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Final frontier: building models of objects and situations is the next step.
GAN, Generative Adversarial Networks, one network creates false
examples distorting learning data, another network learns to distinguish

them from natural ones.




Brain activity & Mental image

fMRI activity can be correlated with deep CNN network features;

using these features closest image from large database is selected.
Horikawa, Kamitani, Generic decoding of seen and imagined objects using
hierarchical visual features. Nature Comm 2017.
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Brain activity < Mental image

fMRI activity can be correlated with deep CNN network features;
using these features closest image from large database is selected.
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Brain activity < Mental image

fMRI activity can be correlated with deep CNN network features;
using these features closest image from large database is selected.

Horikawa, Kamitani, Generic decoding of seen and imagined objects using
hierarchical visual features. Nature Comm. 2017.
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Semantic reconstruction of continuous language

Tang, J., LeBel, A, Jain, S., & Huth, A. G. (2023). Semantic reconstruction of continuous
language from non-invasive brain recordings. Nature Neuroscience, 26(5)
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fMRI < CNN

Convert activity of the brain
into the mental images that
we are conscious of.

Try to estimate features at
different brain areas/cortical
layers.

8-layer convolution network,

~60 miIn parameters, feature
vectors from randomly
selected 1000 units in each
layer are used to represent
images at different level of
processing.

Output: vector of features
that may be used to
reconstruct image.
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Interfejs mozg-robot

Australia, UTS: VR to control robotic dogs using EEG.
Dry graphene sensors, not as accurate as wet.
Przydatny?
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Na zakonczenie

Why are we confident that machines will pass Turing test ...
—Rodney Brooks, director of the MIT Al Lab

There's this stupid myth out there that A.l. has failed, but A.l. is everywhere
around you every second of the day. People just don't notice it. You've got A.l.
systems in cars, tuning the parameters of the fuel injection systems. When you
land in an airplane, your gate gets chosen by an A.l. scheduling system. Every
time you use a piece of Microsoft software, you've got an A.l. system trying to
figure out what you're doing, like writing a letter, and it does a pretty damned
good job. Every time you see a movie with computer-generated characters,
they're all little A.l. characters behaving as a group. Every time you play a video
game, you're playing against an A.l. system.

Machine Learning and Creativity (wyktad mniej techniczny).

Al Links wiele ciekawostek.



http://www.is.umk.pl/~duch/Wyklady/Academia%20Copernicana/AIF08-MachineLearning.pptx
http://www.is.umk.pl/~duch/Wyklady/Academia%20Copernicana/AIF08-MachineLearning.pptx
http://www.is.umk.pl/~duch/Wyklady/Academia%20Copernicana/AIF09-AI%20links.pptx

Przyktadowe pytania

Jakie mamy klasy metod uczenia maszynowego?

Na czym polega ML?

Przedstawic algorytm drzew decyzji, jakie granice tworzy?
Etapy data mining

Jakg metode uczenia maszynowego warto stosowac w sytuac;ji
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