- **Reference Instances**: a subset of training cases used by the similarity based method.
- Reasons why one should select the reference instances:
 - if training set very large most of the cases have no influence on classification, including all decreases the computing performance.
 - 2. if data noisy: possible increase in prediction ability on unseen cases.
 - large number of training cases: hard to understand the structure of the data, reference selection allows to find the most informative (interesting) prototypes.

- **SBL-PM** algorithm (the kernel):
 - 1. Set the partial memory of the system (reference set) to the enire training set: $R = T = {\mathbf{R_i}}, i = 1, ..., N.$
 - 2. Set the classification accuracy Δ to the value obtained from the leave-one-out test on T or to the value given by the user.
 - 3. For i = 1 to N:
 - (a) Select one case $\mathbf{R_i}$ form R and set the temporary reference set to $R' = R \mathbf{R_i}$.
 - (b) Using the current reference set R' as the training set and the whole original training set T as the test set calculate the prediction accuracy A_c .

(c) if $A_c \ge \Delta$ set R = R'.

- 1. Use the reference set *R* as a training set to calculate the prediction ability on unseen cases.
 - The ∆ parameter controls the number of reference cases that remain in partial memory: in general the greater is its value the more cases remain in partial memory.

• The Extended Batch Version

- 1. Set the partial memory of the system (reference set) to the entire training set: $R = T = {\mathbf{R_i}}, i = 1, ..., N.$
- 2. Set the classification accuracy Δ to Δ_1 obtained from the leave-one-out test on T and the lowest accuracy that should be considered Δ_m .
- 3. Define the δ parameter determining steps in which the target accuracy Δ is lowered, (Ex. $\delta = 0.05$).

(a) Until $\Delta < \Delta_m$

- i. For i = 1 to N:
- ii. Select one case $\mathbf{R_i}$ form R and set the temporary reference set to $R' = R \mathbf{R_i}$.

iii. Using the current reference set R' as the training set and the whole original training set T as the test set calculate the prediction accuracy A_c .

iv. if $A_c \geq \Delta$ set R = R'.

- (b) Set $A_e(\Delta) = A_c$ to record the accuracy at the end of this step.
- (c) Set $R(\Delta) = R$ to remember the reference vectors at this stage.
- (d) Change $\Delta \leftarrow \Delta \delta$
- 4. Select the references obtained for the highest $A_e(\Delta)$.

1. The on-line version

- (a) The off-line versions of **SBL-PM** require access to all cases in the training set.
- (b) On-line version has to decide weather the new case X_k coming from the input stream should be added to the partial memory of past cases.
- (c) The **SBL-PM On-Line** builds a partial memory forgetting cases that did not appear for a longer time.

1. **SBL-PM On-Line** algorithm:

- Set the maximum number of reference vectors N_{max}^r and the maximum number of training vectors N_{max}^t .
- Take the first incoming vector \mathbf{X}_1 as the first reference $R = \{\mathbf{X}_1\}$ and the training vector $T = \{\mathbf{X}_1\}$.
- Repeat for all incoming vectors \mathbf{X}_k :
 - Add the incoming vector \mathbf{X}_k to the training set T created so far.
 - determine the class $C(\mathbf{X}_k)$ of this vector using the reference set created so far.
 - If $C(\mathbf{X}_k)$ is not correct add \mathbf{X}_k to the current R.
 - If $N_r \ge N_{max}^r$ or $N_t \ge N_{max}^t$, where $N_r(N_t)$ is the number of vectors in R(T), then

- \ast Perform the batch step reducing R.
- * Empty the training set T.

• Results

Dataset	Remaining	SBL-PM	k-NN
Append., CV	2.76, 106	82.95 ± 3.18	81.95 ± 1.45
Hepat., CV	4.3, 155	81.07 ± 2.84	78.77 ± 1.04
Ionosphere	19, 200	93.33	92
Iris, CV	6.7, 150	95.3 ± 1.7	95.8 ± 0.3

