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Extensive calculations of energies and lifetimes of vibronic and rovibronic states of the CO2+

dication are performed using the electronic energy potentials and spin-orbit couplings published
recently by Šedivcová et al. �J. Chem. Phys. 124, 214303 �2006�� and by Eland et al. �J. Phys. B
37, 3197 �2004��. Siegert quantization, bound-continuum configuration mixing, two-potential, and
semiclassical methods are exploited in the calculations. Lifetimes for predissociation and tunneling,
varying over a wide range, are determined, demonstrating a very good agreement between results
yielded by the different methods. Dependence of the calculated predissociation characteristics �level
widths and shifts� on the individual potentials and couplings is analyzed. The potentials of
Šedivcová et al., especially the repulsive potential of the 3�− state, are found insufficiently accurate
in the medium range of the internuclear distance to be useful in simulations of the decay of the
lowest vibronic states of the ion, X 3��v=0,1� and a 1�+�v=0,1�. Combining the potentials of
Eland et al. with the SO couplings of Šedivcová et al. is demonstrated to provide the best
description of metastability of the ion so far. Purely vibronic models constructed in this way give
lifetimes in a reasonable agreement with all existing experimental values and estimates. The largest
deviations, �expt /�calc�20, occur in the X 3��v=1,2� cases. Strong evidence is provided that
accounting for rotational motion of nuclei, spin-uncoupling perturbations, and diagonal spin-orbit
couplings can reduce these deviations substantially, approximately ten times. The predissociation
lifetimes of the rovibronic states A 3�0,1

+ �Jv� are predicted to be, with no exception, more than 100
times shorter than radiative lifetimes of these states. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2948389�

I. INTRODUCTION

Investigations of multiply charged molecules have a long
history and constitute an important branch of contemporary
molecular sciences. Several review articles on different as-
pects of these investigations have been published; the most
recent ones are Refs. 1–3. Of basic interest are diatomic di-
cations, most of which can exist only in metastable states, at
energies above charged-separated dissociation limits. Deter-
mining the energies and lifetimes of the metastable states,
providing information on their quantum identity, and ex-
plaining mechanisms of their decay belong to the main ob-
jectives of experimental4–16,20,22 and theoretical6,7,9,14,17–25

studies in the field.
CO2+ has played a special role in the studies of stability

of multiply charged molecules. It was the first molecular
dication observed, in 1932, to live at least 1 �s �Ref. 4�
before unimolecular fragmentation into atomic cations C+

and O+. It was used in the work9 reported in 1993 to provide
“the first experimental evidence that a doubly charged mol-
ecule can be stable on a time scale of seconds.” More re-
cently, the CO2+ ion served as the first test case of new
experimental techniques which have been developed11,13,14 to
allow measurements of lifetimes with vibrational level reso-
lution.

The theoretical studies on metastability of the CO+2 ion
have become possible with the publishing, in 1961, of the

first work17 on electronic energy potentials for doubly posi-
tive diatomic ions. Semiempirical potentials of the ground
electronic state of CO2+ constructed according to the proce-
dure proposed in that work were used in the early
calculations6,18 which attempted to explain the observed5,6

stability of the ion on the microsecond time scale in terms of
tunneling predissociation. Though these attempts seemed
successful, the first ab initio computations of the potentials19

of several electronic states of CO2+ have given rise to a sup-
position that electronic predissociation might be a more im-
portant mechanism. The subsequent refined calculations of
the potentials7,20,21 and the first evaluations of the electronic
predissociation rates21 have fully confirmed this supposition.

Tunneling through the sizable barrier that occurred in the
accurate potential of the ground state, X 3�, and through
even larger barriers in the potentials of the states that con-
verge to the first excited dissociation limit, a 1�+, b 1�, and
A 3�+, have been found insignificant as decay routes of the
vibrational levels of the ion which could be accessed in the
experiments. Spin-orbit �SO� predissociation by purely re-
pulsive state 3�−, having a common dissociation limit with
the ground state, was found21 to proceed in some cases with
rates which were close to the observed range of
104–108 s−1. However, contrary to what had been expected
before19,20 on the basis of general intensity considerations of
spin-changing and spin-conserving transitions, those long-
lived states were actually the v=0 and v=1 levels of the
X 3� state and not levels of the b 1� state. The v=1 level ofa�Electronic mail: felicja@fizyka.umk.pl.
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the lowest singlet state a 1�+ was indicated as the only other
candidate likely to live for microseconds and the lowest vi-
brational level of this state was predicted to be practically
stable.

Predissociation lifetimes of levels in some excited elec-
tronic states, A 3�+ and d 1�+, were considered with refer-
ence to the question about the possibilities to observe photon
emission in CO2+. The estimate provided for the lifetime of
v=0 level of the state A 3�+ and the suggested stability of
some spin components of this state have given rise to the
later search8,16,22 for the emission due to the A 3�+→X 3�
transition.

The approach taken in Ref. 21 to evaluate the predisso-
ciation rates was the simplest implementation of the bound-
continuum configuration mixing �CM� theory,26–29 account-
ing for interaction of a discrete level in single potential �of
the X 3�, b 1�, or A 3�+ state� with single continuum �of the
3�− state�. Semiempirical estimates of SO couplings30 were
inserted for the bound-continuum interactions.

The theoretical description of the CO2+ ion has been
advanced significantly in result of calculations performed in
Ref. 9. Together with further improved potential curves for
the four lowest electronic states, X 3�, 3�−, A 1�+, and b 1�,
the SO couplings between the X 3�− 3�−, a 1�+− 3�−, and
a 1�+−X 3� states have been determined as functions of the
internuclear distance. The predissociation rates of vibrational
levels of the a 1�+ and X 3� states have been generated from
these potentials and couplings in a nonperturbative manner,
using the complex rotated finite element method.31 Due to
accounting for indirect a 1�+→X 3�→ 3�− decay route, the
levels a 1�+�v=0,1� have been found to live much shorter
than the corresponding levels of the ground state. X 3�
�v=0� has been established as the longest-lived vibrational
level of the ion. However, the lifetime of 20 ms calculated
for this level was definitely too small to match the experi-
mental finding reported in the same paper, of a level living
longer than 3.8 s. Similarly, the second largest lifetime cal-
culated for the a 1�+�v=0� level was by far too small to
serve identifying precursor states of two lifetimes which
were observed in the millisecond range �0.8 and 6 ms�. It
was therefore hypothesized that the higher excited state
d 1�+, strictly tunneling from its double-well potential, might
be responsible for these observations. An additional argu-
ment in favor of the hypothesis was the small detected frac-
tional population of levels giving rise to the millisecond life-
times, which would presumably be unattainable if the levels
belonged to any of the states X 3�, a 1�+, or b 1�.

The experimental studies on stability of individual vi-
bronic states of the CO2+ ion carried out in later years11,13,14

have provided information which enabled a partial verifica-
tion of the theory developed up to 1993. Namely, lifetimes of
three states of the 12C16O2+ ion, a 1�+�v=1�, X 3��v=2�,
and b 1��v=0�, have been measured and found to be 0.7,
0.2, and 0.026 �s, respectively, and the two lower states
X 3��v=0,1� and a 1�+�v=0� have been found to live
longer than 10 �s. Lifetimes of above 20 higher vibronic
states, including d 1�+�v=0,1�, have been estimated11 to be
in the interval of 1�10−14−5�10−8 s. In four important
cases at least, X 3��v=1,2� and a 1�+�v=0,1�, these data

could not be reproduced theoretically14 using the potentials
and couplings of Ref. 9. The calculated lifetimes of the states
X 3��v=2� and a 1�+�v=1� were nearly three orders of
magnitude too small. This striking discrepancy between cal-
culations and measurements together with the finding of low
stability of the state d 1�+ cast some doubts on the original
explanation of the slow decay observed in the experiment of
Ref. 9. It has been therefore proposed13 that the 0.8 and 6 ms
lifetimes be ascribed just to states X 3��v=1� and a 1�+

�v=0�, respectively. Obviously, a need has emerged for still
higher accuracy calculations of the electronic structure of the
CO+2 ion.

Two such calculations have been reported recently.23,24

The calculations of Ref. 23 have provided potentials of seven
lowest states, X 3�, 3�−, a 1�+, b 1�, A 3�+, c 1�, and
d 1�+. The potentials have been tested in a simulation of
double photoionization spectrum of CO. Very good consis-
tency has been achieved with the vibrationally resolved spec-
tra recorded in the experiments of Refs. 10, 12, and 15. Even
larger set of potentials �for nine states� and all SO coupling
curves between the lowest six states have been generated in
Ref. 24. Using these data, calculations of predissociation
lifetimes of several lowest vibronic states of the 12C16O2+ ion
have been performed in the same work, demonstrating the
desired tendency of the results; they are substantially larger
than the lifetimes calculated previously. The lifetime calcu-
lations of Ref. 24 had evidently a very preliminary character.
The two standard methods employed, the stabilization32 and
the complex-scaling33 methods, gave numbers differing by
hundreds of percent in most �eight of ten� cases presented.
No number could be provided for lifetimes of the three low-
est vibronic states. The interesting confrontation with the ex-
perimental data in the millisecond range could not thus be
made. Summarizing, the new electronic structure data for
CO2+ are very promising. Taking fuller advantages of them
to improve the existing theoretical description of dissociation
dynamics of the ion is desirable. This is the general goal of
the present study. The particular questions investigated are
listed at the beginning of Sec. IV, after the presentation of the
assumed model Hamiltonians �Sec. II� and the chosen meth-
ods for resonance calculations �Sec. III�.

II. MODELS

The models of dynamics of the CO2+ ion which are tried
in the present study involve maximally five lowest electronic
states, X 3�, 3�−, a 1�+, and b 1�, and A 3�+, and account
for SO interactions between these states. The respective elec-
tronic energy potentials, taken from Refs. 24 and 23, are
presented in Fig. 1�a�, and the SO coupling curves from Ref.
24 are shown in Fig. 2. Of this electronic structure input,
four models are formed to study the vibrational motion of the
ion; they are called hereafter the JCP06 original, the JCP06,
the JP04 model, and the JP04A model, respectively.

The term “JCP06 original” signifies the four-state model
�without the state A 3�+� which was constructed in Ref. 24
by a global analytical fitting to the ab initio generated points
of the potentials and couplings. However, using the formulas
and parameters provided in the supplementary material to
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that paper, one obtains coupling curves which in two cases
differ significantly from the curves shown in the main text.
In particular, the largest coupling determined in the ab initio
calculations of that work, 1�+− 3�−, is totally suppressed in
the model. Moreover, the formulas are evidently not de-
signed to account for the asymptotic behavior of the poten-
tials �for example, the potential of the ground state starts to
grow at C–O distances around 13a0�. Unfortunately, no ab
initio data are disclosed in Ref. 24 which would help to
eliminate these deficiencies. Thus, the a 1�+− 3�− and
a 1�+−X 3� curves are modified here to make them look as
the ones shown in Fig. 2 of Ref. 24. The JCP06 original
model with the two couplings corrected, as demonstrated in
Fig. 2 by the dashed lines, gives the JCP06 model. The
model is assumed to match reasonably well the ab initio data
in the range of C–O distance extending up to 9.9 a0. Beyond
this range, the potentials are extrapolated with the function
1 /r+Vth. �Atomic units are used throughout the text�. In the
case of the 3�− state, the function 1 /r+c /r4+Vth is used for
the extrapolation. The threshold position Vth is deduced in
this case from the numbers provided in Ref. 24 for the ki-
netic energy release in the predissociation of X 3��v=2�,
a 1�+�v=1�, and b 3��v=0� states.

Replacing the potentials of the JCP06 model with the
ones determined in Ref. 23 and retaining the SO couplings
give what is called the JP04 model. “JP04A” labels a version
of the JP04 model designated solely to study the decay of the
vibrational states formed in the potential of the fifth excited
electronic state A 3�+. The role of state a 1�+ in this decay is
assumed to be negligible. The states included are X 3�, 3�−,
b 1�, and A 3�+. Since Ref. 23 provides the potentials in
numerical form, cubic spline interpolation is performed to
generate smooth curves in the ranges covered by the data.
Extrapolation of each curve to large r-values is made with

one-parameter function 1 /r+Vth. Some details on the poten-
tials used in the present study are listed in the caption of
Fig. 1.

Thus, 4�4 matrix Hamiltonian emerges from each of
the four models for the investigation of vibrational motion of
the CO2+ ion,

H�r� = −
1

2�
I

d2

dr2 + V�r� . �1�

Obviously, the diagonal part of V is built of the potentials of
the electronic states considered, the off-diagonal part con-

FIG. 2. SO couplings between the five lowest electronic states of CO2+. Full
line curves are from the analytical model of Ref. 24. Dashed curves repre-
sent couplings corrected here to match the ones calculated ab initio and
shown in Fig. 2 of Ref. 24. Dotted lines represent couplings included into
the JP04A model; they are also reproduced from Fig. 2 of Ref. 24. �Adapted
with permission from T. Šedivcová, P. R. Ždánská, V. Špirko, and J. Fišer, J.
Chem. Phys. 124, 214303 �2006�, ©2006 American Institute of Physics.�

FIG. 1. �a� Left panel: Electronic energy potentials of four lowest states of CO2+. Solid line curves are from the analytical model of Ref. 24 �the JCP06 model�.
Dashed curves represent the ab initio results of Ref. 23 �the JP04 model�. In each model, E=0 is set at the minimum of the well of the X 3� state potential.
The separations of the well minima Va

min−VX
min and Vb

min−VX
min are 0.005 110 and 0.019 488 EH in the JCP06 model and 0.005 744 and 0.019 129 EH in the

JP04 model. The barrier heights Vs
max−Vs

min of the JCP06 potentials, 0.067 086, 0.144 68, and 0.119 169 EH for s=X ,a ,b, exceed their JP04 counterparts by
0.005 937, 0.009 734, and 0.003 940 EH, respectively. �Adapted from T. Šedivcová, P. R. Zdánská, V. Špirko, and J. Fišer, J. Chem. Phys 124, 214303 �2006�,
©2006 AIP, by permission of American Institute of Physics, and from J. H. D. Eland, M. Hochlaf, G. C. King, P. S. Kreynin, R. J. Le Roy, I. R. McNab, and
J. M. Robbe, J. Phys. B 37, 3197 �2004�, ©2004 IOP Publishing Ltd., by permission of IOP Publishing Ltd.� �b� Right panel: Lifetimes of metastable vibronic
states formed within the potential wells—results of the present four-coupled channel calculations. The lifetimes of the A 3�+�v� levels are from the JP04A
model �see text�. The other lifetimes are from the JCP06 model.
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tains the SO couplings, I denotes the unit matrix, and � is
the reduced mass. The 12C16O2+ isotopomer is mostly con-
sidered in this work for which the value �=12 497.592 me

is adopted. Some calculations are also done for 13C16O2+

with �=13 072.140 me.
Metastable vibronic states of the CO2+ ion are the focus

of the present study. However, a substantial part of the work
is devoted also to estimating how much the lifetimes of these
states can be influenced by rotation of the nuclear frame-
work. In this part, the following matrix Hamiltonians are
exploited:

HJp�r� = −
1

2�
I

d2

dr2 + VJp�r� for p = e, f , �2�

with

VJp = ELVp + SOVp + ROTVJp, �3�

where J is the quantum number associated with the total
angular momentum operator J=L+S+R with L, S, and R
representing the total electronic orbital angular momentum,
the total electronic spin, and the nuclear rotation operators,
respectively, and p is the parity label. Elements of the matri-
ces HJp are enumerated by a composite index s� with s
� 2S+1� labeling the electronic state �spin multiplet� and �
identifying the multiplet component. S, �, and � are the
quantum numbers associated with S2 and with the projec-
tions on the internuclear axis of L and J, respectively. �Here,
symbols � and � are used for unsigned values of the pro-
jections, i.e., �= ��� and �= ���.� The matrices ELVp are di-
agonal in both s and � indices,

�ELVp�r��s�,s̃��
= 	s,s̃	�,��Vs�r� , �4�

and include the electronic energy potentials Vs�r� of the five
states of CO2+ listed at the beginning of this section. Obvi-
ously, the fact that there are only definite parity �=0 com-
ponents of odd-multiplicity � states30 is accounted for. The
potentials of Ref. 23 �i.e., those used in the JP04 and JP04A
models� are used for this vibrational study.

The matrices SOVp are built of the SO coupling functions
Vs,s̃�r� plotted in Fig. 2, respecting the ��=0 selection rule

�SOVp�r��s�,s̃��
= 	�,����1 − 	s,s̃�Vs,s̃�r�


+ 	s,s̃A��r���� − ��� . �5�

The factor 
=�2 is inserted when s� or s̃� is a 2S+1�0 state;
otherwise 
=1. An important new ingredient as compared to
the vibronic �nonrotating molecule� JP04 and JCP06 models
is the SO “constant” A��r�. This function for the X 3� state
is taken from Ref. 22.

The matrices ROTVJp include the following parts of the
matrix elements of the operator �1 /2�r2�R2 in Hund’s case
�a� angular momentum basis set30

�ROTVJp�r��s�,s̃��
= 	s,s̃�	�,��E

J�s�;r�

+ 	��,��1C�,��1
Jp �s;r�� , �6�

where the diagonal part is the rotational energy,

EJ�2S+1��;r� =
1

2�r2 �J�J + 1� + S�S + 1� − �2 − �2� , �7�

with �=�−�, and the second part is the S-uncoupling
perturbation,30

C�,��1
Jp �2S+1�;r� = −

1

2�r2 �J�J + 1� − ��� � 1��1/2

��S�S + 1� − �� � 1���1/2

� Np�2S+1���Np�2S+1���1� , �8�

where Np=1 except for Np�2S+1�0
��=

1��−1�−S+�

�2
with �⇔ p= f

e

and �=1
0⇔��.

The matrix Hamiltonians H8�8
Je and H7�7

Jf for vibration-
rotation motion defined by Eqs. �2� and �4�–�6� and �8� to-
gether with the used electronic structure input constitute
what is called here the JP04r–v model. In some tests the
model is supplemented with terms which are intended to
simulate L-uncoupling perturbations30 in the system

�ROTVJp�r��s�,s̃�̃

= −
1

2�r2	S̃,S	�̃,��1	�̃,��1	�̃,�GJp�s�, s̃�̃;r� . �9�

The terms are given proper J-dependent factors but their
electronic factors 	��L+��−1
 are all set arbitrarily to �2.34

The used formulas are GJf
e
=  �2J�J+1��1/2 and �2J�J+1�

−4�1/2 for �s� , s̃�̃�= �3�0 , 3�1� and �3�2 , 3�1�, respectively,
and GJ��1 ,�0�=2�J�J+1��1/2.

Obviously, within the models presented here it is pos-
sible to account for two mechanisms of decay of the �ro�vi-
brational states of the CO2+ ion, the SO predissociation, and
the tunneling. It can be deduced from the lifetime calcula-
tions of Ref. 23 that tunneling is unimportant in the decay of
most of the vibrational levels drawn in Fig. 1�a�, in particu-
lar, of those investigated experimentally. Thus, for the pur-
pose of confronting the models with experiment, one could
concentrate on the SO predissociation mechanism only. It
should be noted, however, that tunneling widths, even the
unrealistically small ones, can be of theoretical interest as
sensitive indicators of the size of the potential barriers. Be-
sides, there are interesting methodological aspects associated
with accurate determination of these widths. For these rea-
sons, the tunneling widths are also given some consideration
here.

III. METHODS

Well-known methods of three distinct categories were
exploited in the calculations on the metastable states of the
CO2+ ion. The methods are described shortly in the following
subsections. Emphasis is put on the most important features
of their present implementation.

A. An exact quantum-mechanical method

The Siegert-quantization (SQ) method35–38 consists in
solving the following eigenvalue problem:

�EI − H�r����r;E� = 0, �10�
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��0;E� = 0, �11�

�I
d

dr
− LO+�r�;E�����r;E��r=r�

= 0, �12�

with the characteristic asymptotic boundary condition requir-
ing that there be only outgoing-wave components in the
eigenfunctions. The condition is imposed at a distance r�

which is large enough to allow for the approximation

Vs,s��r�  	s,s��1

r
+ Vs

th� for s,s� = 1, . . . ,4 �13�

at r�r�. Thus, the log-derivative matrix of the outgoing
waves at the r�-boundary,

�LO+�r�;E��s,s� = 	s,s�
d

dr
�ln Os

+�r;E��r=r�
�14�

for s=1, . . . ,4, should be built of Coulomb functions, i.e.,

Os
+�r;E� =

C
�ks

�GL=0��s;�s� + ıFL=0��s;�s�� , �15�

where

ks = �2��E − Vs
th�, �s = ksr, �s =

�

ks
,

FL�� ;�� and GL�� ;�� denote the regular and irregular
Coulomb functions39 normalized to unit Wronskian,
�d /d��FLGL− �d /d��GLFL=1. From among possible eigen-
values E �an infinite set of complex numbers, see, e.g., Ref.
40, are references therein� only the ones which correspond to
resonances are of interest here. A complex eigenvalue E de-
scribes a resonance of energy Eres and width �,

E = Eres − ı
�

2
=

1

2�
ks

2 + Vs
th, �16�

if Im ks�0 and −Im ks�Re ks when Eres�Vs
th and Im ks�

−Re ks�0 when Eres�Vs
th. The eigenvalue should be stable

against an increase of the distance r�.
In the procedure adopted here, the resonance eigenvalues

are determined as roots of the equation37

det�L�rm;E� − L�rm;E�� = 0, �17�

where L�r ;E� and L�r ;E� denote the log-derivative matrices
of solutions of Eq. �10�, which at any E satisfy only one
boundary condition, Eqs. �11� and �12�, respectively. The
values of L and L at r=rm, where 0�rm�r�, are obtained
by integrating the Riccati equation,

d

dr
L + L2 + W = 0 with W�r;E� � 2��EI − V�r�� ,

�18�

in the intervals �0,rm� and �r� ,rm�, respectively,

�L�0;E��−1 = 0, �19�

L�r�;E� = LO+�r�;E� . �20�

The integration is done with the help of the log-derivative
method.41,42 Some caution is required in choosing an appro-
priate form of the asymptotic boundary condition �Eq. �20��
especially when the value r� cannot be enlarged freely for
some reason.

For the planned discussion of the accuracy of models
and methods, it is desirable to have a set of reference results
for the predissociating states generated from each of the con-
sidered models which are free of any impact of the uncertain,
extrapolated parts of the potentials. Hence, a need arises to
achieve a reasonable stability of the resonance eigenvalues at
relatively small distances r�, possibly not larger than 9
−9.5a0. Several ways of evaluations of the matrices
LO+�r� ;E� can be tried.38 Tests described in the supplemen-
tary material43 �Table AI� reveal that it is most suitable to
resort to the WKB form of LO+,

LO+
WKB�r�;E� = ık��r,E� −

1

2

d

dr
�ln k��r,E��r=r�

, �21�

with

k��r,E� � �W��r;E� and W��r;E� � k2�E� −
2�

r
I ,

�22�

and to account for small differences that exist between the
values of the potentials and their asymptotic counterparts at
the boundary r� by means of the following simple modifica-
tion of the local wavenumbers:

k��r,E� → k�r,E� � �diag W�r;E� . �23�

The branch of the square root function is chosen to assure
that Im ks�r� ,E� be negative �positive� when r��rs

trn �r�

�rs
trn�, where rs

trn are the turning points Re�W��rs
trn ;E��s,s

=0, for s=1, . . . ,4. Obviously, no similar restrictions on r�

can be imposed when determining the eigenvalues which
describe tunneling resonances �the use of the extrapolated
parts of the potentials is unavoidable in these cases�. Exact
values of LO+ can thus be inserted into the asymptotic
boundary condition �see Table AII in Ref. 43�.

The nonlinear equation �Eq. �17�� is solved with the help
of the procedure NEWT of Ref. 44. Typically large �even
huge� disproportion between the real and imaginary parts of
the roots �Eres and �� is an unfavorable circumstance for the
procedure to work as a globally convergent one. Therefore a
sufficiently good initial guess for the root sought is needed.
Actually, having a good guess is much more essential for the
resonance energy than for the width. Very good estimates of
resonance positions deeply inside the potential wells are ob-
tainable easily by solving a real-energy eigenvalue problem
for Hamiltonian �1� with the boundary conditions ��0;E�
=0 and ��r̄ ;E�=0 and with the outer boundary r̄ placed
close to the potential barrier maximum.

B. Perturbative quantum-mechanical methods

The standard resonance theories—the bound-
continuum configuration-mixing (CM) approach to pre-
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dissociation and ionization26–29 and the Feshbach45 operator-
partitioning theory—can obviously be applied to the problem
of SO predissociation in CO2+. Thus, devising an efficient
scheme which would exploit the smallness of the SO cou-
plings is mostly a matter of adopting an appropriate parti-
tioning of the configuration space available to the system at
energies in the vicinity of predissociating levels into sub-
spaces of bound and continuum configurations, called
traditionally45,46 the Q and the P subspace, respectively. A
well-chosen Q subspace should support reasonable zero-
order approximations to the predissociating states.

At each energy in the range of interest here, VX
min�E

�VX
min+30 000 cm−1 �cf. Fig. 1�a��, there are four open scat-

tering channels allowed by Hamiltonian �1�. Consequently,
there are four outgoing scattering states,

�EI − H�r����+ �s�r;E� = 0 for s = 1, . . . ,4, �24�

which take asymptotically the form

���+ �s�r;E��s� →
r→�

	s�,sOs
+��r;E� − Os�

+ �r;E�Ss�,s�E� �25�

for s�=1, . . . ,4, with the Coulomb functions Os
+ as defined in

Eq. �15�; the factor C=�� /2� is inserted to
assure the energy normalization of the states:

	���+�s�E����+�s̄�Ē�
=	s,s̄	�E− Ē�. Obviously, not all the
open scattering channels are practically available for the de-
cay of the vibrational states which are formed behind the
barriers of the potentials included in H. Because of the size
of the barriers, the asymptotic regions of the potentials Va

and Vb are almost completely unaccessible for the decay of
nearly all the states. Similarly, the X state continuum can be
treated as a closed channel when describing the predissocia-
tion in the energy range well below the barrier top of VX.
Thus, in most cases of interest it is evident to which sub-
space, P or Q, each of the four-channel Hamiltonians Hs,s

should be assigned. Moreover, the channels in the Q sub-
space can be made strictly closed by means of the following
modification:

Vs�r� → Us�r�

� �Vs�r� for r � Rs

Vs�Rs� � Vs
m for r � Rs

� and s � Q ,

�26�

where Rs denotes the position of the barrier top of s-state
potential. Summarizing, the partitioning P+Q= �3�−�
+ �X ,a ,b� is adopted in the treatment of the vibronic states
X 3��v=0–12�, a 1�+�v=0–6�, and b 1��v=0–6�. For the
treatment of a 1�+�v� and b 1��v� states having energies
above VX�RX�, the X-channel is shifted to the P subspace.
Since there is no a-b coupling, one-channel subspaces Q1

= �a� and Q1= �b�, respectively, are used. Further simplifica-
tion is made by neglecting the X− 3�− coupling in the P
subspace.

Different choices of P and Q subspaces are obviously
required for adequate perturbative treatment of states
A 3�+�v� within the JP04A model. For v�4 states, the par-
titioning Q+ P= �A ,b�+ �3�− ,X� is appropriate. For higher

states, the b-channel becomes open and should be placed in
the P subspace. Again, all couplings within the P subspace
are neglected.

Having fixed an appropriate partitioned counterpart of
Eq. �24�,

�EIP − HPP − HPQ

− HQP EIQ − H̃QQ
���P

�+ �s

�Q
�+ �s

� = 0 �27�

for s=1, . . . ,NP, where NP denotes the dimension of the P
subspace and tilde indicates the block of H affected by the
modification �26�, one derives the respective effective
Hamiltonian in the Q subspace,45,46

HQ�E� = H̃QQ + HQP lim�→0+��E + ı��IP − HPP�−1HPQ,

�28�

from which the information on energies and widths of the
predissociating states can be extracted. Generally, a search
for poles of GQ�E���EIQ−HQ�E��−1 in the lower half of
complex energy plane is needed.47 The smallness of the HQP

couplings permits exploitation of the simplest, Golden rule,
version of the search procedure. It consists in �i� determining

bound state energies and functions of H̃QQ,

�Ei
�0�IQ − H̃QQ��i = 0, �29�

and �ii� evaluating the matrix elements 	�i�HQ�E���i

�Hi,i

eff�E�, which give

Ei  Re Hi,i
eff�Ei

�0�� = Ei
�0� + Ei

shf �30�

and

�i  − 2 Im Hi,i
eff�Ei

�0�� .

Step �ii� of the procedure is actually based on the additional
assumption that the resonances are isolated. The majority of
vibronic levels of CO2+ resulting from both the JCP06 and
the JP04 model are indeed well separated from each other. A
few coincidences are, however, seen in Fig. 1�a� and a case
of even stronger near-degeneracy occurs in the JP04 model.
To these cases, slightly extended version of the search pro-
cedure was applied �see Table AV in Ref. 43�.

The two-potential (TP) approach of Gurvitz48 is ex-
ploited in the part of perturbative one-channel calculations
whose aim is a quantitative description of the small tunneling
through the barriers of the potentials Vs for s=X ,a ,b. Fol-
lowing this approach, the respective Hamiltonian Hs,s�r�, de-
noted here by H=K+V, is split into zero-order part and a

perturbation, H=H�0�+W, by choosing W=V−U�W̃−Vm

with U and Vm defined in Eq. �26�. Thus, W�r�=0 for r�R

and W̃�r� is identical with the full potential V�r� on the outer
side of its barrier �r�R�. If Ev

�0� is a discrete eigenvalue of
H�0� and �v is the corresponding eigenfunction, then the en-
ergy shift Ev−Ev

�0�=Ev
shf to a nearby metastable state of H

and the width of the state are obtained from the following
formula:
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Ev
shf − ı 1

2�v  	�v�W�v
 + 	�v�WG
W̃

�+��Ev
�0��W�v
 , �31�

where G
W̃

�+�
�E���E+ ı0+−K−W̃�−1. The adequacy of this for-

mula relies on the smallness of overlapping in the outer re-
gion between the function �v�r� and functions representing

continuum states of K+W̃ at energies near Ev
�0�, especially

when Ev
�0��Vm.

In the numerical implementation of both the CM and TP
approaches, use is made of the generalized log-derivative
method for the evaluation of second-order transition
amplitudes49 �see Ref. 50 for previous applications of the
method�.

C. Semiclassical methods

Whereas the above quantum-mechanical methods are
chosen for their expected ability to give accurate results for
all the metastable states of the CO2+ ion within the consid-
ered models, use of semiclassical �SC� methods is made to
assist discussion of the results. Strictly, the well-known ana-
lytical expressions of the SC theory of predissociation by
curve crossing,51 for widths and shifts52 of energy levels in a
well of potential V1 due to weak coupling V12 with a repul-
sive potential V2, are applied here to seven pairs of crossing
potentials: Vs−V3�− for s=X ,a ,b ,A, VA−VX, Va−VX, and
VA−Vb. The two latter crossings are describable by these
expressions when the barriers in the potentials VX and Vb can
be neglected, i.e., in cases of the states a 1�+v�7 and
A 1�+v�5, respectively. Generally, the expressions involve
a number of phase integrals with the wavenumber functions
ki�r ,E�= ��2� /�2��E−Vi�r��1/2� for i=1,2 over intervals
which are determined by the classical turning points r1 and
r2��r1� in the potential V1, the turning point r3 in the poten-
tial V2, k2�r3 ,E�=0, and the crossing point rc, V1�rc�
=V2�rc�. For concreteness in the discussion, the essential fac-
tors of the expression for the width should be listed here,

�v = �Tv
−1pv

LZPv � �v
0Pv. �32�

These are �i� the vibrational period Tv= �2��d /dE�
�E=Ev
BS be-

ing related to the phase integral 
�E�=�r1

r2k1�r ,E�dr at energy
satisfying the Bohr–Sommerfeld quantization condition,

�Ev

BS�=��v+ 1
2

�, �ii� the Landau–Zener curve-crossing tran-
sition parameter pv

LZ=2�V12
2 �rc��uv�rc��F�rc� with uv�rc�

= �

� �ki�rc ,Ev
BS�� and �F= d

drV1− d
drV2, and �iii� the factor Pv

= P���Ev
BS�� involving the Airy function, P���=4�����Ai2

�−��. The quantity � is negative at energies below Vi�rc�,
where it is defined as ��E�=−� 3

2���E��2/3 with ���E�
=�r2

rc�k1�r ,E��dr+�rc

r3�k2�r ,E��dr if r2�rc�r3 �the outer
crossing�.

The formulas of the SC theory of shape resonances53,54

are also exploited in the present study. The primary goal is to
provide a reference for an assessment of usefulness of the TP
approach.

IV. RESULTS AND DISCUSSION

Results of calculations performed in this work are pre-
sented in Figs. 1�b� and 3–8 and in Tables I–VIII of this

paper and in Figs. A2–A10 and Tables AIII–AXIII of the
supplementary material.43 This material permits a discussion
of the following subjects:

�1� overall picture of metastable vibronic states of the
CO2+ ion emerging from the �purely vibronic� model of
dynamics in which the vibrational motion of the nuclei
is governed by four �of five� lowest electronic energy
potentials coupled by �off-diagonal� SO interactions,

�2� sensitivity of lifetimes of the states to features �accu-
racy� of the electronic structure input to the model,

�3� comparison of the best available potentials and
couplings9,23,24 with respect to their ability to reproduce
the existing experimental data9,11–14 for lifetimes of vi-
bronic states of the 13C16O2+ and 12C16O2+ ions,

�4� impact of rotational motion of nuclei on lifetimes of the
ion, and

�5� efficient determination in quantum-mechanical calcula-
tions of long and ultra-long lifetimes.

A. Vibronic states

1. Qualitative description

As shown in Fig. 1�b�, there are 12+24+23 vibrational
states of the CO2+ ion bound by the X 3�, a 1�+, and b 1�
potentials, respectively, which are characterized by lifetimes
longer than 1 ps. The corresponding JP04 potentials give one
state less of the same property �12+23+23�. The potential

FIG. 3. �Color online� Comparison of energies and lifetimes of vibronic
states of CO2+ from the JCP06 and JP04 models �blue dashed lines�. The
vertical lines mark energies at crossings of the JCP06 and JP04 potentials of
the state listed in the legend with the respective �JCP06 and JP04� potentials
of the 3�− state. The lowest vibrational level shown in the bottom panel is
v=1. The peak of the dashed curve in the middle panel is a manifestation of
accidental degeneracy between the a 1�+�v=2� and X 3��v=4� states in the
JP04 model �see Table AV in Ref. 43�.
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A 3�+ has 16 vibrational states that live longer than 1 ps, five
of which lie at energies below the top of the b 1� state
potential barrier. The variation in energy of the lifetimes of
vibrational levels of the X 3��v�, a 1�+�v�, and b 1��v�
states exhibits features which are typical of the two decay
mechanisms involved. The short lifetimes of the two levels
closest to the barrier tops of the bounding potentials are cer-
tainly caused by the tunneling mechanism. The other parts of
the curves drawn in the figure are determined by the SO
couplings and the potential crossings, mostly by the outer �c+

type55� crossings with the repulsive 3�− potential. There are
parts of rapid increase of lifetimes of levels which depart
from the crossing points toward lower energies and charac-
teristic oscillatory parts above these points. The smoother
shape of the curve a 1�+ �of its vertical fragment� testifies on
involvement of another type of crossing, which is the one
between the a 1�+ and X 3� potentials �a ci crossing55�. The
feature of nonuniformness seen in the lower part of this
curve, at v=3, should be attributed to the change of the path-
way of transition to the repulsive state, from indirect �via the

TABLE I. Energies and widths �all in cm−1� of X 3��v� states of CO2+ from the JCP06 model. Comparison of
four-channel SQ results with results obtained within the perturbative CM approach. Entries in lower lines
concern 13C16O2+.

v E a � Eshf b 	Eshf c 	� d

0 732.20e 1.48�−24� −0.022 0.0 −0.9
716.0 3.23�−25�

1 2 168.28 1.10�−11� −0.033 0.0 −1.0
2 123.5 2.54�−12�

2 3 548.53 7.70�−6� −0.046 0.0 −0.2
3 4 883.30 4.97�−3� −0.082 0.0 −0.1
4 6 167.37 1.88�−1� −0.168 0.0 −0.0
5 7 399.92 5.43�−1� 0.061 0.0 0.0
6 8 578.88 2.00�−2� 0.012 −0.1 0.0
7 9 702.94 1.43�−1� 0.125 −0.0 −0.1
8 10 769.09 2.33�−1� 0.052 0.5 0.0
9 11 774.63 1.29�−1� 0.004 −1.1 0.0
10 12 713.96 2.51�−2� 0.022 0.9 −0.0
11 13 577.11 1.61�−2� f

12 14 335.42 5.31 f

aZero of energy is at VX
min.

bEvaluated within the CM approach.
cDefined as �Eshf / �E−E�0��−1��100%, where E�0� denotes energy of related bound state in the Q subspace.
dDefined as ��CM /�−1��100%.
eThe level lies �presumably� 41.229 eV above the energy of the X 1�+�v=0 J=0� state of CO. The value listed
in Table I of Ref. 24 contains evidently a typographical error.
fThe state decays by tunneling. Present choice of P and Q subspaces is inadequate. See Tables VIII and
AXII–AXIII for results of a perturbative treatment of tunneling.

TABLE II. Energies and widths �all in cm−1� of a 1�+�v� and b 1��v� states of CO2+ from the JCP06 model. Comparison of the SQ results with results
obtained within the perturbative CM approach.

a 1�+ b 1�

v E a � Eshf b 	Eshf c 	� d E a � Eshf b 	Eshf c 	� d

0 2101.82 1.85�−13� −0.008 0.0 −1.2 5030.78 1.04�−6� −0.024 0.0 0.1
e 2077.9 1.50�−13� 5014.1 7.27�−7�
1 4044.63 5.06�−8� −0.012 0.0 −0.0 6511.49 6.84�−4� −0.037 0.0 0.1
2 5942.05 1.39�−5� −0.015 0.0 −0.0 7959.13 3.92�−2� −0.076 −0.0 −0.0
3 7796.46 9.40�−5� −0.021 0.1 −0.1 9373.76 2.69�−1� −0.051 −0.0 0.0
4 9606.04 1.28�−2� −0.039 0.1 0.2 10755.37 6.99�−2� 0.076 −0.4 −0.0
5 11369.41 1.24�−1� −0.056 0.1 −0.0 12103.61 1.63�−1� 0.005 −0.4 0.0
6 13084.68 1.58�−1� 0.050 −0.0 0.0 13418.66 1.62�−2� 0.002 −1.8 0.3
7 14749.49 7.22�−2� 0.046 0.3 2.6 14700.42 2.56�−2� 0.757 −0.1 −4.0
8 16362.12 2.44�−1� 0.129 −0.3 −0.1 15948.70 9.30�−2� 0.737 −0.1 −2.9
9 17919.75 2.91�−1� 0.090 −0.1 −0.2 17163.37 9.82�−2� 0.693 −0.0 −2.8
10 19419.74 2.32�−1� 0.064 0.1 0.0 18344.32 5.76�−2� 0.662 0.0 −2.7

aZero of energy is at VX
min.

bEvaluated within the CM approach.
cDefined as �Eshf / �E−E�0��−1��100%, where E�0� denotes energy of related bound state in the Q subspace.
dDefined as ��CM /�−1��100%.
eFor 13C16O2+.
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X state� to direct. In the variation in lifetimes of the seven
lowest A 3�+�v� levels shown in the figure, two similar cases
of sudden drop occur at energies just above the A 3�+− 3�−

potential crossing and above the b 1� potential barrier, re-
spectively. The latter case signifies undoubtedly the opening
of the b state as a channel of predissociation. The former
stems from an interplay between predissociation to the 3�−

and to the X 3� state. It will be demonstrated in Sec. IV C
that lifetimes of the A 3�+�v�2� states are determined by
two c−-type crossings: A 3�+−X 3� and A 3�+−b 1�.

The lifetimes of states X 3��v�, a 1�+�v�, and b 1��v�
that result from the JP04 model are shown separately in Fig.
3. Their energy variation is compared to the behavior of the
respective lifetimes from the JCP06 model. The most strik-
ing difference exhibited is the much slower increase of the
JP04 lifetimes when energy decreases below the crossing
points with the repulsive potential. In cases of the two lowest
energy levels shown, a 1�+�v=0� and X 3��v=1�, the dis-
crepancies between the JCP06 �solid curves� and JP04
�dashed curves� lifetimes exceed four orders of magnitude. A

TABLE III. Energies and widths �all in cm−1� of lowest vibrational states of CO2+�A 3�+� from the JP04A model. The SQ results, E and �, are compared with
results obtained within the perturbative CM approach. In the last two columns, the CM results are compared to SC results obtained as sums of contributions
of two A− s̃ curve crossings with s̃=X , 3�− for v=0–4, and of the third crossing with s̃=b for v�5.

�v→s̃
CM /�CM�100% SC vs CM

v E a Eshf 	Eshf b � 	� c s̃= 3�− s̃=X s̃=b 	Eshf d 	� d

0 21 320.56 0.085 0.0 3.36�−4� −0.7 46 54 −1.8 5.2e

1 23 324.53 0.086 0.0 3.16�−3� −1.5 71 29 −2.8 −4.1
2 25 275.56 0.090 0.0 4.59�−3� −0.7 39 61 −3.5 4.1
3 27 169.47 0.091 −0.0 6.79�−3� −0.1 7 93 −3.3 0.5
4 28 999.49 0.094 0.1 1.14�−2� −0.9 4 96 −3.9 1.6
5 30 757.66 0.175 −0.4 1.34�−1� −1.9 1 13 86 −1.4 0.4
6 32 438.58 0.166 −0.3 1.57�−1� −1.8 0 16 84 −1.2 1.1

aBecause of accuracy of the input potentials, the energies can be physically meaningful only up to �0.1 cm−1. The way of listing the numbers here is adjusted
to the purpose of demonstrating the numerical consistency which is achieved in evaluation of the energy shifts with the SQ and CM methods.
b�Eshf / �E−E�0��−1��100%, where E�0� denotes energy of related bound state in the Q subspace.
c��CM /�−1��100%.
d�XSC /XCM−1��100% for X=Eshf ,�.
eThere are some contributions to the widths �v�4, stemming from interference between the direct �A→ 3�− and A→X� and indirect �A→b→ 3�→ and A
→b→X� pathways of decay, which are not accounted for by the SC results �see Table AVII and Figs. A4 and A5 for a more detailed comparison of SC and
CM results�.

TABLE IV. Predissociation of vibrational states of CO2+�s� for s=X 3�, b 1�, and a 1�+ in the two-crossing-curve description �s curve+ 3�−�. Comparison
of SC results for level shifts and widths with results of two-channel SQ calculations �see Table AVI for a comparison of two- and four-channel SQ results�.
Comparison of different factors of SC expression for the width evaluated using the JCP06 and JP04 models.

JCP06 JP04 xJP04 /xJCP06

v Eshf a
	̄Eshf b � a

	̄� c �0 d � e Eshf a
	̄Eshf b � a

	̄� c x=�0�pLZ� x=�

X3�

0 −2.32�−2� −0.1 1.47�−24� −3.6 7.63�−2� −11.54 −2.64�−2� −0.2 5.56�−14� 15.5f 1.06�1.09� 0.66
1 −3.20�−2� −0.3 1.24�−11� 10.6f 8.55�−2� −6.61 −3.77�−2� −0.6 2.72�−7� −3.5 1.08�1.11� 0.68
2 −4.70�−2� −0.9 7.78�−6� −2.0 1.01�−1� −3.69 −5.91�−2� −2.4 4.97�−4� −1.5 1.13�1.17� 0.69
3 −8.00�−2� −4.9 5.05�−3� −1.1 1.34�−1� −1.80 −1.24�−1� −2.2 4.88�−2� −1.0 1.33�1.39� 0.50
4 g 1.92�−1� −0.6 3.66�−1� −0.21 −1.20�−1� 0.3 4.74�−1� −0.2 0.60�0.62� −2.54
5 6.20�−2� −1.7 5.57�−1� 0.1 1.46�−1� 1.20 1.63�−1� 0.2 1.79�−1� 0.9 0.76�0.80� 1.56

b1�

0 −2.28�−2� −0.7 9.07�−7� −7.1 4.62�−2� −4.04 −2.60�−2� −1.1 1.67�−5� −6.7 1.07�1.09� 0.82
1 −3.51�−2� −3.1 6.42�−4� −2.6 5.87�−2� −2.24 −4.35�−2� −5.4 4.08�−3� −2.4 1.14�1.17� 0.72
2 −7.64�−2� 4.1 3.76�−2� −1.2 1.00�−1� −0.70 g 1.03�−1� −1.0 2.12�2.17� 0.21
3 −4.98�−2� 1.1 2.61�−1� −0.1 9.77�−2� 0.68 2.53�−2� −2.6 2.74�−1� 0.3 0.74�0.75� 1.74

aGiven in cm−1.
b	̄Eshf= �Eshf / �E�2�−E�0��−1��100%, where E�2� denotes the result of two-channel SQ calculations and E�0� is the energy of the related bound state in the
potential Us �cf. Eq. �26��.
c	̄�= �� /��2�−1��100%.
dThe factor of � defined in Eq. �32�, �0=� /T� pLZ.
eThe argument of the factor P���=� /�0 defined in Eq. �32�. For ��−1, P���exp�− 4

3 ���3/2�.
fThis relatively large deviation may be connected with the fact that the classical turning point r3 �cf. Eq. �32��, occurs in a very flat part of the curve V3�−�r�
�see Fig. 1�a��.
gThe level lies too close to the crossing point �see Fig. 4�. The SC formula for Eshf becomes inadequate �see Fig. A5 for an exposition of this problem in the
case of the inner crossing A−X�.
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case of accidental degeneracy appears between the a 1�+�v
=2� and X 3��v=4� levels �the sudden decrease of lifetime
of the former level�.

In Fig. 4, the lifetimes due to coexisting SO predissocia-
tion and tunneling are compared with “pure” tunneling life-
times. As expected, the tunneling lifetimes of low v levels
attain huge values. For v�2 levels, they exceed the predis-
sociation lifetimes by about 40 orders of magnitude �in the
least extreme case of the X state levels�. Obviously, it is not
the absolute values of these tunneling lifetimes but how sen-
sitive they are to the differences existing between the JCP06
and JP04 potentials that are noteworthy. As seen in Fig. 1�a�,
the wells in the JP04 potentials are slightly shallower but
their barriers are evidently lower and thinner. Though the
former feature can cause some increase of lifetimes, it is the
opposite effect of the latter which is overwhelming. The life-
times of the X state levels from the JP04 potential are from
two to six orders of magnitude smaller than the lifetimes
from the JCP06 potential.

The two curves labeled with �X ,a ,b� in Fig. 5 describe
lifetimes of a 1�+�v=0–6� and b 1��v=0–6� states due to
SO mixing with levels formed within the X potential well
and subsequent tunneling through the X potential barrier.
Such a pathway of decay of these states is by far more prob-
able than tunneling through the barriers of their own poten-

tials. Still, the corresponding lifetimes are 5–40 orders of
magnitude larger than the actual lifetimes due to transition to
the repulsive 3�− state. This provides a justification of the
approximation of the closing of the channels in the subspace
Q= �X ,a ,b� mentioned in Sec. III B.

2. Quantitative description

Approximately half of the results shown in Fig. 1�b� are
presented in numerical form in Tables I–III 0. Apart from
energies and widths of the vibronic states obtained in the
formally exact SQ calculations, results of the perturbative
�CM� calculations are enclosed. Very good consistency of the
SQ and CM results is demonstrated. In the majority of cases,
relative deviations of the widths do not exceed 1%. Even
smaller are the deviations between the SQ and CM values of
the shifts of the energy levels from their zero-order positions
in the chosen Q subspaces. Adequacy of these choices is
thereby confirmed. The choice of the Q subspace is particu-
larly important in the cases of the states a 1�+�v�2�, which
predissociate via mixing with the X 3��v� states. Namely,
due to inclusion of both the X and the a channel into the Q
subspace, the mixing is accounted for exactly. Therefore, the
consistency of the perturbative and nonperturbative widths of
the states demonstrated in Table II is so much better than that

TABLE V. Lifetimes � �in �s� of lowest vibronic states of CO2+ calculated from the JCP06, JP04, and JP04A models. Comparison with experimental data and
with result calculated from potentials and couplings of Ref. 9 �denoted here as PRL93�. Data in lines marked with an asterisk concern 13C16O2+.

JCP06 JP04 log10 �calc /�expt

Electronic state v Expt. Calc. Ref. 24 This work This work PRL93 JCP06 JP04

X 3� 0 �10 a 7.2�103 b �10 3.6�1018 1.1�108

� �3.8�106 c 2�104 c 1.6�1019 3.0�108 �−2� d �12� �2�
1 �10 a 0.17b �10 4.8�105 2.0�101

� 800�200c,e 0.3c 2.1�106 3.7�101 −3.4 3.4 −1.3
2 0.2�0.1 a 2.9�10−4 b 0.61 6.9�10−1 1.1�10−2 −2.8 0.5 −1.3

0.32�0.22 b

3–10 �0.05 f �1.2�10−3 �1.1�10−3 �2.0�10−4

a 1�+ 0 �10 a 0.78b �10 2.9�107 5.1�102

� 6000�2000c,e 2.0c 3.5�107 1.1�103 −3.5 3.8 −0.7
1 0.67�0.05b,g 8.8�10−4 b 0.67h 1.0�102 2.1 −2.9 2.2 0.5

0.7−0.1
+0.2 a

0.6�0.1f,g

2 �0.05f 0.028h 3.8�10−1 2.6�10−5 i �+1� d �−3�
b 1� 0 0.026�0.005 b 3�10−3 j 8.3 5.1 2.8�10−1 2.3 1.0

0.2−0.2
+0.15 a

1–10 �0.05 f �2.2�10−4 �7.8�10−3 �1.8�10−3 �−1� �−1�
A 3�+ 0–2 �0.05 f �2.8�10−1 j �7.1�10−2 k �1.6�10−2 �+0� �−0�

aReference 13.
bReference 14.
cReference 9.
dThe numbers in brackets �braces� show differences in orders of magnitude between the calculated values and the experimental lower �upper� bounds.
eAs assigned in Ref. 13.
fReference 11.
gAs assigned in Ref. 12.
hThe meaning of this number is uncertain; it seems to pertain to a significantly altered model, undocumented in Ref. 24 �see Table AVIII in the subsidiary
material for a comparison of all results calculated in Ref. 24 with the present results from the JCP06 model, also from the “original JCP06” version�.
iExceptionally small since affected by accidental degeneracy with the X�v=4� state �see Fig. 3�.
jDetermined in Ref. 21 from potentials generated in that work using the semiempirical value of 59 cm−1 for the SO coupling and the value of 1 cm−1 for the
coupling.
kObtained in Ref. 25 with the complex-scaling method �see Table AVIII�.
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achieved in the previous calculations9,14 on the ion. As
shown in Table II of Ref. 14, the lifetimes of the states
a 1�+�v=0� and �v=1� �of 13C16O2+� obtained in calcula-
tions that treated as perturbations both the a−X mixing and
the X− 3�− coupling deviate from the nonperturbative results
of Ref. 9 by 59% and 40%, respectively. The additional ap-
proximation of the present implementation of the CM ap-
proach, which is the neglect of couplings in the P subspaces,
deteriorates slightly the consistency of the CM and SQ re-
sults for v levels lying above the lowest barrier, especially
for the levels bound to the state b 1�. The deviations of the
widths of these levels are of the size of several percent �3%
in most cases�. As a whole, the contents of Tables I–III are
believed to provide a convincing demonstration that good
numerical accuracy has been achieved in the present calcu-
lations with the chosen quantum-mechanical methods.

B. Perturbative analysis of predissociation

Apart from confirming numerical reliability of the SQ
results for very small widths, ��10−8 cm−1 �see Sec. IV E�,
the perturbative calculations of this work have provided
quite a detailed insight into dynamics of predissociation of
the CO2+ ion. First of all, the CM formulas �30� allow for
explicit resolutions of the level shifts and widths into parts

which describe three distinct paths of bound-continuum mix-
ing, labeled “direct,” “indirect,” and “interference” �see Eqs.
�A1�–�A3� in Ref. 43�. Such resolutions have been made for
about 25 lowest sv states. The main fact revealed is �see Fig.
A2� that the predissociation dynamics of the ion is actually
very simple. The states b 1��v=0–6� decay almost entirely
along the direct pathway; the relations 92���dir� /�
�99.5% and ��indir� /��0.2% are found. The decay of the
states X 3��v=0–10� is not much different. For most of
them, ��dir� /�103% and ��interf� /�−3%. Only the
three lowest a 1�+ state levels, v=0–2, appear to predisso-
ciate indirectly.

Because of the dominant role of the direct predissocia-
tion pathway, it is natural to expect that the widths �sv→s̃ of
the majority of sv states of the ion can be reasonably accu-
rately determined in two-channel calculations, including only
the channels s and s̃. This expectation is essentially con-
firmed �in Table AVI� by a comparison of results of two- and
four-channel SQ calculations for several sv states in the en-
ergy range below the barrier top of VX. In most cases, the
deviations ���2� /��4�−1��100% are well below 10%. Ex-
ceptions are obviously the cases a�v=0–2� and cases of
strong perturbations �especially in the JP04 model�.

Most of the results of two-channel quantum-mechanical
calculations appear well reproducible in a semi-analytical

TABLE VI. Positions �E� and widths ���, both in cm−1, of selected rotation-vibration energy levels of CO2+�X 3�� from the JP04r-v model �a larger set of
results from the model is presented in Tables AX and AXI using analytical representations of J dependencies of energies and widths�. Data in lines marked
with asterisk concern 13C16O2+. Underlined are the numbers to be used in comparison with the existing experimental data for lifetimes �cf. Fig. 8 and Table
V�.

E�3��pJv� ��3��pJv�

�=2 �=1 �=0 �=2 �=1 �=0

v J p=e a e a e e− f e e / f e e / f e f

0 0 780.5 −0.5 2.91�−13� 7.00�−56�b

1 719.0 784.0 −0.3 4.95�−14� 1.006 1.51�−13� 3.62�−16�
* 1 703.1 768.1 −0.3 1.86�−14� 1.006 5.91�−14� 1.30�−16�

2 655.5 725.2 790.6 −0.3 5.85�−17� 1.009 5.28�−14� 1.019 1.59�−13� 1.14�−15�
6 709.3 781.4 849.6 −0.2 9.68�−16� 1.061 9.31�−14� 1.133 2.60�−12� 1.26�−14�

* 6 691.2 762.8 830.7 −0.2 3.24�−16� c 1.058 3.49�−14� 1.125 1.02�−13� 4.57�−15�
* 7 711.3 783.6 852.5 −0.2 5.31�−16� c 1.076 4.32�−14� 1.166 1.23�−13� 7.25�−15�
1 0 2161.2 −8.5d 6.15�−7� 8.64�−48�b

1 2107.5 2168.4 −4.5 2.79�−7� 1.003 3.36�−7� 8.54�−10�
* 1 2062.0 2124.2 −3.1 1.50�−7� 1.003 1.93�−7� 4.27�−10�

2 2044.0 2113.6 2174.9 −4.4 7.73�−10� 1.004 2.82�−7� 1.010 3.41�−7� 2.57�−9�
6 2096.9 2168.7 2233.4 −3.8 8.23�−9� 1.024 3.13�−7� 1.070 3.89�−7� 1.89�−8�

* 6 2049.2 2120.5 2185.9 −2.7 4.05��9� e 1.023 1.69�−7� 1.066 2.20�−7� 9.52�−9�
* 7 2068.9 2141.0 2207.5 −2.6 5.61��9� e 1.030 1.76�−7� 1.087 2.30�−7� 1.30�−8�
2 0 3504.0 −0.1 1.18�−3� 1.29�−40�b

1 3442.0 3507.3 0.0 4.97�−4� 1.003 5.90�−4� 1.28�−6�
2 3378.5 3448.0 3513.6 0.0 1.53�−6� 1.003 4.99�−4� 1.008 5.94�−4� 3.83�−6�
6 3430.4 3502.0 3570.2 0.0 1.54��5�f 1.018 5.20�−4� 1.059 6.28�−4� 2.66�−5�
7 3450.5 3523.0 3592.2 0.0 2.08��5�f 1.023 5.28�−4� 1.078 6.42�−4� 3.54�−5�

aEnergies of the corresponding f parity states are higher at most by 0.1 cm−1 �for the J=6,7 cases�.
bThe f parity J=�=0 states cannot predissociate by the SO coupling with the 3�− state. The widths describe tunneling through the barrier of VX�r�
+1 /2�r2.
cBasing on these values, the lifetime of the ground vibronic state of 13C16O2+ can be predicted to be of the size of 3–4 h instead of �=5 min, predicted by
the JP04 model.
dThese relatively large differences arise because the levels X 3�0�Jv=1� of e parity are perturbed by the nearby levels a 1�+�Jv=0�.
eThe corresponding lifetimes, �=1311 and 946 �s, should be compared with the experimental value �expt=800�200 �s.
fThe corresponding lifetimes, 0.34 and 0.26 �s, are to compare with �expt=0.32�0.22 or 0.2�0.1 �s.
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way by evaluations of the SC formulas for level shifts and
widths due to curve crossing. Thus, advantages can be taken
of the fact that the SC formulas explicitly show how the
predissociation characteristics are linked to the particular po-
tentials and couplings.

First of all, one can precisely describe the origin of the
widths of the lowest Xv states from the JCP06 model devi-
ating so much from their JP04 counterparts, by ten orders of

magnitude in the v=0 case. This is made in Table IV by
comparing separately the particular factors of the SC expres-
sion for the width, �v

0, pv
LZ, and ��Ev

BS� �cf. Eq. �32��. For
levels with ��−1, the factor Pv=�v /�v

0 acquires the mean-
ing of the probability of tunneling through the effective bar-
rier formed by the crossing potentials; it depends exponen-
tially on the phase integral −2���Ev

BS�. The large differences
in values of this integral �or �� obtained from the two mod-

TABLE VII. Energies and widths �both in cm−1� of selected rotation-vibration states of CO2+�A 3�+� from the
JP04r-v model.

E�FiNv� a ��FiNv� a

v N F1
b F1

c �F1� d F2 �F2� d F3
c �F3� d

0 0 21 320.5 2.95�−4� 2.40�−4�
1 21 324.3 2.85�−4� 1.97�−4� 3.43�−4� 3.47�−4� 3.91�−4� 3.91�−4�
2 21 331.9 2.82�−4� 1.69�−4� 3.44�−4� 3.61�−4� 2.50�−4� 3.16�−4�
3 21 343.3 2.80�−4� 1.49�−4� 3.44�−4� 3.83�−4� 2.59�−4� 3.86�−4�
4 21 358.5 2.79�−4� 1.38�−4� 3.46�−4� 4.11�−4� 2.63�−4� 4.56�−4�
5 21 377.5 2.78�−4� 1.34�−4� 3.47�−4� 4.47�−4� 2.64�−4� 5.31�−4�
6 21 400.2 2.78�−4� 1.38�−4� 3.48�−4� 4.89�−4� 2.69�−4� 6.11�−4�

1 0 23 324.5 2.48�−3� 2.19�−3�
1 23 328.2 2.34�−3� 1.88�−3� 3.21�−3� 3.23�−3� 1.97�−3� 1.97�−3�
2 23 335.7 2.28�−3� 1.69�−3� 3.21�−3� 3.30�−3� 1.77�−3� 2.11�−3�
3 23 347.0 2.25�−3� 1.56�−3� 3.21�−3� 3.41�−3� 1.91�−3� 2.57�−3�
4 23 361.9 2.22�−3� 1.49�−3� 3.21�−3� 3.55�−3� 1.97�−3� 2.97�−3�

a�F1N����p=1 fJ=N+1�, �F2N����p=1eJ=N�, and �F3N����p=0 fJ=N−1�.
bThe energies are nearly degenerate in the model. A small splitting arises only due to the different SO couplings
of the 3�1e, 3�1f, and 3�0f components with the lower electronic states. The separations E�F2�− �E�F1�
+E�F3�� /2 and E�F3�−E�F1� are of the order of 0.05 cm−1.
cThese widths may change if second-order SO and spin-spin interactions are included. Assuming that the
resulting splitting E�3�1�−E�3�0� is of the size of �6 cm−1, the widths are found to change at most by �35%.
dResults obtained after the inclusion into the JP04r-v model of the �artificial� L-uncoupling perturbations
specified in the text �Eq. �9��. The perturbations affect slightly the near degeneracy of Fi components; the
energy splitting E�F3�−E�F1� grows with N, assuming values close to 0.2 cm−1 for N=6.

TABLE VIII. Tunneling widths of selected vibrational states of CO2+�X 3�� from the JCP06 model. Comparison of results obtained for the widths and
energies of the states with various methods: SQ, perturbative �TP�, SC, and combined quantum-semiclassical �qTP, qSC�.

� a 	��x /y� b E a �E�x−y� c

v cm−1 TP/SQ qTPd/SQ qSCe/SQ SCf/SQ SQ-TP SQ-qTPg SQ-SCh

0 6.05�−62� −0.0000 −0.18 −0.10�−7.0� 0.05 733.31 −1�−7� i −1�−7� i −0.11
1 2.42�−53� 0.0000 −0.15 −0.03�−2.7� 0.07 2165.46 −2�−7� −2�−7� −0.08
2 1.09�−45� 0.0000 −0.27 −0.09�−1.7� −0.05 3549.42 1�−7� 1�−7� −0.03
3 8.48�−39� −0.0000 −0.28 −0.11�−1.3� −0.13 4884.09 4�−8� 4�−8� 0.02
7 4.34�−17� −0.0002 −0.83 −0.67�−1.2� −0.98 9703.47 −2�−6� i −2�−6� i 0.33
9 5.10�−9� 0.0012 −1.17 −1.15�−1.5� −1.56 11775.28 −3�−6� −5�−6� 0.49
10 1.41�−5� −0.0063 −1.35 −1.43�−1.7� −1.84 12714.64 −2�−6� −3�−4� 0.51
11 1.54�−2� −0.0397 −1.35 −1.67�−1.7� −1.98 13577.63 −1�−5� −3�−2� 0.40
12 5.30 0.5260 0.57 0.49�2.7� 0.59 14335.93 −4�−2� −1.06 −0.11

aResults of SQ calculations using one-channel Hamiltonian HXX of Eq. �1�.
bDefined as ��x /�y −1��100% with x and y denoting the method.
cEx−Ey in cm−1.
d�v

qTP is evaluated in the quasiclassical limit of the TP approach which is described in Gurvitz’s paper �Ref. 48�.
e�v

qSC��v
SC�Ev

SQ�, where Ev
SQ is the energy shown in the column “E”. The number in brackets is the width obtained by evaluation of the Gamow formula at

the energy Ev
SQ.

f�v
SC is evaluated according to Eqs. �4.5� and �4.6� of Ref. 53. Applied is also the correction of Ref. 54.

gEv
qTP=Ev

�0�, where Ev
�0� is the exact energy level in the potential U �cf. Eqs. �26� and �31��.

hEv
SC is obtained from the generalized Bohr–Sommerfeld quantization condition �Eq. �4.2� of Ref. 53�.

iThe differences Ev
TP−Ev

qTP, evaluated according to Eq. �31�, range from −5�10−30 for v=0 to −10−10 cm−1 for v=7 and are thus definitely smaller than the
errors of the energies Re Ev and Ev

�0� determined in double-precision calculations �Ref. 43�. Consequently, the deviations �E�SQ−y� for y-TP, qTP can be
informative only when �Ev

shf��10−8 cm−1, here, in the v�9 cases.
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els, especially for the states X�v=0−1�, are evidently caused
by the different falloffs of the respective potentials V3�−�r� in
the region right to the crossings with the bounding potentials;
the effective barriers are much wider in the JCP06 model
�see Fig. 1�a��. The differences in the factors �v

0 of the widths
shown in the 12th column of Table IV are too small to con-
tribute to the largest discrepancies �v

JP04 /�v
JCP06; they be-

come, however, significant for v levels near the crossing
points. These differences stem mostly from the fact that the
crossings Vs−V3�− occur in the JCP06 model at higher ener-
gies relative to the minima of the potentials Vs.

The presentation of the SC results in Table IV is con-
fined to the lowest sv states, up to the first ones above the
crossings s− 3�− for s=X 3�, and b 1�, and stresses sensi-
tivity of the widths to the medium-range behavior of the
repulsive potential. Figures 5 and 6 concern all the states
a 1�+�v� and b 1��v� that decay by predissociation and ex-
pose the presence of two open decay channels s̃= 3�− and
X 3� for states with v�6, lying above the crossings.

Figure 5 presents the level shifts yielded by the SC for-
mula of Ref. 52 together with results of the quantum-
mechanical CM calculations. Consistency of the two kinds of
results is comparable to that demonstrated in Table IV. It can
be thus deduced from the bottom panel of the figure that the
energy shifts Eav−Eav

�0��Q1= �a�� for v�6 are, to a very good
approximation, sums of two separate shifts caused by the
crossings of the a state potential with the potential V3�− and
VX, respectively. The shift due to the crossing Va−V3�− pre-
vails for levels with v�12. The growth with v of this shift
starting at v=12 resembles the variation in r of the coupling
a− 3�− �cf. Fig. 2�. As a matter of fact, the shifts of the levels
av�12 displayed in Fig. 5 are the main effect of this SO
coupling, the largest in the system. Dissimilarly to the a state
case, the crossing Vb−V3�− and the respective SO coupling

make only small contributions to the shifts Ebv−Ebv
�0��Q1

= �b��, as shown in the upper panel of the figure. These shifts
stem mostly from the b-X interaction. It is not only the
strength of this interaction �the second largest in the system�
that is important here. The configuration of the potentials
Vb�r� and VX�r� �nearly parallel in the short-range parts� is
also a favorable circumstance.

FIG. 4. �Color online� Comparison of lifetimes of vibronic states of CO+2

due to predissociation and tunneling. The four predissociation curves are
those described in Fig. 1. The two lowest horizontally oriented �dash-dotted�
curves represent results of three-channel calculations in the subspace
�X ,a ,b�; they give lifetimes of the a 1�+�v=0–6� and b 1��v=0–6� states
due to transition to the well and subsequent tunneling through the barrier of
the X 3� state potential. The other curves describe “pure” tunneling life-
times; they are results of one-channel calculations using the particular po-
tentials of the JCP06 and of the JP04 �larger blue symbols� models.

FIG. 5. �Color online� Energy shifts of b 1��v� and a 1�+ states of CO2+

due to the curve crossings Vb−V3�−, Va−V3�−, and Va−VX in the JCP06
model. CM�s− s̃�—results of the perturbative quantum-mechanical calcula-
tions with the subspaces Q1= �s� and P= �s̃�. SC�s− s̃�—results of evaluation
of the SC formulas given in Ref. 52 �see also Fig. A5 in Ref. 43�. The
dashed lines �without symbols� denote the exact shifts Esv−Esv

�0� between
energies obtained in the four-channel Siegert quantization calculations and
the corresponding bound state energies in the subspaces Q1= �s� for s=b and
s=a, respectively. Note that these shifts are diminished eight times in the
upper panel. The oscillations of the dashed line in the lower panel reflect the
a−X level mixing.

FIG. 6. �Color online� Widths of b 1��v� and a 1�+�v� states of CO2+ from
the JCP06 model. SQ—the “exact” four-channel Siegert quantization results
for the total widths �sv for s=b ,a. SQ�s− s̃� and CM�s− s̃�—results of two-
channel exact and perturbative quantum-mechanical calculations giving the
partial widths �sv→s̃. SC�s− s̃�—semiclassical results.
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Figure 6 provides the corresponding information on the
widths of the states a�v=0–23� and b�v=0–22�. Like the
energy shifts, the total widths of the a state levels with v
�6 are well approximated by sums of SC results for the
curve crossings Va−V3�− and Va−VX. Unlike the shifts Eav

shf,
however, the widths �av�6 are dominated by contributions of
the latter crossing. The probability of decay into the X chan-
nel, �av→X /�av, ranges from about 70% for v=6,14–16 to
nearly 100% for v=11,21. The relations between the partial
widths �av→3�− and �av→X and their distinct dependencies on
v number can be rationalized with the help of the analytical
representation �Eq. �32�� �see Ref. 43, Fig. A3, for some
comments on this matter�.

The upper panel of Fig. 6 displays that the SO coupling
between the crossing potentials Vb and V3�− produces much
larger widths than the coupling between the noncrossing po-
tentials Vb and VX. This is in contrast to the relative role of
these couplings in producing the shifts Ebv

shf seen in Fig. 5.
Figure 7 together with Figs. A4 and A5 summarize re-

sults of all calculations �SQ, CM, and SC� which have been
done for the states A 3�+�v=0–14� using the JP04A model.
The results of SC calculations of the widths are shown to
agree well with the quantum-mechanical results for all the
states. The agreement of the energy shifts is equally good in
the v�6 cases; relative deviations do not exceed �6% �see
the last two columns of Table III�. A difficulty arose in ap-
plying the SC formulas to energy shifts of higher states, with
v�8. Details are described in the comment to Fig. A5. Un-
doubtedly, all A 3�+�v� states predissociate almost entirely
along direct path. Both their predissociation characteristics
Ev

shf and �v are sums of contributions of two or three A− s̃
curve crossings, with s̃= 3�−, X 3�, and b 1�. The most im-
portant observation to make is the relatively small role of the
crossing with the repulsive curve. Even states v=0 and v
=1, the closest in energy to the A− 3�− crossing, decay only
in 50% and 70%, respectively, to the 3�− channel. The prob-
abilities of decay of these states into the X channel are big
despite the fact that the A−X crossing lies so much higher,
between levels E13 and E14. The reasons are the smallness of
the coupling A− 3�− see �Fig. 2� and the inner type of the
A−X crossing �slow increase of ���E�� with E decreasing
below the crossing, see Fig. A4�.

C. Comparison with experiment

As stated in Sec. I, the question of primary interest in the
present study is what progress in converging the theoretical
simulations to the measured lifetimes of the CO2+ ion has
become possible due to the potentials and couplings of the
JCP06 and the JP04 models as compared to the previously
available electronic structure data.9 The previous data are
called hereafter the PRL93 model. Material concerning this
question is collected in Table V.

There are listed the well-established experimental results
for lifetimes of the 12C16O2+ ion in three of its vibronic
states: X 3��v=2�, a 1�+�v=1�, and b 1��v=0�. The JCP06
model is seen to reproduce very well the result for the
X 3��v=2� state. The calculated value is larger only by the
factor of �3. For the other two states, the lifetimes calcu-
lated from the model exceed the experimental data by about
two orders of magnitude. There are also listed the two life-
times measured in the millisecond range9 that pertain most
likely to the X 3��v=1� and a 1�+�v=0� states13 of the
13C16O2+ isotopomer. For these states, the JCP06 model
yields results more than three orders of magnitude too large.
In the most stable ground state, X 3��v=0�, the ion lives
longer than 1 s, according to the experimentally established9

lower bound for 13C16O2+. The JCP06 model fails in predict-
ing the actual lifetime of this state, giving practically worth-
less value of �1013 s. As to lifetimes of higher excited states
of the ion, there is an upper bound �50 ns� available from the
experimental work of Ref. 11. Somewhat higher value �100
ns� was given in Ref. 13. The lifetimes calculated from the
JCP06 model are consistent with these estimations except for
the case of state a 1�+�v=2� �for which �=380 ns is ob-
tained�.

The values of �Cal /�Exp listed in the last three columns of
Table V for �’s calculated from the PRL93, JCP06, and JP04
models, respectively, should be summarized as follows. The
JCP06 model improves over the PRL93 model in that it
gives lifetimes too long by factors ranging from �3 to about
6000 �if the bracketed numbers are not taken into account!�,
while the PRL93 lifetimes are all too short, on average, 1800
times. The improvement may thus seem somewhat problem-
atic. The JP04 model, however, is evidently better than the
other two; the lifetimes resulting from it are only one �at
worst, one and one third� order of magnitude off the experi-
mental values.

Consistency with the experimental upper bound of the
lifetimes of the states A 3�+�v=0–2� calculated from the
JP04A model is also noteworthy. Previously, an estimation of
the partial width of the lowest A state level for decay into the
3�− channel has only been available; this is the value of
6��10−6 cm−1, which was obtained in Ref. 21 assuming
that the SO coupling between the A 3�+ and 3�− states is
1 cm−1. Upon multiplication by the factor of 9 �since
V1,2�rc�=3 cm−1 is the value at the crossing point of the
coupling used here�, this estimate becomes close to the
present approximate results �Av=0→3�−

SC =1.72�10−4 cm−1

and �Av=0→3�−
CM �dir�=1.82�10−4 cm−1 �see Table AVII�.

As it follows from the considerations presented in Sec.
IV B, the overall increases of lifetimes given by the JCP06

FIG. 7. �Color online� Widths of A 3�+�v� states of CO2+ from the JP04A
model. SQ�4� denotes the “exact” total widths �Av obtained in four-channel
Siegert quantization calculations. The open �color� symbols represent partial
widths �Av→s̃ for s̃= 3�−, X 3�, and b 1� obtained in two-channel CM cal-
culations using Q1= �A� and P= �s̃�. The small full symbols show results of
application of the SC formula�32� to the A− s̃ curve crossings.
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and JP04 models over those from the PRL93 model should
mostly be attributed to the behavior of the respective repul-
sive potentials V3�−�r� in the region outside the crossing with
the ground state potential. One has to conclude that the re-
pulsive potential of the JCP06 model is severely inaccurate
in this region; the yielded increase of lifetimes is by far too
big. A comparison of the calculated and measured vibronic
energies of the ion reveals �see Fig. A6� that also the JCP06
potential of the ground state is insufficiently accurate in the
same region; the barrier is definitely too high. With growing
v, the energies EXv depart from their experimental counter-
parts even more than the energies from the PRL93 potential.
The level spacings from the JCP06 potential of state b 1�
compare more favorably with the experimental data, espe-
cially with those of Ref. 10 for v�5 levels. However, devia-
tions start to grow for higher v’s, evidently because of the
barrier too high in this potential, too.

There are short reports in Ref. 43 �Figs. A7 and A8�
about calculations which have been done on vibronic states
of the CO2+ ion not considered in the main text here, namely,
on states c 1��v� and d 1�+�v�. Results obtained for the latter
states are commented on in reference to the first hypothesis,9

recalled in Sec. I, about the origin of the observed ms life-
times.

D. Rovibronic states

Though lifetimes of individual rotation-vibration states
of the CO2+ ion have not been measured yet, a provisional
theoretical simulation is possible with the existing electronic
structure data. The present JP04r-v model serves such a pur-
pose. The most interesting results obtained from this model,
for the triplet states X 3� and A 3�+, are presented in Fig. 8

and Tables VI and VII. Some results concerning states a 1�+

and b 1� are presented in Figs. A9 and A10.
Figure 8 shows the lifetimes of the states X 3��p�Jv�

which lie in the energy ranges �−70,200�cm−1 around the
E�3�1eJ=1v� levels for v=1 and 2. �These levels are nearly
coincident with the respective energies EXv from the purely
vibronic JP04 model.� Correlations of the lifetimes with the
quantum numbers characterizing the states are exposed. A
clear distinction is seen between the multiplet components
�=0 of e parity and �=1 of both parities from one side and
the components � f =0 and �e/f =2 from the other side. Life-
times pertaining to the three latter components reveal a
strong variation with J number and are at least one order of
magnitude larger. The reason obviously lies in the structure
of the Hamiltonian matrices HJe and HJf �see Fig. A1�. The
longer lived � components of the 3� state are just the ones
which can predissociate only indirectly, via the rotational
coupling with the 3��=1 component of respective symmetry.

The limited validity of the JP04r-v model should be
noted at this point. Interactions neglected in this model may
obviously induce some quantitative changes in the present
picture of lifetimes of the different multiplet components. A
simulation of possible impact of L-uncoupling perturbations
was made by adding the terms of Eq. �9� to matrices HJe and
HJf. The impact on low J levels appears substantial only if
they pertain to � f =0 components, as illustrated by the light
gray symbols in Fig. 8.

Most intriguing is the finding marked with the vertical
�red� labels: the experimental lifetimes assigned to the two
X 3��v� states, v=1 and v=2 �see Table V�, match very well
the values calculated here for the rotation-vibration states
�=2e/fJ=6–7v=1 and �=2e/fJ=6–7v=2, respectively,
whose energies are close to the central E��=1eJ=1v� levels.
A more precise comparison is made in Table VI where the
positions and widths of the relevant levels are listed. Assum-
ing that the indicated rotational components could be respon-
sible for the measured lifetimes of states X 3��v=1� and v
=2, the values 1311–946 and 0.34−0.26 �s, respectively,
are obtained as their calculated counterparts. The latter agree
nearly perfectly with the experimental data �are within the
experimental error bounds� and the former are only slightly
�1.6–1.2 times� too high. Thus, the two largest deviations
from experiment of the results calculated from the JP04
model �see Table V� become reduced ten times, roughly es-
timating. This should be taken as a suggestion that the diag-
onal SO coupling is not to be neglected in future simulations
of lifetimes of the CO2+ ion in its X 3��v� states. Accounting
for “true” L-uncoupling perturbations in the system would
be desirable to fully confirm the present predictions for the
rotational components of these states.

The accounting for rotational structure and symmetry of
the states in the JP04r-v model may seem to introduce only
small corrections to the picture of stability of the ion in its
A 3�+�v� states. Indeed, the widths ��F2Nv� listed in Table
VII are practically the same as the widths �Av from the vi-
brational JP04A model shown in Table III. The widths of the
components F1 and F3 are smaller by factors not exceeding 2
in most cases. The lifetimes of all FiN components of v
states are below the experimental upper bound �0.05 �s�. An

FIG. 8. �Color online� Rotation-vibration states of CO2+�3�� from the
JP04r–v model. Energies and lifetimes as functions of J number for the �
=2,1 ,0 components of e �squares� and f parity �circles�. The smaller circles
and gray squares indicate effects of adding of the L-uncoupling terms to the
model �see Eq. �9� and Fig. A1�. The upper panel concerns 13C16O2+; the
bottom panel is for 12C16O2+. Zero of energy in each panel is at the respec-
tive E�3�1eJ=1 v� level �see Table VI�. Large �blue� crosses denote the
corresponding results from the JP04 model. The experimental data for life-
times are shown at the theoretical energies of the �=1=J states �shifted by
�5 cm−1�.
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important point is, however, that this estimation concerns
also the J=0�F1N=1� component. Although predissociation
of this component to the repulsive state 3�− is forbidden by
symmetry, it can decay quickly due to the coupling with
� f =0 component of state X 3�. This fact is of direct rel-
evance to the question about the possible fluorescence of
CO2+.2,8,16,22

It was suggested in Ref. 22 that there is a chance to
observe six emission lines due to the transitions A 3�0f

+ �J�
=0 v�=0�→X 3���f�J�=1v�� for ��=0,1 and v�=0–2.
The respective radiative lifetime of the upper state was esti-
mated to be about 5–7 �s. The argument about stability of
this state against predissociation21 was crucial to the sugges-
tion. The present calculations raise severe doubts as to the
validity of this argument. The calculated predissociation life-
time of state A 3�0f

+ �J�=0 v�=0� is only 0.01 �s, i.e., above
500 times shorter than the estimated radiative lifetime. The
estimation of the radiative lifetimes has been recently con-
firmed in ab initio calculations.25 Strictly, values ranging
from 8.97 to 5.49 �s have been obtained for the vibronic
states A 3�+�v=0–3�.

Reference 25 reports also predissociation lifetimes of the
rovibronic states A 3�0,1

+ �v=0–2J=1–5�. The results are
claimed to provide evidence that a large increase of lifetimes
�even by two orders of magnitude� may occur for several J
�0 levels due to relatively small centrifugal distortion bar-
riers �pertaining to J�5�. No such a “spectacular” effect is
displayed by the present results in Table VII, neither by those
from the JP04r-v model nor by the results obtained after
supplementing the model with the L-uncoupling terms. It
seems that the finding of Ref. 25 is a spurious effect pro-
duced mostly by the complex-scaling method used �highly
uncertain accuracy of this method in determining lifetimes of
CO2+ is amply documented in Table AVIII; see also the com-
ment to Fig. A1�.

E. Comments on determining very long lifetimes

The perturbative TP approach to tunneling is applied
here probably for the first time in the context of molecular
dications. The approach is especially well suited to the de-
termination of ultralong lifetimes. Very long lifetimes, corre-
sponding to widths as small as 10−25 cm−1, are obtainable
with the modified-Milne method of Ref. 56. Quadruple pre-
cision of calculations is required, however. Widths smaller
than 10−25 cm−1 have been obtainable so far only with the
help of SC formulas,57 see, e.g., Ref. 23. It is therefore note-
worthy that because of its quantum-mechanical character, the
TP approach is superior with respect to the accuracy to the
most sophisticated SC approaches available.53,54 This is dem-
onstrated exemplarily in Table VIII. A more extensive com-
parison of results obtained with the quantum-mechanical �TP
and SQ� and SC methods for shape resonances in the poten-
tials of the JP04 model is given in Tables AXII and AXIII.

Unlike the TP approach, the SQ method is widely ex-
ploited in calculations on molecular resonances. The present
implementation of the method43 is largely based on the
work36,37 published in the early 1980s. It is all the more
worth noting that �quantum-mechanical� SQ calculations

which would provide accurate results for widths as small as
those obtained here ��10−25 cm−1 �Table I�, �10−62 �Table
VIII�, or even smaller �Table AXIII�� seem not to have been
reported in the literature so far.

V. SUMMARY

Using the best available electronic structure data, the
potentials generated in Refs. 23 and 24, the SO couplings
generated in Ref. 24, and the SO constant of Ref. 22, several
models have been constructed to study metastable vibronic
and rovibronic states of the CO2+ dication. About 90 vibronic
states in the energy range up to 5.3 eV above the bottom of
the X 3� potential well have been studied. Methods of three
distinct categories �quantum-mechanical “exact,” perturba-
tive, and semiclassical� have been exploited to calculate the
energies and lifetimes of the states. Lifetimes for predisso-
ciation and tunneling, varying over a wide range �tens of
orders of magnitude�, have been determined, demonstrating a
remarkably good agreement between results yielded by the
exact �SQ� and the perturbative �bound-continuum CM and
TP� methods. Reasonably good consistency �deviations
�10%� has also been observed between the quantum-
mechanical and SC results. Taking advantages of this consis-
tency, a detailed analysis has been performed of how the
calculated predissociation characteristics �level widths and
shifts� depend on the individual potentials and SO couplings.
The main findings are as follows.

�i� The widths of the vibronic levels bound to the poten-
tials of the X 3� and b 1�+ states are almost entirely
determined by the crossings and couplings of these
potentials with the repulsive potential of the 3�− state.

�ii� The indirect predissociation a 1�+→X 3�→ 3�− is
the dominant decay mechanism of only the three low-
est �v=0–2� levels of state a 1�+. The predissociation
characteristics of the levels a 1�+�v�7� are well rep-
resentable by sums of independent contributions of
two curve crossings: Va−V3�− and Va−VX. The latter
crossing contributes mostly to the widths, and the
former to the shifts.

�iii� Two crossings of the A 3�+ state potential, the outer
crossing with the potential V3�− and the inner crossing
with the potential VX, contribute comparable amounts
to the widths of the levels A 3�+�v=0–2�. The widths
of the higher A state levels are almost entirely deter-
mined by the inner crossings VA−VX and VA−Vb �for
v�6�.

The results obtained for the vibronic states of the ion from
two �sets of� models, the �JCP06� model built entirely of the
electronic structure data of Ref. 24 and the �JP04, JP04A�
models compiled of the potentials of Ref. 23 and the SO
couplings of Ref. 24, have been confronted with the existing
experimental data. The main conclusions are as follows.

�i� The JCP06 model is incapable of giving realistic life-
times of the three lowest vibronic states of the ion,
X 3��v=0,1� and a 1�+�v=0�, because of insuffi-
cient accuracy of the repulsive potential of the 3�−
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state in the medium range of the C–O distance. Of the
two cases of good consistency between the calculated
and measured lifetimes in the microsecond range that
are reported in Ref. 24, for states a 1�+�v=1� and
X 3��v=2�, only the latter is confirmed by the present
calculations.

�ii� The JP04 model represents a factual improvement
over the models based on the old electronic structure
data,21,9 giving lifetimes in a reasonable agreement
with all existing experimental values and estimates.
The largest deviations remaining, �expt /�calc�20, con-
cern the X 3� state levels, v=1 and v=2. The omis-
sion of the diagonal SO coupling terms ��A�� may
be partly responsible for these deviations. This points
to the need for refining the treatment of dynamics of
the ion �since the role of the �A� terms cannot be
fully investigated within the nonrotating molecule
models�.

The first simulation of rotationally resolved lifetimes of sev-
eral vibronic levels assigned to each of the four bounding
electronic states X 3�, a 1�+, b 1�, and A 3�+ has been
made using appropriately extended versions of the JP04
model. The main findings are as follows.

�i� The diagonal SO coupling terms together with the ro-
tational S-uncoupling perturbations create a sizable
splitting of lifetimes between two groups of multiplet
components ��p=1e/f ,0e and �p=2e/f ,0 f� of the
states X 3��p�Jv=0–2�. Lifetimes of some rotational
sublevels ��p=2e/fJ=6–7� of the two vibronic levels
X 3��v=1� and X 3��v=2� match very well
��Cal /�Exp�2� the experimental values of 800 and
0.2 �s, respectively.

�ii� The impact of rotational perturbations �of S- and
L-uncoupling types� on lifetimes of the multiplet
�F1–3� components of the states A 3�+�Nv� is not es-
pecially large ���F1� /��F2,3��5 for N�6 and v
=0–2,6�. No component is characterized by lifetime
longer than 0.05 �s. Thus, with no exception, the
A 3�+ state levels decay �more than 100 times� faster
by predissociation than by photon emission.
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A. SUPPLEMENTARY MATERIAL
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TABLE AI: Tests of the Siegert quantization method in four-channel calculations for vibronic
states of CO2+. Dependence of the eigenvalues E−ıΓ/2 on the form and the position of the
asymptotic boundary condition (bc) shown in terms of relative mean square deviations, dev X(bc) ≡
1
5

[ 4∑
k=0

(X(bc)
k /Xref−1)2

]1/2 for X=E, Γ and bc= exacta, WKBb, where X
(bc)
k denotes the value

obtained with bc at r∞=9.0−k×0.5 a0, and Xref is the most accurate result generated: X
(WKB)
0 .

State v Ec dev Ed Γ dev Γ(bc)

cm−1 cm−1 bc=WKB exact

X3Π 0 732.20 2 (−12) 1.48 (−24) 3 (−6) 8 (−3)
1 2168.28 1 (−12) 1.10 (−11) 5 (−6) 3 (−3)
2 3548.53 1 (−12) 7.70 ( −6) 6 (−6) 8 (−3)
e 3437.62 1 (−12) 4.90 ( −4) 3 (−6) 5 (−3)
3 4883.30 2 (−12) 4.97 ( −3) 3 (−6) 4 (−3)
4 6167.37 2 (−11) 1.88 ( −1) 4 (−6) 6 (−3)

a1Σ+ 0 980.23 4 (−12) 1.85 (−13) 7 (−6) 9 (−3)
1 2923.04 3 (−12) 5.06 ( −8) 5 (−6) 5 (−3)
e 2841.46 5 (−13) 2.48 ( −6) 2 (−6) 3 (−3)
2 4820.46 2 (−12) 1.39 ( −5) 2 (−6) 6 (−3)

b1Π 0 753.64 6 (−12) 1.04 ( −6) 3 (−6) 5 (−3)
e 740.46 2 (−12) 1.91 ( −5) 4 (−6) 4 (−3)
1 2234.34 4 (−12) 6.84 ( −4) 2 (−6) 6 (−3)

aConsists here in solving the Riccati equation satisfied by LO+(r; E),

d

dr
LO+ + L2

O+ + W∞ = 0 with W∞(r; E) ≡ k2(E)− 2µ

r
I ,

starting from the values
[
LO+(rtrn

s ; E)
]
s,s

at the turning points rtrn
s , Re

[
W∞(rtrn

s ; E)
]
s,s

=0 ,for s=1, . . . 4.
These values are obtained by exploiting the expansion of the Coulomb functions in terms of Airy integrals,
Ref. 1.
bThe condition described in the paper, Eqs.(21) and (23).
cGiven relative to the minimum of the potential well of the respective electronic state. The positions of

the well minima V min
a and V min

b relative to V min
X in the potentials of Ref. 4 (the JCP06 model) and in

the potentials of Ref. 5 (the JP04 model) are listed in the caption of Fig. 1 in the paper. Information on
asymptotes of the states is necessary for evaluation of

[
k2(E)

]
s,s

, see footnote a. It is obtained from the
extrapolation procedure described in Sec. II of the paper. The position of the asymptote of the repulsive
state V th

3Σ− relative to V min
X is −0.1916 EH in the JCP06 model and −0.198751 EH in the JP04 model.

V th
s −V min

s for s=X, a, b are −0.191106, −0.088624, −0.073143 EH in the JCP06 model, and −0.196176,
−0.088134, −0.092550 EH in the JP04 model.
dThe deviations are essentially the same for both bc-forms tried. The small values are only an indication

of numerical stability of the energies E against shifts of the boundary condition. Because of the accuracy
of the input potentials, the energies themselves can be physically meaningful only up to 0.1 cm−1.
eResults from the JP04 model.
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TABLE AII: Exemplary results of the Siegert quantization calculations for shape resonances in
the potentials of the X3Π and b1Π states of CO2+. Dependence of the widths on the form and
the position of the asymptotic boundary condition (bc) shown in terms of relative mean square

deviations, dev Γ(bc) ≡ 1
5

[ 4∑
k=0

(Γ(bc)
k /Γref−1)2

]1/2 for bc=exact, WKB, asmpta, where Γ(bc)
k denotes

the value obtained with bc at r∞=17.5−k×1.0 a0, and Γref=Γ(exct)
0 . For each resonance shown,

the entries in the second line concern the JP04 model.

State v Eb Γ dev Γ(bc) rtrn
c

cm−1 cm−1 bc=exact WKB asmpt a0

X3Π 0 733.31 6.05 ( −62) 4 ( −9) 8 (−8) 7 (−3) 5.14
715.29 4.51 ( −56) 4 ( −9) 9 (−8) 7 (−3) 5.01

10 12714.64 1.41 ( −5) 9 ( −9) 4 (−8) 4 (−3) 4.01
12111.36 3.15 ( −3) 8 ( −9) 3 (−8) 3 (−3) 3.98

b1Π 0 752.87 3.72 (−238) 1 ( −8) 7 (−6) 6 (−1) 10.86
739.68 8.95 (−224) 6 (−10) 2 (−6) 4 (−1) 10.42

a‘exact’ and WKB denote the forms described in Table AI and ‘asmpt’ denotes the following asymptotic
form of LO+

Las
O+(r∞; E) = ı

[
k(E)− µ

r∞
k−1(E)

]
.

bGiven relative to the bottom of the well in the potential of the state.
cThe classical turning point in the respective asymptotic potential 1/r+V th. See footnote c in Table AI

for information on V th. The ‘asmpt’ form of the boundary condition is clearly inapplicable when r∞ lies
too close to rtrn.

COMMENT
on the accuracy of the SQ method in calculation of ultra-small resonance widths

The widths ΓSQ were obtained in double-precision calculations together with the corresponding energies
ESQ. All these widths, even the ones of the size of ∼10−220 cm−1, are numerically correct. The consistency
with the results of the perturbative quantum-mechanical and the semi-analytical semiclassical approaches,
demonstrated in Tables AXII-AXIII, AIII, and in Tables I-II, VIII of the paper, should leave no doubts
about that. Thus, the smallness of the imaginary parts of the Siegert eigenvalues, which are accurately de-
termined here, is not limited by the accuracy obtainable for the real parts of these eigenvalues (absolute errors
∼10−8−10−9 cm−1). This is an advantageous feature of the present implementation of the Sieqert quanti-
zation, apparently not easily achievable in other non-perturbative implementations (see eg. the comment on
the complex scaling approaches in a recent paper on long-lived molecular hydrogen anions, Ref. 15). Most
likely, the advantageous performance of the present implementation should be attributed to the convergence
properties of the Numerical Recipes’ procedure newt which was exploited for finding the complex eigenvalues
En

[
as two roots, Re En≡x1 and Im En≡x2, of the two equations: f1(x1, x2)≡Re det

[
L(rm; E)−L(rm; E)

]
=0

and f2(x1, x2)≡Im det
[
. . .

]
=0 , cf. Eq. (17) in the paper

]
.
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TABLE AIII: Energies and widths (all in cm−1) of vibrational states of CO2+(X 3Π) from the
JP04 model (potentials of four electronic states: X 3Π, 3 Σ−, a 1Σ+, and b 1Π taken from Ref. 4
plus spin-orbit couplings from Ref. 5). Comparison of Siegert quantization results with results
obtained within the perturbative bound-continuum configuration mixing (CM) approach using the
partitioning: {X, a, b}+{3Σ−}≡Q+P.

v Ea Γ Eshfd δEshfe δΓf

0 714.19b 4.66 (−14) −0.025 0.0 −1.2
c 698.5 1.76 (−14)
1 2101.04 2.66 ( −7) −0.035 0.0 −0.2
c 2056.0 1.44 ( −7)
2 3437.62 4.90 ( −4) −0.059 0.0 −0.1
3 4721.41 4.80 ( −2) −0.124 0.0 −0.0
4 5953.86 2.60 ( −1) −0.077 −2.7g 1.7g

5 7128.46 1.74 ( −1) 0.160 0.0 0.0
6 8248.75 2.87 ( −1) 0.009 0.1 0.0
7 9310.92 2.69 ( −2) 0.017 −0.9 0.7
8 10312.60 3.10 ( −2) 0.092 −0.0 −0.0
9 11247.84 7.84 ( −2) 0.077 −0.0 0.9

10 12110.80 1.59 ( −1) 0.052 17.3 −2.0
11 12879.01 1.65 h

aZero of energy is at V min
X , the bottom of well in VX(r).

bLies 41.064 eV above the energy of the X 1Σ+(v=0J=0) state of CO; taken from Table 8 of Ref. 5.
cFor 13C16O2+.
dEvaluated within the CM approach, Eqs. (29-30) in the paper.
eDefined as [Eshf/(E−E(0))−1]×100%, where E(0) denotes energy of related bound state in the Q-subspace.
fDefined as (ΓCM/Γ−1)×100%.
gSee Table AV for a refined CM treatment of this case.
hThe state decays by tunneling. The present choice of the P and Q subspaces is inadequate. See Tables

AXII-AXIII for results of perturbative treatment of tunneling.
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TABLE AIV: Energies and widths (all in cm−1) of the vibronic states a 1Σ+(v) and b 1Π(v) of
CO2+ from the JP04 model. Comparison of Siegert quantization results with results obtained
within the perturbative bound-continuum configuration mixing (CM) approach. In the treatment
of v<7 states, the partitioning into subspaces of bound (Q) and continuum (P) configurations was:
Q+P={X, a, b}+{3Σ−}. In the cases of the states a 1Σ+(v≥7), the values of Eshf and ΓCM were
obtained as sums of respective results of two separate calculations, with Q+P={a}+{3Σ−} and
Q+P={a}+{X}. The same approximation was applied to the states b 1Π(v≥7) except Q={b}.

a 1Σ+ b 1Π

v Ea Γ Eshfd δEshfe δΓf Ea Γ Eshfd δEshfe δΓf

0 2218.57 1.03 (−8) −0.012 0.0 −0.1 4938.89 1.91 (−5) −0.027 0.0 0.1
c 2197.1 4.71 (−9) 4922.5 1.45 (−5)
1 4102.05 2.48 (−6) −0.013 0.0 −0.0 6392.19 4.33 (−3) −0.047 0.0 0.1
2 5948.69 2.04 (−1) −0.056 3.8g −2.1g 7810.98 1.07 (−1) −0.089 0.0 −0.0
3 7762.86 9.14 (−4) −0.026 0.0 −0.6 9195.45 2.82 (−1) 0.026 0.6 −0.0
4 9537.09 3.31 (−2) −0.052 0.0 0.0 10545.32 2.90 (−3) 0.013 −0.1 −0.0
5 11272.92 2.31 (−1) −0.011 0.7 −0.3 11860.87 1.14 (−1) 0.060 −0.0 −0.0
6 12966.62 6.03 (−2) 0.049 3.9 −13.4 13141.97 1.17 (−1) 0.003 −0.1 −0.0

7 14617.92 2.93 (−1) 0.093 0.7 0.1 14388.92 2.36 (−2) 0.708 0.0 −2.1
8 16225.32 2.15 (−1) 0.097 −0.1 0.1 15601.75 6.08 (−3) 0.723 −0.1 −2.2
9 17786.33 2.60 (−1) 0.105 −0.2 −0.0 16780.41 4.68 (−2) 0.719 −0.1 −2.9

10 19297.80 2.76 (−1) 0.073 −0.2 −0.2 17924.91 8.00 (−2) 0.690 −0.1 −2.9
11 20755.13 2.25 (−1) 0.053 −0.1 −0.0 19035.14 8.17 (−2) 0.654 −0.0 −2.6
12 22150.91 1.71 (−1) 0.062 1.0 0.6 20110.90 6.16 (−2) 0.623 0.0 −2.5
13 23472.60 1.45 (−1) 0.087 −0.3 0.1 21151.83 3.63 (−2) 0.599 0.0 −2.2
14 24698.89 1.33 (−1) 0.123 −0.3 −0.0 22157.40 1.76 (−2) 0.582 −0.2 −6.4
15 25795.38 1.18 (−1) 0.183 0.0 0.2 23127.01 6.82 (−3) 0.565 −0.0 −0.0
16 26722.75 9.74 (−2) 0.282 −0.1 −0.2 24059.85 5.38 (−3) 0.546 −0.1 −0.1
17 27488.40 7.95 (−2) 0.373 −0.0 −0.2 24954.81 9.48 (−3) 0.525 −0.1 −1.7
18 28157.21 6.81 (−2) 0.417 0.0 −0.3 25810.34 1.64 (−2) 0.500 −0.2 −4.4
19 28764.37 5.87 (−2) 0.446 −0.0 −0.9 26624.10 2.26 (−3) 0.470 −0.1 −2.2
20 29327.40 5.12 (−2) 0.456 0.0 −0.4 27392.17 2.79 (−2) 0.437 −0.1 −2.4
21 29864.30 4.51 (−2) 0.455 0.6 −2.0 28107.99 3.09 (−3) 0.399 0.0 −2.3
22 30356.20 3.02 (−1) h 28764.37 5.87 (−2)
23 30787.86 2.14 (+1) h 29308.85 1.52 (+1)

See the respective footnotes in Table AIII.
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TABLE AV: Results of perturbative (CM) calculations for the case of accidental degeneracy in the
JP04 model.

State v E(0)a Ec − E(0) Γc CM f CM (2×2 Heff) g

(ρX , ρa, ρb)b δEshfd δΓe δEshfd δΓe

X 3Π 4 5953.9350 −0.0773 0.2597 −2.7 +1.7 0.06 0.01
(56.07, 43.92, 0.01)

a 1Σ+ 2 5948.7436 −0.0563 0.2039 +3.8 −2.1 0.04 0.01
(43.92, 56.07, 0.01)

E and Γ are given in cm−1.
aEnergy of the related bound state in the subspace Q={X, a, b}, see Eq. (29) in the text.
bρs≡〈Φs|Φs〉×100% for s=X, a, b, where Φs denotes component of the bound state function

ΦT =(ΦX , Φa, Φb).
cObtained in four-channel Siegert quantization calculations.
dDefined as [Eshf/(E−E(0))−1]×100%.
eDefined as [ΓCM/Γ−1]×100%.
fThe isolated resonance version of the approach, see Eq. (30) in the paper. Results given by this version

are evidently less accurate than most other (low v) results shown Tables I-II and AIII-AIV.
gAn extended resonance search procedure. Instead of the single diagonal element 〈Φi|HQ(E)|Φi〉≡Heff

i,i (E)
defined in Eq. (30), the 2×2 matrix Heff(E) is determined in the basis of the functions Φi and Φi+1 that
pertain to the nearly coinciding 0-th order energies, E

(0)
i ≈E

(0)
i+1. The two eigenvalues of this matrix, Ek(E)

with k=0, 1, give the resonance energies Ei+k, as roots of the equations E=Re Ek(E), and the widths as
Γi+k=−2 Im Ek(Ei+k).
As demonstrated in the Table, the application of this procedure reduces the relative errors of the widths
and shifts to the size typical of the present calculations for isolated resonance cases.
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TABLE AVI: Energies and widths of s (v=0−6) vibronic states of CO2+ for s=X 3Π, a 1Σ+, and
b 1Π from the JCP06 and JP04 models. Deviations between results of two- (s+s̃=3Σ−) and four-
channel calculations using the Siegert quantization method.

JCP06

X 3Π b 1Π a 1Σ+

v ∆Ea δEshb δΓc ∆Ed δEshf δΓ ∆Ee δEshf δΓ

0 1.09 4.0 3.5 −0.79 −3.1 −6.5 3.74f 15.9 −100 ∗
1 −2.85f −1.5 1.9 −0.79 −3.1 −3.6 0.05 −0.7 −100 ∗
2 0.84 3.0 3.0 −0.77 −3.0 −2.9 0.05 −0.5 −98.6∗
3 0.71 2.6 2.7 −0.76 −3.1 −2.8 −0.06 −1.0 32.7
4 0.73 2.5 2.7 −0.75 −3.0 −8.0 −0.01 2.0 −23.9
5 0.77 2.9 2.4 −0.74 2.8 −2.6 −0.10 3.0 −1.2
6 0.76 −0.9 3.4 −0.72 7.1 −1.9 −0.13 −1.0 2.8

JP04

0 1.08 3.9 3.3 −0.81 −3.2 −6.2 −1.93 −16.5 −100 ∗
1 2.88 9.0 6.0 −0.80 −3.1 −3.5 0.12 −0.3 −99.9∗
2 0.79 2.8 2.8 −0.78 −2.8 −2.7 2.31 −71.4g −100 ∗
3 0.67 2.6 2.7 −0.77 0.3 −3.0 −0.06 −1.2 −6.0
4 −1.55g 55.1g 82.8*g −0.75 −2.5 −1.6 −0.14 −2.6 −6.5
5 0.76 2.2 2.3 −0.74 −2.3 −3.2 −0.85 197.0h −20.8
6 0.75 −0.0 2.5 −0.72 10.5 −2.6 −0.32 −0.1 16.1

a∆E=E(2)−E(4) given in cm−1. See Tables I−II and AIII−AIV for the values of E(4). ∆E reflects almost
exclusively the difference between the respective E(0)’s in the subspaces Q1={s} and Q={X, a, b}.
bδEshf=[Eshf(2)/Eshf(4)−1]×100%, where Eshf(2)=E(2)−E(0)(Q1) and Eshf(4)=E(4)−E(0)(Q).
cδΓ=[Γ(2)/Γ(4)−1]×100%. Gives approximately the ratio (−)Γ(interf)

Γ ×100% plotted in Fig. A2; exception
are the cases marked with asterisk.
dGives approximately the (−)shift from E(0) in Q1={b} caused by the coupling b−X, see Fig. 5 in the

paper.
eClose to (−)shift from E(0) in Q1={a} caused by the coupling a−X, see Fig. 5.
fEffect of repulsion between the levels X v=1 and a v=0.
gEffect of the strongest accidental degeneracy encountered in both models.
hEffect of perturbation by the X(v=9) state. See the right panels of Fig. A2 and note the large contributions

of interference paths to Γ and Eshft in the X(v=9) and a(v=5) cases.
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TABLE AVII: Partial widths ΓAv→es for v=0−2 and s̃=3Σ−, X 3Π from the JP04A model. Pertur-
bative quantum-mechanical (CM) results, obtained with the subspaces Q={b, A} and P={s̃}, and
semiclassical (SC) results for the A−s̃ crossings.

v s̃ ΓCM Γ(dir)a Γ(intrf)a/Γ ΓSC Γ0b

cm−1 ×100%

0 3Σ− 1.54 (−4) 1.82 (−4) −19.5 1.72 (−4) 8.48 (−4)
1 2.19 (−3) 2.03 (−3) 7.1 2.01 (−3) 1.40 (−3)
2 1.77 (−3) 1.86 (−3) −5.1 1.88 (−3) 6.24 (−4)

0 X 3Π 1.80 (−4) 1.88 (−4) −4.4 1.79 (−4) 6.21 (−2)
1 9.17 (−4) 9.50 (−4) −3.5 9.68 (−4) 6.37 (−2)
2 2.78 (−3) 2.83 (−3) 0.9 2.86 (−3) 6.54 (−2)

aSee the caption of Fig. A2 for the definitions of the ‘direct’, and ‘interference’ contributions to the widths.
The ‘indirect path’ contributions are very small in all cases shown here.
bThe factor defined in the paper, in Eq. (32). See also Fig. A4.
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TABLE AVIII: Deviations between energies and lifetimes of thirteen lowest vibronic states of CO2+

obtained from the JCP06 model in this work and in the calculations of Ref. 4.

E ERef.4−E τ (τx/τ−1)×100%

State v (cm−1) CSa stabb (µs) x=CSa x=stabb

X 3Π 0 732.2 0.3 0.5 3.6 ( 18) l l

1 2168.3 1.3d 6.7d 4.8 ( 5) l l

c 2168.9 0.7d 4.8 ( 5)
2 3548.5 1.0 1.7 6.9 (−1) 465j −12
3 4883.3 1.1 1.8 1.1 (−3) 355j 9
4 6167.4 1.5 1.5 2.8 (−5) 329j 1043g

5 7399.9 1.7 1.6 9.7 (−6) 55j −8

a 1Σ+ 0 2101.8 −0.4d 37.0df 2.9 ( 7) l l

c 2101.2 0.1d 2.5 ( 7)
1 4044.6 0.3 17.9f 1.0 ( 2) −95 −99h

c 4044.7 0.2 8.8 ( 1) −94
2 5942.0 0.4 −0.8 3.8 (−1) −61 −93h

c 5941.1 0.3 3.0 (−1) −50
3 7796.5 −37.5e −11.9f 5.6 (−2) −99.6 −98h

c 7796.5 −37.5e 1.4 −99.99

b 1Π 0 5030.8 0.0 −0.2 5.1 351 63
1 6511.5 −0.1 1.1 7.8 (−3) −81k −97i

2 7959.1 −0.1 1.8 1.3 (−4) −96k −92i
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TABLE AVIII: continued
aThe complex scaling calculations of Ref. 4 in which the four-state model called here ‘the original JCP06’

model was used.
bThe stabilization calculations of Ref. 4 which accounted additionally for two higher electronic states of

the ion, A 3Σ+ and c 1∆; the impact of these states on the lifetimes shown here is negligible, however.
cResults obtained in this work using the original JCP06 model. The 1Σ+−3Σ− coupling, suppressed in

the original model, contributes little (about 20%) to the lifetimes of the a (v=0−2) states.
dObtained after relabelling of the energies given in Table III of Ref. 4 for the X 3Π(v=1) and a 1Σ+(v=0)

states. Apart from evidence provided by the present perturbative calculations the relabelling is strongly
suggested by the comparison of the energy spacings Ev=1(X)−Ev=0(X) and Ev=2(X)−Ev=1(X) shown in
Table III of Ref. 4 with the spectroscopic constants listed in Table A of that paper.
eThere seems to be a missprint in the CS value given in Table III of Ref. 4.
fRelatively large deviation suggesting that somewhat different potential Va was used in the ‘stab’ calcula-

tions.
gUnexpectedly large, perhaps related to the fact that the energy EX v=4 nearly coincides with the crossing

of the potentials VX and V3Σ− . The present result is obtained by three different methods with relative
deviations not exceeding 3%, see Tables I, IV, and AVI.
hRather big discrepancy. Tests documented in Table AIX suggest a possible cause: the use in the ‘stab’

calculations of an effectively bigger coupling a−X, i.e. different from that presented in Fig. 2 of Ref. 4, in
addition to the use of different potential Va, as mentioned in footnote f .

iThe origin of this discrepancy is unclear. Within the four-state model, above 95% of the width comes
from the b 1Π−3Σ− coupling, see Table AVI. Any reasonable modification of other couplings in the model,
even as large as that described in Table AIX, can increase the width merely by a few per cent. A disturbance
of order of 100% from the side of the higher state A 3Σ+ is improbable.

jLarge values of these deviations can not be explained by differences in the input potentials and couplings.
They rather reflect some technical problems with the implementation of the CS method in Ref. 4.
kCS calculations of Ref. 6 gave completely different lifetimes for these cases, deviating from the present

accurate results for b v=1 and v=2 by 426 and 1054 %, respectively. The errors of the lifetimes obtained in
those calculations for the levels b (v=3−10) are similarly large. It is evident that the CS method did not
work properly in determining the lifetimes of the system.

lNo method used in Ref. 4 was capable of determining the long lifetimes of these states.
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TABLE AIX: Test of sensitivity of energies and widths of the lowest vibronic states of CO2+ to
the strength of spin-orbit couplings. Ẽ and Γ̃ — results from the JCP06 model with the couplings
X 3Π−a 1Σ+ and X 3Π−3Σ− multiplied by factors of 4 and 2a, respectively, are compared to the
values E and Γ listed in Tables I and II. τ̃ (τ) — lifetimes from the modified (unmodified) couplings
are compared to the available experimental data, cf. Table AVIII and Table V in the paper. Lines
marked with an asterisk concern 13C16O2+.

State v Ẽ−Eb Γ̃/Γ log10 τ̃ (τ)/τExp

X 3Π 0 −4.5 3.7c

1 33.4 5.5
* 39.3 6.2 2.6 (3.4)
2 −1.2 3.9 −0.1 (0.5)f

3 0.5 4.0
4 −0.3 4.0

a 1Σ+ 0 −35.2 10.3d

* −41.2 5.0d 3.1 (3.8)
1 −0.8 65.4 0.4 (2.2)g

2 −0.7 76.4
3 1.0 0.0e

4 0.2 3.6e

5 1.5 1.1e

b 1Π 0 0.0 1.1 2.2 (2.3)
1 0.0 1.0h

aThe factors are chosen to make the strength of the multiplied JPC06 couplings comparable, in the curve-
crossing region, to the strength of their older counterparts, generated in Ref. 10.
bGiven in cm−1.
cThis ratio being close to 22 testifies on dominance of the direct X→3Σ− pathway of decay.
dWidths due to the indirect a→X→3Σ− decay depend sensitively on the position of the a state level

relative to levels in the X state potential. The simple perturbative estimate Γ̃/Γ≈(4×2)2 may not be good.
eThe direct a→3Σ− pathway of decay becomes dominant, see Fig. A2.
fThe modification does not change essentially the consistency of τ with τExp in this case.
gThe significant improvement of τ̃ /τExp over τ/τExp is to note in this case.
hAlmost insensitive to the modification, cf. footnote i in Table AVIII.
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TABLE AX: Rotation-vibration states of CO2+(X 3Π) from the
JP04r-v model. Analytical representation of rotational energies,
EJ(3ΠΩ)=E0+B[J(J+1)+1−2Ω(Ω−1)]+C[J(J+1)+1−2Ω(Ω−1)]2 . Parameters E0(Ωp, v),
B(Ωp, v), and C(Ωp, v) (all in cm−1) of fitting to the calculated values E(X 3ΠΩpJ v) in the range
J=1−10.

E0 B C×106

v p Ω=0 a Ω=1 Ω=2 a Ω=0 Ω=1 Ω=2 Ω=0 Ω=1 Ω=2

12C16O2+

0 f 65.12 714.27 −63.27 1.640 1.560 1.495 −46 0 23
e 64.86 b −47

1 65.13 2102.94 −63.30 1.607 1.531 1.468 −44 −1 21
60.58 1.628 1.529 −95 5

2 65.13 3437.45 −63.29 1.575 1.501 1.440 −42 −2 19
65.09

13C16O2+

0 f 65.11 698.60 −63.27 1.565 1.492 1.432 −40 −1 19
e 64.85

1 65.13 2057.59 −63.30 1.535 1.465 1.406 −38 −2 18
61.97 1.546 1.463 −60 3 17

aGiven relative to the value for Ω=1.
bEmpty space means that the number is identical to that listed above for f parity.
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TABLE AXI: Rotation-vibration states of CO2+(X 3Π) from the JP04r-v model. Analytical repre-
sentationa of J dependence of the widths, ΓJ(3ΠΩ)=Γ[J(J+1)−Ω](α+βJε) . Parameters Γ(Ωp, v)
(in cm−1), α(Ωp, v), β(Ωp, v), and ε(Ωp, v) of fitting to the calculated values Γ(X 3ΠΩpJ v) in the
range J=1−10. a) strong J dependence, b) weak J dependence.

a) v Γ α β ε Γ α β ε

Ωf = 0 Ωf/e = 2b

12C16O2+ 0 1.791 (−16) 1.005 1.13 (−2) 1.38 1.387 (−17) 1.007 8.46 (−3) 1.51
1.392 (−17) 1.008 9.79 (−3) 1.49

1 4.259 (−10) 1.002 4.91 (−4) 1.78 1.916 (−10) 1.002 3.86 (−4) 1.82
1.920 (−10) 1.002 8.09 (−4) 1.67

2 6.348 ( −7) 0.998 1.10 (−2) −1.03 3.789 ( −7) 0.995 1.55 (−2) −0.71
3.819 ( −7) 1.001 1.72 (−5) 2.47

13C16O2+ 0 6.435 (−17) 1.006 1.10 (−2) 1.40 4.649 (−18) 1.008 8.29 (−3) 1.52
4.679 (−18) 1.006 9.82 (−3) 1.49

1 2.131 (−10) 1.003 6.29 (−4) 1.72 9.385 (−11) 1.002 5.14 (−4) 1.75
9.401 (−11) 1.002 9.20 (−4) 1.64

b) Ωe = 0 Ωf/e = 1

12C16O2+ 0 4.917 (−14) 0.005 1.00 (−2) 1.44
1.488 (−13) 0.006 1.18 (−2) 1.39 4.951 (−14) 0.003 1.37 (−2) 1.39

1 2.783 ( −7) 0.002 4.81 (−4) 1.77
3.349 ( −7) 0.003 2.77 (−3) 1.44 2.792 ( −7) 0.002 1.68 (−3) 1.57

2 4.951 ( −4) −0.005 6.25 (−3) −0.55
5.884 ( −4) 0.002 8.67 (−4) 1.59 4.965 ( −4) 0.001 5.85 (−4) 1.64

13C16O2+ 0 1.852 (−14) 0.007 9.53 (−3) 1.47
5.836 (−14) 0.008 1.12 (−2) 1.42 1.864 (−14) 0.005 1.29 (−2) 1.42

1 1.499 ( −7) 0.002 6.04 (−4) 1.72
1.923 ( −7) 0.003 2.13 (−3) 1.52 1.504 ( −7) 0.002 1.83 (−3) 1.54

aNote, the representation is well justified for Ω=2 and Ωf=0 states only (by the form of the matrix elements
C2,1 and C0,1 of the S-uncoupling operator, see Eq. (8) in the paper. In the Ω=1 and Ωe=0 cases, the
widths are determined by the direct SO coupling with the respective Ωp components of the 3Σ− state. The
weak J dependence of these widths is demonstrated in part b) by smallness of the parameter α.
bData for e parity states are in the lower lines.
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TABLE AXII: Energies and widths of shape resonances from the JP04 potential of the X 3Π state of
CO2+. Comparison of quantum-mechanical perturbative (TP) and non-perturbative (SQ) results
with the semiclassical results obtained in this work and in Ref. 5. All entries are given in cm−1

except for the relative deviations δΓ(x/y)≡(Γx/Γy−1)×100%.

TP TP vs SQ δΓ(Ref. 5/y)

v Ea Γ Eshf ∆Eb δΓc y=SQ y=qSCd

0 715.29 4.51 (−56) −2.67 (−28) 1 (−7) 0.0000 −7.5 −0.8
1 2103.96 5.81 (−48) −7.34 (−25) 1 (−7) 0.0000 −3.4 −0.7
2 3438.47 8.99 (−41) −8.83 (−22) 5 (−7) −0.0000 −2.2 −0.6
3 4722.21 2.71 (−34) −6.36 (−19) 5 (−7) −0.0000 −1.8 −0.5
4 5952.43 1.97 (−28) −3.03 (−16) 4 (−7) −0.0000 −1.6 −0.4
5 7129.05 4.12 (−23) −1.02 (−13) 9 (−6) −0.0000 −1.5 −0.5
6 8249.49 2.75 (−18) −2.50 (−11) 2 (−6) −0.0001 −1.7 −0.5
7 9311.67 6.48 (−14) −4.62 ( −9) 7 (−7) −0.0003 −2.0 −0.5
8 10313.21 5.88 (−10) −6.65 ( −7) 1 (−6) −0.0009 −1.8 −0.5
9 11249.14 2.16 ( −6) −7.97 ( −5) 3 (−6) −0.0042 −1.9 −0.5

10 12111.36 3.15 ( −3) −9.03 ( −3) 3 (−6) −0.0296 −2.2 −0.7
11 12879.76 1.55 −6.18 ( −1) 2 (−3) 0.3042 −2.9 −3.1

aObtained as E
(0)
v + Eshf

v , where E
(0)
v denotes the energy of related bound state in the respective inner

potential U , cf. Eq. (26) in the paper, and Eshf
v , shown in the fourth column, is evaluated from Eq. (31).

bETP−ESQ. Note, ∆EÀ|Eshft| in low v cases, reflecting merely the accuracy of the energies ESQ and E(0)

that was achieved in double-precision calculations.
cδΓ(x/y) for x=TP and y=SQ method.
dObtained by applying the Gamow formula at energy E(0).
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TABLE AXIII: Same as Table AXII for the potential of CO2+(b 1Π).

Γa δΓ(x/SQ) δΓ(Ref. 5/y) E ∆E(x−y)

v cm−1 x=TP b SC c y=SQ SC c cm−1 SQ−TP SQ−SCd

0 8.94 (−224) 0.000 −0.2 4938.11 −4 (−7) 0.10
1 1.59 (−199) 0.000 −0.3 6391.44 9 (−7) 0.12
2 4.10 (−178) 0.000 −0.3 7810.29 −1 (−6) 0.14
3 5.70 (−159) 0.000 −0.4 9194.65 2 (−7) 0.17
4 1.11 (−141) 0.000 −0.0 10544.56 2 (−7) 0.07
5 7.16 (−126) 0.000 −0.4 11860.08 −1 (−6) 0.07
6 5.51 (−111) 0.000 9.4 13141.25 −2 (−6) 0.21
7 2.93 ( −97) 0.000 −2.4 14388.22 −1 (−6) 0.39
8 1.31 ( −85) 0.000 −2.1 15601.02 −3 (−6) 0.51
9 2.22 ( −75) 0.000 −1.5 16779.70 −3 (−6) 0.52

10 4.10 ( −66) 0.000 −0.8 0.2 1.0 17924.22 −5 (−6) 0.45
11 1.24 ( −57) 0.000 −0.3 0.5 0.8 19034.49 −4 (−6) 0.35
12 7.05 ( −50) 0.000 −0.0 −0.6 −0.6 20110.28 −5 (−6) 0.25
13 8.14 ( −43) 0.000 −0.1 −1.1 −1.1 21151.23 −6 (−6) 0.20
14 2.07 ( −36) 0.000 −0.5 −1.7 −1.2 22156.81 1 (−6) 0.13
15 1.35 ( −30) 0.000 −0.7 −2.2 −1.5 23126.45 −2 (−5) 0.09
16 2.78 ( −25) 0.000 5.0 3.1 −1.8 24059.30 −1 (−5) 0.08
17 1.44 ( −20) 0.000 −4.0 −5.8 −1.8 24954.28 −7 (−7) 0.05
18 1.71 ( −16) 0.000 −6.3 −8.1 −2.0 25809.84 −2 (−5) −0.04
19 9.39 ( −13) 0.000 −3.5 −5.5 −2.2 26623.63 −2 (−5) −0.10
20 3.30 ( −09) −0.007 −2.2 −4.6 −2.4 27391.74 −9 (−6) −0.31
21 8.31 ( −06) −0.008 −0.2 −2.8 −2.6 28107.59 −2 (−5) −0.44
22 1.69 ( −02) −0.038 15.4 11.9 −3.0 28758.42 −3 (−5) −0.65
23 1.52 ( +01) −0.610 −23.5 −24.4 −1.1 29308.57 −6 (−1) −1.14

aThe widths of v=0−6 levels are affected by the extrapolation of the potential; the outer turning points
are larger than the last ab initio point available from Ref. 5.
b0.000 in this column denotes TP and SQ values of Γ identical at all five significant figures determined.
cΓSC

v evaluated according to Eqs. (4.5)−(4.6) of Ref. 2. Applied is also the correction of Ref. 3.
dESC

v is obtained from the generalized Bohr-Sommerfeld quantization condition, Eq. (4.2) of Ref. 2.
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Fig. A1

The structure of the Hamiltonian matrices used in the calculations on rotation-vibration
states of CO2+ (the JP04r-v model, Eqs. (2)−(8) in the paper). Dark squares represent
all the diagonal terms of the matrices except for the SO terms (±AΠ) which are shown
explicitly by the small gray circles. Large circles denote the SO couplings; with darker gray
color are marked the ones multiplied by

√
2. Light gray squares represent the rotational

couplings included into the model (the S uncoupling perturbations only);

X ≡ −
√

2J(J+1)

2µR2
, Z =

√
2X , and W ≡ −

√
2J(J+1)−4

2µR2
.

The yellow squares in the scheme denote the L uncoupling terms which were used in
the part of calculations aimed at testing the reliability of the lifetime predictions by the
JP04r-v model (cf. Table VII and Fig. 8). The terms denoted here by x, z, and w can be
found7 to satisfy

x

X
=

z

Z
=

w

W
=

< Π|L+|Σ >√
2

≡ S .

No information on the electronic matrix element(s) < Π|L+|Σ >, determining the relative
strength of the two kinds of perturbations, is available for CO2+. Thus, setting S=1 was
the first natural choice to make. Moreover, it was believed that this choice would impose
a rather stringent test on the adequacy of the JP04r-v model. Indeed, some information
available on the magnitude of rotational perturbation parameters in other systems7, like
N2+

2
8, indicates that the ‘true’ factor(s) S may be much smaller than 1.
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COMMENT

supplementing the discussion of Sec. IVD

A comparison of the present matrices HJe and HJf with those specified in Tables I and
II of Ref. 6 reveals:

• The terms z and Z do not appear in the rotational couplings of Ref. 6. The smaller
terms x and X, respectively, are used instead. A consequence of that is the rather
large energy splitting (of the size of several cm−1) between the Fi components of
the states A 3Σ+ v N which is seen in Table VIII of that paper.

• The formulas of Ref. 6 do not respect the ∆Ω=0 selection rule for SO interactions.
This fact might possibly contribute to the anomalous behavior of lifetimes calculated
in that work for the A 3Σ+ state levels. However, some tests (performed in this work
using the JP04 potentials) indicate that it could not be the main cause.
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Fig. A2

Energy shifts and widths of 25 lowest vibronic states of CO2+ (all states have energies
below the barrier top of VX). Perturbative results from the JCP06 and JP04 models
— contributions of different paths of mixing between the Q={X, a, b} and P={3Σ−}
subspaces. The values of Eshf and Γ from the JCP06 model can be found in Tables I and
II. The corresponding values from the JP04 model are given in Tables AIII and AIV.
In the bottom panels: absolute values of Γ(direct), Γ(indirect), and Γ(interference) for
the states a 1Σ+ v=0−6.

19



cf. Fig. A2

DEFINITIONS
of ’direct’, ’indirect’, and ’interference’ parts

of level widths and shifts

Let us rewrite the CM formulas, Eqs. (30) in the paper, in the following, more explicit, way

Eshf
i − ı1

2
Γi ≈

∑
es∈P

∑
s′∈Q

∑
s′′∈Q

〈Φi
s′|Vs′,es G

(+)es,es Ves,s′′ Φi
s′′〉 , (A1)

where Φi
s denotes a component of the bound state function in the Q sub-

space,
[
E

(0)
i IQ−H̃QQ

]
Φi=0 , and G

(+)es,es is an element of the matrix Green function

G
(+)

P (E)≡[E
+
IP−HPP]−1 at E=E

(0)
i ; off-diagonal elements of this matrix do not appear

here in consequence of neglecting the couplings in the P subspace. Obviously, the index i is
a label of vibronic state under consideration, i≡(s v) with s∈Q.
The terms of the first sum for the width have the meaning of partial widths, i.e.

Γi=
∑

es∈P

Γi→es with Γi→es≈2π
∑

s′

∑

s′′
〈Φi

s′ |Vs′,es Ψ
(+) eses 〉〈Ψ(+) eses |Ves,s′′ Φi

s′′〉 .

The terms of the two sums over states in the Q subspace (s′ and s′′) can be divided into the
following three groups, each describing a different path of bound-continuum configuration
mixing or resonance decay,

{ terms with s′=s′′=s } ≡ ‘direct’ path

{ terms with s′=s′′ 6=s } ≡ ‘indirect’ path (A2)

{ terms with s′ 6=s′′ } ≡ ‘interference’ path .

This leads to the resolutions

Eshf
sv =

∑

path

Eshf
sv (path) and Γsv→es =

∑

path

Γsv→es(path) . (A3)

COMMENTS

• The states b 1Π v=0−6 decay almost entirely along the direct pathway,

92<Γ(dir)
Γ

<99.5% and Γ(indir)
Γ

<0.2%.

• For most of the states X 3Π v=0−10, Γ(dir)
Γ
≈103% and Γ(interf)

Γ
≈−3%.

• The large involvement of interference path for v=9, displayed in the middle right panel
of the figure, stems from the presence of the nearby state a 1Σ+ v=5 (the second closest
approach of two energy levels in the JP04 model).

• Only the three lowest a 1Σ+ state levels, v=0−2, appear to predissociate indirectly.
The relation Γ(indir)ÀΓ(dir) which characterizes these cases becomes reversed already
for the next a state level, v=3.
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• In the JCP06 model, the transition from indirect to direct predissociation is accom-
panied by a significant participation of the interference terms Γa v(interf) for v=2−4.
No counterpart effect is observed in the JP04 model. This is certainly related to the
fact that the mixing within the Q subspace, of bound states supported by the individ-
ual potentials UX , Ua, and Ub, is quite different in the two models (despite identical
SO couplings). The crucial factors are the different relative positions of the X and a
state energy levels. The distance between the closest levels from the JCP06 potentials,

E
(0)
X v=1 and E

(0)
a v=0, is about 42 times larger than the smallest distance between levels

from the JP04 potentials E
(0)
X v=4−E

(0)
a v=4=1.4 cm−1.

• The different intra Q subspace mixing in the two models manifests itself even more
clearly in the resolutions of the shifts Eshf

a v plotted in the upper panels.
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Level widths from the JCP06 model,
total and partial Γsv→es for s=b 1Π, a 1Σ and s̃=3Σ−, X 3Π

22



Fig. A3 continued

In the upper panels: ’Exact’ results for the total widths Γbv and Γav, perturbative
quantum-mechanical results for the widths Γbv→X , and semiclassical results for the widths
Γbv→3Σ− , Γav→3Σ− , and Γav→X , due to the curve-crossings.
In the lower panels: the factors Γ0

v and Pv of the semiclassical widths for v levels above the
energies of the crossings. The factors are defined in Eq. (32) of the paper. The definition
of the quantity ξ(E) for energies above the crossing point is quoted in the comment to
Fig. A5, Eq. (A7). For levels lying sufficiently above the crossing point, the factor Pv

takes an approximate form

Pv≈4 sin2 phv with phv=∆̄φ(EBS
v )+0.25 π .

(see Eq. A6 for definition of ∆̄φ).

ANALYSIS of PARTIAL WIDTHS

in terms of the factors Γ0
v and Pv

• As to the relations between the widths due to the a−3Σ− and a−X crossings,

Γav→X > Γav→3Σ− ;

Both Γ0
v(a−3Σ−) and Γ0

v(a−X) are monotonically decreasing functions of v
in the range shown. Any difference between them can stem only from the
curve-crossing parameter pLZ

v . The v-independent ingredient of this parameter,
V 2

1,2(rc)/∆F , is about 1.5/0.43 times larger in the a−X case. The actual ratios

pLZ
v (a−X)/pLZ

v (a−3Σ−) are slightly smaller (∼1.9−3.0) because of larger velocities
uv(rc) in the same (a−X) case. The phases phv pertaining to the crossings a−X
and a−3Σ− both grow monotonically with v but with distinctly different speeds.
Whereas the phase phv(a−X) increases between v=7 and v=23 by less than 0.5 π,
the increase of the phase phv(a−3Σ−) in the same range is close to 8π. This ob-
viously causes distinct (smooth vs oscillatory) variation with v of the respective
factors Pv(a−X) and Pv(a−3Σ−).

• As to the widths due to the b−3Σ− and a−3Σ− crossings;
The two crossings are of the same type. The similarity is best exposed in the shapes
of the respective functions phv in the bottom panel. The widths are of similar size;
this stems from nearly identical values of the respective factors Γ0

v for v≥7, as seen
in the third panel.

• The widths Γbv→X for v≥7 due to the SO coupling between the non-crossing po-
tentials Vb and VX do not oscillate with v. Therefore, in order to compare with the
oscillating widths widths Γbv→3Σ− , it is convenient to use the Γ0 parts of the latter.
Such comparison is made in the third panel of the figure.
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Level widths from the JP04A model: ΓAv and ΓAv→es for s̃=3Σ−, X 3Π, and b 1Π

Upper panel: Perturbative quantum-mechanical results using Q = {A} and P={s̃} (color
triangles) and semiclassical results for the A−s̃ crossings (small black triangles), see Table
AV.
Lower panel: Resolutions of the semiclassical results into Γ0

v and Pv factors defined in the
paper, Eq. (32). Note, the factors Γ0

v pertaining to A−3Σ− are magnified 50 times. For
comparison shown are also the factors that pertain to the ci type crossing a−X analyzed
in Fig. A3.
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Level shifts from the JP04A model

‘exact’ means the shift between Ev — the energy of the state A 3Σ+ v obtained in four-

channel Siegert quantization calculations and E
(0)
v — the energy of related bound state in

the subspace Q={b, A} for v=0−4 and Q1={A} for v≥5. The open (color) symbols rep-
resent shifts obtained in two-channel calculations within the CM approach using Q1={A}
and P={s̃} for s̃=3Σ−, X 3Π, and b 1Π. Note, the values of Eshf

v from Q1+P={A}+{3Σ−}
calculations are magnified 50 times. The energy shifts due to the A−b coupling, accounted
for exactly in the subspace Q={b, A}, are equal to the distances between the dotted orange
and dashed green lines at v=0−4. The small full symbols show results of application of
the semiclassical (SC) formulas of Ref. 9 to the three A−s̃ curve-crossings, with s̃=3Σ−,
X 3Π, and b 1Π. The crossings occur at points rc≈2.3, 1.8, and 1.9 a0, and at energies
Ev=0<VA(rc)<E1, E13<VA(rc)<E14, and E4<VA(rc)<E5, respectively.
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COMMENT on Fig. A5

The divergence which is seen in the figure between the SC and CM energy shifts due to

the A−X crossing reflects a difficulty associated with the term E
shf (1)
v of the semiclassical

formulas, Eq. A4 below. The term looses its original meaning when r1 becomes too
close to the crossing point rc≈1.8 a0; a part of the integration range near r1 becomes then
severely overweighed by the large factor [V2(r)−V1(r)]

−1≡[∆V (r)]−1 of the integrand. The
circles, inside the blue squares, represent results obtained after a simple modification of
this factor: ∆Vmod=∆V (r1;v=6) for r≤r1;v=6, where r1;v=6=1.88 a0 denotes the left turning

point in the potential VA at E=EBS
v=6. The problem with E

shf (1)
v occurs also in the case

of the inner crossing A−b at the energy VA(rc≈1.9 a0) just above the barrier top of the
potential Vb. In this case, the inaccuracies are less visible since the shifts are dominated

by the term −E
shf (2)
v (Eq. A5, the minus sign is necessary for an inner crossing9).

SEMICLASSICAL FORMULAS for LEVEL SHIFTS

of Ref. 9

In the notation introduced in Sec. IIIC of the paper ( VA≡V1 and Ves≡V2), the formula
for the shifts of levels lying below V1(rc) reads

Eshf
v = − 2

Tv

r2∫

r1

V 2
12(r)

[V2(r)−V1(r)]
~
µ
k1(r, E

BS
v )

dr ≡ Eshf (1)
v . (A4)

For levels above the crossing-points,

Eshf
v = Eshf (1)

v +Eshf (2)
v . (A5)

Taking the principal value of the integral in the term E
shf (1)
v becomes necessary because

of singularity of the integrand at r=rc. The term

Eshf (2)
v = −2πΓ0

v

√
ξvAi(−ξv)Bi(−ξv) (A6)

causes the oscillations of the shifts with changing v since it involves the Airy functions Ai
and Bi for negative arguments. The positive quantity ξv is defined as ξv=ξ(EBS

v ), where

ξ(E) =
[3

2
∆̄φ(E)

]2/3
(A7)

with ∆̄φ denoting the smaller of the phase differences

rc∫

r1

k1dr−
rc∫

r3

k2dr and

rc∫

r3

k2dr+

r2∫

rc

k1dr .
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Fig. A6
Comparison of calculated and measured vibronic energies of CO2+

Considered are the energies relative to the position of the lowest level, Esv−EXv=0≡Esv

for s=X, b, a, A, and plotted are the deviations: ∆Esv≡Ev−Ev(JP04). ‘JP04’ stands for
energies calculated from the potentials of Ref. 5. The values of Esv(JP04) (represented
here by the green ∆Esv=0 lines) can be obtained from Tables AIII and AIV. ‘JCP06’
denotes energies calculated (in this work) from the potentials of Ref. 4. ‘*JPC06’ in
the upper right panel denotes the energies obtained in Ref. 6. ‘93’ and ‘*93’ denote
the energies calculated in Ref. 11 from the potentials of Ref. 10 and from the potentials
referred to ‘Larsson (1993)’, respectively. The values of Ebv from these potentials are
about 170 meV smaller than the ‘JP04’ values; hence, the absence of the ‘93’ lines in the
upper left panel. ‘exp96’, ‘94’, and ‘95’ denote the experimental results from Refs. 13,
11, 12, respectively. Since the state X 3Π v=0 was not observed in the latter work, the
extrapolated value of 41.298 eV was used for its vertical energy to obtain the energies Esv

of the higher observed states.
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Fig. A7

Predissociation lifetimes of vibrational levels of CO2+ in the c 1∆ state.
A crude estimation

COMMENT

The model used in the calculations accounts for the SO coupling with the state X 3Π; the
coupling is reproduced from Fig. 2 of Ref. 4. The potentials are from Ref. 5. Cubic spline
interpolation between the ab initio points listed in Table 4 of Ref. 5 gives a rather low
quality curve for the state c (un-smooth around the minimum, undetermined outer part
of the barrier). Thus, lifetimes of v≥6 levels could not be calculated (tunneling prevails)
and the predissociation lifetimes obtained for the lower levels can be reliable only as to
their overall magnitude. They are generally in the µs range, evidently larger than lifetimes
of other levels in the same energy range, a 1Σ+ v=10, 11, b 1Π v=11−13, and A 3Σ+ v=0.
Note, the partial lifetimes for decay into the X and 3Σ− channels are shown separately
for the a and b state levels. Obviously, the relations between the lifetimes of levels in the
different potentials can be rationalized with the help of the Golden Rule formula. Because
of similar size of the couplings s−X for s=a, b, c, A (see also Fig. 2), the discrimination
stems from overlapping between the bound and continuum functions which oscillate with
similar or disparate frequencies.
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Fig. A8

Results of test calculations for predissociation and tunneling lifetimes of vibrational
levels of 13C16O2+(d 1Σ+).
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COMMENT

The tests are presented in connection with the original hypothesis of Ref. 10 that tunnel-
ing through the two barriers of the potential d 1Σ+ might be the mechanism responsible
for the observed lifetimes in the millisecond range. The potentials and couplings used in
the calculations are shown in the bottom panel. The potentials are taken from Ref. 5 and
the couplings are from Ref. 4. Since no SO coupling curve involving the state d 1Σ+ is
available, the respective curves for the state a 1Σ+ are used instead (indicated by orange
color). In the range of r>4.5a0, the potential d 3Σ+ is extrapolated, somewhat artificially,
with the curve C+1/r. This affects the tunneling lifetimes of the lowest levels and there-
fore these lifetimes are not shown here. It should nevertheless be evident from the two
upper panels of the figure that tunneling is a rather unfavorable decay route for the two
inner-well levels v1=0 and v1=1 which had probably the largest chances to be populated
in the experiment of Ref. 10. These levels decay fast by spin-orbit predissociation which is
obviously facilitated by the crossing with the state 3Σ−. Lifetimes below 1 ns characterize
this decay. However, some tiny fraction of ions excited to the d 1Σ+ v1=1 level may choose
the tunneling pathway. Their lifetime would be about 170 ms, i.e. somewhat too big to
account for the measured value of 6 ms. It should be added, however, that this lifetime
is enormously sensitive to the barrier shapes, thus its reduction by a factor of 10 due to
some refinements of the potential is quite likely.
Yet another hypothesis may be considered. An inspection of amplitudes of the vibrational
functions within the inner well (the bottom right panel) indicates that the probability of
populating the outer-well levels by vertical transition from ground state CO to the in-
ner well and subsequent tunneling through the inner barrier could be non-negligible (like
1/50−1/500). Predissociation of these levels is relatively slow. Lifetimes of the size of
13, 7, and 0.6 µs are obtained for v2=3, 4, and 5, respectively. These lifetimes are also
determined by interaction with the state 3Σ−. It is likely that accounting for true cou-
pling d 1Σ+−3Σ− will enlarge all the predissociation lifetimes shown in the upper right
panel and those concerning v2 levels will thus become closer to the red sticks denoting
the experimental values. For now, however, the evidence is insufficient to decide whether
tunneling through the double barrier and/or predissociation from the outer well of the
potential d 3Σ+ could contribute to the observed 6 and 0.8 ms lifetimes. Thus, one may
believe that no alternative exists to the assignment of these lifetimes proposed in Ref. 14
and corroborated in the main text of the present paper.
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Fig. A9

Lifetimes of rotation-vibration states (J v) of CO2+(a 1Σ+) from the JP04r-v model

COMMENT

The lifetimes are seen to change very little (by about 30%) with J growing from 1 to
10 (the right panel). For the states v J=1, they are close to the corresponding results
from the purely vibrational JP04 model (denoted by black crosses). Exception is the
v=0 J=1 level; its lifetime is about three times smaller than the v=0 lifetime from the
JP04 model. In the case of the 13C16O2+ isotopomer (not shown here), the lifetimes
of the states a v=0 J=1−10 are within the range of 390-410 µs. So, they compare less
favorably with the experimental value of 6000±2000 µs than the JP04 result, see Table V
in the paper. The gray symbols in the right panel show the effect of the L-uncoupling
terms when added to the Hamiltonian HJe of the JP04r-v model, see Fig. A1. The faster
decrease of lifetimes with growing J is almost entirely due to the couplings 3Σ−

0 −3Π1 and
3Σ−

1 −3Π0.
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Fig. A10

Rovibronic states b 1Π v=0, 1 J of CO2+ from the JP04r-v model

COMMENT

The energies and lifetimes obtained from the model for e and f parity states are practically
indistinguishable. The gray symbols for v=0 J levels represent results from the model
supplemented with the L-uncoupling terms, see Fig. A1; the upper gray line pertains to
e parity levels; the f parity levels remain almost unaffected by the terms. The relation
to the results from the vibrational JP04 model should be noted: the lifetimes τJP04

b v are
close to the lifetimes of the J=1 rotational levels. Deviations smaller than 1 % are found
for nearly all v’s in the range 0-10. Obviously, this is just what one would expect. It is
thereby demonstrated that the JP04r-v model passes the minimal correctness test.
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