . .>ρ0 taking place in the entire energy range
between the j and j+2 thresholds,
c) the relations between the components ρλ, energy independent between the subsequent
thresholds, reflecting the numbers of different (v j)open states with given value of λopen. For
example, the relations ρλ=0:ρλ=1:ρλ=2:ρλ=3:ρλ=4=3:2:2:1:1 which should hold at energies E
between the v=0 j=4 and v=0 j=6 thresholds are close to these displayed in the second left
panel.
Thus, only departures from the base lines in the functions ρc(EJp;R) testify to the c-mixing
of interest here.

(iii) The sharp peaks in the left panels are obviously a manifestation of quasi-bound states
of the He+−H2 complex. The association of the peaks with the subsequent j-thresholds is
clear, especially from the plots of ρj(EJp;R). All peaks associated with the j=8 threshold are
suppressed for the sake of clarity of the figure. The heights of the peaks in the functions ρj(E)
testify to a very small j-mixing in all states of the complex. Therefore all of them can be
easily assigned with the approximate quantum number b(=max j). The corresponding peaks
in the functions ρλ(E) are also pronounced enough to allow for an un-ambiguous assignment of
approximate quantum number k to the majority of states. Uncertainties due to a substantial
increase of λ-mixing arise when the energy separation of the states gets small (regions close to
the thresholds, cases of accidental near-degeneracy).
Further characterization of the complex is given in part C of this material.

(iv) The right panels of the figure illustrate how much different from He+−H2 the charge-
transferred complex He−H+

2 is. Very little regularity can be noted in the plot of the total
sojourn-time (no pronounced threshold feature appears in the baseline, the positions and
heights of the peaks do not correlate clearly with the positions of the subsequent j′ thresholds).

(v) The plot of the functions ρj′(E
′) shows broad maxima centered at the positions of the

thresholds v′ j′ for v′=0, 1. These maxima, especially their left parts (E ′<εv′ j′), may be viewed
as a result of blending numerous sharp peaks which would occur in these regions if the interac-
tion between He and H+

2 were much less anisotropic, like the interaction between He+ and H2.
A few sharp peaks survive only. The corresponding peaks in the functions ρλ′(E ′) indicate the
approximate quantum number k′ to label the underlying states of He−H+

2 .



In some of these states (especially below the j′=4 threshold), one can even trace some similarity
to the He+−H2 complex in the character of atom-diatom bending motion. An example is shown
in Fig. A7a. However, in the majority of states of He−H+

2 the bending and stretching motions
of He relative to H+

2 look more or less entangled (see Fig. A11); a meaningful labeling of
these states with a complete set of (six) quantum numbers would not be easy (if at all possible).

(vi) The diatomic vibrational motion is relatively well-separated from other modes of motion
in the He−H+

2 complex, at least at energies E ′ below the v′=1 j′=0 threshold. Therefore the
function ρv′=1(E

′) plotted in the bottom right panel shows relatively clear peaks in this region.
Using this fact, one can assign the approximate quantum number v′r=1 to the related states of
the complex. These states are counterparts of the bound states of the HeH+

2 (I=0) ion; they
decay by vibrational predissociation, i.e. to channels He + H+

2 (v
′ j′) with v′<v′r.

Fig. A7a. Sojourn-time maps ∗

for exemplary resonances† in

He++H2 and He+H+
2

below the v=0 j=4 and v′=0 j′=4 thresholds
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∗Plotted are the ‘sojourn-time densities’ ρλ(EJp;R;R, θ), see Eq. (A9), normalized to give

∑
λ

R∫
0

dR
∫
dθ ρλ(EJp;R;R, θ)=1 for R=17 Å . The contours are shown in step of 0.002 in the half of the

range of θ since ρ(..., θ)=ρ(..., 180◦−θ) for θ∈[90◦, 180◦].

†Peaks marked with the red symbols in the upper left and right panels of Fig. A7. The lifetimes of the two resonances

are 102.1 and 1.9 ps, respectively. See also Fig. C1 and Table CI (in part C).

Note the similarity between the upper and lower plots for the λ (λ′)=3 and λ (λ′)=4 components
and the distorted structure of the λ′=2 component. Because of the shape and strength of
ρλ′=3(.., ;R, θ) and the sizes of ρj′=4 and ρv′=0 at E ′=225.6 cm−1, the presented quasi-bound
state of He−H+

2 can be given the complete label: (v′r b
′ v′R k

′ J ′ p′)=(0 4 0 3 8e).

On the same grounds, the other peaks marked in the upper right panel of Fig. A7 can be
completely assigned:

(v′r b
′ v′R k

′) E ′
res τ/ps

1© (0 4 1 3) 414.9 3.6
2© (0 4 0 4) 432.9 3.0
3© (0 4 2 3) 537.2 4.6
4© (1 4 0 4) 2650.2 0.6



Fig. A8. He+H+
2 (I=0) and He+H+

2 (I=1) systems

at energies below v′=1 threshold

-0.5

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

 ti
m

e 
de

la
y 

(q
m

ax
/4

) 
/p

s

[ He + H2
+(v’, j’) ](E’, J’)

J’=0

v’=1j’=4 j’=6

v’r=1
v’r=2

-0.5

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

 ti
m

e 
de

la
y 

(q
m

ax
/4

) 
/p

s

E’  /cm-1

J’=0

j’=3 j’=7 v’=1 j’=1
v’r=1
v’r=2

-0.5

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

 ti
m

e 
de

la
y 

(q
m

ax
/4

) 
/p

s

J’=2e

v’=1j’=4 j’=6

v’r=1 k’=0
k’=1
k’=2

v’r=2 k’=0

-0.5

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

 ti
m

e 
de

la
y 

(q
m

ax
/4

) 
/p

s

E’  /cm-1

J’=2e

j’=3 j’=7 v’=1 j’=1
v’r=1 k’=0

k’=1
k’=2

v’r=2 k’=0

Plotted are the maximal eigenvalues qJ
′p′

max (divided by 4) of the lifetime-matrix QJ′p′

for two partial waves

(J ′ p′=1). The heights of the peaks give lifetimes of the corresponding quasi-bound states of the He-H+
2 (I=0)

(j′ even) and He-H+
2 (I=1) complexes. The yellow bars show results of Ref. 1 obtained with the stabilization

method (for k′=0 states only). The arrows show energies of the v′r=1 states predicted by the adiabatic separation

scheme described in that work. Detailed comparison is presented in Tables AI-AIV.



TABLE AI: He−H+
2 (I=0). Energies E′, widths Γ′ (both in cm−1), and lifetimes τ ′=~/Γ′ (in ps) of

quasi-bound J ′=0 states below the v′=1 j′=2 thresholda. Listed are all statesb in this range that live

longer than 0.4 ps (Γ′<13 cm−1).

Life-time matrixc Stabilizationd Life-time matrixc Stabilizationd

v′r E′ Γ′ τ ′ E′ τ ′ v′r E′ Γ′ τ ′ E′ τ ′

0 35.4 2.7 (−1) 19.9 35.5e 26.4 0 1198.5 2.2 2.4 1203.5 0.74

1 59.5 8.2 0.6 2 1748.4 8.8 0.6

0 106.1 10.4 0.5 105.7 0.53 1 1950.9 6.5 0.8 1950.5 0.80

0 158.6 5.4 1.0 159.5 0.67 2003.9

174.2 0 2018.9 5.0 1.1

0 446.2 5.3 1.0 446.5 1.07 1+0 2033.6 7.4 0.7

0 539.9 10.1 0.5 540.1 0.49 1 2114.1 2.3 2.3 2114.5 2.43

575.3 1 2174.4 1.5 3.5 2175.8 1.68

0 577.1 2.8 1.9 2194.4

0 1147.2 12.6 0.4 1 2340.3 9.1 0.6

1191.2 2359.5

aThe threshold energies ε′v′ j′ for v′=0 j′=2, 4, 6, 8 and v′=1 j′=0, 2 are given in the table (italic numbers).

These energies are as they result from the present PES of the X-state of HeHH+. In comparison with the

accurate data6 for H+
2 , the values of ε′v′=0 j′ for j′=3−8 (listed here and in Tables AII-AIV) are too low by

0.1−0.2 cm−1 and the values of ε′v′=1 j′ for j′=0−2 are too high by 3.2−3.3 cm−1.
bGenerally, the states are identified with the peaks in the eigentime functions qJ

′p′

max(E′) plotted in Fig. A8.

Several peaks lying very close to the thresholds ε′v′j′ are discarded, however. Inspection of the corresponding

functions indicates that these peaks may not correspond to resonances or that their heights substantially

overestimate the real resonance lifetimes.
cThe matrix was evaluated and analyzed as described in Ref. 12. The assignment of states with the approxi-

mate quantum numbers was based on the analysis of the sojourn times in the interaction range described earlier

in this file. Specifically, the numbers v′r and k′ (for J ′e>0 and J ′f>1) were found by inspecting the components

ρc′(E
′ J ′p′;R=4Å) for c′=v′ and c′=λ′, respectively, see Fig. A7. The numbers b′ and v′R, given in Tables AII

and AIV, were inferred from the sojourn-time maps ρλ′(E′J ′p′;R,R, θ), see Fig. 7a.
dResults of Ref. 1.
eAssigned with v′r=1 in Fig. 3 of Ref. 1.

TABLE AII: Same an in Table AI for J ′=0 states of He−H+
2 (I=1) below the v′=1 j′=1 thresholda.

Life-time matrix Stabilization Life-time matrix Stabilization

v′r b′b v′
R

b E′ Γ′ τ ′ E′ τ ′ v′r E′ Γ′ τ ′ E′ τ ′

58.2 0 861.7 7.4 (−1) 7.2 867.4 0.85

0 86.5 2.4 2.2 87.0 2.60 0 1330.4 2.0 2.6 1330.1 2.70

0 207.5 2.8 1.9 207.3 1.61 1574.2

0 249.0 4.5 1.2 249.3 1.47 0 1580.5 3.8 1.4 1582.0 0.97

0 3 4 326.7 2.1 2.5 327.4 1.95 2 1748.3 3.3 1.6 1730.3 1.45

347.0 1 1954.8 9.2 0.6

0 5 1 498.7 2.8 1.9 499.0 1.99 1 2111.8 9.2 0.6 2112.7 0.56

0 5 2 704.5 1.5 3.5 704.7 3.88 1 2171.8 3.2 1.7 2173.2 1.79

0 5 3 820.8 1.2 4.5 821.0 4.55 1 2226.6 6.4 0.8

857.4 2249.5

aThe thresholds εv′ j′ for v′=0 j′=1, 3, 5, 7 and v′=1 j′=1 are shown by the italic numbers in the table.
bA possibility of assigning these numbers was searched only for states below the v′=0 j′=5 threshold.



TABLE AIII: He−H+
2 (I=0). Energies E′, widths Γ′ (both in cm−1), and lifetimes τ ′=~/Γ′ (in ps) of

quasi-bound J ′=1, 2 states below the v′=1 j′=2 threshold. Listed are all states in this range that live

longer than 0.4 ps (Γ′<13 cm−1).

J ′=1e J ′=1f

Life-time matrix Stabilizationa Life-time matrix

v′r k′ E′ Γ′ τ ′ E′ τ ′ v′r E′ Γ′ τ ′

0 1 31.3 3.9 (−1) 13.6

0 0 41.9 7.0 (−2) 75.9 41.0 59.7

1 0 67.5 11.8 0.4

0 0 111.0 12.0 0.4 110.4 0.57

0 1 131.5 1.0 (−1) 51.0

0 1 154.1 8.3 (−2) 64.0

0 0 162.0 6.1 0.9 161.9 0.66

0 1 172.5 5.3 (−2) 100.2

174.2

0 1 376.6 4.3 1.2 0 378.9 2.5 2.1

0 0 451.7 4.3 1.2 451.4 1.14

0 1 510.1 5.8 0.9 0 514.3 3.6 (−1) 14.8

0 0 544.3 6.9 0.8 543.3 0.54

0 1 566.2 6.0 0.9 0 570.9 1.6 (−2) 332.7

575.3

0 1 579.3 2.0 2.6 0 580.9 12.4 0.4

0 608.8 5.6 1.0

0 905.8 3.6 1.5

0 1 1092.7 11.7 0.5 0 1090.9 4.7 1.1

0 0 1147.8 7.9 0.7

0 1 1183.8 5.5 1.0 0 1182.5 2.2 2.4

1191.2

0 1 1197.1 2.7 2.0 0 1201.5 8.2 0.6

0 0 1203.5 11.6 0.5 1205.3 0.70

1 1 1472.4 7.9 0.7

2 0 1753.9 4.1 1.3

1 0 1837.0 12.1 0.4 0 1836.2 1.7 3.1

1 0 1850.6 7.7 0.7

1 1+0 1947.0 5.0 1.1 0 1963.7 2.8 1.9

1 0+1 1957.0 11.0 0.5 1956.1 0.84

0 1 1982.5 9.6 0.6

2003.9

0 0 2006.8 7.5 0.7

0 2022.9 4.8 1.1

1 0 2038.0 7.2 0.7 2040.9 0.72

1 0 2117.5 2.4 2.2 2118.2 2.42

1 1 2167.9 2.9 1.8 1 2168.4 3.0 1.8

1 0 2176.4 1.5 3.6 2178.1 1.68

2194.4

1 1 2309.0 1.4 3.7 1 2310.0 1.1 4.7

1 0 2343.5 9.0 0.6

1 1 2353.4 6.3 (−1) 8.5 1 2354.0 1.6 (−1) 33.8

2359.5



J ′=2e J ′=2f

Life-time matrix Stabilizationa Life-time matrix

v′r k′ E′ Γ′ τ ′ E′ τ ′ v′r k′ E′ Γ′ τ ′

0 2 15.9 2.9 (−3) 1836.4

0 1 37.4 9.5 (−1) 5.6

0 0 53.8 9.9 (−3) 537.7 52.0 -

0 2 99.7 1.4 (−2) 379.2

0 0 120.1 9.1 0.6 120.5 0.82

0 1 137.0 1.3 (−1) 39.6

0 2 140.9 2.1 (−1) 25.4

0 1 162.2 1.6 3.4

166.3 0.62

0 2 170.1 4.2 (−1) 12.8

174.2

0 1 175.3 6.1 (−1) 8.7

0 2 337.4 12.8 0.4 0 2 337.5 12.4 0.4

0 1 381.8 6.4 0.8 0 1 387.9 2.9 1.8

0 0 462.4 3.5 1.5 461.1 1.22

0 2 481.6 3.8 (−1) 14.1 0 2 481.7 2.2 (−2) 244.5

0 1 518.8 2.6 2.1

0 0 553.0 3.4 1.6 549.6 0.67

0 2 555.9 1.0 5.5 0 2 555.9 1.2 4.4

0 1 572.1 2.7 1.9

575.3

0 2 578.8 2.7 2.0 0 2+1 578.1 4.7 1.1

0 1+0 584.5 3.5 1.5

0 1 1101.8 12.3 0.4

0 0 1151.8 4.5 1.2

0 2 1158.0 12.9 0.4 0 2 1155.0 8.1 0.7

0 1+0 1186.1 4.4 1.2 0 1 1188.9 5.9 0.9

1191.2

0 1+0+2 1199.7 3.7 1.4 0 1+2 1197.4 3.0 1.8

0 0+1+2 1210.0 10.4 0.5 1208.3 0.63

1 1 1485.5 9.3 0.6 1 1 1495.3 9.2 0.6

2 0 1770.0 4.7 1.1

0 1 1855.5 6.5 0.8

1 1+0 1950.2 6.4 0.8

1 2 1965.3 5.3 1.0 1966.3 0.90 1 2 1956.8 4.6 1.2

1 0+1+2 1974.5 9.4 0.6

0 1+0 1990.6 12.0 0.4 0 1 1991.5 7.6 0.7

2003.9

0 1+0 2013.0 6.2 0.9 0 2+1 2009.3 6.3 0.8

0 0+2 2022.6 5.6 0.9

1 0 2048.7 7.1 0.8 2050.2 0.82

1 0 2124.4 2.4 2.2 2125.7 2.52

1 2 2153.8 4.1 1.3 1 2 2153.8 4.2 1.3

1 1 2176.6 2.3 2.3 1 1 2177.9 2.5 2.1

1 0 2180.5 1.7 3.2 2182.4 1.59

2194.4

1+0 0 2206.0 11.4 0.5

1 1 2239.7 12.8 0.4

1 2 2266.9 3.9 1.4 1 2 2267.4 3.6 1.5

1 1 2312.1 2.0 2.6 1 1 2314.5 1.4 3.8

1 2 2320.0 7.1 0.7 1 2 2321.8 7.6 0.7

1 0 2351.9 2.6 2.1 1 2 2352.0 2.2 2.4

1 0 2355.0 2.2 2.4 1 1 2356.8 5.5 (−1) 9.6

2359.5

aAll states assigned with k′=0 in Ref. 1.



TABLE AIV: Same as in Table AIII for J ′=1, 2 states of He−H+
2 (I=1) below the v′=1 j′=1 threshold.

J ′=1e J ′=1f

Life-time matrix Stabilizationa Life-time matrix

v′r k′ b′ v′
R

E′ Γ′ τ ′ E′ τ ′ v′r E′ Γ′ τ ′

0+1 0 92.6 2.1 2.6 94.3 4.81

0 1 174.0 8.5 (−1) 6.3 0 175.7 8.8 (−1) 6.0

0 0 215.5 4.0 1.3 214.3 1.36

0 0 251.3 6.3 0.8 253.5 1.60

0 1 3 4 297.0 1.1 (−1) 50.0 0 295.8 6.5 (−2) 81.6

0 0 3 4 327.8 2.4 2.2 329.7 1.92

0 1 343.5 2.1 (−1) 25.5 0 343.0 8.4 (−2) 63.6

347.0

0 1 364.9 5.8 0.9 0 364.2 6.6 0.8

0 0 5 1 504.7 6.0 0.9 505.4 2.15

0 1 5 2 630.0 3.5 1.5 0 630.9 4.0 1.3

0 0 5 2 709.9 4.4 1.2 709.6 4.01

0 1 5 3 785.1 2.8 1.9 0 786.2 3.8 1.4

0 0 5 3 823.6 3.3 1.6 824.2 4.78

0 1 852.1 7.1 (−1) 7.4 0 853.6 1.6 3.3

857.4

0 0 862.0 4.8 1.1 869.3 0.79

1336.9 3.13b

1 1 1473.9 4.8 1.1 1 1475.1 3.9 1.4

0 0+1 1559.0 10.8 0.5

1574.2

0 1+0 1582.9 5.8 0.9 1584.3 0.98 0 1589.0 11.9 0.4

0 0 1592.7 7.3 0.7

2 0 1755.7 3.4 1.6 1739.4 1.52

1+0 1 1942.0 11.3 0.5 1 1930.0 12.3 0.4

1 0 1964.0 11.2 0.5

0 1995.2 6.8 0.8

1 1 2073.0 2.9 1.9 1 2073.3 2.3 2.3

1 0 2116.4 8.9 0.6 2117.4 0.57

1 1 2140.1 5.1 1.0 1 2140.5 4.2 1.3

1 0 2176.0 3.6 1.5 2178.2 1.76

1 1 2218.2 3.0 1.8 1 2216.4 1.4 3.8

1 0 2229.6 2.3 2.3

1 1 2247.1 2.4 (−1) 22.2 1 2246.8 3.8 (−1) 13.9

2249.5

J ′=2e J ′=2f

Life-time matrix Stabilizationa Life-time matrix

v′r k′ b′ v′
R

E′ Γ′ τ ′ E′ τ ′ v′r k′ E′ Γ′ τ ′

0 1 58.8 3.9 (−1) 13.5

0 0 60.1 3.9 1.4 70.4 0.66

0+1 0 105.4 1.6 3.4 109.7 12.1

0 2 134.5 1.0 5.6 0 2 134.5 1.0 5.1

0 1 180.6 1.2 4.3 0 1 184.8 1.3 4.1

0 0 230.5 6.1 0.9 229.6 1.20

0 0 256.0 10.9 0.5 262.0 1.93

0 2 270.7 2.6 (−2) 204.2 0 2 270.7 3.1 (−2) 169.1

0 2 286.5 1.0 5.2 0 2 285.1 2.5 2.2

0 1 3 4 306.8 2.4 2.2 0 1 304.8 3.5 (−1) 15.2

0 0 3 4 330.2 2.3 2.3 334.2 1.80

0 2 3 4 335.6 2.6 (−1) 20.2 0 2 334.9 4.9 (−1) 10.9

0 0 3 5 346.1 8.0 (−1) 6.6

347.0



0 1 5 1 382.9 4.4 1.2 0 1 379.7 5.1 1.0

0 0 5 1 516.5 11.3 0.5 518.3 2.22

0 2 5 1 550.5 2.6 2.1 0 2 550.7 3.2 1.7

0 1 5 2 638.9 4.2 1.3 0 1 641.4 3.2 1.7

0 0 5 2 720.3 8.0 0.7 719.4 4.15

0 2 5 2 734.6 2.2 2.4 0 2 735.0 2.7 2.0

0 1 5 3 790.0 2.2 2.4 0 1 793.7 2.6 2.0

0 2 5 3 832.5 6.2 (−1) 8.5 830.4 5.29 0 2 832.2 2.3 2.3

0 0+1 851.9 2.3 2.3

857.4

0 1+0 863.1 2.7 2.0 0 1 862.3 4.7 1.1

0 1+0 872.5 8.9 0.6 872.9 0.70

1350.5 3.94b

1 1 1487.6 7.4 0.7 1 1 1488.9 6.6 0.8

0 2 1515.4 7.5 0.7

0 0+1 1563.0 9.4 0.6 0 1 1564.5 9.9 0.5

1574.2

0 0+1 1579.1 3.0 1.8

0 2 1584.3 2.9 1.8 0 1+2 1582.9 6.2 0.9

1588.6 1.00

0 2+1 1594.0 9.3 0.6

2 0 1770.4 3.7 1.4 1757.3 1.74

0+1 0+1 1867.0 10.9 0.5

1 1 1946.2 9.2 0.6 1+0 1+2 1957.3 8.2 0.6

1 2+0 1973.0 8.2 0.6

1+0 2+0+1 1981.0 12.0 0.4

1 1 2080.9 2.9 1.8 1 1 2083.8 2.6 2.0

1+0 0 2127.6 9.2 0.6 2126.7 0.60

1+0 1 2146.0 10.8 0.5 1 1 2147.8 6.1 0.9

1 0 2187.8 7.1 0.7 2188.1 1.67

1 1 2222.6 8.2 (−1) 6.4 1 1 2221.3 3.7 1.4

1 0 2233.0 1.4 3.9

0+1 2 2248.6 1.3 (−1) 42.3 1 1 2248.8 2.6 (−1) 20.3

2249.5

aAll states assigned with k′=0 in Ref. 1.
bThe corresponding life-time matrix result is smaller than 0.4 ps.

COMMENTS

(i) Fig. A8 and Tables AI-AIV complete the quantitative characterization of the He-H+
2 complex

that was provided, for the same energy range and J ′ values, in Ref. 1. Merely three k′=0 states
have been found that live longer than 5 ps. Here, it is seen that there are numerous k′>0 states
living longer than the k′=0 states. Over thirty of them are characterized by τ ′>5 ps.

(ii) All states are assigned with the number v′r. States decaying by vibrational predissociation
[v′r>0 and E ′<ε′1 0 (ε

′
1 1) for I=0 (1)] are identified. The predictions of the adiabatic scheme

of Ref. 1 for positions of the v′r=1 states are qualitatively confirmed. Deviations are from
−20 to +60 cm−1. The lowest v′r=1 states of the two (I=0 and I=1) complexes are found to
lie about 20 cm−1 higher than previously thought. Consequently, the lowest VP state of the
He-H+

2 (I=0) complex lives about 40 times shorter than previously predicted, i.e. only 0.6 ps.
Many rotationally predissociating states [v′r=0] live much longer.

(iii) Several examples of states of the He-H+
2 (I=1) complex are found in which rotations of the

H+
2 subunit are not severely hindered by interaction with the He atom so that the states can

be assigned with the quantum numbers b′ and v′R.
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Fig. A9. He+H+
2 (I=0) system

in a wide energy range. Collision-time delay
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The maximal eigentimes qJ
′p′

max/4 for several partial waves (J ′ p′=1) as functions of energy E′ in the range up to

the opening of the HeH++H channel. The color lines show the vibrationally predissociating (VP) states of the

He-H+
2 (I=0) complex detected by inspection of the related sojourn-time functions, Figs. A7 and A10.

Note that the lifetimes of VP states are generally shorter than lifetimes of most other reso-
nances, especially in the low and medium J ′ cases.



Fig. A10. He+H+
2 (I=0) system

Properties∗ of continuum and resonance functions

in short range of atom-diatom distances
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Fig. A10a. Properties of continuum and resonance functions:

low J ′ example
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Fig. A10b. Properties of continuum and resonance functions:

high J ′ examples
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Note the shifting and smoothing of the broad peaks in the functions ρj′(E
′) with growing J ′

— effects of increasing centrifugal barriers and Coriolis couplings.



Fig. A10c. Resolutions of sojourn-times into initial channel components
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Note that tot=
∑

v′

o

tj′=2( ; v′o) is the product of the quantities ρj′=2 and t plotted in the preceding parts of

the figure.

The broad peaks in the functions tJ
′

j′=2(E′;R) indicate the regions of the product energy E′ which are pref-

erentially accessed in the radiative resonance→free transitions from the b=2=k J=J ′±1 quasi-bound states

lying in the considered (low) reactant energy range (E<150 cm−1). The relative magnitude of different v′o
-components of these functions within the peaks indicates roughly the population of vibrational states among

the H+
2 products of the transitions. See comments to Figs. A14 and A15.



Fig A10d. (E ′ J ′e=17)-states in a range above (v′ j′)=(2 2) threshold
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a) Left: enlarged fragment of the third panel of Fig. A10b. The energy range shown coincides with the position

of the large peak in the width function ∂
∂E′

ΓRCT(E′ J ′=17) of the A-channel resonance (b k vR J)=(2 2 0 18),

displayed in Fig. A17 (in its bottom panel).

b) Right: the normalized 1-dim. sojourn-time densities ρλ′(E′J ′p′;R; θ)=
∫ R

dRρλ′(E′J ′p′;R;R, θ), see

Eq. (A10). Shown is the range of θ where the X-channel functions can have a significant overlap with the

function of the A-channel resonance (2 2 0 18), see the right bottom panel of Fig. A5.

The fact revealed by the figure on the structure of the X-channel continuum functions in
the considered energy range is the relative increase of the j′=2 and λ′=2 components. The
occurrence of the peak in the width function of the (2 2 0 18) resonance in Fig. A17 is thus
fully consistent with the following two facts:
1) The function of the A-channel resonance is strongly dominated by the (j λ)=(2 2) compo-
nent, see the bottom panel of Fig. A4a.
2) The radiative A→X transitions preserve (exactly or approximately) the λ- and j-numbers,
see Eq. (A11).

Fig. A9a. He+H+
2 (I=0) system

Statistics of resonances in the nonreactive range, E ′<6487 cm−1
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Counted here are the peaks in the eigen-lifetime functions

0.25×qJ
′e

max(E′), see Fig. A9, whose heights give resonance

lifetimes in three ranges: τ ′>0.4ps, τ ′>1.0ps, and τ ′>5ps.

All eigen-lifetime functions were calculated with the basis X4

(v′=0−3 and j′=0, 2 ..14 states of H+
2 included). The reso-

nance numbers represented by the blue symbols come from

calculations in which the Coriolis-Coupling-reducing (CCr) ap-

proximation (λ′≤4) was additionally applied.

In the overwhelming majority, the resonances live
shorter than 5 ps (Γ′>1 cm−1). These resonances
were considered too broad to be separated out of
the background in the calculations of the A→X
transitions amplitudes. Altogether, in the range of
J ′=1−20, p′=±1, there are about 40 resonances liv-
ing longer than 50 ps. About 30 of them (with
k′≤3), were treated by the analytical approximation
described in Sec. IIE.



Fig. A11. High energy resonances∗ in He+H+
2

Sojourn-time maps∗∗
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∗ Shown are the resonances marked with asterisks in Fig. A9. ∗∗ See the caption of Fig. A7a.

In the upper row are the lowest vibrationally predissociating J ′e=8 states associated with the
v′=1 and v′=3 thresholds. The case in the second row is a mixture of vibrationally predissoci-
ating state with another resonance. The approximate quantum numbers (the blue labels) are
assigned in a crude manner (see Table AV), in most evident cases only.



Fig. A11a. Sojourn-time maps for

selected† J ′=6e resonances near v′=1 threshold
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† the cases marked with asterisks in Fig. A17



Fig. A12. He-H+
2 (I=0) complex

Energies of ‘vibrational’ states (v′ [(∗)] J ′=k′)

for J ′=0, 1f , 2f and v′=0−3
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[(∗)] stands for the quantum numbers v′θ (or b′) and v′R that characterize the atom-diatom bending and

stretching motions in the states, see Table II in paper II and Table AV below.

The dotted gray lines connect the levels which form the pattern similar to that of circular harmonic oscillator

with the vibrational quantum number v′θ+k′. The gray bars indicate the widths of the energy levels.

COMMENTS

(i) The name ‘vibrational’ means here the J ′=k′ states. It is obviously not synonymous with
‘vibrational predissociation’ in the cases of quasi-bound states. The e-parity counterparts of
the states shown between the j′=0 and j′=2 thresholds can decay also by rotational predisso-
ciation.

(ii) The structures of energy levels of the states of the He−H+
2 complex associated with the

v′=1−2 thresholds retain a similarity to the structure of the bound-state levels in the leftmost
panel. The major difference is the considerable increase of the binding of the complex. If
measured by the position of the lowest energy level relative to its respective v′-threshold, the
binding increases by ca 380 cm−1 upon the v′=0→1 and 1→2 excitations of the H+

2 subunit
(see Table AV). The analogous effect in the He+−H2 complex is about 7 times smaller (see
Table CII in part C).

(iii) The binding energy of the He−H+
2 (v

′=1) complex is only by 59.5 cm−1 smaller than the
v′=0→1 excitation energy of free H+

2 and the binding of He−H+
2 (v

′=2) is by nearly 450 cm−1

larger than the separation between the v′=2 and v′=1 thresholds, ε′2 0−ε′1 0. Because of these
relations and the strength of the r−θ−R coupling in the potential V X displayed in Fig. A1b,
one can expect that vibrational predissociation is a very efficient mechanism of decay of the
quasi-bound states of the complex. This is indeed observed, most clearly in Fig. A9.

(iv) Because of the limitations of the used CC-BF-diabatic approach (see Fig. A18), the in-
formation given here and in Table AV on the higher part of levels associated with the v′=2
threshold and on all levels associated with the v′=3 threshold is only qualitative.



TABLE AV: He−H+
2 (I=0). Positions (E′) and widths (Γ’) of ‘vibrational’ states k′=J ′ =0 and

k′=J ′ =1f , 2f lying below the v′=0−3 j′ thresholds for j′=0 and j′=2 for f -symmetry states. The

positions (ε′v′j′) of the thresholds are listed in the headings and in the bottom line (for j′=2). Devia-

tions from exact values for H+
2 , Ref. 6, are shown in braces. All data are in cm−1.

v′=0a v′=1a v′=2a v′=3a

ε′=0 ε′=2194.4 {3.2} ε′=4260.8 {5.7} ε′=6175.9 {−20.1}

k [v]b E′ − ε′ [v]c E′ − ε′ Γ’ [v]c E′ − ε′ Γ’ [v]c E′ − ε′ Γ’

0 1 −1763.5 1+d −2134.9 8.2 1+ −2512.4 8.8 1 −2534.8 35.5

2 −1037.2 2 −1282.2 19.9 2 −1612.9 36.9 −1692 182

3 −632.4 e −911 50 −1176.2 17.3 −1162 117

4 −518.1 4 −645.4 15.7 −801 157 −990 125

5 −282.6 5 −354.9 13.5 −537.5 36.0 −596 54

6 −199.2 6 −243.5 6.5 −315.6 12.5 −416 47

7 −98.0 7 −160.7 7.4 −227.6 17.8 −251.9 33.2

8 −51.1 8 −80.2 2.3 −86.8 43.0 −140.4 17.6

9 −11.0 9 −19.9 1.5 −61.4 12.3 −92.9 19.3

−14.4 3.8 −30.0 10.3

1f 1 −1123.6 1 −1437.9 21.0 1+ −1812.5 0.7 1+ −1838.1 13.3

2 −538.7 2 −701.8 25.7 2 −995.3 2.2 2+ −1076.5 9.9

3 −192.7 3 −248.6 20.1 3 −359.6 4.7 −558 84

4 −132.0 −140.8 21.2 −438 90

5 32.4 5 −26.0 3.1 −20.8 13.3 −189 37

6 131.5 4 36.4 13.0 77.0 13.3 −30 46

7 155.0 (2,4)f 115.6 1.1 (2,3) 144.1 5.2 52.1 9.8

8 173.0 (2,5) 159.6 0.2 114.8 11.6

2f 1 −511.8 1 −744.9 22.5

2 −158.6 2 −237.6 4.6

3 16.0 3 −40.5 4.2

4 99.7 4 73.0 3.6

5 140.7 5 127.4 7.1

6 170.2 6 157.6 2.2

ε′ 174.2 165.1 155.5 144.6

{0.0} {0.0} {−1.1} {−3.0}

aStates listed in particular v′ column are assigned the approximate quantum number v′r=v′.
bThe label of bound states of the complex introduced in Table I of paper I. It is an abbreviation of two

vibrational quantum numbers v′θ and v′R assigned to the states in paper II, by performing the Natural Expansion

Analysis of the bound-state functions.
cA crude assignment of resonance states, based on qualitative inspection of the sojourn-time maps

ρλ′(E′≈E′
res J

′p′;R;R, θ) in the interaction region (R=4Å). The label [v]=x means that the respective

map ρλ′(E′
resJ

′p′;R;R, θ) shows a structure which resembles the structure in the probability distribution

ρλ′(E′BJ ′p′;R, θ) of the bound state labeled with [v]=x in Table II of paper II. There are misprints in the caption

of this table. Instead of the second and third vθ in the second line, the symbols vR and vr , respectively, should appear.
dThe + sign means an overlapping with another resonance.
eEmpty space in the [v] column means that no assignment of the resonance could be made in the way described

in footnote b.
f(b′, v′R) where b′ is the approximate quantum number assignable to states of atom-diatom complexes in which

the rotation of the diatomic subunit changes adiabatically with the R-distance.

COMMENT

Because of the cases of substantial overlapping and incomplete identification of the resonances,
the widths listed in the Table can not be taken as precise measures of the rate of vibrational
predissociation of the He−H+

2 complex. A crude estimate of this rate can be inferred, however:
Γ′/~ ∼ 1012−1013 s−1.
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Fig. A13. J ′=0−2 resonances in He+H+
2 channel

accessed in radiative transitions

from quasi-bound states of He+−H2(v=0)
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The resonances are displayed in the black parts of the panels (by the sharp peaks; the broader features above the

v′=0, 1, 2 thresholds are mostly due to transitions to continuum states of He+H+
2 ). The blue lines show bound

J ′ states of the HeH+
2 ion which are populated in the radiative association (RA) reaction from the indicated

initial quasi-bound states. The widths ΓRA
B (J→J ′) of the states have been obtained as intermediate results of

the calculations reported in paper II. Some similarity can be noted between the structures of the blue lines and

the black peaks below the v′=1 threshold.



COMMENTS

(i) The resonance structures in the radiative width functions ∂
∂E′Γ(E

′ J ′) are by far less rich

than the structures displayed by the time-delay functions qJ
′p′

max(E
′) which characterize the same

X channel continua (E ′ J ′), see Fig. A9. This should be attributed to:
a) the very small j- and λ-mixing in the initial quasi-bound states of the He+−H2 complex,
see Fig. A4a,
b) the properties of the A→X electric dipole transition vector used in the calculations. This
quantity enters the calculations through the following matrix elements [cf. Eqs. (33)-(35) and
(41)-(42) in paper I]

[
BFd

J ′p′ Je

(R)
]
v′j′λ′,vjλ

= δλ,λ′ (−1)J
′+λ[(2J ′+1)]1/2

(
J ′ 1 J

−λ 0 λ

)[
dλ(R)]v′j′,vj (A11)

with
[
dλ(R)]v′j′,vj =

∑

L=0,2

〈v′j′|DLΛ=0(r, R)|vj〉r gλL(j′, j) , (A12)

where 〈v′j′|DLΛ=0(r, R)|vj〉r for L=0, 2 are the functions presented in Fig. A1c and gλL(j, j
′)

denotes the Gaunt integral 〈Yj λ| YL 0|Yj′ λ〉×
√

4π
2L+1

.

The following propensity rules result from a) and b) for (b k vR J)→(E ′
res k

′ J ′) transitions

∆k=0, and ∆j=0 . (A13)

The elements
[
BFd

J ′p′ Je

(R)
]
v′j′λ,vjλ

with j′=j±2 are definitely smaller than the j′=j elements

because of the relative strength of the radial functions 〈 DL 0(r, R) 〉r for L=2 and L=0.
As shown in Fig. A1c, the L=2 function takes from ∼2 to ∼10 times smaller values than
the L=0 function at 2≤R≤4Å, i.e. in the range of R- coordinate of the most probable si-
multaneous stay of the reactant and product systems, compare Fig. A5 with Figs. A6 and A10.

(ii) Because of the ∆k=0 rule the bottom panel of Fig. A13 displays mostly k′=1 resonances
while the other panels display k′=0 resonances. ∆k 6=0 transitions can attain, however,
appreciable strengths if there are large admixtures of λ′ 6=k′ components in final states. The
peak near E ′=500 cm−1 in the bottom panel is an example of strong ∆k=1 transition; the
involved quasi-bound state of He−H+

2 is nominally a k′=2 state but its λ′=1 component is
only slightly weaker than λ′=2.

(iii) The meaning of the ∆j=0 rule may seem unclear in view of the fact that there is usually
a considerable j′-mixing in states of the He+H+

2 system. Most safely it can be interpreted as
a tendency among transitions from a given reactant state (b k vR J) to select the regions of
the product energy E ′ which are characterized by relatively large values (sharp peaks) of the
sojourn-time ρj′(E

′ J ′;R) with j′=b. In this meaning, the rule certainly applies to resonance-
resonance transitions explaining in particular the lack of peaks near the j′=6 thresholds in
Fig. A13 (compare with the bottom panel of Fig. A10a).

The ∆j=0 tendency also occurs in resonance-free transitions which dominate among tran-
sitions from high J resonances. However, the sojourn-time analysis of the final states in the
flat continuum regions is by far less informative, see Fig. A13a.

A wide selection of examples of the ∆j=0 propensity in the RCT reaction is provided in
Figs. A14 and A15.



Fig. A13a. J ′e=17 continuum states of He+H+
2

accessed in radiative transitions

from quasi-bound states of He+−H2(v=0)
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Upper: Sojourn-times tJ
′e

j′ (E′;R) in the region R≤R=4Å of the He+H+
2 system being

in the partial state J ′e=17 with the H+
2 subunit in state j′ for j′=0, 2, 4 [see Eq. (A4)].

Lower: The width functions ∂
∂E′

Γ(E′ J ′=17e) of selected states (b k vR J=J ′±1) of the

complex He+−H2(v=0).

COMMENTS

(i) The broad maxima in the functions tJ
′e

j′ (E
′;R) above the subsequent thresholds v′=0, 1, 2

signify the openings of the (v′ j′) continua to radiative transitions from the reactant channel.
The transitions take place at short R-distances. At these distances, the dynamics of the
product system is strongly affected by the (sizeable for J ′=17) centrifugal potential. Hence the
openings (effective thresholds) occur at energies much higher than the respective asymptotic
thresholds ε′v′j′.

(ii) The positions of the effective thresholds (v′ j′) for v′=0, 1, 2 displayed by the sojourn-time
functions tJ

′e

j′ (E
′;R) for j′=2, 4 coincide quite well with the positions of the broad peaks in the

functions ∂
∂E′Γ(E

′ J ′=17e) that describe radiative transitions (b k vR J=J
′±1)−→(E ′ J ′e=17)

from resonances with b=k=j′ and vR=0.

(iii) It should be noted, however, that the resonances mentioned above, with k=b and vR=0, are
the lowest ones (have the lowest energy Eres) among those assigned with given values of b and J
(see part C). Transitions from higher lying resonances, like the resonances with vR=2 shown in
the figure, produce features in the respective functions ∂

∂E′Γ which have maxima considerably
shifted from the effective thresholds (v′ j′) towards higher energies E ′. These maxima do not
have any visible counterparts in the functions tJ

′e

j′ (E
′;R).



Fig. A14. RCT from quasi-bound states∗ of He+−H2(v=0)

(b k vR J p=1) := (n J)

into [ He + H+
2 (v

′, j′) ](E ′ J ′)
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♯The populations are shown in the insets as Pc′(nJ ; J ′)×100%. The widths ΓJ
n,c′(J

′) for c′=j′, v′ were obtained

as the integrals
∫ E′

max

0
∂

∂E′
ΓJ
n,c′(E

′J ′) dE′ with E′
max=7800 cm−1 and ΓJ

n(J ′)=
∑

c′ ΓJ
n,c′(J

′). The arrows in the

bottom of the panels show the predictions of the 1-dim. model for the peaks in the resonance-free transitions

(b k=b vR=0 J p=1)→(E′ J ′=J±1; j′=b λ′=k) presented in Figs. A2b and A2c.

∗Transitions from b=4 states are shown here only for a better illustration of the propensity rules. The states lie

much too high on the energy scale (see Table CII) to contribute to RCT at temperatures below 50 K.



COMMENTS

This figure should be analyzed together with the plots of the effective potentials in Fig. A2b
and A2c. The following points merit more detailed comments:

(i) the correlations of the shapes of the width functions ∂
∂E′Γ

J
n(E

′ J ′) with the quantum numbers
(b k vR J) of the quasi-bound states

1. The positions of the main peaks correlate with the positions of the ε′v′ j′=b thresholds (best
seen in the bottom panels) — the most explicit manifestation of the ∆j=0 propensity.

2. With growing J , the peaks shift from their respective ε′v′ j′ thresholds towards higher
energies E ′ and change their shapes; they become smoother and broader. The effect is
best seen in the upper right panel; generally, for states with k=b. These states are local-
ized within the effective potentials W J

0 j=b λ=j; 0jj(R) which have the deepest wells among

those pertaining to a given j=b. The corresponding potentials W ′J ′

v′ j′=bλ′=j′; v′j′j′(R) are
in turn the shallowest as compared to their λ′<j′ counterparts. With growing J ′, the
shallow wells fill up most quickly. In other words, there is a range of J ′s where the λ′=j′

potentials are already purely repulsive whereas wells still remain in the λ′<j′ ones. For
small values of J ′, the transition range [determined by the quasi-bound state function
multiplied by DL=0(R), see Eq. (A11)] lies above the wells of the potentials W ′J ′

v′bb; v′bb(R)
for v′=0, 1, 2, 3. The transitions terminate mostly at resonances below the ε′v′ j′=b thresh-
olds. Transitions to free states above these thresholds produce only small features in the
shapes. For medium size J ′s (here J ′=9), some sharp peaks due to resonance-resonance
transitions still appear but the resonance-free features become considerably bigger. For
large J ′s (here J ′=17), the shapes are almost entirely determined by resonance-free tran-
sitions. The following serves as evidence: the shifts of the centers of the broad peaks
in the transitions (b=2, 4 k=b vR=0 J=16, 18)→J ′=J±1 from the ε′v′=0−2 j′=b thresholds
appear reasonably well predicted by the model which accounts only for the ‘reflection’ of
the resonance functions from the single potentials W ′J ′

v′bb; v′bb(R).

3. Shapes pertaining to resonances with excited atom-diatom stretching mode, vR>0, are
characterized by generally broader peaks, as seen in the upper left panel. Qualitatively,
this is also consistent with the reflection principle.

(ii) the correlations of the populations Pj′(nJ ; J
′) with the quantum numbers b, k, and J .

1. The maximum population is usually at j′=b. Exceptions from this rule may occur in
cases of small J resonances when major parts of the peaks in the width functions lie
below the ε′v′ j′=b thresholds and resonance-free contributions are too small to outweigh
them. The resonances (4 4 0 4), (4 4 0 8), and (2 0 1 1) shown in the figure belong to such
cases.

2. The overall shapes of the functions Pj′(nJ ; J
′) depend on the number k. Peaks exceeding

50% occur at j′=b values in the cases of k=b>0 resonances. Visibly broader are the peaks
in the k=0 cases. The state j′=2 is populated with probability comparable to j′=0 in
transitions from b=0 resonances (the example in the upper left panel). Relatively large
is also the population of j′=0 state in transitions from b=2 k=0 resonances. A good
example here is (2 0 1 8)→J ′=9 in the right middle panel [nearly 80% of the integrated
width ΓJ

n(J
′) comes from the regions of E ′ above the ε′v′j′=2 thresholds but only 45% of

this width is made by the width ΓJ
n,j′=2(J

′) ].



For an explanation of the observed correlations with the k-number one should look at

some off-diagonal elements of the matrices W′J ′p′(R) that describe the product system
in the CC-BF-diabatic representation (see Fig. A2)

[
W′J ′p′

(R)
]
v′j′λ, v′′j′′λ′′

= δv′,v′′δj′,j′′ (δλ′,λ′′ + δλ′′, λ′±1)
~2

2µR2 C
J ′j′

λ′,λ′′

+ δλ′,λ′′

[
δv′,v′′δj′,j′ ε

′
v′j′ + V λ′

v′j′, v′′j′′(R)
]
; (A14)

CJ ′j′

λ′,λ′=J ′(J ′+1)+j′(j′+1)−2λ′2 , CJ ′j′

λ′,λ′±1 denote the Coriolis coupling coefficients, and
the terms

V λ′

v′j′, v′′j′′(R)=
∑

L

〈v′j′|V X
L (r, R)|v′′j′′〉

r
gλ

′

L (j′, j′′) (A15)

[with the factors gλ
′

L (j′, j′′) defined in Eq. (A11)] include the relevant rotational cou-
plings. Because of the big strength of the radial factors 〈v′j′|V X

L (r, R)|v′j′′〉
r
for L=2, see

Fig. A1a, it suffices to inspect only the role of the couplings V λ′

v′j′, v′j′+2.

As indicated by the form of the dipole matrix elements in Eq. (A11), the radiative tran-
sitions from the initial state (b k vR J) populate at short R-distances the components

of the X-channel continuum functions
[
BF
F

(+)J ′p′(E ′;R)UJ ′p′
]
v′j′λ′; v′oj

′
ol

′
o
, with λ′=k and

j′=b, see Eq. (A3). The composite symbol v′o j
′
o l

′
o designates states in the open scatter-

ing channels at the energy E ′. The question about the population of different rotational
states of H+

2 in the RCT transitions translates into the question about how many of the
open states other than the ones with j′o=b can have significant j′=b λ′=k components
in the short R-range. The strongest rotational coupling V 0

v′ 0,v′ 2 induces relatively large
j′=λ′=0 components in the functions that pertain to the open channel j′o=2. Overlapping
of these components with the functions of the initial b=k=0 states can thus produce the
population of j′o=2 states of H+

2 which is nearly as large as the population of j′o=0 states
produced by the overlapping with the large j′=λ′=0 components of the j′o functions. The
same coupling V 0

v′ 0,v′ 2 can create significant j′=2 λ′=0 components in the functions of
j′o=0 channels and be thereby responsible for the enlarged population of the ground rota-
tional states of H+

2 in the transitions from b=2 k=0 resonances. Obviously, the rotational
couplings are not able to induce large j′ λ′=j′ components in the functions of the open
channels j′o=j

′−2 which could form large overlap at short distances with the functions
of b=k=2, 4 resonances. This is why the respective distributions P (j′o) are so strongly
peaked at j′o=b. (Note that the symbol j′ in the labels and in the caption of Fig. A14
actually has the meaning of j′o used in the present comment).

(iii) the correlation of the populations Pv′(nJ ; J
′) with the quantum number J (or J ′).

The populations show maxima at v′=0 in all J ′≤9 cases. In the high J ′ cases (J ′=17), the
maximum position shifts to v′=1, the values at v′=0 evidently diminish, and the values at v′=2
and v′=3 slightly increase. Added to that should be the observation that in every case shown
in the figure the area of the peak in the width function near the v′=0 threshold is smaller than
the areas of the peaks associated with the v′=1, 2 thresholds. This means that the excited
v′ states are preferentially populated at short R-distances by radiative transitions from the
A-channel. The increased population of v′=0 states at large R-separations observed in low J ′

cases should be thus attributed to the presence of the strong ro-vibrational couplings in the X-
channel (see Fig. A1b). Tests calculations with the matrix elements 〈v′j′|V X

L>0(r, R)|v′′ 6=v′j′′〉
set to zero confirmed this explanation: the maximum population appeared at v′=1 also in the

low J ′ cases. For high J ′’s, the matrix W′J ′p′(R) in the coupled equations becomes dominated

by the terms ~2

2µR2 C
J ′j′

λ′,λ′′ . The ro-vibrational couplings become relatively weak and incapable

of changing the states of the H+
2 ions at the stage of their departure from He atoms.



Fig. A15. RCT from quasi-bound states of He+−H2(v=0)

A15a. into He+H+
2 (v

′) channels
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A15b. into He+H+
2 (j

′) channels
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Fig. A15 continued
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Plotted are the average values of ∂
∂E′

ΓRCT(E′) in the intervals ∆E′=50 cm−1 and the resolutions into ∂
∂E′

ΓRCT
v′

and ∂
∂E′

ΓRCT
j′ . Note that ∂

∂E′
ΓRCT
c′ (E′)=0 if c′=v′, j′ is a closed channel at E′. So, v′ and j′ have here the

same meaning as the symbols v′o and j′o, respectively, used in Fig. A10c and in the comments to Fig. A14. The

corresponding integrated widths ΓRCT
c′ are shown in Fig. A16 (as the ratios ΓRCT

c′ /ΓRCT).



COMMENTS

(i) The propensity rules ∆j=0 and ∆k=0 show up here in that:

1. The positions of the peaks in the histograms for b=2 states correlate with positions of the
ε′v′ j′=2 thresholds which is quite clear in all low J (=5, 8) cases. With increasing J the
peaks shift towards higher energies E ′ which is (as explicitly demonstrated in Fig. A2b)
a consequence of the enlarging centrifugal barriers in the product channel.

2. The partial widths ∂
∂E′Γ

RCT
j′ for transitions into j′=2 and j′=0 channels dominate in the

resolutions of the widths ∂
∂E′Γ

RCT(E ′) of b=2 and b=0 states, respectively.

3. The sizes of j′=2 and j′=0 components in the histograms for b=2 states clearly depend on
the number k assigned to the states. The smallness of the widths ∂

∂E′Γ
RCT
j′=0 of k=2 states

should be noted. The fact is in accord with the considerations presented in comment
(ii.2) to Fig. A14.

(ii) The magnitude of the functions ∂
∂E′Γ

RCT(E ′), and consequently the integrated widths
ΓRCT, decrease with the growing number vR of the states. [Note the change of the multiplying
factors listed in the y-axis labels of the panels for states with vR=3 and vR=5]. This stems
from the fact that the regions of the configuration space which are most likely occupied by the
reactant system in states with higher and higher excited atom-diatom vibrations (see Fig. A5)
become more and more distanced from the region where the A→X transition dipole function
has appreciable values (see Fig. A1c).

(iii) The leftmost peaks are generally smaller than the peaks associated with higher v′-
thresholds, especially with v′=1. This should be attributed to the relative magnitude of the
matrix elements 〈v=0|DL=0 0(R, r)|v′〉r for v′=0 and v′>0 displayed in Fig. A1c.

(iv) The fact that the product states of energies E ′ in a range near the v′=1 threshold are the
most strongly populated ones by the radiative transitions from the reactant channel at short
R-distances does not necessarily mean the largest population of v′=1 state of the product ions
H+

2 at large separations from He atoms. This is demonstrated in the left panels of the figure
by the resolutions of the width functions ∂

∂E′Γ
RCT(E ′) into the partial widths ∂

∂E′Γ
RCT
v′ (E ′).

The population of v′=0 state of the product ion (measured by the blue area) appears the
largest in all cases shown except for those concerning high J states of the reactants. Parts of
the blue areas within the v′=1 peaks of the width functions (and similarly parts of the red
and green areas within the v′=2 and v′=3 peaks, respectively) are certainly due to inelastic
v′→v′−1 transitions in the X-channel mediated by the potential couplings which are displayed
in Fig. A1b. For J≥13, the state v′=1 becomes more populated than v′=0 (see Fig. A16). As
already indicated in the comments to Fig. A14, this shift in the populations of vibrational
states of H+

2 is quite likely caused by the sizeable centrifugal potentials in the product channel
(the potentials shield the region of small R-distances where the inelasticity occurs). In
addition to the numerical tests mentioned in comment (iii) to Fig. A14, an argument in favor
of this explanation can be found in the plots of the sojourn-time components tJ

′

j′=2(E
′, v′o;R) in

Fig. A10c. Namely, the comparison of v′o=1 and v′o=0 components in the insets of the panels
for J ′=8 and J ′=17 shows that the two components have comparable sizes in the J ′=8 case
and the v′o=1 component is clearly larger in the J ′=17 case.



Fig. A16. Populations∗ of v′ and j′ states of H+
2

in RCT reaction

from various states of reactants
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∗Shown are the percentage populations Pv′×100%

and Pj′×100%. The populations due to transitions

from the initial quasi-bound states (b k vR J):=(nJ)

are obtained as Pc′(nJ)=ΓRCT
c′ /ΓRCT for c′=v′, j′.

The populations Pv′(E) and Pj′ (E) in the right

bottom panels are obtained from the background

parts of the cross-sections σ
RCT(bck)
00→v′j′ (E), as the ra-

tios
∑

j′ . . . /
∑

v′,j′ . . . and
∑

v′ . . . /
∑

v′,j′ . . ., re-

spectively.

COMMENTS

The plots summarize the features of the width functions ∂
∂E′Γ

RCT
c′ (E ′) for c′=j′, v′ exhibited in

the preceding figure and the information on the outcome of transitions from individual partial
(J) continuum states presented in the next figure (A16a).

(i) The populations of v′ states of the product ion show little sensitivity to the character
of the initial state of the reactants, free or resonance state, shape (b=0) or Feshbach (b=2)
resonance. Visible is only the correlation with the J number; when it grows, the excited v′

states become more populated.

(ii) There is a clear distinction between the populations of j′ states in the cases of the initial
b=2 resonances on the one hand and the cases of the initial b=0 resonances and continuum
states on the other hand. A (pronounced) peak at j′=2 appears in (almost) all b=2 cases.
Together with the finding that b=2 resonances prevail in the dynamics of the RCT reaction in
the subthermal range, this leads to the conclusion: the H+

2 ions produced in the reaction are
mostly in the excited rotational state j′=2.



Fig. A16a. Populations of v′ and j′ states of H+
2

in RCT

from continuum states of reactants
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Populations Pv′(E, J) (upper panels) and Pj′(E, J) obtained from the partial cross-sections

σ
RCT(bck)
00→v′j′ (E, J) as the ratios

∑
j′ . . . /

∑
v′,j′ . . . and

∑
v′ . . . /

∑
v′,j′ . . ., respectively [the definition

equivalent to Eq. (42) in the paper]. At E=100 cm−1, the total cross-section σ
RCT(bck)
00 (E) and its

parts σ
RCT(bck)
00→c′ (E) for c′=v′, j′ [ used in the definition of the populations Pc′(E) plotted in Fig. A16]

are built of twenty partial cross-sections, for J=0, . . . , 19, with maximal contribution made by J=18.

At E=10 cm−1, the J=0−11 partial cross-sections contribute, maximally the J=9 one. Only J=0 is

important at E=10−3 cm−1 [ultra-cold range].

COMMENTS

(i) The populations Pv′(E, J) and Pj′(E, J) are practically independent of the energy E in the
entire range shown (near coincidence of black, green, and blue symbols in the right panels).

(ii) The J dependence of the populations Pv′=0 and Pv′=1 displayed in the upper right panel is
analogous to that observed in transitions from quasi-bound state, see comment (iii) to Fig. A14.

(iii) The plots of the populations Pj′=0 and Pj′=2 as functions of J in the bottom right panel
display a new fact. Namely, the ∆j=0 propensity does occur in transitions from continuum
states of the reactants, despite the counteracting inelastic transitions in the product channel,
but only when the value of J is very low (≤3). When J and J ′=J±1, J grow, the depopulation
of the j′=0 state by the inelastic transitions which stem from anisotropy of the potential V X

becomes enhanced (though not directly) by Coriolis couplings. For high J ′s, the shielding role
of the centrifugal potentials comes into play [comments (iii) to Fig. A14 and (iv) to A15]. Only
the largest L=2 anisotropy term of V X remains important. Consequently, the higher j′ states
(>4) become much less involved in the dynamics. Instead of diminishing further, the value of
Pj′=0 tends to grow with J above the J=7 value and stays comparable with Pj′=2.



ACCURACY ESTIMATIONS

of

THE STATE-TO-STATE DESCRIPTION

CONTINUED (SEE FIG. A0):

THE CC-BF-DIABATIC APPROACH

to

DYNAMICS ON THE X-STATE PES



Fig. A17. Coriolis-coupling-reducing (CCr) approximation∗
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COMMENTS

(i) The CCr approximation was exploited in the calculations of the present paper in exactly
the same way as described and exploited in the radiative association calculations of papers I
and II. This means in particular that the restriction λ′max=4 was imposed in the construction
of the CC-BF-diabatic representation of the partial scattering states of the He+H+

2 system
within the entire (large) energy range which is important in the RCT reaction (strictly, in the
RCTnr reaction, see Fig. A18). In the previous papers, the validity of the approximation in
application to only low energy states (E ′≤300 cm−1) was documented. A demonstration of
how it works at much higher energies is thus requisite. Two aspects of the CCr approximation
are illustrated in the figure:

1. the accuracy in the determination of resonances in the He+H+
2 system (gray versus red

lines),

2. the impact on the accuracy of the radiative widths ∂
∂E′Γ

RCT of the low-energy quasi-bound
states of the He+−H2 complex (blue versus light-blue lines).

(ii) As far as its original purpose is concerned, the CCr approximation works well; it does
not affect the values, the positions, and the heights of the peaks in the time-delay functions
qJ

′

max(E
′) in the regions of energy E ′ near the j′=0 and j′=2 thresholds, where the states (E ′ J ′)

of the He+H+
2 system have large admixtures of j′=0 or/and j′=2 components. These are

the most essential components in the radiative transitions from b=2, 0 states of He+−H2, see
Eq. (A11). Therefore the transition amplitudes could be expected to have little sensitivity to
the removal from the final state functions of the λ′ components that pertain to j′>4. Indeed,
the determined widths ΓRCT appear almost unaffected by this approximation.

(iii) The two lower left panels of the figure together with the sojourn-time maps in Fig. A11a
provide yet another, probably the most explicit illustration of the ∆k=0 propensity rule in
the resonance–resonance transitions in the RCT reaction. Among the four resonances marked
with the asterisks, there is a resonance of k′=0 character which is not populated by the
transitions from the two (b k>0 vR J) states of He

+−H2 shown, a resonance of k′=1 character
which is populated in the transitions from the k=1 state but not from the k=2 state, a k′=2
resonance populated from the k=2 state only, and a resonance of unspecified character (strong
λ′-mixing) which is reached from both states.

(iv) The broad blue peaks appearing in the width functions ∂
∂E′Γ(E

′ J ′) above the j′=2 thresh-
olds are due to resonance–free transitions. In the high J case shown in the lowest panel,
concerning the (2 2 0 J=18) resonance, the peak appears considerably shifted from its respec-
tive (v′=2 j′=2) threshold. The shift is consistent with the position indicated in Fig. A2b (by
the yellow arrow in the middle panel) as the result of ‘reflection’ of the resonance function from
the effective potential W ′J ′e=17

v′=2 j′=2λ′=2; v′ j′ λ′(R).



Fig. A18. Convergence with the number of (v′j′) channels
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Left: Radiative widths of selected quasi-bound states in the A channel as functions of energy in the X channel.

Comparison of results obtained with two bases to describe the continuum states in the X channel, both built of

ro-vibrational (v′, j′) states of H+
2 . (The subscripts in the symbols of the bases indicate the number of included v′

states).

Basis X4 — includes 32 (v′, j′) functions, with v′=0−3 and j′=0, 2, 4, . . . , 14; leads to maximally N=136 coupled

states (v′, j′, λ′) since the CCr approximation limiting the values of λ′ to λ′
max=4 is applied.

Basis X6 — includes 47 (v′, j′) functions, with v′=0−4, j′=0−14, and v′=5, j′=0−12, giving maximally N ′=199

coupled states (v′, j′, λ′).

Up to N ′
o=86 states become open in the range of E′<6487 cm−1 (i.e. below the v′′=0 j′′=0 threshold).

Right: Resolutions ∂
∂E′

Γ=
∑

v′

∂
∂E′

Γv′ referred to in the estimation of the iRaT contribution at the end of this file.
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COMMENTS

(i) The structures of the width functions ∂
∂E′Γ(E

′) [and the similar structures in the rates
∂
∂E

∂
∂E′R(EJ ;E

′J ′) as functions of E ′] testify to the fact that the RCT reaction proceeds via
resonances and continuum states in the X channel which are grouped around the subsequent
vibrational thresholds He+H+

2 (v
′ j′=0).

The basis X4, used in the main state-to-state calculations of the paper, can accurately
describe the continuum and resonance states of the He+H+

2 system which are associated
with the three lowest thresholds, v′=0−2. The states around v′=3 threshold cannot be fully
adequately represented by this (and any other) basis because the opening of the HeH++H
channel is disregarded by the X-state PES used in the calculations. Actually, the inspection of
accuracy of the different parts of the potential V X in Figs. A0b-d indicates that the positions
and the overall sizes of the v′=3 peaks in the determined width (rate) functions are correct.
These peaks effectively account for both allowed reaction paths the formation of the H+

2 ions
(RCT) and the indirect formation of the HeH+ ions (iRaT). Obviously, accurate resolutions
into the RCT and iRaT parts are not possible in the present study. Crude estimations of the
iRaT contributions to the radiative widths and to other characteristics determined with the
basis X4 are given in Fig. A19.

(ii) The width functions obtained with the basis X6 are an illustration to the widths ΓRCT..

listed in Table I of the paper. These widths are about 25−28% larger than the widths ΓRCTnr.
The sizes of the peaks near the v′=4 and v′=5 thresholds may be slightly affected (probably
lowered) by the inaccuracy of the potential V X . The main factors determining the sizes, i.e.
the squared overlaps |〈v′|v=0〉|2, are demonstrated in Fig. A0d to depart slightly from the
exact values for v′>4. Still, these peaks clearly show that convergence with respect to the
covered range of the energy E ′ has not been achieved. Extension of the range up to ∼18000
cm−1, by inclusion into the basis of v′ states up to v′=11, would be necessary in order to
account for ∼95% of fully convergent results, as revealed in the paper with the help of the
XNv′

-projected version of the optical potential model (Figs. 12 and 10b).

(iii) Fully convergent and accurate (i.e. insensitive to the large r-deficiency of the potential
V X shown in Fig. A0b) are the widths ΓRCT+RA+iRaT yielded by the ‘complete’ version of
the optical model. The peaks in the width functions associated with the v′≥4 thresholds are
implicitly summarized in the width difference ΓRCT+RA+iRaT−ΓRCTnr−ΓRA:=ΓRCT+iRaT

→X\X4
. The

contribution ΓiRaT
→X\X4

is likely to be substantially larger than ΓiRaT
→X4

estimated in Fig. A19. See

the considerations at the end of this file (A19a).



Fig. A18a. Convergence with the number of (v′j′) channels
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COMMENT

The comparison of green and black symbols in the figure suggests that all the transitions to the
X-channel continuum states in the high energy region (E ′>7800 cm−1) that can possibly con-
tribute to the RCT will not change qualitatively the populations of vibrational and rotational
states of the product ion H+

2 which result from transitions to the nonreactive range (obtained
with the X4 basis and discussed in Figs. A14-A16).



Fig. A19. Estimation of iRaT

in transitions to X4(:=Xnr)
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0

∂
∂E′

Γ(J, J ′) dE′. The function P pT(J ′) is based on inspection of the probabili-

ties P J′

v′ (E′) of the pT reaction for v′=3, J ′=0−30 and E′∈[0.95, 1.1] eV plotted in Fig. 5 of Ref. 16.
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As a crude estimation of the iRaT contribution to the radiative width determined with the
basis X4, denoted in the paper as ΓRCTnr, one may take the quantity

ΓiRaT
→X4

=P pT×
7800∫

6487

∂

∂E ′Γ(E
′) dE ′

in which P pT denotes an average probability of the proton transfer (pT) reaction
He+H+

2 (v
′=0−3)−→ HeH++H in the energy range extending up to ∼0.15 eV above the reac-

tion threshold ε′′00=6487 cm−1. According to the information available in the literature, Refs.
14–17, the pT probabilities are quite small for v′=0 and v′=1 initial states (Figs. 2 and 5 in
Ref. 16). The partial pT reaction probabilities P J ′

v′ (E
′) for v′=2, 3 and E ′−ε′′00∈[0, 0.15] eV are

shown to be of the size of 0.1−0.2 when J ′ is low but rapidly decrease when J ′ gets larger.
Since the plots of the width functions ∂

∂E′Γv′(E
′) in Fig. A15 show that the state v′=3 is mostly

populated by the radiative transitions ending in the energy range 6487<E ′≤7800 cm−1, the
value of P pT should roughly reflect the behavior of P J ′

v′=3. Thus, it seems reasonable to assume
that this value depends on the number J(=J ′, J ′±1) of the resonance and decreases from 0.15
to 0 when J ′ increases from 0 to 30 (as shown in the small panel next to the title of the present
figure). The resulting ‘true’ values of the widths ΓRCTnr are

ΓRCTnr
true :=ΓRCTnr−ΓiRaT

→X4
=(1−∆)ΓRCTnr ,

where ∆=P pT(J)×δ and δ is the ratio of the integrals
7800∫
6487

∂
∂E′Γ(E

′) dE ′ to
7800∫
0

. . . dE ′.

The corrections ∆ for all resonances listed in Table I of the paper, together with the
uncorrected widths ΓRCTnr and the ratios δ, are shown in the the three panels of the upper
row of the figure. The corrections are small, below 1% in the majority of cases.

In the same fashion one may correct the values of the rates ∂
∂E
RRCTnr(bck)(E, J) which

characterize transitions from continuum states of the reactants to the product states of energy
E ′∈[0, 7800] cm−1. The corrected functions

∂

∂E
R

RCTnr(bck)
true (E, J):=

[ ∂

∂E
RRCTnr(bck)− ∂

∂E
RiRaT

→X4

]
(E, J)

for J=0−19 and E<150 cm−1 are smaller maximally by ∼2%. The respective corrections
∆(E, J) are shown in the middle right panel.

Obviously, the impact of the above corrections on the temperature averaged rate of the
RCTnr reaction is similarly small (≃1%), as demonstrated in the bottom panels of Fig. A19.

Thus, one may conclude:

the approximate treatment of the He+H+
2 continuum states in the vicinity of the threshold

for the proton transfer reaction does not practically affect the results presented in the paper
with the label RCTnr: they describe the ‘true’ RCT (formation of the H+

2 ions) though not
exhaustively.



Fig. A19a. Estimation of iRaT

in transitions to X\X4

The reasoning is analogous to that presented above for transitions to the X4 subspace.
In cases of the initial quasi-bound states,

ΓiRaT
→X\X4

≈ P pT
X6\X4

E′
max(X6)∫

E′
max(X4)

∂

∂E ′Γ dE
′ + P pT

X\X6

E′
max∫

E′
max(X6)

∂

∂E ′Γ dE
′

:=
[
P pT
X6\X4

δX6\X4 + P pT
X\X6

δX\X6

]
×

E′
max∫

E′
max(X4)

∂

∂E ′Γ dE
′

:= P pT × ΓRCT+iRaT
→X\X4

, (A16)

where P pT
X6\X4

denotes an average probability for the pT reaction at total energies in the

X6\X4 subspace, i.e. at E ′∈[7800, 11000] cm−1, the symbol P pT
X\X6

denotes the probability

at 11000<E ′<∼21400 cm−1, the δ’s are defined by equality with the second line, and P pT —
with the third line. ΓRCT+iRaT

→X\X4
denotes the integral over the energy in the entire ‘reactive’ (let

us call it so) subspace X\X4. It is obtained from the quantities determined in the paper as

ΓRCT+iRaT
→X\X4

≈ Γtrad−ΓRCTnr−ΓRA ≈ Γtrad−Γ(→X4) . (A17)

The widths Γtrad and Γ(→X4) come from the optical potential model; the integrals over the
respective ranges of E ′ are only implicitly (approximately) represented by them; hence the
symbol ‘≈’ is used here. Similarly, the relative populations of the parts X6\X4 and X\X6 of
the ‘reactive’ subspace by the radiative transitions from the A channel can be inferred from
Fig. 12 of the paper as

δX6\X4
≈ Γ(→X6)−Γ(→X4)

Γtrad−Γ(→X4)

≈ 0.5 and δX\X6
≈ 0.5 . (A18)

For an estimation of the probability P pT
X6\X4

, it is requisite to summarize first what can be

inferred from the resolutions of the width functions shown in the right panels of Fig. A18,
namely:
(i) the energy E ′ which is transferred to the system H+

2 +He in the radiative transitions from
the A channel goes preferably into vibrational excitation of H+

2 . [The peaks above the v′=4
and v′=5 thresholds are mostly yellow and light yellow, respectively].
(ii) the translational (collision) energy in the product system is relatively small, no larger than
one half of the distance between the v′=5 and v′=4 thresholds, i.e. 0<E ′−ε′v′<∼0.1 eV.
This helps in properly adapting the available information on the pT reaction. The recent
quantum scattering study of the reaction H+

2 (v
′=2, 4, 6, j′=1)+He−→HeH++H, reported in

Ref. 17, is particularly useful here. From the plots of the partial reaction probabilities P J ′

v′ for
v′=4 and J ′=0−20 as functions of collision energy in the range 0.1 – 2.5 eV presented in Fig. 4
of that paper one may infer that P pT

X6\X4
should be ∼0.1−0.2.



Transitions to the subspace X\X6 are not explicitly investigated in this study. However, it
seems likely that properties of the product states yielded by these transitions are similar to those
found for A→X6\X4. This means that the H+

2 subunit appears in higher and higher excited
v′ state so that the energy of translational motion of He relative to H+

2 does not substantially

exceed 0.1–0.2 eV. If this is true the probability P pT
X\X6

may be taken as ∼0.2−0.4. The

supporting literature information is:
(i) the plots of the partial reaction probabilities P J ′

v′ for v′=6 and J ′=0−20 as function of
collision energy given in Fig. 5 in Ref. 17, and
(ii) the plots of the cross-section for the pT reaction as function of v′ given in Fig. 3 of Ref. 18;
they suggest that the partial probabilities P J ′

v′ do not grow further with increasing v′ when v′

becomes larger than 6−7.
Taken together, the above estimations give

P pT ≈ 0.15−0.3 . (A19)

Practically nothing would change if the estimations were made for transitions from contin-
uum states. It suffices to recall the fact stated in the discussion of Fig. 12: the population
of states in X\X4 expressed in terms of the rates ∂

∂E
Rbck

(→XN′
v
)(E, J) and

∂
∂E
Rtrad(bck)(E, J) are

practically indistinguishable from those expressed in terms of the widths Γ(→XN′
v
) and Γtrad.

One would get

∂

∂E
RiRaT

→X\X4
(E, J) ≈ P pT×

[ ∂

∂E
Rtrad(bck)− ∂

∂E
Rbck

(→X4)

]
(E, J) . (A20)

Therefore, upon summation/averaging over all possible initial states one gets the simple ap-
proximations to the cross-section σiRaT and to the rate constant kiRaT that are used in the
paper, in Eq. (49), in footnotes to Tables II and III, and in Fig. 13 and 17. A graphical
presentation is given in the figure below.
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Note that the estimate k∼iRaT(T ) shown in Fig. 17 of the paper is obtained as
k∼iRaT(T )≈f(T )×ktradI=0+1(T ), i.e. the additional assumption is made that the I=1 con-
tribution to the iRaT is also the fraction f of the rate function ktradI=1 . Adequacy of this
extrapolation is almost inconsequential since in the conditions of thermal equilibrium the
values of ktradI=1(T ) at temperatures T<40 K are small.



When the radiative reactions take place in gas mixtures of the He+ ions with ‘normal’ hy-
drogen, the respective rate constant functions nk

rad(T ) for rad=RCT+RA+iRaT and rad=RA
are determined, in ∼67% and ∼50%, respectively, in collisions with ortho-hydrogen, see Table
BXI in Ref. 21. [Precisely, the statement is true for temperatures above 10 K].
Since individual transition rates from states of the He++H2(I=1) system to the X-channel
continuum states are not calculated in the present study, information on the shapes of the
width functions ( ∂

∂E′Γ) of b=3, 1 resonances, on the populations of the particular subspaces
X4, X6, X\X4, etc, is not explicitly available. However, these characteristics should not differ
much from those for He++H2(I=0); peaks in the emission spectra will be shifted by about
160–170 cm−1 towards higher energies since they will correlate with the v′, j′=3 rather than
with the v′, j′=2 limits (the ∆j=0 propensity rule). Since somewhat larger parts of the v′=3
peaks will extend above the threshold for the pT reaction the role of the iRaT in transitions
to the X4 subspace may be a little bigger than (∼1%) estimated above. Still, for the entire
iRaT contribution to the RCT+iRaT+RA reaction in the mixtures with ‘normal’ hydrogen,
the estimate nk

∼iRaT(T )≈f(T )×nk
trad(T ) should remain reasonable. The corresponding

estimate of the RCT contribution — nk
∼RCT(T )≈[1−f(T )] nktrad(T )− nk

RA(T ) — gives:

nk
∼RCT/nk

trad≈87–93%. Obviously, nk
trad(T ) is the function shown in the last column of

Table III and in Fig. 16b with solid violet line. Values of nk
RA(T ) can be found in Table BXI

(Ref. 21). The estimate nk
∼RCT(T ) for T∈[10, 40] K is shown (by the light violet strip) in

Fig. 16b of the paper and mentioned in the comparison with the experiment data of Ref. 19.

The X-channel continuum states are populated by radiative transitions from the A channel
in the configuration region lying deeply inside the He+H+

2 valley of the potential V X(r, R, θ)
(see Fig. A0). This concerns also the states populated in the ‘reactive’ energy range. The

probability P pT used here in the estimation of the iRaT may be viewed as giving the fraction
of all these high energy states which would extend, loosely speaking, into the HeH++ H valley
if the artificial wall did not forbid that. So, P pT≈0.15–0.30 approximately reflects the size of
one of the final-state interaction effects which is the proton transfer forming the HeH+ ions.
Of interest is a comparison with other effects of the same kind — the inelastic transitions
following the radiative A→X4 transitions and changing the populations of v′ and j′ states of
the H+

2 ion. The size of these changes is exhibited in Fig. B5e of Ref. 21: the populations of
v′=0 and v′=3 state enlarge and diminish, respectively, by factors close to 2, the populations
of v′=2 and j′=2 states diminish by ∼70% and ∼60%, respectively. Concluding, in the entire
A→X radiative reaction scheme the inelastic transitions in the X channel play by far a bigger
role than the rearrangement transitions.

Obviously, all the estimations of the iRaT contributions presented here and in Fig. A19
are rather crude. Functions from rearrangement scattering calculations (using an appropriate
surface V X) for continuum states of the He++H2 system in the energy range extending up
to the v′=11 threshold (and perhaps even higher) would be necessary to verify these estima-
tions, i.e. to evaluate separately the widths ΓRCT and ΓiRaT, the rates ∂

∂E
RRCT(bck)(E, J) and

∂
∂E
RiRaT(bck)(E, J) and, eventually, the rate constants kRCT(T ) and kiRaT(T ). An attractive

idea to exploit in such calculations, if they will appear necessary in the future, is the optical
potential for chemical reactions proposed by Neuhauser and Baer20. It would require only a
minor modification of the Hamiltonian HX used in the present state-to-state calculations.



1 W. P. Kraemer, V.Špirko, and O. Bludsky, Chem. Phys. 276, 225 (2002).
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B. SUPPLEMENTARY MATERIAL — PART B

OPTICAL POTENTIAL MODELS

of

RADIATIVE REACTIONS

in

He++H2

He+ +H2(v=0, j)

He+−H2

hν +





HeH+
2 RA

He−H+
2 He + H+

2 (v
′, j′) RCT

[He + H+
2 ] H + HeH+(v′′, j′′) iRaT



Fig. B1. He++H2 −→ {He+H+
2 , HeH+

2 , HeH++H}

Calculations within the 1-dimensional optical potential model∗
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Fig. B1a. The complex potential used:

ReV (R) = V A(r=r, R, θ=θ) − V A(r=r, R→∞, θ=θ)

with r=0.748 Å and θ=π
2 (the values at the minimum of

the A-state PES),

−2 ImV (R) = 4
3~3c3 [∆V (R)]3 [d(R)]2

with ∆V (R) = V A(r, R, θ) − V X(r, R, θ) ,

∆V (R→∞)=73476 cm−1, and d(R)=dBF
Z (r=r, R, θ=θ)

(see Fig. A1 in Ref. 1).

The thin black lines represent the effective potentials

ReV (R)+h2

2µ
l(l+1)
R2 for selected values of the angular mo-

mentum quantum number l. Shown are also the energies

of two resonances supported by the effective potentials.

n denotes the vibrational quantum number.
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Fig. B1b. The total radiative cross-section σRCT+iRaT+RA:=σrad as function of collision energy E. The line on

the green background represents the contribution σrad
bck(E)= ~

2π
2µE

23∑
l=0

(2l+1)Pl(E) with Pl=1−|Sl|
2 and Sl denoting

the partial S-matrix in the optical potential. The black peaks represent sharp resonance contributions evaluated

using the approximation P res
l (E)≈ΓradΓ[(E−Eres)2+(Γtot/2)2]−1 with Γtot=Γrad+Γ (the parameters Eres, Γ, and

Γrad of these resonances are listed in Table BI). The labels of the peaks are the numbers (n l).

∗ Refs. 2-3



TABLE BI: The 1-dim. optical potential model of radiative reactions in He+ + H2 collisions.

Parameters of selected resonances, the positions Eres, the tunneling widths Γ, and the radiative

widths Γrad (all in cm−1). Also shown are the probabilities of radiative decay of the resonances,

P res
l :=1−|Sl(E=Eres)|2, where Sl is the partial scattering matrix in the optical potential. In the

last two columns are the values of P res and Γrad from calculations using the distorted-wave (DW)

approximation to account for the imaginary part of the optical potential.

n l Eresa Γa Γradb Γtotc P res P res
DW Γrad

DW
d

7 8 0.936 2.58 ( −5) 5.9 (−6) 3.17 (−5) 0.611 0.929 (+0) 6.0 (−6)

8 6 1.045 4.95 ( −2) 2.6 (−6) 4.95 (−2) 0.209 ( −3) 0.211 (−3) 2.6 (−6)

5 12 3.892 1.80 ( −6) 13.2 (−6) 1.50 (−5) 0.420 0.296 (+2) 13.3 (−6)

4 14 8.089 3.09 ( −6) 22.7 (−6) 2.58 (−5) 0.420 0.295 (+2) 22.8 (−6)

3 16 11.316 1.63 ( −8) 41.5 (−6) 4.16 (−5) 0.157 ( −2) 0.102 (+5) 41.5 (−6)

2 18 8.145 1.84(−16) 71.5 (−6) 7.08 (−5) 0.105(−10) 70.9 (−6)

2 19 47.907 7.68 ( −3) 53.4 (−6) 7.73 (−3) 0.274 ( −1) 0.278 (−1) 53.4 (−6)

1 21 48.989 3.50 ( −7) 93.2 (−6) 9.36 (−5) 0.149 ( −1) 0.107 (+4) 93.3 (−6)

1 22 104.414 6.79 ( −2) 71.2 (−6) 6.80 (−2) 0.418 ( −2) 0.419 (−2) 71.2 (−6)

0 23 33.632 2.11(−16) 142.4 (−6) 1.43 (−4) 0.593(−11) 142.6 (−6)

aDetermined by applying the Siegert quantization method4 to the radial equation for l-th partial wave with

the imaginary part of the potential set to zero.
bDetermined as P res×(Γtot)2/(4Γ). The background of the Lorentzian profile in P (E)=1−|S(E)|2 is negligible

if the resonance is sharp, Γ≪0.1 cm−1.
cObtained by applying the Siegert quantization method to the radial equations with the full complex potential.
dObtained as P res

DW×Γ/4 or, in the (n l)=(2 18), (0 23) cases, as −2
∫
|ΨB(R)|2 ImV (R) dR , where ΨB(R)

denotes a bound state function approximating the scattering function in the potential ReV (R) at E≈Eres.

COMMENTS

(i) In the exact (Siegert quantization) calculations within the optical potential approach,
the two ways of decay of resonances, by tunneling and by spontaneous emission, are treated
on the same footing. One can thus explicitly see how small the role of the resonances
termed sharp (having very small dissociative width Γ) in the RCT and RA reactions is.
The probabilities P res

l inform about that; multiplied by (2l+1) they determine the heights
of the peaks in the cross-section σrad(E). In the cases of the two sharpest resonances in the
table, (n l)=(2 18) and (0 23), the probabilities P res are seen to be practically zero. These
resonances do not produce any peak in the cross-section in Fig. B1b despite the fact that
their radiative widths are larger than the radiative widths of most other resonances.

(ii) The numbers in the last two columns also serve a pedagogical purpose. They show
that correct values of the radiative widths of the sharp resonances are obtainable when the
imaginary part of the potential is treated as perturbation (DW approximation), but the
values of P res

DW are too big by a factor very close to (Γtot/Γ)2. Thus, it is possible to restore
the correct values of the probabilities P res without leaving the DW approximation by means
of the simple operation

PDW(E≈Eres)≈Γrad
DWΓ[(E−Eres)2+(Γ/2)2]−1 −→ . . .Γrad

DW+Γ . . .

which essentially is what was termed “the implicit optical potential approach” in Ref. 5.
As described in Sec. IIE of the paper, this approach was rather extensively exploited in the
calculations of the study, to account for sharp resonances in the initial as well as in the final
channel of the RCT reaction.
An illustration of the sharp resonance problem within the 3D optical potential model is given in Table BV.



Fig. B2. He++H2 −→ {He+H+
2 , HeH+

2 , HeH++H}

THE 3-DIMENSIONAL OPTICAL POTENTIAL MODEL
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Fig. B2a. The PES of the first excited electronic state of HeH+
2 . The three cuts of the surface are at the values

r=rAmin, R=RA
min, and θ=θAmin, respectively, which are the coordinates of the minimum of V A(r, R, θ) at −3351 cm−1.

Zero of energy is at the He+ +H2(v=0, j=0) threshold, which is 2177 cm−1 above the limit V A(r, R→∞).

Lower: The optical potential surface for A→X transitions: −2 ImV opt(r, R, θ) = 4
3c3~3 d

2(r, R, θ) [∆V (r, R, θ)]3 ,

where d
2=[dBF

Z (A→X)]2 and ∆V (r, R, θ)=V A(r, R, θ)−V A(r, R→∞)−V X(r, R, θ)+∆E with ∆E=74507 cm−1.
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Fig. B2b. Contour plots of 2D cuts of the surface −2ImV opt(r, R, θ) at r=rAmin and R=RA
min compared to cuts of

the surfaces V A(r, R, θ) and V X(r, R, θ). The contours of −2ImV opt are drawn in step of 2×10−5 cm−1 and cover

the range of 0 − 2×10−3 cm−1. The contours of V A and V X are drawn in step of 100 cm−1 and cover the ranges

[−3300, 6000] (zero at He+ + H2(v=0, j=0)) and [−3800, 6000] cm−1 (zero at He + H+
2 (v=0, j=0)), respectively.

The crosses in the third column cuts show the endpoint of vertical transition from the minimum of V A, called the

Franck-Condon point, E′
FC=5300 cm−1. The cuts in the rightmost column are through the minimum of V X(r, R, θ).

The anisotropy of the surface −2ImV opt(r, R, θ) at r′s near rAmin is rather weak. The R dependence
of the surface is in turn strong and has a substantial impact on rates of the A→X transitions from
low energy states in the A channel (see Fig. B5).



Fig. B3. 1D versus 3D optical potential∗

and state-to-state approaches
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Fig. B3a. Radiative widths of resonances.
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of the (b k vR J) resonances listed in Table I of the
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COMMENT

The resonances in the 1D complex potential are counterparts of the shape resonances
(b=0 k=0 vR J) of the He++H2 system on its full-dimensional PES. Obviously, one-to-one
correspondence could not be established with the present simple construction of ReV (R).
Nevertheless, it is worth noting that the magnitude of the radiative widths of the resonances
in the 1D complex potential, the growth of these widths with decreasing vibrational number
n, agree reasonably with the magnitude and the dependence on the number vR of the radiative
widths of shape resonances in the ‘exact’ potential. Perhaps somewhat better agreement would
be achieved if the potentials ReV (R) and −2ImV (R) were constructed as averages of the

3D surfaces V A(r, R, θ) and optV (r, R, θ) in the basis function ΦJM
vjλ (r, R̂) with J=M=j=λ=0

and v=0 [see Sec. III and IV in the paper]. However, irrespective of details of construction
of the complex potential the 1D model of dynamics is evidently insufficient for simulation of
radiative quenching in systems like He++H2 in which Feshbach resonances play a dominant role.

∗the complete version described in Sec. IVA of the paper



A SIMPLIFIED XNv′ PROJECTED VERSION

of THE 3-DIMENSIONAL OPTICAL POTENTIAL MODEL

In the version of the model used in the calculations of the paper to simulate the radiative
transitions from ([E,E+dE]Jp=1, v=0 j=0) states in the A channel to the subspace XNv′

of

the X channel, the skew-hermitian matrices − ı
2
opt
XN′

v

WJe
(R) that were added to the Hamiltonian

matrices HJe
(R)=− ~

2

2µ
I d2

dR2+WJe
(R) had the following form

opt
XN

v′
WJe

(R) =

J+1∑

J ′=|J−1|

opt
XN

v′
WJ ′p′ Je

(R) , (B1)

where opt
XN

v′
WJ ′p′ Je

(R) =
4

3c3~3
[dJ ′p′ Je

(R)]†
[
∆VJ ′p′(R)

]3
dJ ′p′ Je

(R) , (B2)

∆VJ ′p′(R) = ∆EI + 〈Φ′ J ′M ′p′|V A|Φ′ J ′M ′p′〉
r,R̂

−W′ J ′p′(R) ; (B3)

(all symbols are defined in the paper). As documented in Tables I and III and in Figs. 10 and 12
of the paper, this version of the XNv′

projected optical potential is capable of reproducing the
state-to-state results for the rate function kRCTnr+RA(T ) at T∈[2−50] K and for the radiative
widths ΓRCTnr+RA of all involved A channel resonances (Feshbach and shape) with percentage
deviations rarely exceeding 1%. Additional tests of the various terms of opt

XN
v′
W(R)J

′p′ Je
defined

in (B2)-(B3) revealed that the off-diagonal elements of ∆VJ ′p′(R) had practically no impact on
the results and could safely be omitted. The J ′ dependent centrifugal terms in diag ∆VJ ′p′(R)
play a role when J ′>10. If these terms were omitted the widths of J=20−22 resonances would
be larger by 3-4% and thereby less consistent with the state-to-state values. It is possible,
however, to remove the J ′ dependency from opt

XN
v′
WJ ′p′ Je

(R) by using in the centrifugal terms

of the factor ∆VJ ′p′(R) a common effective value of J ′ for all three J→J ′=J±1, J transitions,
eg. J ′eff=J−1. Then, exploiting the factorization

[
dJ ′p′ Je

(R)
]
v′j′λ′;vjλ

= C(J1J ′, λ0λ′)
[
d′λ(R)]v′j′;vj , (B4)

where
[
d′λ(R)]v′j′;vj =

∑

L

′〈v′j′|DL(r, R)|vj〉r g
λ
L(j

′, j) , (B5)

one can perform the sum in Eq. (B1) analytically and obtain

[opt
XN

v′
W̃J(R)]ṽ̃λ̃;vjλ =

4

3c3~3
δλ̃,λ

Nv′−1∑

v′=0

j′max∑

j′=0

[d′λ(R)]v′j′;ṽ̃ [∆V J λ
v′j′ (R)]3 [d′λ(R)]v′j′;vj (B6)

with ∆V J λ
v′j′ (R) = ∆E − ε′v′j′ +

∑

L

′〈v′j′|V A
L (r, R)−V X

L (r, R)|v′j′〉′
r
gλL(j

′, j′)

−
J(J−1) + j′(j′+1)− 2λ2

2µR2
,

and gλL(j
′, j)=(−1)LC(j′Lj, λ0λ)C(jLj′, 000) .



Fig. B4. He++H2 −→ {He+H+
2 , HeH+

2 }

Calculations within the X4-projected 3D optical potential model
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Fig. B4a. A comparison of diagonal ele-
ments of the molecular and optical potential
matrices

W
Je

(R) := ReVJe

(R) , opt
X4
W̃

J(R) := −2ImV
J (R)

which correlate with the thresholds H2(v=0, j)+He+

for j=0 and j=2. See Fig. A2 of Ref. 1 and Eq. (B6)

for the definitions of WJe

and opt
X4
W̃

J (R), respectively.

The red lines drawn within the potentials W Je=5
022;022(R)

and W Je=5
021;021(R) show the energies and the spatial

extents of functions of the states (b k vR Je)=(2 2 2 5)

and (2 1 1 5), respectively.

The comparison shows that radiative transi-
tions from the initial (b k vR J) quasi-bound
states occur preferably in the regions of left
turning points in the potentials W J

0bk;0bk(R).

The repulsive wall region of W J
000;000(R) is de-

cisive in transitions from free states.

3D optical potential

versus

state-to-state approach
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Fig. B4b. Radiative widths of reso-
nances.

The open circles represent the results listed

in Table I of the paper, obtained from the

optical potential opt
X4
W

Je

of Eq. (B1)-(B3).

The yellow dots denote results from the sim-

plified version of this potential defined here

in Eq. (B6).

The simplified version of the X4-
projected optical potential is seen to
be as good as the one used in the pa-
per.

COMMENT

Because of its ability to account for the existence of rotationally predissociating states in
the reactant channel, the 3D optical potential model is certainly superior to the 1D model.
The accuracy of the X4-projected version of the 3D model which is documented here in the
calculations of the rates of radiative processes in the low temperature H2 + He+ gas mixture
may certainly be exploited in the analysis of the state-to-state results obtained for this system
(see Fig. B5).



Fig. B5. X4-projected 3D optical potential model

as an aid in the analysis of state-to-state results

Correlations of transition rates with properties of initial state functions
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Fig. B5a. R-dependent rates of
transitions from selected continuum
states (E, J) of He+ + H2(v=0)
obtained as ∂

∂ER(→X4)(EJe;R) =

1

~
[F

(+)Je

(E;R)]† opt
X4
W̃

Je

(R)F
(+)Je

(E;R) .

The integrated rates ∂
∂ER(→X4)(EJe) are

approximations to state-to-state values of
∂
∂ERRCTnr+ ∂

∂ERRA; deviations ∼2%.

Fig. B5b. R-dependent widths of selected quasi-
bound states (b k vR Je)=(n, Je) of He+−H2(v=0)
obtained as

ΓJe

n (→X4)
(R) = [FB Je

n (R)]T opt
X4
W̃

Je

(R) F
B Je

n (R) .

The integrated widths Γrad:=ΓJe

n (→X4)
are approximations

to the state-to-state values of ΓRCTnr+ΓRA; deviations

.1%, see Table I in the paper.

In the bottom row: F02k:=c ∗ [FB]v=0 j=2 λ=k where c is a

factor (close to 1) chosen to give 〈F02k|F02k〉=1.



COMMENTS

(i) Because of the monotone dependence of the optical potential on the R coordinate, see
Fig. B4a, the oscillations in the functions ∂

∂E
R( ;R) and Γrad(R) come from the initial state

functions. The rapid decrease of the optical potential, by a factor of ∼500 between R=2 and
R=4 Å, dampens the oscillations.

(ii) Radial functions of continuum states for a given J change very little with the energy E
in the small range considered, [10, 150] cm−1, specifically, in its subrange above the top of the
centrifugal barrier in the potential W J

000;000(R). The transition region near the turning point
remains almost constant. This is why the rate functions behave as demonstrated in the left
panel of Fig. B5a.

(iii) With growing J , the functions of continuum states become shifted towards larger R’s where
they are exposed to a larger damping by the optical potential. However, since the largest am-
plitudes of the functions stay near the turning points the impact of the shift on the integrated
rates ∂

∂E
R(E, J) is relatively small, as demonstrated in the right panel of Fig. B5a.

(iv) In contrast to the small sensitivity of the rate functions to changes of energy of contin-
uum states, the correlations of the radiative widths of quasi-bound states with the vibrational
numbers vR and vθ=b−k are noticeable(∗) in Table I of the paper, in Figs. B3 and B4b. An
inspection of Fig. B5b together with Fig. B4a helps to rationalize these correlations.

(iv)’ Functions of quasi-bound states trapped by the barrier in the effective potential
W J

000;000(R) change their shapes when the number vR grows; their largest amplitudes
appear at R’s closer and closer to the barrier position, i.e. in the region where the optical
potential is already small and vanishes rapidly. This gives the decrease of the widths
of b=0 states with growing vR (upper panel of Fig. B5b). Similarly, the decrease of the
widths of a given b=2 k state with growing vR (lower left panels) can be explained by the
changing shapes of the related bound state functions in the potential W J

0bk;0kb(R).

(iv)” A decrease of the radiative widths of b k states with growing b−k is seen in Fig. B4b when
one compares the cases (2 2 0 17), (2 1 0 12) , and (2 0 0 6). The effect would be larger if
cases with the same J number could be compared(∗). The origin of this correlation should
be attributed to the relative configuration of the wells in the potentials W J

0bk;0bk(R) for
k diminishing from b to 0. See Fig. 2 in the paper. Comparing vibrational functions in
these potentials characterized by the same vR (examples in the middle and right panels
of Fig. B5b) one easily realizes that the function in the shallower potential (smaller k)
should be more suppressed by the optical potential since its maximal amplitude occurs
at larger R’s.

(∗)clear expositions of the correlations in a larger set of the widths ΓRCT+RA+iRaT of bound and quasi-bound

states of the He+−paraH2 and He+−orthoH2 complexes are given in Figs.B7b and B8.
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Fig. B5c. Populations of v′ and j′

states of H+
2 due to transitions from

(b k vR Je)=(n, Je) states of He+−H2.

The black symbols are the ‘true’ populations

of the RCTnr reaction products obtained from

the state-to-state approach, see Fig. A15 in

Ref. 1. The yellow symbols represent the ra-

tios ΓJerad
n,c′ /ΓJerad:=optPc′ for c′=v′, j′, where

the width ΓJerad is obtained by evaluation of

the formula 〈FB Je

n | optX4
W̃

J |FB Je

n 〉 , see Eq. (38)

in the paper, and the quantities ΓJerad
n,c′ result

from the resolutions opt
X4
W̃

J=
∑

c′
opt
X4
W̃

J
c′ for

c′=v′, j′, see Eq. (B6).

The brown symbols represent j-mixing in the

functions of the initial states, see Fig. A4 in

part A.

COMMENTS

(i) optPv′ and optPj′ describe the populations of v′ and j′ states of the H+
2 ions at short

separations from the He atoms which result from transitions to the energy range of the
H+

2 +He system including the continuum part (the same as the state-to-state results, 0-
7800 cm−1) and also bound state energies. Actually, transitions to bound states (the RA
process) constitute only a small fraction in the radiative decay of the resonances shown in
the upper panels and practically do not occur in the decay of the high J resonances shown
in the bottom panels (compare the respective values of ΓRA and ΓRCTnr in Table I of the paper).

(ii) The populations optPj′ differ only slightly from the populations of j-states (j-mixing) in
the functions of the He+−H2 complex. This follows from the properties of the transition
dipole moment involved (∆j=0 propensity, see the discussion below Fig. A12 in part A).

(iii) The populations optPv′ in turn differ dramatically from v-mixing in the initial states (which
is small: ρv=0&90% in all cases). They rather reflect the overlapping between vibrational
functions of H2 and H+

2 , see Fig. 12b in the paper and Fig. A1d in part A. This is precisely
the effect predicted by Hopper in Ref. 6.

(iv) By construction, the optical potential model does not account for dynamics in the H+
2 +He

system, for the internal energy transfer. Thus, the differences between the yellow symbols in
the figure and their black counterparts display, quite adequately, how much the vibrational and
rotational inelasticity in the product channel contributes to the final populations of vibrational
and rotational states of the H+

2 ions at large separations from the He atoms. The picture is
fully consistent with the considerations presented on this matter in part A, below Fig. A14.
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Fig. B5d. Populations Pc′(E, J) of c′=v′

and c′=j′ states of H+
2 due to transitions from

continuum (E, J) states of He+−H2.

The black symbols are the ‘true’ populations in

RCTnr [state-to-state results, see Eq. (42) in the pa-

per]. The yellow symbols represent quantities ob-

tained in the same way as the ratios optPc′(n, J
e) in

Fig. B5c except the matrix elements of the optical po-

tential between continuum state functions are used,

〈F
(+)Je

(E)| optXN
v′

W̃
J |F

(+)Je

(E)〉.

The J dependence of the populations (exam-
ples in Figs. 4, 6, and 18 of the paper) is sum-
marized here. Documented is the fact (black
versus yellow curves in the right panels) that
the dependence is actually established in the
product channel, by rotational couplings (po-
tential anisotropy) acting together with Cori-
olis couplings and centrifugal distortions.
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Fig. B5e. Temperature averaged pop-
ulations of v′ and j′ states of the product
ion of the RCTnr reaction

compared to the short-range populations of the

states obtained from the X4-projected 3D opti-

cal potential model (yellow lines) which disre-

gards the v′ and j′ changing transitions in the

product channel.

CONCLUSIONS

• The population of vibrational states of the H+
2 ions produced in the RCT reaction at

temperatures 10-40 K would be qualitatively different and nearly consistent with Hop-
per’s prediction6 (maximum at v′=2 state) if vibrational (vibro-rotational) inelasticity of
motion in the final channel of the reaction were neglected.

• The population of rotational states would be quantitatively different, more strongly
peaked at j′=2 state, and thereby even more inconsistent with Hopper’s prediction (max-
imum at j′=0) if rotational inelasticity in the product channel were neglected.



Fig. B6. He++H2 −→ {He+H+
2 , HeH+

2 , HeH++H}

Application of the ‘complete’ 3D optical potential model

Fig. B6a. Radiative quenching of He+ ions in collisions with H2(v=0, j=0)

molecules, RCT+RA+iRaT(:=trad), in cold range(∗)
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A demonstration of Wigner’s threshold laws:

• in partial cross-sections (left panel),

σrad
00 (E, J):=~2π

2µ
E−1 [2π~ ∂

∂E
Rrad

00 (E, J)] ∼
E≪EJ

cbr

~2π
2µ

Crad
J EJ− 1

2

for rad=trad, RCTnr, RA, where EJ
cbr denotes the height of the centrifugal barrier in the

effective potential W Je

000;000(R). The values of EJ
cbr for J=1, ..., 9 are shown by the sticks

in the lower right corner(∗). All determined coefficients Crad
J (for rad=RCTnr, RA — in

the state-to-state approach) are listed in table below.

• in partial rate constants (right panel),

krad
00 (T, J):=

∫
dE P 0(E, T )

∂

∂E
Rrad

00 (E, J) ∼
kBT≪EJ

cbr

Krad
J (kBT )

J

with Krad
J = ~2π

µ3/2

(2J+1)!!

2J+1/2 Crad
J . The sticks in the lower right corner show the temperatures

EJ
cbr/kB.

At T<1 mK, the total rates krad
00 (T )=

∑
J(2J+1) krad

00 (T, J) are practically determined by J=0
partial rates, which are: Krad

0 =4.56×10−16, 2.88×10−16, and 1.3×10−17 s−1cm3 for rad=trad,
RCTnr, and RA, respectively.

J CRA
J

♭ CRCTnr
J

♭ Ctrad
J

♭ J Ctrad
J

♭ J Ctrad
J

♭

0 2.49 (−7) 5.45 (−6) 8.65 (−6) 3 1.44 (−4) 6 7.2 (−9)

1 3.34 (−6) 7.40 (−5) 1.16 (−4) 4 4.14 (−6) 7 9.7 (−11)

2 1.88 (−5) 4.14 (−4) 6.55 (−4) 5 2.28 (−6) 8 1.5 (−12)

♭ in units of E−(J+1/2) and E in cm−1.

(∗) The value of EJ=1
cbr =0.037 cm−1 is taken as a rough limit of ‘cold’ energy range. Energies from ∼0.05 up to

∼200 cm−1 are named ‘subthermal’.



B6b. RCT+RA+iRaT in cold He++H2(v=0, j=1) collisions
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lmin−

1
2 with lmin=Je−1 or

Jf for J≥1 and lmin=1 for J=0. Values of several determined coefficients Ctrad
Jplmin

are listed

in Table below. The sticks in the corners of the panels show the heights EJpl
cbr−ε01 of the

centrifugal barriers in the adiabatic potentials eJ
p
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Wigner’s laws in partial rate con-
stants ok

trad
01 (T, Jp) describing the

RCT+RA+iRaT in gas mixtures with
pure ortho-H2

ok
rad
01 (T, Jp):=

∫

ε01

dE oP (E, T )
∂

∂E
Rtrad

01 (E, Jp) ∼
kBT≪E

Jplmin
cbr −ε01

1
3
Ktrad

Jplmin
(kBT )

lmin ,

where oP (E, T )=P 1(T ) Z(T )
3Z1(T )

(see Table BX) and Ktrad
Jplmin

= ~2π
µ3/2

(2lmin+1)!!

2lmin+1/2 Ctrad
Jplmin

.

At T<0.01 mK, the total rate ok
trad
01 (T )=

∑
J

∑
p(2J+1) ok

trad
01 (T, Jp) is practically determined

by Jp=1e partial rate:

ok
trad
01 (T ) ≈ Ktrad

1e0 =7.54×10−16 s−1cm3.

lmin Jp Ctrad
Jplmin

♭ lmin Jp Ctrad
Jplmin

♭ lmin Jp Ctrad
Jplmin

♭ lmin Jp Ctrad
Jplmin

♭ lmin Jp Ctrad
Jplmin

♭

0 1e 1.43 (−5) 1 2e 4.5 (−2) 2 1f 2.2 (−3) 3 3f 6.9 (−5) 4 5e 2.1 (−2)

1f 5.3 (−4) 3e 1.5 (−4) 4e 3.7 (−5) 4f 1.3 (−5)

0 1.3 (−5)

♭ in units of E−(lmin+1/2) and E in cm−1.



Fig. B7. Applications of the 3D optical potential model

in sub- and thermal ranges

B7a. RCT+RA+iRaT in transitions from continuum states

of He++H2(v=0, j) for j=0, 1
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Three capture cross-sections σcpt
jλp can be introduced to describe the result of summation over

the J p contributions to the cross-section σ
trad(bck)
0 j=1 (E),

σ
trad(bck)
01 (E) =

~
3π2

µ(E−ε01)

∑

p,J

(2J+1)
∂

∂E
R

trad(bck)
01 (EJp)

≈ ptrad
[ 1∑

λ=0

σcpt
1λ 1+σcpt

11−1

]
(E−ε01) .

However, their sum,
1∑

λ=0

σcpt
1λ 1+σcpt

11−1, is close to 3×σcpt
0 01. The resulting approximation

σ
trad(bck)
01 (E) ≈ 3 ptradσcpt(E−ε01) with σcpt:=σcpt

0 01

is used in the top left panel of Fig. B6b and in Fig. 15 of the paper.



B7b. Total radiative widths of quasi-bound states of He+−H2(v=0),

(b k vR J p), in the energy range up to j=2 threshold
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largest (f−e)/e differences in the radiative widths, for k=1 states, are of the size of -12%, see Tables BIII-IV.
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The numbers next to the lines are the values of J . The dashed lines in the b=1 panel represent f -levels.

The lengths of all lines in the b=2 panel and of lines above the j=1 threshold in the b=1, 3 panels represent

− log10 Γ if 10−5≤Γ<1 cm−1. Levels of widths Γ>1 cm−1 are not shown. Levels of widths Γ<10−5 cm−1

are shown as bound states, i.e. with lines of the same length as the levels below the j=1 threshold.

Note, the correlations of Γ’s with the numbers J , k, and vθ are qualitatively different than the correlations

of Γtrad’s. See also Figs. C3b, C3c, and C4b in Part C.

Energies of b=0 states are not shown here. They are listed in Table I of the paper and in Table BVI.

This figure and Tables BII-V complete Table I of the paper with information on all
(14+44+165+81) quasi-bound (b=0 + 1 + 2 + 3) states of the He++H2 system which was
used to generate the resonance parts of the cross-sections σRCT+RA+iRaT

0j (E) and of the rate

constants kRCT+RA+iRaT
0j (T ) for j=0, 1 presented in Figs. 13-16 and in Table III.



TABLE BII: He+−H2(I=0). Energies E (in cm−1), dissociative widths Γ (in cm−1), and total radiative

widthsa Γtrad:=ΓRCT+iRaT+RA (in 10−6 cm−1) of all rotationally predissociating b=2 k vR J p=1

states below v=0 j=2 threshold.

b=2 k=2 b=2 k=1 b=2 k=0

J vR E Γ Γtrad [ΓRA] vR E Γ Γtrad [ΓRA] vR E Γ Γtrad [ΓRA]

17 0 15.52 3. (−15) 175.4 [0.05]

18 77.55 1.3 (−2) 163.7 [0.02]

19 142.32 5.6 (−1) 156.3 [0.00]

20 208.83 5.6 (−1) 145.4 [0.00]

21 277.02 6.1 (−1) 133.7 [0.00]

22 346.48 6.4 (−1) 120.8 [0.00]

12 0 1.54 1. (−16) 171.5 [3.70]

13 1 33.26 4.7 (−2) 150.5 [0.20] 44.23 2.2 (−1) 167.8 [2.03]

14 76.92 8.9 (−2) 142.1 [0.10] 89.75 2.2 (−1) 161.2 [1.99]

15 122.83 1.3 (−1) 134.0 [0.00] 137.85 2.3 (−1) 153.9 [0.32]

16 170.77 1.8 (−1) 124.4 [0.00] 188.35 2.3 (−1) 145.9 [0.28]

17 220.45 2.4 (−1) 114.8 [0.00] 241.04 2.2 (−1) 136.5 [0.16]

18 271.56 3.0 (−1) 104.4 [0.00] 295.67 2.1 (−1) 126.3 [0.11]

19 323.64 3.5 (−1) 93.1 [0.00] 351.91 1.9 (−1) 114.9 [0.16]

4 1 5.25 1.7 (−2) 151.3 [6.18]

5 2 1.68 2.9 (−3) 126.9 [3.48] 20.66 2.4 (−2) 149.4 [6.13]

6 19.23 3.1 (−2) 139.0 [6.36] 39.18 3.0 (−2) 147.3 [6.22] 0 17.64 1.2 (−2) 154.2 [8.34]

7 38.12 1.8 (−3) 123.8 [1.95] 60.89 3.2 (−2) 145.5 [6.23] 42.19 5.8 (−2) 160.3 [7.79]

8 60.50 8.4 (−3) 118.2 [1.61] 85.95 3.0 (−2) 144.1 [5.52] 68.53 7.7 (−2) 154.7 [6.60]

9 85.34 1.7 (−2) 113.6 [0.33] 97.22 1.0 (−1) 145.9 [5.10] 114.62 2.1 (−2) 143.1 [5.97]

10 112.47 2.8 (−2) 108.8 [0.27] 127.83 1.3 (−1) 136.4 [1.47] 146.96 1.2 (−2) 141.4 [4.96]

11 141.80 4.3 (−2) 103.6 [0.13] 160.21 1.5 (−1) 127.1 [1.27] 182.88 5.1 (−3) 138.0 [4.87]

12 173.16 6.1 (−2) 97.8 [0.09] 194.36 1.7 (−1) 118.4 [0.83] 222.07 1.5 (−3) 132.5 [3.69]

13 206.34 8.4 (−2) 91.4 [0.04] 230.23 1.8 (−1) 109.7 [0.52] 264.18 1.5 (−4) 125.6 [1.50]

14 241.08 1.1 (−1) 84.4 [0.05] 267.72 1.8 (−1) 100.5 [0.62] 308.85 9.9 (−5) 117.1 [1.47]

15 277.06 1.4 (−1) 76.8 [0.01] 306.59 1.8 (−1) 91.4 [0.18]

16 313.87 1.6 (−1) 68.0 [0.01] 346.48 1.7 (−1) 81.0 [0.16]

17 350.94 1.8 (−1) 58.1 [0.01]

0 1 139.57 2.0 (−2) 118.5 [6.98]

1 2 152.04 5.0 (−4) 100.6 [5.10] 142.33 2.2 (−2) 117.3 [6.89]

2 3 126.46 6.9 (−5) 87.4 [3.42] 157.54 1.2 (−3) 100.7 [3.84] 147.76 2.6 (−2) 115.0 [6.53]

3 133.51 3.4 (−4) 86.2 [2.52] 165.88 1.6 (−3) 100.9 [3.83] 155.78 3.3 (−2) 111.5 [5.97]

4 142.84 1.0 (−3) 84.6 [2.16] 177.12 1.4 (−3) 101.1 [4.30] 166.15 4.2 (−2) 107.0 [5.38]

5 154.38 2.3 (−3) 82.5 [1.92] 178.77 5.2 (−2) 101.8 [4.61] 191.32 8.5 (−4) 100.6 [4.41]

6 168.07 4.6 (−3) 79.9 [1.78] 193.52 6.4 (−2) 96.6 [3.94] 208.43 3.2 (−4) 99.3 [4.56]

7 183.81 8.0 (−3) 77.0 [0.96] 210.29 7.7 (−2) 91.3 [2.77] 228.32 2.9 (−5) 96.6 [3.86]

8 201.47 1.3 (−2) 73.6 [0.88] 229.00 8.8 (−2) 85.9 [1.84] 250.84 5.0 (−5) 92.9 [3.65]

9 220.91 1.9 (−2) 69.7 [0.22] 249.52 9.9 (−2) 80.3 [1.40] 275.78 3.8 (−4) 87.9 [2.88]

10 241.98 2.8 (−2) 65.3 [0.18] 271.71 1.1 (−1) 74.3 [0.56] 302.90 1.0 (−3) 81.8 [2.56]

11 264.44 3.8 (−2) 60.3 [0.09] 295.35 1.1 (−1) 67.8 [0.57] 331.87 4.4 (−4) 73.1 [2.19]

12 288.03 4.9 (−2) 54.7 [0.07] 320.14 1.1 (−1) 60.4 [0.54]

13 312.40 6.1 (−2) 48.4 [0.03] 345.68 1.0 (−1) 51.9 [0.30]

14 337.09 7.0 (−2) 41.2 [0.03]



TABLE BII: continued

0 2 265.09 1.4 (−2) 65.6 [2.98]

1 3 262.78 6.1 (−3) 58.1 [2.49] 268.02 1.0 (−2) 64.1 [2.87]

2 4 232.00 5.5 (−5) 54.0 [2.05] 265.69 1.2 (−2) 57.6 [1.91] 273.36 6.8 (−3) 62.4 [2.72]

3 237.38 2.7 (−4) 52.9 [1.49] 270.44 1.9 (−2) 56.3 [1.76] 280.87 4.9 (−3) 60.5 [2.66]

4 244.48 7.8 (−4) 51.3 [1.24] 277.01 2.6 (−2) 54.3 [1.73] 290.43 3.8 (−3) 58.1 [2.60]

5 253.21 1.8 (−3) 49.4 [1.05] 285.32 3.2 (−2) 51.8 [1.55] 301.94 3.2 (−3) 55.1 [2.27]

6 263.47 3.4 (−3) 47.1 [0.96] 295.23 3.9 (−2) 48.8 [1.44] 315.24 3.0 (−3) 51.4 [2.09]

7 275.15 5.7 (−3) 44.3 [0.52] 306.60 4.4 (−2) 45.2 [1.15] 330.13 3.1 (−3) 46.7 [1.66]

8 288.08 8.9 (−3) 41.2 [0.46] 319.24 4.8 (−2) 41.0 [0.73] 346.28 4.0 (−3) 41.0 [1.35]

9 302.06 1.3 (−2) 37.6 [0.12] 332.86 4.9 (−2) 36.1 [0.58]

10 316.85 1.7 (−2) 33.3 [0.09] 347.11 4.6 (−2) 30.3 [0.27]

11 332.11 2.3 (−2) 29.9 [0.12]

12 347.34 2.5 (−2) 22.9 [0.05]

0 3 330.42 6.7 (−3) 28.2

1 4 323.51 1.7 (−3) 27.0 332.20 5.8 (−3) 27.5

2 5 295.34 3.5 (−5) 30.3 [1.13] 325.46 4.4 (−3) 26.2 335.60 4.6 (−3) 26.2

3 299.16 1.7 (−4) 29.3 [0.79] 328.47 7.5 (−3) 25.0 340.44 3.6 (−3) 24.1

4 304.14 4.8 (−4) 27.9 [0.64] 332.53 1.0 (−2) 23.4 346.46 2.9 (−3) 21.3

5 310.21 1.1 (−3) 26.3 [0.53] 337.55 1.3 (−2) 21.1 353.27 2.8 (−3) 16.3

6 317.23 1.9 (−3) 24.2 [0.47] 343.37 1.5 (−2) 18.3

7 325.05 3.2 (−3) 21.8 [0.24] 349.71 1.4 (−2) 14.8

8 333.46 4.7 (−3) 18.9 [0.21]

9 342.18 6.3 (−3) 15.8 [0.05]

10 350.82 8.2 (−3) 12.0 [0.04]

0 4 352.70 1.1 (−3) 5.0

1 5 348.15 4.9 (−4) 8.3 353.44 1.7 (−4) 4.2

2 6 329.24 2.3 (−5) 15.2 349.05 1.2 (−3) 7.6

3 331.72 1.1 (−4) 14.4 350.41 1.9 (−3) 6.7

4 334.92 3.0 (−4) 13.4 352.16 1.9 (−3) 5.3

5 338.73 6.9 (−4) 12.1 354.15 1.8 (−3) 4.4

6 343.02 3.3 (−4) 10.7

7 347.62 1.2 (−3) 8.8

8 352.26 1.7 (−3) 6.7

2 7 345.87 2.6 (−5) 7.2

3 347.36 5.1 (−5) 6.7

4 349.24 1.4 (−4) 5.9

5 351.37 3.3 (−4) 4.9

6 353.58 5.6 (−4) 3.5

2 8 353.07 1.1 (−5) 2.3

aThe quantities were determined using the procedure described below Eq.(B7)-(B12). The parts ΓRA of the

radiative widths, shown in parentheses, are results of the state-to-state approach of Ref. 7.



TABLE BIII: He+−H2(I=1). Energies E (in cm−1) and radiative widths Γtrad:=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=1 k vR J p states in the range εv=0,j=1<E<350 cm−1 ♮. Tunneling widths Γ are

given in cm−1. Also shown are selected states from the range 0<E<εv=0,j=1
♯.

b=1 k=1 b=1 k=0

p=1 (e) p=−1

J vR E Γ Γtrad E− Γ Γtrad− vR E Γ Γtrad

E(e) Γtrad(e)

22 0 146.90 ∼0 116.9 21.12 0 −5.7

23 216.83 4.5 (−6) 102.2 21.95 1.1 (−4) −6.4

24 286.55 2.2 (−2) 84.8 22.30 1.1 (−1) −7.9

17 1 17.57 0 108.1 12.33 0 −3.1 0 133.03 1. (−11) 120.8

18 68.06 0 98.1 13.22 0 −3.5 189.02 3.2 (−4) 107.9

19 119.43 ∼0 86.8 13.98 0 −4.0 244.97 9.7 (−3) 92.6

20 170.96 8.0 (−6) 73.8 14.46 2.6 (−4) −4.8 300.50 6.8 (−1) 72.8

21 221.34 1.1 (−1) 56.8 14.27 4.3 (−1) −6.5

14 2 32.06 0 79.3 7.35 0 −1.9 1 134.66 3.2 (−6) 79.9

15 67.41 0 71.3 8.01 0 −2.2 171.94 5.9 (−3) 67.3

16 103.41 0 62.3 8.56 0 −2.6 208.57 6.0 (−1) 50.2

17 139.34 3.9 (−7) 51.6 8.88 4.1 (−5) −3.3

18 173.80 1.6 (−1) 36.9 8.58 5.5 (−1) −4.5

11 3 49.69 0 55.8 3.89 0 −1.0 2 134.50 3.9 (−3) 44.9

12 72.63 0 50.1 4.37 0 −1.3 156.05 3.6 (−1) 32.3

13 96.04 0 45.7 4.76 0 3.3

14 119.65 ∼0 35.4 5.06 ∼0 −1.9

15 142.08 4.3 (−2) 24.4 4.91 2.1 (−1) −3.0

7 4 55.75 0 40.8 1.38 0 −0.7 3 121.11 1.3 (−3) 25.3

8 68.16 0 37.3 1.75 0 −0.6 131.04 3.5 (−1) 26.1

9 81.54 0 33.4 2.07 0 −0.6

10 95.57 0 28.9 2.37 0 −0.8

11 109.83 0 23.6 2.61 0 −1.0

12 123.63 2.2 (−5) 17.0 2.67 5.4 (−4) −1.4

3 5 75.34 0 26.2 0.24 0 0.3 4 119.58 1.5 (−1) 5.6

4 80.06 0 24.6 0.39 0 −0.1

5 85.77 0 22.8 0.57 0 −0.2

6 92.34 0 20.8 0.76 0 −0.2

7 99.56 0 18.6 0.96 0 −0.3

8 107.25 0 15.2 1.15 0 −0.4

9 115.01 0 11.7 1.29 0 −0.5

10 122.24 5.4 (−3) 7.2 1.32 1.8 (−2) −0.8

8 6 120.64 5.1 (−2) 3.1 0.70 8.5 (−2) 0.1

5 7 118.39 3.3 (−8) 2.6 0.30 7.0 (−4) −0.1

6 119.77 4.0 (−1) 1.0 0.39 4.7 (−1) 0.1

1 8 118.17 0 1.1 0.03 0 0.0

2 118.38 4.5 (−3) 0.15 0.08 4.0 (−2) 0.18

♮ εv=0 j=1=118.37 cm−1. Only states with Γ<1 cm−1 are included.
♯ See Table BVIII for a complete list of b=1 states below the v=0 j=1 threshold.



TABLE BIV: He+−H2(I=1). Energies E (in cm−1) and radiative widths Γtrad:=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=3 k vR J p states. All states in the range 0<E<350 cm−1 are shown♮.

b=3 k=3 b=3 k=2

p=1 (e) f − e p=1 (e) f − e

J vR E Γtrad E Γtrad vR E Γtrad E Γtrad

11 0 12.04 224.8 0.03 0.1

12 56.18 218.1 0.08 0.9

13 103.79 210.1 0.05 −4.5

14 154.25 205.8 0.04 0.3

15 207.76 198.4 0.11 0.2

16 264.15 190.7 0.16 −0.1

17 323.21 182.1 0.24 0.0

2 0 17.40 227.9 0.00 0.0

3 1 76.08 188.2 0.00 −0.3 28.20 226.6 0.02 0.0

4 89.61 186.7 0.00 0.0 42.55 224.6 0.06 0.0

5 106.47 184.4 0.00 0.0 60.41 222.1 0.15 0.1

6 126.59 181.6 0.00 0.1 81.71 218.9 0.30 0.2

7 149.94 178.6 0.00 0.0 106.40 214.5 0.57 0.5

8 176.44 174.7 0.01 0.2 134.55 201.1 0.78 10.3

9 206.01 170.8 0.01 0.1 165.64 206.8 1.41 0.0

10 238.58 166.2 0.03 0.1 199.97 201.9 2.10 −0.3

11 274.04 161.3 0.05 0.0 237.29 195.9 3.00 −0.2

12 312.28 155.7 0.10 0.2 277.47 189.6 4.15 −0.3

13 353.16 0.18 320.38 182.4 5.55 −0.4

2 1 271.14 162.4 0.00 0.0

3 2 300.91 134.0 0.00 0.0 280.44 160.9 0.02 0.0

4 312.48 132.4 0.00 0.0 292.77 158.8 0.07 0.1

5 326.87 130.4 0.00 0.0 308.07 156.2 0.17 0.1

6 344.04 128.1 0.01 0.0 326.29 153.0 0.34 0.1

7 347.31 149.2 0.60 0.0

b=3 k=1 b=3 k=0

0 0 0 295.26 176.9

1 194.58 201.7 1.14 −0.1 299.64 176.3

2 200.01 200.6 3.36 −0.1 308.33 175.2

3 208.26 198.9 6.56 −0.2 321.23 173.4

4 219.42 196.8 10.62 −0.4 338.18 170.9

5 233.58 194.2 15.38 −0.7

6 250.83 191.0 20.70 −1.1

7 271.23 187.5 26.44 −1.7

8 294.82 183.4 32.46 −2.5

9 321.63 178.7 38.63 −3.3

10 351.64 173.4

♮ Predissociation widths of states with E>εv=0 j=1(=118.37 cm−1) are given in Table CV of Ref. 8.



DETERMINATION OF RESONANCE PARAMETERS

within

THE 3-DIMENSIONAL OPTICAL POTENTIAL MODEL

The quantity analyzed is the radiative quenching probability from continuum states (EJp, vj)
of the He++H2 system which is obtained from the scattering matrix SJp(E) in the Hamiltonian
UJpT [HJp(R)− ı

2
optWjp(R)]UJp (all symbols are as defined in Sec.III and IVA of the paper),

P Jp
vj (E) =

∑

l

[
I− SJp †(E)SJp(E)

]
vjl;vjl

. (B7)

In the vicinity of an isolated resonance RJp
n , the function P Jp

vj (E) takes the form

P Jp
vj (E) ≈ B(E) +

ΓJp trad
n ΓJp

n,vj

(E−EJp res
n )2 + (ΓJp trad

n +ΓJp
n )2/4

(B8)

where B(E) denotes a slowly varying background. It is assumed here in the form

B(E)≈a+bE+cE2 .

Thus, there are six parameters of the resonance profile: a, b, c, Γtrad, Γ, and Eres.

If the potential − ı
2
optWjp is treated in first order of perturbation theory, the following

(distorted wave, DW) approximation to the probability P Jp
vj arises

DWP Jp
vj (E) = 2π

∑

l

[
UJpT 〈F

(+)Jp(E)|optWJp|F
(+)Jp(E)〉UJp

]
vjl;vjl

, (B9)

where F
(+)Jp(E;R) contains the scattering states of the Hamiltonian HJp(R). The respective

resonance profile is

DWP Jp
vj (E) ≈ DWB(E) +

DWΓJp trad
n

DWΓJp
n,vj

(E− DWEJp res
n )2 + (DWΓJp

n )2/4
. (B10)

If a given RJp
n can be treated as an infinitely narrow resonance (INR), then

INRP Jp
vj (E) ≈ B(E) + 2π δ(E−EBQ

n )
INRΓJp trad

n ΓJp
n,vj

INRΓJp trad
n + ΓJp

n

(B11)

with INRΓJp trad
n = 〈FBQ Jp

n |optWJp|FBQ Jp
n 〉 , (B12)

where F
BQ Jp
n is a bound state function of the Hamiltonian HJp projected onto an appropriately

chosen subspace Q (an indication of appropriateness is the energy E
BQ
n lying close to Eres

n ).

Based on these facts, the following three versions of the procedure for the determination of
resonance parameters Eres, Γ, and Γtrad were exploited: [For simplicity, the indices J , p, n, v,
and j are omitted hereafter.]



‘exact’ version

step 1. determination of the parameters Eres
SQ and ΓSQ by applying the Siegert quantization (SQ)

method4 to the Hamiltonian H(R). The implementation of the method is similar to that
described in Ref. 9. The parameters are given here the subscript ‘SQ’ as they may slightly
change in further steps.

step 2. application of the SQ method to the Hamiltonian H− ı
2
optW. The resulting parameters

are denoted as Eres
SQ1 and Γtot

SQ.

step 3. determination of the probabilities P (Ei), Eq.(B7), at a grid of energies covering the
interval Eres

SQ1±4Γtot
SQ.

step 4. least squares fitting of the profile (B8) to the values of P (Ei) for i=1, . . . ,M (typically
M=17). The values of Γtot

SQ−ΓSQ, ΓSQ, and Eres
SQ1 are used as initial guesses for the

parameters of the profile Γtrad, Γ, and Eres, respectively.

DW version

step 1. as in the ‘exact’ version

step 2. as in the ‘exact’ version

step 3. determination of the probabilities DWP (Ei), Eq.(B9), at a grid of energy points cover-
ing the interval Eres

SQ±4ΓSQ. The integral in Eq.(B9) was evaluated with the help of

the log-derivative algorithm for free-free transition amplitudes10,13, omitting the explicit
determination of the function F

(+)Jp(E;R).

step 4. least squares fitting of the profile (B10) to the values of DWP (Ei) for i=1, . . . ,M . In most
cases the parameter DWEres was fixed at the value of Eres

SQ.

INR version

step 1. determination of parameters Eres and Γ using the life-time matrix (LT) approach11, im-
plemented as described in Refs. 12,13. The values of Eres

LT and ΓLT agree with the values
Eres

SQ and ΓSQ, respectively, in at least three significant figures.

step 2. determination of the bound state function FBQ of the Hamiltonian H(R) modified by
adding an infinite wall at R=R∞. In most cases, the value R∞=17Å was used. The
difference |EBQ−Eres

LT| was usually smaller than ΓLT when ΓLT∈[0.01, 0.3] cm
−1.

step 3. evaluation of formula (B12) for Γtrad.



TABLE BV: Determination of parameters Eres, Γ, and Γtrad:=ΓRCT+iRaT+RA of quasi-bound states

of the He+−H2 complex (b k vR J p) within the 3D optical potential model. A comparison of results

obtained from three versions of the procedure: ‘exact’, DW (distorted-wave approximation), and INR

(infinitely narrow resonance approximation). The parameters are given in cm−1. The comparison is

made in terms of relative percentage deviations δx:=(apprx/exctx−1)×100% for x=Γ, Γtrad ♮.

State ‘exact’ DW INR

b k vR Jp Eres Γ Γtrad×106 P res a δΓ δΓtrad P res b δΓtrad

0 0 0 22e 89.111 3.38 (−7) 109.46 1.226 (−2) 0.0 0.0 1296.700 0.0

0 0 1 19e 50.693 2.26 (−6) 78.82 1.087 (−1) 0.0 −0.2 139.030 0.1

0 0 2 16e 24.653 3.62 (−6) 53.55 2.366 (−1) 0.1 0.3 59.310 0.1

1 0 1 14e 134.656 3.20 (−6) 79.94 1.482 (−1) 0.5 0.3 99.520 0.1

1 1 2 17e 139.340 3.86 (−7) 51.64 2.945 (−2) 0.0 0.0 535.240 0.0

1 1 2 17f 148.216 4.13 (−5) 48.37 9.938 (−1) 0.0 0.0 4.684 −0.1

2 2 3 2e 126.465 6.89 (−5) 87.43 1.569 (−1) −0.5 −0.3 5.081 0.0

2 2 3 3e 133.510 3.41 (−4) 86.21 6.440 (−1) 0.0 0.0 1.010 0.0

3 3 2 3e 300.906 2.87 (−4) 134.03 8.682 (−1) 0.0 0.0 1.869 0.0

2 1 1 4e 5.279 1.72 (−2) 151.32 3.462 (−2) 0.3 0.0 0.035 −1.3

2 0 0 7e 42.192 5.84 (−2) 160.34 1.093 (−2) 0.0 0.0 0.011 −0.8

2 2 1 13e 33.265 4.65 (−2) 150.51 1.285 (−2) 0.0 0.0 0.013 −1.4

2 1 0 14e 89.753 2.24 (−1) 161.24 2.877 (−3) 0.0 0.1 0.003 −3.3

3 1 0 2e 200.007 1.11 (−1) 200.56 7.195 (−3) 0.0 0.0 0.007 −2.3

♮ Differences between values of Eres obtained from the ‘exact’ and DW versions were always ≪0.0001 cm−1

and therefore are insignificant here.
aThe height of the peak in P (E) near Eres.
bThe value of DWP (Emax) where |Emax−Eres| < Γ. The value is bigger than the corresponding value of P res

(in the eighth column) by the factor (1+Γtrad/Γ)2. This is obviously the analog of the factor (Γtot/Γ)2 that

appeared in the 1D model presented in Table BI.

COMMENTS

(i) The three groups of examples in the table illustrate the situations of Γ≪Γtrad, Γ.Γtrad,
and Γ≫Γtrad, respectively. In the first two situations, DWP res>1 which means a violation of
unitarity by the DW approximation. However, no matter how strong the violation is, it does
not impair the accuracy of the parameters, in particular of the Γtrad parameter, determined
according to the DW version of the procedure. The values of |δΓtrad| rarely exceed 0.1%.

(ii) The INR version of the procedure is obviously much more convenient than the other two.
However, the resulting values of Γtrad may be in error by several per cent when the widths Γ
are &0.1 cm−1. Therefore application of the INR version to resonances with Γ>0.1 cm−1 was
rather avoided in the study.

(iii) Obviously, the INR version can be adapted to the determination of the widths Γtrad of
bound states of the He+−H2 complex (Γ=0). Instead of the function FBQ , function FB of a
given bound state of the (unprojected) Hamiltonian H should be determined at step 2 and
inserted into formula (B12) at step 3. Results are presented in Fig. B8 and in Tables BVI-BIX.



Fig. B8. Applications of the 3D optical potential model

Total radiative widths of bound states of He+−H2
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Fig. B8a. Radiative widths Γtrad=ΓRCT+RA+iRaT of ro-vibrational states of the He+-H2(v=0)

complex, b k vR J p=1. The open symbols denote bound states, i.e. states of energies E<0 and

E<118.37 cm−1 for b=0, 2 and b=1, 3, respectively, and the full symbols denote quasi-bound

states of energies up to 354.03 cm−1 (the εv=0 j=2 threshold). For clarity of the figure, some

groups of states are omitted. All (603) bound states are listed in Tables BVI-BIX.

COMMENTS

(i) Fig. B8a, like Fig. B7b, exhibits strong correlations of the radiative widths Γtrad with the
vibrational (vR and vθ=b−k) and rotational (J , k) quantum numbers assigned to the states.
The correlations are the same as those exhibited by the radiative widths Γ(→X4) in Fig. B4b
and B5b. Thus, the analysis presented in the comments to these figures applies to the widths
Γtrad, too.

(ii) The J dependence of the radiative widths can be approximated by the formula

Γrad(J) ≈ Υ−

2∑

m=1

γm[J(J+1)−k2]m . (B13)
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Fig. B8b. Parameters of formula (B13) fitted to values of Γtrad of J levels in several groups

(vθ, vR, k). Values evidently perturbed were excluded from the fit. The percentage deviation be-

tween the fitted and calculated values, averaged over levels in a given group, was usually below 1%.

The parameter Υ diminishes rapidly with growing vR and less rapidly with growing vθ (the
residual dependence on k is very weak). The parameter γ1 diminishes clearly with growing vR
and tends to grow slightly with the excitement of vθ.



TABLE BVI: He+−H2(I=0). Energies E (in cm−1) and radiative widths Γtrad=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=0 k=0 vR J p=1 states. E=0 is at v=0 j=0 threshold. Tunneling widths Γ (in

cm−1) are shown for E>0 statesa.

b=k=0

J vR E Γ Γtrad vR E Γ Γtrad vR E Γ Γtrad vR E Γ Γtrad

0 0 −817.03 0 247.1 1 −538.42 0 181.8 2 −326.28 0 126.2 3 −177.19 0 81.0

1 −813.06 0 246.6 −534.95 0 181.3 −323.36 0 125.7 −174.86 0 80.5

2 −805.13 0 245.6 −528.01 0 180.4 −317.52 0 124.8 −170.20 0 79.6

3 −793.26 0 244.2 −517.64 0 178.9 −308.79 0 123.4 −163.25 0 78.3

4 −777.48 0 242.2 −503.86 0 177.0 −297.22 0 121.5 −154.06 0 76.5

5 −757.80 0 239.7 −486.69 0 174.7 −282.85 0 119.1 −142.71 0 74.2

6 −734.28 0 236.7 −466.16 0 172.6 −265.74 0 116.3 −129.28 0 71.4

7 −706.96 0 233.2 −442.15 0 179.0 −245.99 0 112.9 −113.88 0 68.2

8 −675.90 0 229.2 −415.98 0 173.5 −223.68 0 109.0 −96.67 0 64.4

9 −641.18 0 224.7 −385.80 0 162.2 −198.95 0 104.6 −77.80 0 60.1

10 −602.85 0 219.6 −352.74 0 156.0 −171.93 0 99.6 −57.50 0 55.5

11 −561.03 0 214.0 −316.84 0 150.0 −142.81 0 94.1 −35.55 0 72.2

12 −515.79 0 207.9 −278.20 0 143.6 −111.78 0 87.8 −14.33 0 44.4

13 −467.27 0 201.2 −236.98 0 136.8 −79.12 0 80.9 7.96 1.2 (−7) 34.8

14 −415.58 0 193.9 −193.37 0 129.3 −45.16 0 73.1 29.00 2.7 (−1) 22.8

15 −360.87 0 186.0 −147.58 0 121.2 −10.35 0 64.2

16 −303.30 0 177.5 −99.89 0 112.2 24.65 3.6 (−6) 53.5

17 −243.06 0 168.3 −50.62 0 102.4 58.52 1.8 (−1) 39.2

18 −180.36 0 158.4 −0.22 0 91.5

19 −115.45 0 147.7 50.69 2.3 (−6) 78.8

20 −48.63 0 136.1 101.02 4.5 (−2) 63.0

21 19.72 ∼0 123.5

22 89.11 3.4 (−7) 109.5

23 158.80 4.5 (−3) 92.8

24 227.28 6.0 (−1) 72.4

0 4 −83.21 0 46.7 5 −31.89 0 22.8 6 −9.11 0 8.8 7 −1.09 0 2.5

1 −81.48 0 46.3 −30.75 0 22.5 −8.46 0 8.5 −0.80 0 2.2

2 −78.03 0 45.5 −28.48 0 21.8 −7.20 0 8.0 −0.28 0 1.7

3 −72.93 0 44.2 −25.15 0 21.1 −5.38 0 8.1 0.32 9.7 (−2) 0.8

4 −66.22 0 42.5 −20.97 0 35.7 −3.15 0 6.1

5 −58.01 0 40.3 −15.74 0 17.1 −0.66 0 5.9

6 −48.43 0 37.7 −9.97 0 14.6 1.67 1.1 (−1) 2.4

7 −37.64 0 34.5 −3.84 0 11.5

8 −25.87 0 30.8 2.17 7.8 (−4) 7.5

9 −13.43 0 26.3

10 −0.78 0 20.8

11 11.11 1.1 (−1) 12.6

aThe list of these shape resonances is limited to those with Γ<1 cm−1.



TABLE BVII: He+−H2(I=0). Energies E (in cm−1) and radiative widths Γtrad=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=2 k vR J p states below v=0 j=2 thresholda. E=0 is at v=0 j=0.

b=2 k=2 b=2 k=1 b=2 k=0

p=1 (e) f − e p=1 (e) f − e

J vR E Γtrad E Γtrad vR E Γtrad E Γtrad vR E Γtrad

2 0 −541.11 250.7 0.00 0.0

3 −529.38 249.2 0.00 0.0

4 −513.77 247.2 0.01 0.1

5 −494.33 244.7 0.03 0.2

6 −471.12 241.0 0.09 1.0

7 −444.37 227.8 0.37 10.8

8 −412.91 225.4 −0.35 9.3

9 −378.71 227.8 −0.17 2.5

10 −340.82 224.1 −0.10 1.3

11 −299.44 219.1 −0.04 0.9

12 −254.66 213.4 0.02 0.7

13 −206.62 207.0 0.11 0.6

14 −155.42 200.1 0.21 0.5

15 −101.22 192.5 0.35 0.5

16 −44.17 184.4 0.53 0.5

17 15.52 175.4 0.78 0.6

18 77.55 163.7 1.23 2.9

19 142.32 156.3 1.25 0.1

20 208.83 145.4 1.58 0.1

21 277.02 133.7 1.96 0.0

22 346.48 120.8 2.43 0.1

0

1 0 −264.34 221.4 0.30 0.0

2 1 −253.93 187.0 0.04 0.8 −257.42 219.3 0.86 −0.9

3 −243.46 187.2 0.24 5.1 −247.06 216.2 1.55 −5.3

4 −229.54 187.4 −1.69 10.5 −233.31 212.0 4.66 −10.8

5 −212.18 187.6 −1.71 0.2 −216.19 207.0 6.15 −0.6

6 −191.42 187.4 −1.98 −5.9 −195.76 201.2 8.17 5.3

7 −167.31 186.9 −2.44 −10.2 −172.08 194.8 10.64 9.4

8 −139.90 185.8 −3.04 −13.7 −145.23 188.0 13.51 12.7

9 −115.28 180.9 2.24 −13.6 −109.25 183.8 10.76 12.4

10 −82.34 173.5 2.20 −11.3 −75.47 180.7 13.60 10.2

11 −46.53 165.7 2.18 −9.0 −39.13 155.0 17.17 30.0

12 −7.88 157.8 2.11 −7.0 1.54 171.5 19.57 6.9

13 33.26 150.5 2.16 −6.2 44.23 167.8 22.97 3.2

14 76.92 142.1 2.18 −4.9 89.75 161.2 26.42 1.8

15 122.83 134.0 2.22 −4.4 137.85 153.9 29.97 0.4

16 170.77 124.4 2.30 −3.1 188.35 145.9 33.60 −1.2

17 220.45 114.8 2.40 −2.5 241.04 136.5 37.25 −2.2

18 271.56 104.4 2.55 −1.9 295.67 126.3 40.87 −3.4

19 323.64 93.1 2.74 −1.4 351.91 114.9

0 0 −55.46 184.5

1 1 −22.48 155.2 0.21 −0.1 −51.89 183.8

2 2 −32.88 131.4 0.00 0.0 −16.30 154.3 0.63 −0.2 −44.76 182.5

3 −24.20 129.9 0.00 0.3 −7.06 152.0 1.24 0.4 −34.12 180.3

4 −12.66 128.5 0.01 −0.1 5.28 151.3 1.97 −1.1 −19.90 161.0

5 1.68 126.9 −0.02 −0.7 20.66 149.4 2.80 −1.9 −2.60 171.9

6 19.23 139.0 −0.47 −15.5 39.18 147.3 3.62 −3.1 17.64 154.2

7 38.12 123.8 0.42 −3.4 60.89 145.5 4.28 −5.1 42.19 160.3

8 60.50 118.2 0.42 −1.5 85.95 144.1 4.51 −8.1 68.53 154.7

9 85.34 113.6 0.49 −1.0 97.22 145.9 21.39 −14.9 114.62 143.1

10 112.47 108.8 0.60 −0.9 127.83 136.4 21.58 −10.9 146.96 141.4

11 141.80 103.6 0.72 −0.8 160.21 127.1 22.53 −7.9 182.88 138.0

12 173.16 97.8 0.86 −0.7 194.36 118.4 24.06 −6.1 222.07 132.5

13 206.34 91.4 1.02 −0.7 230.23 109.7 25.97 −5.2 264.18 125.6



14 241.08 84.4 1.19 −0.6 267.72 100.5 28.09 −4.6 308.85 117.1

15 277.06 76.8 1.38 −0.7 306.59 91.4 30.29 −5.2

16 313.87 68.0 1.58 −0.5 346.48 81.0

17 350.94 58.1 1.81 −0.4

0 1 139.57 118.5

1 2 152.04 100.6 −0.04 −0.6 142.33 117.3

2 3 126.46 87.4 0.00 0.1 157.54 100.7 −0.18 −1.7 147.76 115.0

3 133.51 86.2 0.01 0.0 165.88 100.9 −0.51 −3.5 155.78 111.5

4 142.84 84.6 0.02 −0.1 177.12 101.1 −1.16 −5.8 166.15 107.0

5 154.38 82.5 0.03 0.0 178.77 101.8 10.31 −9.2 191.32 100.6

6 168.07 79.9 0.07 0.0 193.52 96.6 11.11 −7.2 208.43 99.3

7 183.81 77.0 0.11 −0.1 210.29 91.3 12.20 −5.7 228.32 96.6

8 201.47 73.6 0.17 −0.1 229.00 85.9 13.52 −4.7 250.84 92.9

9 220.91 69.7 0.25 −0.1 249.52 80.3 15.02 −4.2 275.78 87.9

10 241.98 65.3 0.34 −0.2 271.71 74.3 16.64 −3.9 302.90 81.8

11 264.44 60.3 0.46 −0.1 295.35 67.8 18.30 −4.1 331.87 73.1

12 288.03 54.7 0.59 −0.1 320.14 60.4 19.89 −4.4

13 312.40 48.4 0.75 −0.1 345.68 51.9

14 337.09 41.2 0.92 −0.1

0 2 265.09 65.6

1 3 262.78 58.1 0.81 −1.0 268.02 64.1

2 4 232.00 54.0 0.00 0.0 265.69 57.6 1.94 −1.5 273.36 62.4

3 237.38 52.9 0.00 0.0 270.44 56.3 3.17 −1.7 280.87 60.5

4 244.48 51.3 0.01 0.1 277.01 54.3 4.48 −1.8 290.43 58.1

5 253.21 49.4 0.02 0.1 285.32 51.8 5.83 −1.8 301.94 55.1

6 263.47 47.1 0.05 0.0 295.23 48.8 7.22 −2.0 315.24 51.4

7 275.15 44.3 0.08 0.1 306.60 45.2 8.62 −2.1 330.13 46.7

8 288.08 41.2 0.13 0.0 319.24 41.0 9.97 −2.5 346.28 41.0

9 302.06 37.6 0.20 −0.1 332.86 36.1 11.29 −3.4

10 316.85 33.3 0.28 0.0 347.11 30.3

11 332.11 29.9 0.38 −1.4

12 347.34 22.9 0.52 0.0

0 3 330.42 28.2

1 4 323.51 27.0 0.41 −0.2 332.20 27.5

2 5 295.34 30.3 30.3 0.00 325.46 26.2 1.13 −0.3 335.60 26.2

3 299.16 29.3 29.3 0.00 328.47 25.0 2.03 −0.6 340.44 24.1

4 304.14 27.9 27.9 0.01 332.53 23.4 3.03 −1.0 346.46 21.3

5 310.21 26.3 26.3 0.02 337.55 21.1 4.03 −1.2 353.27 16.3

6 317.23 24.2 24.2 0.04 343.37 18.3 4.94 −1.7

7 325.05 21.8 21.8 0.08 349.71 14.8

8 333.46 18.9 18.9 0.13

9 342.18 15.8 15.8 0.13

10 350.82 12.0 12.0 0.23

0 4 352.70 5.0

1 5 348.15 8.3 0.27 −0.1 353.44 4.2

2 6 329.24 15.2 0.00 0.0 349.05 7.6 0.73 −0.2

3 331.72 14.4 0.00 0.0 350.41 6.7 1.26 −0.5

4 334.92 13.4 0.00 0.1 352.16 5.3 1.74 −1.0

5 338.73 12.1 0.02 0.0 354.15 4.4

6 343.02 10.7 0.04 −0.1

7 347.62 8.8 0.08 0.0

8 352.26 6.7 0.13 0.0

2 7 345.87 7.2 0.00 0.0

3 347.36 6.7 0.00 0.0

4 349.24 5.9 0.02 0.0

5 351.37 4.9 0.04 0.0

6 353.58 3.5 0.10 0.1

2 8 353.07 2.3 0.01 0.0

aThe p=1 states above E=0 are quasi-bound. They are listed here again to display the effect of parity on the

radiative widths.



TABLE BVIII: He+−H2(I=1). Energies E (in cm−1) and radiative widths Γtrad=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=1 k vR J p states below v=0 j=1 threshold (at 118.37 cm−1).

b=1 k=1 b=1 k=0

p=1 (e) p=−1

J vR E Γtrad E− Γtrad− vR E Γtrad

E(e) Γtrad(e)

1 0 −744.80 248.4 0.11 0.0

2 −737.01 247.4 0.34 −0.1

3 −725.35 246.0 0.68 −0.1

4 −709.82 244.1 1.13 −0.2

5 −690.48 241.7 1.69 −0.3

6 −667.34 238.8 2.35 −0.5

7 −640.47 235.4 3.12 −0.6

8 −609.91 231.5 3.97 −0.8

9 −575.73 227.2 4.92 −1.0

10 −537.99 222.3 5.96 −1.2

11 −496.80 216.9 7.07 −1.5

12 −452.22 211.0 8.25 −1.7

13 −404.39 204.5 9.49 −2.0

14 −353.40 197.4 10.78 −2.3

15 −299.40 189.8 12.11 −2.7

16 −242.54 181.6 13.47 −3.0

17 −182.99 172.8 14.84 −3.4

18 −120.94 163.3 16.21 −3.7

19 −56.63 153.0 17.55 −4.1

20 9.69 142.0 18.84 −4.6

21 77.67 130.0 20.05 −5.1

0 0 −390.45 212.9

1 1 −462.00 183.5 0.10 0.0 −386.76 212.4

2 −455.17 182.6 0.31 −0.1 −379.38 211.3

3 −444.96 181.2 0.61 −0.1 −368.34 209.6

4 −431.39 179.3 1.01 −0.2 −353.66 207.4

5 −414.50 177.0 1.51 −0.3 −335.38 204.6

6 −394.32 174.2 2.10 −0.5 −313.55 201.3

7 −370.93 170.9 2.77 −0.6 −288.22 197.3

8 −344.38 167.1 3.52 −0.8 −259.48 192.8

9 −314.77 162.8 4.35 −1.0 −227.39 187.7

10 −282.17 158.0 5.24 −1.2 −192.07 181.9

11 −246.71 152.7 6.19 −1.4 −153.60 175.5

12 −208.51 146.8 7.18 −1.6 −112.14 168.4

13 −167.71 140.3 8.21 −1.9 −67.82 160.6

14 −124.49 133.3 9.26 −2.2 −20.82 152.1

15 −79.03 125.6 10.31 −2.5 28.65 142.7

16 −31.58 117.3 11.34 −2.8 80.34 132.3

17 17.57 108.1 12.33 −3.1

18 68.06 98.1 13.22 −3.5



0 1 −168.09 145.4

1 2 −245.16 128.8 0.09 0.0 −164.95 144.8

2 −239.38 127.9 0.26 −0.1 −158.68 143.7

3 −230.76 126.5 0.52 −0.1 −149.31 142.0

4 −219.30 124.7 0.87 −0.2 −136.87 139.8

5 −205.08 122.5 1.28 −0.3 −121.42 136.9

6 −188.13 119.8 1.78 −0.4 −103.03 133.5

7 −168.55 116.6 2.34 −0.5 −81.77 129.5

8 −146.42 112.9 2.96 −0.7 −57.76 124.8

9 −121.85 108.7 3.64 −0.8 −31.12 119.5

10 −94.97 104.0 4.36 −1.0 −2.00 113.4

11 −65.93 98.8 5.10 −1.2 29.42 106.6

12 −34.92 93.0 5.86 −1.4 62.92 99.6

13 −2.17 86.5 6.62 −1.7 98.08 90.2

14 32.06 79.3 7.35 −1.9

15 67.41 71.3 8.01 −2.2

16 103.41 62.3 8.56 −2.6

0 2 −13.62 88.2

1 3 −90.40 84.6 0.07 0.0 −11.13 87.6

2 −85.75 83.8 0.21 0.0 −6.17 86.5

3 −78.81 82.5 0.43 −0.1 1.23 84.8

4 −69.62 80.8 0.70 −0.2 11.01 82.5

5 −58.25 78.7 1.04 −0.2 23.07 79.6

6 −44.77 76.1 1.43 −0.3 37.33 76.0

7 −29.30 73.0 1.87 −0.4 53.61 71.5

8 −11.94 69.5 2.35 −0.6 71.81 66.6

9 7.14 65.5 2.86 −0.7 91.59 60.8

10 27.77 60.9 3.38 −0.9 112.66 53.7

11 49.69 55.8 3.89 −1.0

12 72.63 50.1 4.37 −1.3

13 96.04 45.7 4.76 3.3

0 3 76.69 43.5

1 4 10.41 51.2 0.06 0.0 78.44 43.0

2 13.93 50.7 0.17 0.0 81.90 41.8

3 19.16 49.3 0.33 −0.1 87.01 40.1

4 26.05 47.7 0.54 −0.1 93.68 37.7

5 34.52 45.7 0.79 −0.2 101.76 34.5

6 44.46 43.3 1.08 −0.3 111.01 30.5

7 55.75 40.8 1.38 −0.7

8 68.16 37.3 1.75 −0.6

9 81.54 33.4 2.07 −0.6

10 95.57 28.9 2.37 −0.8

11 109.83 23.6 2.61 −1.0

0 4 114.93 11.9

1 5 69.27 27.6 0.04 0.0 115.81 11.1

2 71.72 26.9 0.12 0.0 117.46 9.4

3 75.34 26.2 0.24 0.3

4 80.06 24.6 0.39 −0.1

5 85.77 22.8 0.57 −0.2

6 92.34 20.8 0.76 −0.2

7 99.56 18.6 0.96 −0.3

8 107.25 15.2 1.15 −0.4

9 115.01 11.7 1.29 −0.5

1 6 99.36 13.1 0.03 0.0

2 100.90 12.6 0.09 0.0

3 103.15 11.8 0.17 0.0

4 106.03 10.8 0.27 −0.1

5 109.42 9.5 0.39 −0.1

6 113.17 7.9 0.51 −0.1

7 117.05 6.1 0.63 −0.2

1 7 113.14 5.7 0.02 0.0

2 114.02 5.3 0.07 0.0

3 115.26 4.7 0.13 0.0

4 116.78 3.9 0.21 0.0

1 8 118.17 1.1 0.03 0.0



TABLE BIX: He+−H2(I=1). Energies E (in cm−1) and radiative widths Γtrad=ΓRCT+iRaT+RA

(in 10−6 cm−1) of b=3 k vR J p states. All states below v=0 j=1 threshold are shown.

b=3 k=3 b=3 k=2

p=1 (e) f − e p=1 (e) f − e

J vR E Γtrad E Γtrad vR E Γtrad E Γtrad

3 0 −214.54 253.3 0.00 0.0

4 −199.15 251.5 0.00 0.0

5 −179.97 249.1 0.00 0.0

6 −157.03 246.3 0.00 0.0

7 −130.38 243.0 0.00 0.0

8 −100.08 239.2 0.00 0.0

9 −66.19 234.9 0.01 0.0

10 −28.79 230.1 0.01 0.0

11 12.04 224.8 0.03 0.1

12 56.18 218.1 0.08 0.9

13 103.79 210.1 0.05 −4.5

2 0 17.40 227.9 0.00 0.0

3 1 76.08 188.2 0.00 −0.3 28.20 226.6 0.02 0.0

4 89.61 186.7 0.00 0.0 42.55 224.6 0.06 0.0

5 106.47 184.4 0.00 0.0 60.41 222.1 0.15 0.1

6 81.71 218.9 0.30 0.2

7 106.40 214.5 0.57 0.5



Fig. B9. Some details on rate constant of RCT+RA+iRaT
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Fig. B9a. Rate constant kRCT+RA+iRaT(:=ktrad) in temperature

range 10−100 K (population of ortho- and para-H2 in gas mixture

appropriate for thermal equilibrium). Completion of Fig. 16b of the

paper with analytical fits to various parts; formulas in Table BXa.

Note that the parts contributed by transitions from b=2 and b=3 res-

onances (red lines) are multiplied by a factor of 0.5 in the figure.

Comparison of the classical results used in Fig. 16b to represent the

contribution of transitions from reactant continuum states with the

background part of the function ktrad(T ).

The values of ktrad(bck) are by ∼10% higher than the classical results.

It is assumed that this difference represents the contributions of the

broad shape resonances which were included into the background in

the calculations of ktrad(bck).

Fig. B9b. Same as in Fig. B9a but for reactions in He++H2 gas

mixtures with fixed 3:1 (‘normal’) population of ortho- and para-H2.

The respective rate constant functions are denoted by nk
rad. Appropri-

ately modified formulas of the analytical fit are given in Table BXb.

Fig. B9c. Rate constant func-

tion ktrad(T ), total and various its

parts, for the radiative reactions in

the mixtures with ‘normal’ hydrogen

compared to the respective functions

for mixtures with ‘equilibrium’ hy-

drogen. See Table BXI.
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Fig. B9d. Comparison of resonance parts of the rate constant func-

tions ktrad(T ) and nk
trad(T ) in the range 10–100 K. Crude analytical

representations of these parts used in the discussion of the paper. The

crosses and stars show values of ktrad(res) and nk
trad(res), respectively,

obtained from test calculations in which energies of all resonances were

shifted down by 5.5 cm−1. These tests are referred to in the discussion

of possible impact of a slight inaccuracy of the A-state PES (of its

lowest part) on the size of the resonance contributions.
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Fig. B9e. Details on temperature dependence of various parts of the rate constant kRCT+RA+iRaT.

Thermal equilibrium assumed.

Left: Resonance part of ktrad00 .

The contribution of individual resonance RJ
n scales like T−3/2/Z(T ) at T≫EJ res

n /kB (gray line). The

contribution of a group of resonances of energies EJ res
n ≈En+BnJ(J+1) for J=J1, . . . , J2 scales like

T−1/2/Z(T ) at T≫EJ1 res
n /kB. The temperature dependence of the contribution summarized over dif-

ferent groups n:=(b k vR) becomes close to T−1/4/Z(T ).

Middle: Resonance part of ktrad01 .

Here Eres/kB>T for all b=3 and b=1 resonances. Contribution of individual resonance (gray line)

scales like T−3/2 exp(−Eres/kBT )/Z(T ). Correspondingly, the contribution of a group of resonances

b=3 k vR J=J1−J2 scales like T−1/2 exp(−Ẽ/kBT )/Z(T ), where Ẽ is a parameter correlating with the

lowest energy in the group EJ1 res, usually Ẽ<EJ1 res.

Right: Partial (J) contributions to the backgrounds of ktradI=0 (≈ktrad00 ) and ktradI=1 (≈ktrad01 ).

The partial rate constants k
trad(bck)
00 (T, J) decrease like T−1/2/Z(T ) at temperatures T≫EJ

cbr/kB.
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Fig. B9f. Same as in Fig. B9e for ‘normal’ hydrogen in the gas mixture, nk
trad= 1

4 pk
trad+ 3

4 ok
trad

with pk
trad=ktradI=0×

Z
Z0

and ok
trad=ktradI=1×

Z
3Z1

, where Z=Z0+3Z1, see Table BX.



TABLE BX: Analytical representation of temperature dependence of kRCT+RA+iRaT

in the range 10−100 K

a) thermal equilibrium

kRCT+RA+iRaT
I=0 (T ) ♭ kRCT+RA+iRaT

I=1 (T ) ♭

background resonance (b=0, 2) background resonance (b=1, 3)

B/Z(T ) † CT−α/Z(T ) 9B exp(− 170.31
T

)/Z(T ) DT−1/2 exp(−β/T )/Z(T )

B=7.9 ♮ b C § α b D ♯ β

0 5.74 0.251 1 243.1 173.6

2 67.5 0.242 3 1005.5 179.6

♭ kI=0≈kv=0 j=0 since exp(−ε0 2/kBT )≈6×10−3 at T=100 K and kI=1≈k01.
† Z(T )=1+9 exp(−170.31/T )+5 exp(−509.37/T )+21 exp(−1014.1/T ). T in K. See Eq. (8) of the paper.
♮ in unit of 10−15 s−1cm3. § in unit of 10−15 s−1cm3Kα. ♯ in unit of 10−15 s−1cm3K1/2.

b) fixed 3:1 (‘normal’) population of ortho- and para-H2 in the gas mixture

nk
RCT+RA+iRaT
I=0 (T ) = 1

4 pk
trad(T ) nk

RCT+RA+iRaT
I=1 (T ) = 3

4 ok
trad(T )

background resonance (b=0, 2) background resonance (b=1, 3)

B/4Z0(T )
‡ CT−α/4Z0(T ) 9B exp(−170.31

T
)/4Z1(T )

‡ DT−1/2 exp(−β/T )/4Z1(T )

‡ Z0(T )=1+5 exp(−509.37/T ) and Z1(T )=3 exp(−170.31/T )+7 exp(−1014.1/T ).

COMMENT

As demonstrated in Fig. 16 of the paper, the rate constant function ktrad(T ) changes when the
way of thermal averaging is adapted to gas mixtures with ‘normal’ hydrogen. In panels b) to
d) of the present figure, it is shown how the various parts of the rate constant function behave
upon the adaptation in the range 10–100 K. The background part is seen to hardly change

at all. This is attributed to the fact that the dependence of the cross-sections σ
trad(bck)
0 j for

j=0, 1 on the kinetic energy E−ε0 j :=e is well-described by the capture model (see Fig. B7a)

or, more specifically, that the averaged cross-sections 1
2j+1

σ
trad(bck)
0 j (e) are almost independent

of j, see Eq. (53). In turn the resonance parts of nk
trad(T ) substantially differ from the respec-

tive resonance parts of ktrad(T ). Unlike the backgrounds of the cross-sections, the resonance

parts σ
trad(res)
0 0 (e) and 1

3
σ
trad(res)
0 1 (e) differ between each other, mainly because the positions of

resonances b=3 relative to the threshold ε0 1 are quite different from the positions of resonances
b=2 relative to ε0 0 (see Tables BII and BIV). The resonances b=3 lie on average higher. There-
fore the b=3 contribution to the rate constant of the reaction with pure ortho-H2 (the curve
‘sum b=3’ in the middle panel of Fig. B9f) is smaller than the b=2 contribution to the rate
of the reaction with pure para-H2 (the curve ‘sum b=2’ in the left panel), about 6 times at
T=10 K and about 2 times at T>20 K. The values of the total rate constant for the ‘normal’
mixture, nk

trad(T ), are smaller than the ‘equilibrium values’, ktrad(T ), by 35% at T=10 K, 18%
at 50 K, and only by 6% at 100 K. The total Feshbach resonance contribution (b=2+3) to the
function nk

trad(T ) at temperatures 10–100 K is 61–57% whereas the contribution made by these
resonances at equilibrium ranges from 79 to 60%. Except for very low temperatures (shown in
Fig. 16a), the shape resonances b=0, 1 are less important than the Feshbach resonances because
of possessing smaller radiative widths Γtrad or much too small dissociative widths Γ (see Tables
I and BIII). It should nevertheless be noted that contribution of these resonances to nk

trad(T )
is somewhat larger than to ktrad(T ): 18 vs 7% at T=10 K, 12 vs 7% at 50 K, and 10 vs 9% at
100 K (see Table BXI).



TABLE BXI: Rate constants krad(T ) (in 10−15 s−1cm3) for reactions RCT+RA+iRAT(:=trad) and

RA in gas mixtures of He+ ions with ‘normal’ (n) and ‘equilibrium’ (e) hydrogen at selected temper-

atures in the range 5−100 K. Resolution of the rate constant ktrad into contributions of transitions

from continuum (bck), shape (b=0+1), and Feshbach (b=2+3) resonance states of He++H2 reactants.

Percentage involvement of states of He++H2(I=1) pairs in the particular contributions compared to

populations of I=1 states in the ‘normal’ and ‘equilibrium’ H2
♦.

kRCT+RA+iRaT ktradI=0+1
I=1

I=0+1
× 100%

ktrad
I=1

ktrad
I=0+1

♦ kRA k
RA(bck)
I=0+1

kRA
I=1

kRA
I=0+1

T I=0+1 I=1 bck b=0+1 b=2+3 bck b=1
b=0+1

b=3
b=2+3

×100% I=0+1 I=1 ×100%

n

5 39.1 19.3 6.9 8.6 23.5 75 82 30 49 75 0.90 0.31 0.37 34

7 37.3 21.0 7.2 7.4 22.7 75 83 41 56 0.80 0.29 0.34 37

10 35.4 21.8 7.5 6.2 21.7 75 84 51 62 0.71 0.28 0.31 40

15 33.5 21.8 7.7 5.1 20.7 75 84 57 65 0.63 0.26 0.28 42

20 32.1 21.3 7.8 4.5 19.8 75 84 59 66 0.57 0.24 0.26 43

25 31.0 20.7 7.8 4.1 19.1 75 84 60 67 0.52 0.23 0.24 43

30 30.1 20.1 7.8 3.8 18.4 75 84 60 67 0.48 0.21 0.22 44

35 29.3 19.6 7.9 3.6 17.8 75 84 60 67 0.45 0.20 0.21 44

40 28.6 19.2 7.9 3.5 17.3 75 84 60 67 0.43 0.19 0.21 45

45 28.0 18.7 7.9 3.3 16.8 75 83 60 67 0.41 0.18 0.20 45

50 27.5 18.4 7.9 3.2 16.3 75 83 60 67 0.39 0.18 0.19 46

55 27.0 18.0 7.9 3.1 15.9 75 83 60 67 0.37 0.17 0.19 46

60 26.5 17.7 7.9 3.0 15.6 74 83 60 67 0.35 0.17 0.18 47

65 26.0 17.3 7.9 2.9 15.2 74 83 60 67 0.34 0.16 0.17 47

70 25.6 17.0 7.9 2.8 14.9 74 83 60 67 0.33 0.16 0.17 48

75 25.1 16.7 7.8 2.7 14.6 74 82 59 67 0.32 0.15 0.17 48

80 24.7 16.4 7.8 2.7 14.2 74 82 59 66 0.30 0.15 0.16 48

85 24.2 16.1 7.7 2.6 13.9 74 82 59 66 0.29 0.14 0.16 48

90 23.8 15.8 7.6 2.5 13.6 74 82 59 66 0.28 0.14 0.15 49

95 23.3 15.5 7.6 2.4 13.3 74 82 59 66 0.28 0.14 0.15 49

100 22.9 15.2 7.5 2.4 13.0 74 82 59 66 0.27 0.13 0.14 49

e

5 79.3 0.0 7.0 6.0 66.3 0 0 0 0 0 2.39 0.00 0.31 0

7 65.3 0.0 7.3 4.9 53.1 0 0 0 0 0 2.03 0.00 0.28 0

10 54.4 0.0 7.5 4.0 42.9 0 0 0 0 0 1.73 0.00 0.25 0

15 46.7 0.0 7.7 3.3 35.8 0 0 0 0 0 1.46 0.00 0.22 0

20 43.3 0.1 7.8 2.9 32.6 0 0 0 0 0 1.30 0.00 0.21 0

25 41.2 0.3 7.9 2.7 30.7 1 2 0 1 1 1.17 0.00 0.20 0

30 39.5 0.8 7.9 2.5 29.1 3 5 2 2 3 1.06 0.01 0.19 1

35 38.0 1.7 7.9 2.5 27.6 6 11 3 4 6 0.96 0.02 0.19 2

40 36.5 2.9 8.0 2.5 26.1 11 18 6 8 11 0.86 0.03 0.19 3

45 35.1 4.2 8.0 2.5 24.6 17 26 9 12 17 0.78 0.04 0.19 5

50 33.7 5.6 8.0 2.5 23.2 23 33 13 17 23 0.70 0.05 0.18 8

55 32.4 6.9 8.0 2.5 21.9 28 40 17 21 29 0.63 0.07 0.18 10

60 31.2 8.1 8.0 2.5 20.7 34 46 21 26 34 0.57 0.08 0.17 13

65 30.1 9.1 8.0 2.5 19.6 39 51 24 30 40 0.52 0.08 0.17 16

70 29.1 10.0 8.0 2.5 18.7 43 55 28 34 44 0.48 0.09 0.17 19

75 28.2 10.7 7.9 2.4 17.8 47 59 31 38 48 0.44 0.10 0.16 22

80 27.3 11.3 7.9 2.4 17.0 50 62 34 41 51 0.41 0.10 0.16 25

85 26.5 11.7 7.8 2.4 16.3 53 65 37 44 55 0.38 0.10 0.16 27

90 25.8 12.1 7.7 2.3 15.7 56 67 39 47 57 0.36 0.11 0.15 30

95 25.1 12.3 7.6 2.3 15.1 58 69 42 49 59 0.34 0.11 0.15 32

100 24.4 12.5 7.6 2.2 14.6 60 71 44 51 61 0.32 0.11 0.14 34

♦ the population of I=1 states: 75% in the ‘normal’ and 3Z1(T )/Z(T )×100% in the ‘equilibrium’ hydrogen.



COMMENT

The percentage contributions of collisions of the He+ ions with the ortho-H2 in the gas mixture
to the rate constants of the radiative reactions, shown by the ratios krad

I=1/k
rad
I=0+1 for rad=trad

and rad=RA, are generally smaller than the population of the ortho-states in the hydrogen gas
used in the mixture, no matter whether it is ‘normal’ or determined by the thermal equilibrium
at a given temperature T . This is also an effect of the complex formation in the collisions
(compare the data in columns seventh to eleventh).
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C. SUPPLEMENTARY MATERIAL — PART C

He+−H2 COMPLEX

PREDISSOCIATION



VIBRATIONAL

versus

ROTATIONAL PREDISSOCIATION

below

the v=1 j=4 threshold



Fig. C1. He+−H2(I=0) complex

v=0−1 b=0−4 k vR J=8e levels
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Complete assignment of all peaks plotted in Fig. A7 of Ref. 1 (except for the ones associated with the j=6

threshold). Additionally, the widths of the energy levels are indicated by the lengths of the thick lines. Specif-

ically, the lengths are proportional to | log10 Γ| if Γ>10−4 cm−1. The two longest thick lines represent widths

smaller than 10−4 cm−1, see Table CI. The thin lines represent bound states energies. Their counterparts in

the right panel are vibrationally predissociating states.

COMMENT

The structure of ro-vibrational energy levels of the He+−H2 complex is essentially the same as
the structure revealed by van der Waals complexes belonging to the class of medium anisotropy
of atom-diatom interaction, best exemplified by the Ar-HF complex. The fact has already been
stressed in Ref. 2 (paper II). Considering here a larger part of the spectrum and the widths
of the levels, one can note a major qualitative difference between He+−H2 and Ar-HF. The
difference concerns the relative efficiency of rotational and vibrational predissociation.
It is a well-established fact3 that stability of the Ar-HF complex against vibrational predis-
sociation is much greater than its stability against rotational predissociation; the respective
level widths differ by several orders of magnitude. No such disproportion occurs between the
widths of vibrationally and rotationally predissociating states of He+−H2 (see Table CII). The
fact should be attributed to the stronger (by about 10 times) binding of He+−H2 and to the
relatively large separation of rotational levels in H2.



TABLE CI: He+−H2(I=0). Positionsa (E) and widthsa (Γ) of b=j k vR J=8 p=1 levels below the

v=0−1 j=0−4. The positions (εvj) of the thresholdsb are listed in the headings. The positions of the

levels are given relative to the respective v j=0 threshold. All data are in cm−1.

v=0

j=0 (ε=0) j=2 (ε=354.03)

k=0 k=0 k=1 k=2

vR E Γ E Γ E Γ E Γ

0 −675.90 0 68.54 7.7 (−2) −145.23 0 −412.91 0

1 −415.98 0 250.84 5.2 (−5) 85.99 3.0 (−2) −139.90 0

2 −223.68 0 346.28 4.0 (−3) 229.00 8.8 (−2) 60.54 8.3 (−3)

3 −96.67 0 319.24 4.8 (−2) 201.47 1.3 (−2)

4 −25.87 0 288.08 8.9 (−3)

5 333.46 4.7 (−3)

6 352.26 1.7 (−3)

v=1

j=0 (ε=4149.97) j=2 (ε=336.11+4149.97)

0 −727.52 1.4 (−3) 46.50 2.9 (−3) −193.45 1.3 (−3) −481.33 1.6 (−3)

1 −458.72 3.4 (−3) 221.91 1.0 (−2) 29.98 1.1 (−1) −203.71 3.8 (−3)

2 −256.17 4.3 (−3) 326.09 1.3 (−2) 195.62 9.7 (−2) 9.64 2.4 (−2)

3 −117.03 4.0 (−3) 295.10 5.5 (−2) 160.88 2.2 (−2)

4 −35.25 2.5 (−3) 257.20 1.5 (−2)

5 309.44 8.4 (−3)

6 331.75 3.0 (−3)

v=0 j=4 (ε=1167.63)

k=0 k=1 k=2 k=3 k=4

vR E Γ E Γ E Γ E Γ E Γ

0 932.48 3.6(−1) 782.21 1.1 689.02 9.0(−1) 535.48 4.9(−2) 325.49 5.3(−9)

1 1097.27 1.8(−2) 982.53 2.1 906.68 1.3 783.89 6.7(−1) 607.15 6.3(−3)

2 1166.74 1.9(−2) 1110.43 1.4 1052.69 1.3 961.41 1.7(−1) 822.24 9.6(−3)

3 1134.30 7.9(−1) 1080.52 2.2(−1) 975.47 4.0(−2)

4 1162.25 7.4(−3) 1144.21 5.7(−1) 1070.83 5.3(−2)

5 1167.06 1.7(−2) 1127.54 1.9(−2)

6 1155.25 6.0(−4)

v=1 j=4 (ε=1108.40 + 4149.97)

0 859.50 3.5(−1) 708.75 2.2 607.53 8.9(−1) 439.50 5.2(−2) 216.79 3.7(−3)

1 1029.99 1.5(−2) 913.02 2.7 831.08 1.3 693.82 1.3(−1) 505.51 1.6(−2)

2 1106.79 5.4(−2) 1046.97 1.8 984.67 1.3 880.79 1.6(−1) 729.35 2.2(−2)

3 1072.15 7.0(−1) 1009.62 2.8(−1) 892.67 5.4(−2)

4 1102.13 1.1(−2) 1082.23 8.8(−1) 997.24 6.9(−2)

5 1060.62 1.3(−2)

6 1092.15 3.3(−3)

a Results of convergent calculations within the CC-BF-diabatic approach of Ref. 4 (paper I).

The basis built of 28 ro-vibrational functions of H2, for v=0−3 and j=0, 2 . . . 12, was used. The Coriolis-

coupling-reducing parameter λmax was equal to b+2 giving maximally N=148 v λ basis states.
b The values of εvj are as they result from the PES of the A-state of HeHH+ and from the use of atomic masses

in the calculations. In comparison with the accurate data for H2, these values are too low by 0.34, 0.72, 11.20,

11.75, and 13.00 cm−1 for (v, j)=(0, 2), (0,4), (1,0), (1,2), and (1,4), respectively. The deviations from the

accurate values would be 0.15, 0.55, 10.13, 10.51, and 11.36 cm−1, respectively, if the proton mass were used

in the calculations.



TABLE CII: He+−H2(I=0). Positions (E) and widths (Γ) of ‘vibrational’ levels

(b=j k vR J=k p) below the v=0−1 j=0−4 thresholds. The positions are relative to the respec-

tive v j=0 threshold. The positions of j>0 thresholds are shown in lines marked with ε. All data are

in cm−1.

v=0 (ε=0) v=1 (ε=4149.97)

p=1 p=−1 p=1 p=−1

j k vR E Γa E− Γa E Γb E− Γb

E(p=1) E(p=1)

0 0 0 −817.03 0 −868.92 1.9 (−3)

1 −538.42 0 −582.69 4.5 (−3)

2 −326.28 0 −360.90 6.3 (−3)

3 −177.19 0 −200.83 6.3 (−3)

4 −83.21 0 −96.51 4.7 (−3)

5 −31.89 0 −37.89 2.7 (−3)

6 −9.11 0 −11.64 1.1 (−3)

2 2 0 −541.11 0 0.00 0 −609.49 2.1 (−3) 0.00 2.1 (−3)

1 −253.93 0 0.04 0 −315.65 5.2 (−3) 0.01 5.3 (−3)

2 −32.88 0 0.00 0 −85.81 7.9 (−3) 0.00 7.9 (−3)

3 126.47 6.9 (−5) 0.00 0 83.25 8.3 (−3) 0.00 8.2 (−3)

4 232.00 5.5 (−5) 0.00 0 198.09 6.7 (−3) 0.00 6.6 (−3)

5 295.34 3.5 (−5) 0.00 0 268.54 4.4 (−3) 0.00 4.4 (−3)

6 329.24 2.3 (−5) 0.00 0 306.62 2.4 (−3) 0.00 2.4 (−3)

7 345.87 2.6 (−5) 0.00 0 325.42 1.2 (−3) 0.00 1.2 (−3)

8 353.07 1.1 (−5) 0.01 0 334.18 5.3 (−4) 0.00 5.3 (−4)

1 0 −264.34 0 0.30 0 −316.59 1.2 (−3) 0.28 1.3 (−3)

1 −22.48 0 0.21 0 −68.26 6.9 (−3) 0.12 7.0 (−3)

2 152.04 5.0 (−4) −0.04 0 116.51 2.1 (−2) −1.60 7.0 (−3)

3 262.78 6.1 (−3) 0.81 0 235.42 9.9 (−3) 0.47 5.4 (−3)

4 323.51 1.7 (−3) 0.41 0 302.64 4.7 (−3) 0.34 3.0 (−3)

5 348.15 4.9 (−4) 0.27 0 329.49 1.5 (−3) 0.25 9.1 (−4)

0 0 −55.46 0 −87.11 1.4 (−3)

1 139.57 2.1 (−2) 111.93 4.8 (−2)

2 265.09 1.5 (−2) 243.69 3.7 (−2)

3 330.42 6.7 (−3) 313.46 1.8 (−2)

4 352.70 1.1 (−3) 334.94 2.4 (−3)

ε 354.03 336.11



TABLE CII: continued

4 4 0 228.21 8.8 (−9) 0.00 0 118.97 4.4 (−3) 0.00 4.4 (−3)

1 521.80 1.8 (−4) 0.00 1.7 (−4) 419.19 1.0 (−2) 0.00 1.0 (−2)

2 749.69 2.5 (−4) 0.00 2.5 (−4) 655.27 1.4 (−2) 0.00 1.4 (−2)

3 915.95 4.9 (−4) 0.00 4.2 (−4) 830.75 1.5 (−2) 0.00 1.5 (−2)

4 1027.03 4.9 (−3) 0.01 3.2 (−3) 951.22 1.3 (−2) 0.00 1.3 (−2)

5 1096.96 7.7 (−4) 0.00 1.2 (−4) 1027.78 8.3 (−3) 0.00 8.3 (−3)

6 1135.54 2.2 (−3) 0.00 1.3 (−5) 1070.78 4.7 (−3) 0.00 4.7 (−3)

7 1155.48 8.5 (−6) 0.00 < 1 (−14) 1093.10 2.7 (−3) 0.00 2.5 (−3)

3 0 430.69 2.1 (−3) 0.00 2.0 (−3) 334.04 2.3 (−3) 0.00 2.0 (−3)

1 692.82 4.1 (−3) 0.00 3.7 (−3) 602.39 1.1 (−2) 0.00 1.1 (−2)

2 888.01 4.8 (−3) 0.00 4.5 (−3) 805.66 1.5 (−2) 0.00 1.4 (−2)

3 1021.11 5.4 (−3) 0.00 4.7 (−3) 947.59 1.5 (−2) 0.00 1.4 (−2)

4 1102.19 3.1 (−2) 0.03 9.3 (−3) 1036.43 3.8 (−2) 0.05 2.0 (−2)

5 1143.35 9.6 (−3) 0.13 5.1 (−3) 1081.48 1.3 (−2) −0.24 6.2 (−3)

6 1161.50 1.7 (−2) −0.05 2.1 (−4) 1100.95 1.7 (−3) 0.03 1.6 (−3)

2 0 590.19 2.0 (−2) 0.06 1.5 (−2) 506.20 1.8 (−2) 0.04 1.3 (−2)

1 823.97 3.3 (−2) 0.06 2.5 (−2) 745.28 3.0 (−2) 0.04 2.3 (−2)

2 989.09 3.5 (−2) 0.06 2.7 (−2) 917.62 3.3 (−2) 0.04 2.6 (−2)

3 1091.88 2.7 (−1) 0.04 2.2 (−2) 1027.65 5.7 (−2) 0.07 2.2 (−2)

4 1145.00 4.4 (−2) 0.15 1.8 (−2) 1085.16 4.8 (−2) 0.16 1.8 (−2)

5 1164.99 9.5 (−2) −0.73 1.1 (−3) 1104.14 3.1 (−3) 0.75 1.2 (−3)

1 0 696.32 4.3 (−1) 3.94 1.1 (−1) 623.57 3.9 (−1) 3.32 7.5 (−2)

1 908.82 6.2 (−1) 3.34 1.7 (−1) 840.15 5.4 (−1) 2.79 1.2 (−1)

2 1050.41 5.7 (−1) 2.82 1.5 (−1) 987.41 5.1 (−1) 2.37 1.0 (−1)

3 1129.82 4.0 (−1) 2.24 8.5 (−2) 1071.46 3.7 (−1) 1.92 6.0 (−2)

4 1162.74 1.9 (−1) 1.43 2.5 (−2) 1104.57 1.8 (−1) 1.23 1.4 (−2)

0 0 746.45 2.8 680.59 3.1

1 949.35 3.6 886.93 3.9

2 1078.67 2.8 1020.34 2.9

3 1145.78 1.4 1089.54 1.4

ε 1167.63 1108.40

aAll Γ>0 widths in the column are due to rotational predissociation.
bThe red numbers in the column are the widths due to pure vibrational predissociation. The black numbers

pertain to states which can predissociate both vibrationally and rotationally.

COMMENTS

(i) Tables CII and CIII (below) present further information on the energy levels structure of
the complex compared to that given in Fig. 3 and Table IV of paper II.

(ii) One can note in the v=0 parts of the tables that there is a strong correlation of the widths
due to pure rotational predissociation with the quantum number k. Among the states assigned
with the same number b and different k’s, k=1−p

2
, . . . , b, the k=b=J state possesses the smallest

width, of the order of ∼5×10−5 cm−1 for b=2 and ∼10−4 cm−4 for b=4. The widths of the
corresponding b k=J=0 states are larger by two orders of magnitude for b=2 and by four orders
for b=4.

(iii) An inspection of the widths in the v=1 parts of the tables reveals that vibrational pre-
dissociation (VP) is the leading mechanism of decay of the states vr=1 b k vR J=k with k≥2,
~

ΓVP
≈1 ns, and is only slightly slower than the rotational predissociation (RP) of the b=2 k=J=0

states, ~

ΓRP
≈0.5 ns.

(iv) The total widths due to vibrational predissociation do not show much dependence on the
numbers b and k of the states. However, the partial widths Γj, describing the decay into the
open channels H2(v=0, j)+He+, correlate with these numbers very strongly, see Fig. C2.



TABLE CIII: He+−H2(I=1). Positions (E) and widths (Γ) of ‘vibrational’ levels

(b=j k vR J=k p) below the v=0−1 j=1−3 thresholds. The positions are relative to the respec-

tive v j=0 threshold. The positions of j>0 thresholds are shown in lines marked with ε. All data are

in cm−1.

v=0 (ε=0) v=1 (ε=4149.97)

p=1 p=−1 p=1 p=−1

j k vR E Γa E− Γa E Γb E− Γb

E(p=1) E(p=1)

1 1 0 −744.80 0 0.11 0 −801.41 3.0 (−3) 0.11 3.0 (−3)

1 −462.00 0 0.10 0 −511.55 5.7 (−3) 0.10 5.7 (−3)

2 −245.16 0 0.09 0 −285.75 7.4 (−3) 0.09 7.4 (−3)

3 −90.40 0 0.07 0 −120.87 7.3 (−3) 0.07 7.3 (−3)

4 10.41 0 0.06 0 −10.46 5.7 (−3) 0.06 5.7 (−3)

5 69.27 0 0.04 0 55.48 3.6 (−3) 0.04 3.6 (−3)

6 99.36 0 0.03 0 89.46 1.8 (−3) 0.03 1.8 (−3)

7 113.14 0 0.02 0 105.19 8.4 (−4) 0.02 8.4 (−4)

8 118.17 0 0.03 0

0 0 −390.45 0 −429.40 1.3 (−3) 0.00 1.3 (−3)

1 −168.09 0 −199.88 2.9 (−3) 0.00 2.9 (−3)

2 −13.62 0 −35.25 3.3 (−3) 0.00 3.3 (−3)

3 76.69 0 65.42 2.4 (−3) 0.00 2.4 (−3)

4 114.93 0 108.95 7.0 (−4) 0.00 7.0 (−4)

ε 118.37 112.38

3 3 0 −214.54 0 0.00 0 −300.63 2.7 (−3) 0.00 2.7 (−3)

1 76.08 0 0.01 0 −3.28 6.7 (−3) 0.00 6.7 (−3)

2 300.91 2.9 (−4) 0.00 2.5 (−3) 229.96 1.0 (−2) 0.00 1.0 (−2)

3 466.08 1.4 (−2) 0.03 6.9 (−2) 402.09 1.1 (−2) 0.00 1.0 (−2)

4 572.86 2.1 (−2) 0.05 1.5 (−4) 520.51 8.6 (−3) 0.00 8.5 (−3)

5 639.50 2.3 (−5) 0.00 1.3 (−4) 594.22 5.8 (−3) 0.00 5.8 (−3)

6 676.00 1.4 (−5) 0.00 1.3 (−4) 635.07 3.2 (−3) 0.00 3.2 (−3)

7 694.50 6.6 (−5) 0.00 5.3 (−4) 666.08 7.9 (−4) 0.00 7.7 (−4)

2 0 17.40 0 0.00 0 −54.48 2.2 (−3) 0.00 2.2 (−3)

1 271.14 4.3 (−3) 0.00 3.1 (−2) 205.54 9.0 (−3) 0.00 7.9 (−3)

2 457.69 5.1 (−3) 0.01 3.2 (−2) 400.43 1.1 (−2) 0.01 9.6 (−3)

3 582.03 7.3 (−3) 0.04 2.9 (−2) 533.90 1.4 (−2) 0.07 7.8 (−3)

4 653.47 2.4 (−2) 0.34 5.9 (−3) 612.87 8.5 (−3) 0.09 5.7 (−3)

5 689.24 4.3 (−3) −0.03 4.9 (−3) 651.59 2.6 (−3) 0.11 2.5 (−3)

6 702.19 5.9 (−5) 0.05 2.1 (−1) 665.70 8.4 (−4) 0.04 8.3 (−4)

1 0 194.58 3.9 (−2) 1.14 7.3 (−3) 138.12 2.9 (−2) 0.96 2.2 (−3)

1 414.31 5.4 (−2) 0.99 1.6 (−2) 362.77 3.9 (−2) 0.81 3.8 (−3)

2 564.83 5.1 (−2) 0.84 1.8 (−2) 520.28 3.6 (−2) 0.68 4.0 (−3)

3 653.30 4.0 (−2) 0.65 1.3 (−2) 615.36 2.6 (−2) 0.51 2.7 (−3)

4 694.13 2.7 (−2) 0.38 5.2 (−3) 658.86 1.5 (−2) 0.20 9.6 (−4)

3 0 0 295.26 3.5 (−1) 252.33 1.1 (−1)

1 492.21 4.1 (−1) 452.03 1.2 (−1)

2 617.33 3.0 (−1) 581.39 8.2 (−2)

3 682.11 1.4 (−1) 648.63 3.7 (−2)

4 704.10 2.5 (−2) 668.75 3.8 (−2)

ε 704.83 669.12

aAll Γ>0 widths in the column are due to rotational predissociation.
bThe red numbers in the column are widths due to pure vibrational predissociation.



Fig. C2. He+−H2

Vibrationally predissociating states below v=1 threshold

Populations of decay channels H2(v=0, j) + He+
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Fig. C2a. Populations Γj/Γ due to vibrational predissociation of the states vr=1 b=0, 2 k=0−b vR J=k p

for selected values of vR. The energies and the total dissociative widths of the states Γ=
∑

j

Γj are in the

last four columns of Table CII.
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as 19.0 cm−1 whereas the widths Γ of these states differ as little as 1.42×10−4 cm−1.

COMMENTS

(i) There is a strong b−j=2 propensity in the decay of the b=k states (having T -shape geome-
try). With growing quantum number vθ=b−k, i.e. with increasing departure from the T -shape
geometry, the propensity weakens; the populations tend to become peaked at the highest open
channel.

(ii) Effects of (e,f) parity of the states on the vibrational predissociation widths are very small.

(iii) The properties of vibrational predissociation of the He+-H2 complex illustrated here are ex-
pected to be qualitatively the same as properties of complexes formed by the H2 (D2) molecules
with other atomic cations. The Li+-D2 complex in particularly interesting since its infrared
spectrum has recently been measured5 and a lower bound for the vibrational predissociation
lifetime of vr=1 states has been provided.



ROTATIONAL PREDISSOCIATION

below

the j=2 and j=3 thresholds



Fig. C3. He+−H2(I=0)

Rotationally predissociating states below v=0 j=2 threshold
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Fig. C3a. The structure of energy levels and their widths (the lengths of the lines show − log10 Γ). The

assignment of the levels with the quantum numbers k, vR, and J (the numbers next to the lines). See Table

CIV.
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† The theory of Fano6,7 applied to the Hamiltonian in the CC-SF-adiabatic representation defined in Fig. A2d

of part A (see also Fig. C5 and Table CVI).

COMMENTS

(i) Fig. C3a and Table CIV provide further information on the predissociating states of the
He+−H2 complex compared to that given in Fig. 4 and Table VI of paper II. All b=2 states
with Γ<1 cm−1 in the energy range of 0 – 354.0 cm−1 are shown. There are six k vR groups of
the states which lie entirely above 300 cm−1.

(ii) Figs. C3b and C3c expose the correlations of the predissociation widths with the quantum
numbers assigned to the states.

• The dependence on the number J differs qualitatively between k>0 and k=0 states. The
growth with J testifies to the dominance of Coriolis interaction in the predissociation of
k>0 states. The overall tendency of the widths of k=0 states to decline with growing J

indicates that potential anisotropy is an important factor in the decay of these states.
[The nonadiabatic coupling which is mostly responsible for these widths within the CC-
SF-adiabatic representation (see the red curves in Fig. C5, does not grow with J).]

• The widths diminish with increasing vR but grow with vθ=b−k increasing from 0 to b−1.

(iii) The disturbances in the behavior of k=0 and k=1 curves in Fig. C3c give evidence of
a strong interplay between the two sources of bound-continuum configuration mixing in the
complex: the anisotropy of the A-state PES and the Coriolis interaction. An insight into these
disturbances, into pathways of decay of the quasi-bound states, can be gained if an appropriate
perturbation scheme is applied8.

(iv) The consistency of the CM and LT results demonstrated in Fig. C3c and in Table CVI
proves that the perturbative resonance theory of Fano, when implemented within the CC-SF-
adiabatic representation of the respective Hamiltonian, can adequately describe many cases of
rotational predissociation in atom-diatom complexes even if the anisotropy of involved inter-
actions is not weak (but it is intermediate).



TABLE CIV: He+−H2(I=0). Energiesa (E) and widthsa (Γ) of rotationally predissociating states

below the v=0 j=2 threshold, b=2 k vR J p=1. All data are in cm−1.

k = 2 k = 1 k = 0

J vR E Γ vR E Γ vR E Γ

17 0 15.53 3. (−15)b

18 77.55 1.3 (−2)

19 142.32 5.6 (−1)

20 208.83 5.6 (−1)

21 277.02 6.1 (−1)

22 346.48 6.4 (−1)

12 0 1.54 1. (−16)b

13 1 33.26 4.7 (−2) 44.23 2.2 (−1)

14 76.92 8.9 (−2) 89.75 2.2 (−1)

15 122.83 1.3 (−1) 137.85 2.3 (−1)

16 170.77 1.8 (−1) 188.35 2.3 (−1)

17 220.45 2.4 (−1) 241.04 2.2 (−1)

18 271.56 3.0 (−1) 295.67 2.1 (−1)

19 323.64 3.5 (−1) 351.91 1.9 (−1)

4 1 5.28 1.7 (−2)

5 2 1.72 2.9 (−3) 20.69 2.4 (−2)

6 19.26 3.1 (−2) 39.21 3.0 (−2) 0 17.64 1.2 (−2)

7 38.16 1.7 (−3) 60.92 3.2 (−2)c 42.19 5.8 (−2)c

8 60.54 8.3 (−3) 85.99 3.0 (−2)c 68.53 7.7 (−2)c

9 85.34 1.7 (−2) 97.22 1.0 (−1)c 114.62 2.1 (−2)c

10 112.47 2.8 (−2) 127.83 1.3 (−1) 146.96 1.2 (−2)

11 141.80 4.3 (−2) 160.21 1.5 (−1) 182.88 5.1 (−3)

12 173.16 6.1 (−2) 194.36 1.7 (−1) 222.07 1.5 (−3)

13 206.34 8.4 (−2) 230.23 1.8 (−1) 264.18 1.5 (−4)

14 241.08 1.1 (−1) 267.72 1.8 (−1) 308.85 9.9 (−5)

15 277.06 1.4 (−1) 306.59 1.8 (−1)

16 313.87 1.6 (−1) 346.48 1.7 (−1)

17 350.94 1.8 (−1)

0 1 139.57 2.0 (−2)

1 2 152.04 5.0 (−4) 142.33 2.2 (−2)

2 3 126.46 6.9 (−5) 157.54 1.2 (−3) 147.76 2.6 (−2)

3 133.51 3.4 (−4) 165.88 1.6 (−3) 155.78 3.3 (−2)

4 142.84 1.0 (−3) 177.12 1.4 (−3)c 166.15 4.2 (−2)c

5 154.38 2.3 (−3) 178.77 5.2 (−2)c 191.32 8.5 (−4)c

6 168.07 4.6 (−3) 193.52 6.4 (−2)c 208.43 3.2 (−4)c

7 183.81 8.0 (−3) 210.29 7.7 (−2) 228.32 2.9 (−5)

8 201.47 1.3 (−2) 229.00 8.8 (−2) 250.84 5.0 (−5)

9 220.91 1.9 (−2) 249.52 9.9 (−2) 275.78 3.8 (−4)

10 241.98 2.8 (−2) 271.71 1.1 (−1) 302.90 1.0 (−3)

11 264.44 3.8 (−2) 295.35 1.1 (−1) 331.87 4.4 (−4)

12 288.03 4.9 (−2) 320.14 1.1 (−1)

13 312.40 6.1 (−2) 345.68 1.0 (−1)

14 337.09 7.0 (−2)



TABLE CIV: continued

0 2 265.09 1.4 (−2)

1 3 262.78 6.1 (−3) 268.02 1.0 (−2)

2 4 232.00 5.5 (−5) 265.69 1.2 (−2) 273.36 6.8 (−3)

3 237.38 2.7 (−4) 270.44 1.9 (−2) 280.87 4.9 (−3)

4 244.48 7.8 (−4) 277.01 2.6 (−2) 290.43 3.8 (−3)

5 253.21 1.8 (−3) 285.32 3.2 (−2) 301.94 3.2 (−3)

6 263.47 3.4 (−3) 295.23 3.9 (−2) 315.24 3.0 (−3)

7 275.15 5.7 (−3) 306.60 4.4 (−2) 330.13 3.1 (−3)

8 288.08 8.9 (−3) 319.24 4.8 (−2) 346.28 4.0 (−3)

9 302.06 1.3 (−2) 332.86 4.9 (−2)

10 316.85 1.7 (−2) 347.11 4.6 (−2)

11 332.11 2.3 (−2)

12 347.34 2.5 (−2)

0 3 330.42 6.7 (−3)

1 4 323.51 1.7 (−3) 332.20 5.8 (−3)

2 5 295.34 3.5 (−5) 325.46 4.4 (−3) 335.60 4.6 (−3)

3 299.16 1.7 (−4) 328.47 7.5 (−3) 340.44 3.6 (−3)

4 304.14 4.8 (−4) 332.53 1.0 (−2) 346.46 2.9 (−3)

5 310.21 1.1 (−3) 337.55 1.3 (−2) 353.27 2.8 (−3)

6 317.23 1.9 (−3) 343.37 1.5 (−2)

7 325.05 3.2 (−3) 349.71 1.4 (−2)

8 333.46 4.7 (−3)

9 342.18 6.3 (−3)

10 350.82 8.2 (−3)

0 4 352.70 1.1 (−3)

1 5 348.15 4.9 (−4) 353.44 1.7 (−4)

2 6 329.24 2.3 (−5) 349.05 1.2 (−3)

3 331.72 1.1 (−4) 350.41 1.9 (−3)

4 334.92 3.0 (−4) 352.16 1.9 (−3)

5 338.73 6.9 (−4) 354.15 1.8 (−3)

6 343.02 3.3 (−4)

7 347.62 1.2 (−3)

8 352.26 1.7 (−3)

2 7 345.87 2.6 (−5)

3 347.36 5.1 (−5)

4 349.24 1.4 (−4)

5 351.37 3.3 (−4)

6 353.58 5.6 (−4)

2 8 353.07 1.1 (−5)

aResults of the life-time matrix calculations performed within the CC-BF-diabatic approach using maximally

N=96 coupled v j λ states, for v=0 − 3, j=0, 2, . . . , 12, and λ’s limited to λmax=3.
bThe predissociation of these states is inhibited by large centrifugal barriers.
cThe assignment of the states with the number k was aided by the perturbative calculations of the energies

and widths. See the shadowed areas in Fig. C3c.



Fig. C4. He+−H2(I=1)

Rotationally predissociating states associated with the v=0 j=3 threshold

 

 

 

 

 

 

 

 

E
  /

cm
-1

 

0

3

4

1

4

6

7

8

9

10

2
3
4

5

6

7

8

9

10

11

12

13

2

4

6

7

11

12

14

15

16

17

3
4

5

6

7

8

9

10

11

12

13

4
5

6

1

4

6

7

5

8

8

9

10

11

12

13

2

4
5

6

7

14

15

16

17

6

7

8

9

10

11

12

13

3

5

6

0 0 0 1 0 1 2 0 0 1 0 1 2

e-levels f-levels-------> <-------

vR
k0 1 2 2 3 3 3 1 2 2 3 3 3

v=0 j=1

0

50

100

150

200

250

300

350

Fig. C4a. The structure of energy levels. The lengths of the lines above the j=1 threshold represent

− log10 Γ. See Table CV.
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Fig. C4b. The widths of levels in selected k vR ladders shown in Fig. C4a. The e- and f -parity levels are
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The gray strips in Fig. C4a and the gray symbols in Fig. C4b indicate the strongest parity
effects on the level positions and widths; they concern the levels in the k=1 ladders. The shifts
between the corresponding f and e levels grow quickly with J . The widths of f levels are
smaller by at least two orders of magnitude and display different, non-monotonic, dependence
on the number J .



TABLE CV: He+−H2(I=1). Energiesa and widthsa of b=3 k vR J p states. All states in the range

0− 350 cm−1 and selected higher states are shown. E=0 is at the v=0 j=0 threshold. All data are in

cm−1.

k=1 k=0

p=1 p=−1 p=1 p=−1

J vR E Γ E− Γ vR E Γ E− Γ

E(p=1) E(p=1)

0 0 0 295.26 3.5 (−1)

1 194.58 3.9 (−2) 1.14 7.3 (−4) 299.64 3.3 (−1)

2 200.01 1.1 (−1) 3.36 6.1 (−4) 308.33 2.9 (−1)

3 208.26 2.1 (−1) 6.56 4.5 (−4) 321.23 2.4 (−1)

4 219.42 3.3 (−1) 10.62 2.8 (−4) 338.18 1.9 (−1)

5 233.58 4.5 (−1) 15.38 1.2 (−4) 359.01 1.3 (−1)

6 250.83 5.7 (−1) 20.70 1.6 (−5) 383.54 8.0 (−2)

7 271.23 6.9 (−1) 26.44 1.9 (−5) 411.56 3.8 (−2)

8 294.82 7.9 (−1) 32.46 2.1 (−4) 442.85 8.9 (−3)

9 321.63 8.6 (−1) 38.63 6.9 (−4) 477.11 1.1 (−3)

10 351.64 9.1 (−1) 44.77 1.7 (−3)

k=3 k=2

11 0 12.04 0b 0.03 0

12 56.18 0 0.08 0

13 103.79 0 0.05 0

14 154.25 5.0 (−2) 0.04 4.8 (−2)

15 207.76 7.0 (−2) 0.11 5.5 (−2)

16 264.15 1.3 (−1) 0.16 6.6 (−2)

17 323.21 1.7 (−1) 0.24 7.8 (−2)

2 0 17.40 0 0.00 0

3 1 76.08 0 0.00 0 28.20 0 0.02 0

4 89.61 0 0.00 0 42.55 0 0.06 0

5 106.47 0 0.00 0 60.41 0 0.15 0

6 126.59 3.7 (−3) 0.00 3.6 (−3) 81.71 0 0.30 0

7 149.94 8.2 (−3) 0.00 6.5 (−3) 106.40 0 0.57 0

8 176.44 1.5 (−2) 0.01 1.1 (−2) 134.55 1.3 (−1) 0.78 2.4 (−2)

9 206.01 2.5 (−2) 0.01 1.7 (−2) 165.64 2.4 (−1) 1.41 2.7 (−2)

10 238.58 4.0 (−2) 0.03 2.5 (−2) 199.97 3.4 (−1) 2.10 3.0 (−2)

11 274.04 6.2 (−2) 0.05 3.5 (−2) 237.29 4.6 (−1) 3.00 3.1 (−2)

12 312.28 9.3 (−2) 0.10 4.8 (−2) 277.47 6.0 (−1) 4.15 3.1 (−2)

13 353.16 1.4 (−1) 0.18 6.3 (−2) 320.38 7.6 (−1) 5.55 2.9 (−2)

2 1 271.14 4.3 (−3) 0.00 3.1 (−3)

3 2 300.91 2.9 (−4) 0.00 2.5 (−4) 280.44 1.3 (−2) 0.02 7.3 (−3)

4 312.48 1.3 (−3) 0.00 1.1 (−3) 292.77 3.0 (−2) 0.07 1.3 (−2)

5 326.87 3.8 (−3) 0.00 2.9 (−3) 308.07 5.7 (−2) 0.17 1.8 (−2)

6 344.04 9.3 (−3) 0.01 6.2 (−3) 326.29 9.8 (−2) 0.34 2.3 (−2)

7 363.92 2.0 (−2) 0.02 1.2 (−2) 347.31 1.6 (−1) 0.60 2.7 (−2)

8 386.46 4.1 (−2) 0.06 2.0 (−2) 371.02 2.3 (−1) 0.98 2.9 (−2)

9 411.58 7.9 (−2) 0.16 3.3 (−2) 397.30 3.2 (−1) 1.51 2.7 (−2)

10 439.21 1.5 (−1) 0.40 5.0 (−2) 425.95 4.1 (−1) 2.17 2.0 (−2)

aResults of the life-time matrix calculations performed within the CC-BF-diabatic approach using maximally

N=124 coupled v j λ states, for v=0 − 3, j=1, 3, . . . , 13, and λ’s limited to λmax=4.
bStates below the threshold εv=0 j=1=118.37 cm−1 are bound in the approach.



Fig. C5. Perturbative calculations on rotational predissociation of He+−H2.
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The complete model space was spanned by N=96 diabatic basis functions which were used in the LT

calculations (see footnote a to Table CIV). The adiabatic basis resulting from diagonalization of the N×N

matrix WJe

(R) was contracted to M=8 states, so that the respective block of the Hamiltonian matrix

a
HJe

(R) included the adiabatic potentials eJ
e

v̄̄l̄
(R) which correlate asymptotically with the thresholds εv=0 j

for j=0, 2, 4. Consequently, the open (P ) and the closed (Q)-channel subspaces included MP=1 and MQ=7

states, respectively. The potentials in the P - and Q-subspaces for two values of J are shown in the two upper

panels. The three ̄=2 potentials in the Q-subspace, with l̄=J−2, J , and J+2, support the predissociating

b=2 states with k=2, 1, and 0, respectively. The (larger, first-derivative) nonadiabatic couplings between

the P - and Q-subspaces are plotted in the middle panels. Selected couplings in the Q-subspaces are shown

in the bottom panels. However, neither the A- nor the B-couplings were explicitly needed in the calculations

because Smooth Variable Discretization methods were exploited (see footnote b to Table CVI).



Fig. C5a. Energies and widths of v=0 b=2 k vR Je states of He+−H2.

Perturbative (CM) versus ‘exact’ (LT) results

0.1

0.01

1e-3

1e-4

      

Γ 
/ c

m
-1

CM  MQ=1
    MQ=7

LT

5

0

-5

141210864

E
C

M
-

E
LT

 / 
cm

-1

J

He+-H2
b=2 k=0 vR=0

0.1

0.01

1e-3

1e-4

      

CM  MQ=1
   MQ=7

LT

5

0

-5

141210864

J

 
k=1 vR=1

0.1

0.01

1e-3

1e-4

      

MQ=1
MQ=7

LT

5

0

-5

141210864

J

 
k=2 vR=2

0.1

0.01

1e-3

1e-4

       

Γ 
/ c

m
-1

CM  MQ=1
    MQ=7

LT

5

0

-5

121086420

E
C

M
-

E
LT

 / 
cm

-1

J

  
k=0 vR=1

0.1

0.01

1e-3

1e-4

       

MQ=1
MQ=7

LT

5

0

-5

121086420

J

 
k=1 vR=2

0.1

0.01

1e-3

1e-4

      

MQ=1
   MQ=7

   LT

1

0

-1

12108642

J

He+-H2
b=2 k=2 vR=3

-1

0

1

The CM results shown with the black and red symbols differ in the choices of the Q-subspaces. MQ=7

means the choice described in Fig. C5. MQ=1 means that only one adiabatic basis state v̄ ̄ l̄ was included

into the Q-subspace when evaluating the CM formulas for the predissociating state v=0 b=2 k vR Je, namely,

the state with v̄=0, ̄=b, and l̄=J+b−2k.

COMMENTS

(i) The comparison of the two sets of the CM results (for MQ=1 and MQ=7) with the LT
results reveals the following facts on the pathways of decay of the states:

• the b=k=2 states, supported by the lowest closed-channel potentials ̄=2 l̄=J−2, decay
rather directly to the P -subspace.

• the b=2 k=0 states, supported by the ̄=2 l̄=J+2 potentials, decay indirectly, via mixing
with other states in the closed-channel subspace, mostly with the l̄=J and l̄=J−2 states.
Indeed, the CM calculations disregarding this mixing, with MQ=1, fail to reproduce the
complex dependence of the widths of these states on the number J , as shown in the
leftmost panels of the figure.

(ii) The present perturbative treatment of resonances may be viewed as an extension of the
popular adiabatic-bender model9.



TABLE CVI: He+−H2(I=0). Perturbative (CM) versus ‘exact’ (LT) results for energies and widths

of rotationally predissociating states below v=0 j=2 threshold, b=2 k vR J p=1. For each state shown

are: E(0) — the energy of related bound state in the Q-subspacea, ∆E(0)=E(0)−ELT, ∆E=ECM−ELT

(both ∆’s in cm−1), and δΓ=(ΓCM/ΓLT−1)×100% b. The values of ΓLT can be found in Table CIV.

k = 2 k = 1 k = 0

J vR E(0) ∆E(0) ∆E δΓ vR E(0) ∆E(0) ∆E δΓ vR E(0) ∆E(0) ∆E δΓ

17 0 15.549 0.023 0.004 0.0

18 77.809 0.258 0.008 0.6

19 142.327 0.002 0.001 −0.4

20 208.835 0.009 0.003 −0.3

21 277.013 −0.006 −0.003 −0.3

22 346.465 −0.019 −0.004 −0.3

12 0 1.247 −0.292 0.006 0.0

13 1 33.244 −0.019 0.005 −9.0 43.992 −0.240 0.002 3.4

14 76.909 −0.015 0.004 −5.3 89.476 −0.277 0.002 3.7

15 122.828 −0.004 0.003 −3.5 137.549 −0.302 0.003 3.6

16 170.773 0.006 0.002 −2.5 188.031 −0.322 0.003 3.7

17 220.468 0.014 0.003 −2.0 240.712 −0.333 0.003 3.3

18 271.575 0.018 0.002 −1.4 295.335 −0.336 0.003 3.1

19 323.658 0.019 0.003 −1.0 351.580 −0.330 0.000 -0.2

4 1 5.188 −0.091 0.004 8.5

5 2 1.708 −0.008 0.000 −9.3 20.552 −0.137 0.004 8.2

6 19.147 −0.117 −0.013 −13.5 39.021 −0.189 0.004 7.7 0 17.419 −0.219 0.018 35.6

7 38.153 −0.010 0.002 −26.6 60.678 −0.244 0.005 8.8 41.902 −0.290 0.001 2.1

8 60.543 0.001 0.001 −7.2 85.687 −0.299 0.005 8.9 68.272 −0.265 0.001 3.0

9 85.343 0.005 0.002 −4.8 96.973 −0.244 0.001 3.9 114.283 −0.339 0.005 8.9

10 112.478 0.006 0.002 −4.1 127.581 −0.247 0.002 4.7 146.611 −0.349 0.005 8.7

11 141.812 0.007 0.002 −3.3 159.941 −0.271 0.003 5.2 182.547 −0.334 0.004 8.3

12 173.174 0.011 0.003 −2.8 194.054 −0.303 0.003 4.7 221.768 −0.306 0.003 8.4

13 206.353 0.013 0.002 −2.5 229.901 −0.332 0.005 5.4 263.909 −0.270 0.003 10.1

14 241.094 0.015 0.002 −2.2 267.366 −0.355 0.004 5.3 308.613 −0.233 0.002 6.5

15 277.077 0.014 −0.001 −2.0 306.224 −0.366 0.004 5.2

16 313.889 0.015 −0.002 −1.2 346.121 −0.362 0.004 5.3

17 350.952 0.014 −0.002 −1.2

0 1 138.890 −0.685 0.002 −2.0

1 2 152.007 −0.030 0.001 37.3 141.675 −0.651 0.005 −2.0

2 3 126.466 0.001 0.001 −2.2 157.443 −0.095 −0.001 41.8 147.176 −0.587 0.009 −1.5

3 133.512 0.002 0.002 −2.3 165.688 −0.188 −0.002 49.3 155.263 −0.522 −0.016 −0.7

4 142.838 0.002 0.001 −3.1 176.834 −0.292 0.000 59.4 165.756 −0.392 0.009 1.1

5 154.384 0.002 0.001 −2.1 178.474 −0.299 0.007 2.7 190.939 −0.386 0.001 73.6

6 168.073 0.003 0.002 −2.3 193.279 −0.237 0.004 3.9 207.981 −0.447 0.004 106.9

7 183.809 0.003 0.001 −2.0 210.082 −0.205 0.003 4.9 227.848 −0.472 0.006 351.2

8 201.474 0.004 0.001 −1.9 228.799 −0.197 0.002 5.5 250.368 −0.470 0.005 −85.7

9 220.925 0.006 0.002 −1.7 249.322 −0.202 0.003 5.8 275.332 −0.446 0.006 −28.3

10 241.987 0.007 0.002 −1.7 271.498 −0.216 0.003 6.1 302.489 −0.408 0.005 −9.9

11 264.447 0.008 0.001 −1.7 295.121 −0.228 0.003 5.9 331.519 −0.352 0.009 291.1

12 288.036 0.010 0.002 −1.4 319.904 −0.235 0.004 6.5

13 312.410 0.009 0.000 −1.3 345.444 −0.232 0.003 7.1

14 337.098 0.008 −0.001 −1.1



TABLE CV: continued

0 2 264.544 −0.547 0.003 −3.8

1 3 262.719 −0.058 0.007 9.9 267.540 −0.484 −0.001 −9.5

2 4 232.000 0.001 0.001 −2.0 265.608 −0.080 0.005 5.9 272.906 −0.455 0.002 −12.4

3 237.385 0.001 0.001 −1.9 270.357 −0.084 0.004 5.3 280.426 −0.443 0.004 −13.6

4 244.480 0.001 0.001 −2.1 276.928 −0.084 0.002 5.1 290.002 −0.431 0.005 −13.6

5 253.209 0.000 0.000 −1.8 285.231 −0.085 0.002 5.5 301.528 −0.412 0.005 −12.9

6 263.475 0.003 0.002 −2.1 295.144 −0.088 0.002 6.0 314.857 −0.386 0.005 −10.5

7 275.151 0.003 0.002 −2.0 306.511 −0.094 0.002 6.2 329.783 −0.348 0.005 −8.2

8 288.082 0.004 0.002 −1.8 319.136 −0.100 0.002 6.5 345.978 −0.300 0.004 −4.2

9 302.067 0.004 0.002 −1.8 332.758 −0.105 0.002 6.8

10 316.855 0.003 0.000 −1.6 347.009 −0.103 0.002 7.4

11 332.109 −0.003 −0.005 −7.3

12 347.344 0.004 0.001 −1.0

0 3 330.143 −0.277 0.003 −4.3

1 4 323.505 −0.006 0.000 5.3 331.932 −0.265 0.003 −5.0

2 5 295.339 0.001 0.001 −1.7 325.444 −0.014 0.001 5.2 335.359 −0.246 0.004 −5.9

3 299.156 0.000 0.000 −1.8 328.450 −0.020 0.001 5.3 340.216 −0.224 0.003 −6.2

4 304.144 0.000 0.000 −1.8 332.505 −0.025 0.001 5.3 346.264 −0.196 0.004 −5.8

5 310.211 0.001 0.001 −2.1 337.520 −0.028 0.001 6.2 353.124 −0.150 0.004 18.6

6 317.235 0.001 0.000 −1.8 343.337 −0.029 0.001 6.5

7 325.054 0.001 0.000 −1.0 349.678 −0.030 0.001 7.1

8 333.462 0.001 0.000 −1.1

9 342.181 0.001 0.000 −1.0

10 350.818 0.001 0.000 −0.8

0 4 352.644 −0.052 0.000 0.8

1 5 348.147 −0.002 0.000 5.4

2 6 329.244 0.000 0.000 −0.9 349.043 −0.004 0.000 5.2

3 331.724 0.000 0.000 −1.4 350.403 −0.004 0.000 6.1

4 334.921 0.000 0.000 −1.2 352.153 −0.004 0.000 14.8

5 338.735 0.001 0.001 −1.1 354.142 −0.008 0.002 −55.1

6 343.024 0.000 0.000 −19.0

7 347.621 0.000 0.000 −1.9

8 352.259 0.000 0.000 −1.3

aincluding MQ=7 adiabatic states; see the caption of Fig. C5.
bThe bound states of

a
HJe

QQ(R) were determined and the formulas for the resonance widths ΓCM and the energy

shifts ECM−E(0) were evaluated with the help of the quasi-diabatic versions of the log-derivative algorithms10

adapted to the Smooth-Variable-Discretization approach11.
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4 F. Mruga la, V. Špirko, and W. P. Kraemer, J. Chem. Phys. 118, 10547 (2003) (paper I).
5 C. D. Thompson, C. Emmeluth, B. L. J. Poad, G. H. Weddle, and E. J. Bieske, J. Chem. Phys.

125, 044310 (2006).
6 U. Fano, Phys. Rev. 124, 1866 (1961).
7 F. H. Mies, Phys. Rev. 175, 164 (1968).
8 F. Mruga la, J. Chem. Phys. 129, 064314 (2008).
9 S. L. Holmgren, M. Waldman and W. Klemperer, J. Chem. Phys.67, 4414 (1977); L. Tao and M.

H. Alexander, J. Chem. Phys. 127, 114301 (2007) and references therein.
10 F. Mruga la, Int. Rev. Phys. Chem. 12, 1 (1993).
11 O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B29, L389 (1996); F. D. Colavecchia,

F. Mruga la, G. A. Parker, and R. T Pack, J. Chem. Phys. 118, 10387 (2003); F. Mruga la, 2004,

unpublished.


