List of publications

 

 

1.
 D. Chruściński,
Symplectic Orbits in Quantum State Space,
J. Math. Phys. 31,1587 (1990)

2.
D. Chruściński, 
Symplectic Structure of the von Neumann Equation,
Rep. Math. Phys. 29, 95 (1991).

3.
D. Chruściński and P. Staszewski,
On Asymptotic Solutions of Belavkin's Stochastic Wave Equation,
Physica Scripta 45, 193 (1992).

4.
D. Chruściński, 
Symplectic Structure for the non-Abelian Geometric Phase,
Phys. Lett. A 186, 1 (1994).

5
D. Chruściński, 
Geometric Phase and the Controlability of Quantum Systems,
Rep. Math. Phys. 35, 63 (1995).

6.
J. Kijowski and D. Chruściński, 
Variational Principle for Electrodynamics of Moving Particles,
Gen. Rel. Grav. 27, 267 (1995).

7.
D. Chruściński and J. Kijowski,
Equations of Motion from Field Equations and A Gauge-invariant Variational Principle for the Motion of Charged Particles
J. Geom. Phys. 20, 393 (1996).

8.
D. Chruściński and J. Kijowski,
Equations of Motion of Charged Test Particles from Field Equations,
Acta Phys. Pol. B 27, 2727 (1996).

9.
D. Chruściński and J. Kijowski,
Gauge-invariant Theory of Motion of Charged Test Particles,
in "Gravity, Particles and Space-Time" ed. by P. Pronin and G. Sardanashvily
World Scientific, Singapore, 1996, pp. 29-50.

10.
D. Chruściński and J. Kijowski,
Generation of a particle's dipole moment in nonlinear electrodynamics,
Proceedings of the 21Colloquium on Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, Editors: H.-D. Doebner, W. Scherer, C. Schulte, World Scientific, Singapore 1997, 726-729.

11.
D. Chruściński and J. Kijowski,
Generation of a Dipole Moment by External Field in Born-Infeld Non-linear Electrodynamics,
C. R. Acad. Sci., Paris 324, Serie IIb, 435 (1997).

12.
D. Chruściński and J. Kijowski,
Generation of multipole moments by external field in Born-Infeld non-linear electrodynamics,
J. Phys. A: Math. Gen. 31, 269 (1998).

13.
D. Chruściński and J. Kijowski,
A Gauge-invariant Hamiltonian Structure for the Motion of Charged Particles,
J. Geom. Phys. 27, 49 (1998). 

14.
D. Chruściński,
Point charge in the Born-Infeld electrodynamics,
Phys. Lett. A 240, 8 (1998).

15.
D. Chruściński,
Canonical formalism for the Born-Infeld particle,
J. Phys. A: Math. Gen. 31, 5775 (1998).

16.
D. Chruściński,
Hamiltonian Structure for Classical Electrodynamics of a Point Particle,
Rep. Math. Phys. 41, 13 (1998).

17.
D. Chruściński and H. Roemer,
Dynamics of the Born-Infeld dyons,
J. Phys. A: Math. Gen. 32, L263 (1999).

18.
D. Chruściński,
SO(2) symmetry of a Maxwell p-form theory,
Lett. Math. Phys. 48, 385 (1999).

19.
D. Chruściński,
Symplectic reduction of p-form electrodynamics,
Rep. Math. Phys. 45, 121 (2000).

20.
D. Chruściński,
Strong field limit of the Born-Infeld p-form theory,
Phys. Rev. D 62, 105007 (2000).

21.
D. Chruściński,
Head or tail: the dilemma of electrodynamics,
in "Quantum theory and Symmetries", Eds. H.-D. Doebner, J.D Henning, W. Luecke, V.K Dobrev
World Scientific Publishing, Singapore, 2000, p. 10.

22.
D. Chruściński,
Quasi-local structure of p-form theory,
Acta Phys. Pol. B 32, 147 (2001).

23.
D. Chruściński,
Resonant states and classical damping,
Open Sys. Information Dyn. 9, 207 (2002).

24.
D. Chruściński,
Quantization conditions and p-form electrodynamics,
Int. J. Mod. Phys. A 18, 41 (2003).

25.
D. Chruściński,
Quantum mechanics of damped systems,
J. Math. Phys. 44, 3718 (2003).

26.
D. Chruściński,
Deformation quantization of damped systems,
Proceedings of the 24th International Colloquium on Group Theoretical Methods in Physics, Institute of Physics, Conference Series Number 173, 2003, pp. 519-522.

27.
D. Chruściński,
Quantum Mechanics of Damped Systems II. Damping and Parabolic Potential Barrier,
J. Math. Phys. 45, 841 (2004).

28.
D. Chruściński,
Spectral properties of the squeeze operator,
Phys. Lett. A 327, 290 (2004).

29.
D. Chruściński and K. Mlodawski,
Wigner function and Schroedinger equation in phase space representation ,
Phys. Rev. A 71, 052104 (2005).

30.
D. Chruściński and J. Jurkowski,
Quantum damped oscillator I: dissipation and resonances ,
Ann. Phys. 321, 854 (2006) .

31.
D. Chruściński,
Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D Parabolic Potential Barrier,
Ann. Phys. 321, 840 (2006) .

32.
D. Chruściński,
Phase-space approach to Berry's phases,
Open Sys. Information Dyn. 13, 67 (2006).

33.
D. Chruściński and A. Kossakowski,
On partially entanglement breaking channels,
Open Sys. Information Dyn. 13, 17 (2006).

34.
D. Chruściński and A. Kossakowski,
On multipartite invariant states I. Unitary symmetry,
Phys. Rev. A 73, 062313 (2006).

35.
D. Chruściński and A. Kossakowski,
On multipartite invariant states II. Orthogonal symmetry,
Phys. Rev.  A 73, 062314 (2006).

36.
D. Chruściński and A. Kossakowski,
Class of positive partial transposition states,
Phys. Rev. A 74, 022308 (2006).

37.
D. Chruściński,
Geometric aspects of quantum mechanics and quantum entanglement,
J. Phys: Conference Series, 30, 9 (2006).

38.
D. Chruściński,
Koopman's approach to dissipation,
Rep. Math. Phys. 57, 319 (2006).

39.
D. Chruściński and A. Kossakowski,
Rotationally invariant multipartite states,
Open Systems and Inf. Dynamics, 14, 25 (2007).

40.
D. Chruściński and A. Kossakowski,
On the structure of entanglement witnesses and new class of positive indecomposable maps,
Open Systems and Inf. Dynamics, 14, 275 (2007).

41.
D. Chruściński and A. Kossakowski,
On circulant states with positive partial transpose,
Phys. Rev.  A 76, 032308 (2006).

42.
D. Chruściński and A. Kossakowski,
Quantum Entanglement and Symmetry,
J. Phys.: Conference Series 87,  012008 (2007).

43.
D. Chruściński, J. Jurkowski and A. Kossakowski,
Quantum states with strong positive partial transpose,
Phys. Rev. A 77,  022113 (2008).

44.
D. Chruściński and A. Kossakowski,
How to construct indecomposable entanglement witnesses,
J. Phys. A: Math. Theor. 41,  145301  (2008).

45.
D. Chruściński and A. Kossakowski,
A class of positive atomic maps,
J. Phys. A: Math. Theor. 41,  215201  (2008).

46.
D. Chruściński and A. Pittenger,
Generalized Circulant Densities and a Sufficient Condition for Separability,
J. Phys. A: Math. Theor. 41,  385301  (2008).

47.
D. Chruściński and A. Kossakowski,
Circulant decompositions for bipartite quantum systems,
Int. J. Quantum Computation 6, 627 (2008).

48.
D. Chruściński and A. Kossakowski,
Multipartite Circulant States with Positive Partial Transpose, Open Sys. Information Dyn. 15, 189 (2008).

49.
D. Chruściński and A. Kossakowski,
Permutations and quantum entanglement,
Journal of Physics: Conference Series 104, 012002 (2008).

50.
E. Bruenning, D. Chruściński, and F. Petruccione,
Parameterizing density matrices for composite quantum systems,
Open Sys. Inf. Dynamics, 15, 397 (2008).

51.
 D. Chruściński and G. Marmo,
Remarks on the GNS Representation and the Geometry of Quantum States,
Open Sys. Inf. Dynamics, 16, 157 (2009).

52.
 D. Chruściński and A. Kossakowski,
Spectral properties of positive maps,
Comm. Math. Phys. 290, 1051 (2009).

53.
 D. Chruściński,
Quantum Entanglement and Circulant States,
Quantum Bio-Informatics II, Quantum Probability and White Noise Analysis XXIV, 2009, 42-55.

54.
 D. Chruściński and A. Kossakowski,
Geometry of quantum states: new construction of positive maps,
Phys. Lett. A 373, 2301 (2009).

55.
J. Jurkowski, D. Chruściński, and A. Rutkowski,
A class of bound entangled states of two qutrits,
Open Sys. Inf. Dynamics, 16, 235 (2009).

56.
 D. Chruściński, A. Kossakowski, and G. Sarbicki,
Spectral conditions for entanglement witnesses versus bound entanglement,
Phys. Rev. A 80, 042314 (2009).

57.
 D. Chruściński, J. Pytel, and G. Sarbicki,
Constructing optimal entanglement witnesses,
Phys. Rev. A 80, 062314 (2009).

58.
 D. Chruściński, A. Kossakowski, and S. Pascazio,
Long-time memory in non-Markovian evolution,
Phys.  Rev. A 81, 032101 (2010).

59.
 D. Chruściński,
Positive maps, doubly stochastic matrices and new family of spectral conditions,
Journal of Physics: Conference Series 213, 012003 (2010).

60.
 D. Chruściński and A. Kossakowski,
Non-Markovian quantum dynamics: local versus non-local,
Phys. Rev. Lett. 104, 070406 (2010).

61.
 D. Chruściński,
Spectral properties of entanglement witnesses and positive maps,
Quantum Bio-Informatics III, Quantum Probability and White Noise Analysis XXV, 2010, 49-58.

62.
 D. Chruściński,
Quantum entanglement and multipartite symmetric states,
Quantum Bio-Informatics III, Quantum Probability and White Noise Analysis XXV, 2010, 59-80.

63.
 D. Chruściński and J. Jurkowski,
Memory in a nonlocally damped oscillator,
Quantum Bio-Informatics III, Quantum Probability and White Noise Analysis XXV, 2010, 155-160.

64.
J. Jurkowski and D. Chruściński,
Estimating Concurrence via Entanglement Witnesses
Phys. Rev. A 81, 052308 (2010).

65.
B. Bylicka and D. Chruściński,
Witnessing quantum discord in 2 x N systems,
Phys. Rev. A 81, 062102 (2010).

66.
 D. Chruściński, A. Kossakowski, P. Aniello, G. Marmo, F. Ventriglia,
Commutative dynamics of open quantum systems,
Open Sys. Inf. Dynamics, 17, 255 (2010).

67.
 D. Chruściński, A. Kossakowski, T. Matsuoka, K. Mlodawski,
A class of Bell diagonal states and entanglement witnesses,
Open Sys. Inf. Dynamics, 17, 235 (2010).

68.
L. Accardi, D. Chruściński, A. Kossakowski, T. Matsuoka, M. Ohya,
On classical and quantum liftings,
Open Sys. Inf. Dynamics, 17, 361 (2010).

69.
 D. Chruściński and J. Pytel,
Constructing optimal entanglement witnesses II: witnessing entanglement in 4N x 4N systems,
Phys. Rev. A 82, 052310 (2010).

70.
 D. Chruściński and A. Kossakowski,
Spectral conditions for positive maps and entanglement witnesses,
Journal of Physics: Conference Series 213, 012003 (2010).

71.
D. Chruściński and A. Kossakowski,
Bell diagonal states with maximal abelian symmetry,
Phys. Rev. A 82, 064301 (2010).

72.
J. Jurkowski,  D. Chruściński, and A. Rutkowski,
Local Numerical Range for a Class of 2 x d Hermitian Operators,
Open Sys. Inf. Dynamics, 17, 347 (2010).

73.
 D. Chruściński and A. Kossakowski,
On the symmetry of the seminal Horodecki state,
Phys. Lett. A 375, 434 (2011).
74.
 D. Chruściński and J. Pytel,
Optimal entanglement witnesses from generalized reduction and Robertson maps,
J. Phys. A: Math. Theor. 44, 165304 (2011).

75.
 D. Chruściński and A. Kossakowski,
Non-Markovian dynamics of quantum systems
Quantum Bio-Informatics IV, Quantum Probability and White Noise Analysis XXVIII, 2011, 59-80.

76.
D. Chruściński Y. Hirota, T. Matsuoka and M. Ohya,
Remarks on the degree of entanglement,
Quantum Bio-Informatics IV, Quantum Probability and White Noise Analysis XXVIII, 2011, 145-156.

77.
 D. Chruściński, A. Kossakowski, T. Matsuoka and M. Ohya,
Entanglement mapping vs. quantum conditional probability operator,
Quantum Bio-Informatics IV, Quantum Probability and White Noise Analysis XXVIII, 2011, 223-236.

78.
 D. Chruściński and A. Kossakowski,
CConstructing positive maps in matrix algebras,
in "Quantum Dynamics and Information", eds. R. Olkiewicz, W. Cegla, A. Frydryszak, P. Garbaczewski, L. Jakobczyk, World Scientific, 2011, pp. 37-58.

79.
 D. Chruściński and A. Kossakowski,
Spectral conditions for positive maps and entanglement witnesses,
Journal of Physics: Conference Series 284, 012017 (2011).

80.
D. Chruściński and A. Kossakowski,
Local approach to the non-Markovian evolution of quantum systems,
Int. J. Quant. Inf. 9, 129 (2011).

81.
 D. Chruściński and A. Rutkowski,
Entanglement witnesses for d x d systems and new classes of entangled qudit states,
Eur. Phys. J. D 62, 273 (2011).

82.
 D. Chruściński, Kossakowski and A. Rivas,
On measures of non-Markovianity: divisibility vs. backflow of information,
Phys. Rev. A 83, 052128 (2011).

83.
D. Chruściński and A. Rutkowski,
A  family of generalized Horodecki-like entangled states
Phys. Lett. A 375, 2793 (2011).

84.
 D. Chruściński, A. Kossakowski, G. Marmo and E.C.G. Sudarshan,
Dynamics of Interacting Classical and Quantum Systems,
Open Sys. Information Dyn. 18, 339 (2011).

85.
 D. Chruściński and F. A. Wudarski,
Geometry of entanglement witnesses for two qutrits,
Open Sys. Inf. Dynamics, 18, 387 (2011).

86.
 D. Chruściński and A. Kossakowski,
From Markovian semigroup to non-Markovian quantum evolution,
EPL, 97, 20005 (2012).

87.
D. Chruściński and A. Kossakowski,
Markovian vs. non-Markovian quantum evolution: geometric perspective,
Int. J. Geom. Meth. Mod. Phys. 9, 1260019 (2012).

88.
 D. Chruściński and G. Sarbicki,
Exposed positive maps: a sufficient condition,
J. Phys. A: Math. Theor. 45, 115304 (2012).

89.
 D. Chruściński, P. Facchi, G. Marmo, and S. Pascazio,
The observables of a dissipative quantum system,
Open Sys. Information Dyn. 19, 1250002 (2012).

90.
B. Bylicka and D. Chruściński,
Circulant states with vanishing quantum discord,
Open Sys. Information Dyn. 19, 1250006 (2012).

91.
D. Chruściński and A. Kossakowski,
Markovianity criteria for quantum evolution,
J. Phys. B: At. Mol. Opt. Phys. 45, 154002 (2012).

92.
 D. Chruściński and A.F. Wudarski,
Geometry of entanglement witnesses parameterized by SO(3) group,
Open Sys. Information Dyn. 19, 1250020 (2012).

93.
D. Chruściński and G. Sarbicki,
Exposed positive maps in M_4(C),
Open Sys. Information Dyn. 19, 1250017 (2012).

94.
D. Chruściński and A. Kossakowski,
Characterizing non-Markovian dynamics,
 in "Geometric Methods in Physics", Birkhauser, 2013, pp. 285-293.

95.
D. Chruściński and A. Kossakowski,
On non-Markovian quantum evolution,
Quantum Bio-Informatics V, Quantum Probability and White Noise Analysis XXX, pp. 117-126, 2013.

96.
G. Sarbicki and D. Chruściński,
A class of exposed indecomposable positive maps,
J. Phys. A: Math. Theor. 46,  015306 (2013).
97.
D. Chruściński,
Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory,
Phys. Lett. A 377, 606 (2013).

98.
D. Chruściński,
Mathematical aspects of local in time master equations,
Phys. Scr. 87, 038102 (2013).

99.
D. Chruściński V. Man'ko, G. Marmo, and F. Ventriglia,
Stochastic evolution of finite level systems: classical vs. quantum ,
Phys. Scr. 87, 045015 (2013).

100.
D. Chruściński,
Characterizing non-Markovian quantum evolution
Phys. Scr. T153, 014009 (2013).

101.
D. Chruściński and F. Wudarski,
Non-Markovian random unitary qubit dynamics,
Phys. Lett. A 377, 1425 (2013).

102.
B. Bylicka, D. Chruściński, and J. Jurkowski,
On separable decompositions of quantum states with strong positive partial transposes,
J. Phys. A: Math. Theor. 46, 205303 (2013).

103.
D. Chruściński,
Stochastic evolution of classical and quantum systems,
Il Nuovo Cimento C 36, 65 (2013).

104.
J. P. Zwolak and D. Chruściński,
New tools for investigating positive maps in matrix algebras,
Rep. Math. Phys. 71, 163 (2013).

105.
D. Chruściński and G. Sarbicki,
Optimal entanglement witnesses for two qutrits,
Open Sys. Information Dyn. 20, 1350006 (2013).
106.
D. Chruściński,
Detecting Quantum Entanglement: Positive Mpas and Entanglement Witnesses,
in Open Systems, Entanglement and Quantum Optics, InTech  (2013) pp 21-40.

107.
D. Chruściński and A. Kossakowski,
Feshbach projection formalism for open quantum systems,
Phys. Rev. Lett. 111, 050402  (2013).

108.
P. Należyty  and D. Chruściński,
Decoherence-Free Subspaces for a Quantum Register Interacting with a Spin Environment,
Open Syst. Inf. Dyn. 20, 1350014  (2013).

109.
D. Chruściński, T. Matsuoka, T. Saito, Y. Hirota, and M. Asano,
On Symmetric Bound Entangled States of Two Qudits,
Open Syst. Inf. Dyn. 20, 1350013  (2013).

110.
D. Chruściński,
Quantum dynamics of finite level systems - Markovianity criteria,
in Symmetries and Groups in Contemporary Physics, Eds. Ch. Bai, J.-P. Gazeau, and M.-L. Ge, World Scientific, 2013, pp. 271-276.

111.
D. Chruściński and A. Kossakowski,
Witnessing non-Markovianity of quantum evolution,
Eur. Phys. J. D 68, 7  (2014).

112.
D. Chruściński,
On Time-Local Generators of Quantum Evolution,
Open Syst. Inf. Dyn. 21, 1440004  (2014).

113.
D. Chruściński and S. Maniscalco,
Degree of Non-Markovianity of Quantum Evolution,
Phys. Rev. Lett. 112, 120404  (2014).

114.
D. Chruściński and G. Sarbicki,
Disproving the conjecture on the structural physical approximation to optimal decomposable entanglement witnesses,
J. Phys. A: Math. Theor. 47, 195301  (2014).

115.
D. Chruściński,
On Kossakowski Construction of Positive Maps on Matrix Algebras,
Open Syst. Inf. Dyn. 21, 1450001  (2014).

116.
J.P. Zwolak and D. Chruściński,
Recurrent construction of optimal entanglement witnesses for 2N-qubit systems,
Phys. Rev. A 89, 052314  (2014).

117.
A. Napoli, M. Guccione, A. Messina, and D. Chruściński,
Interaction-free evolving states of a bipartite system,
Phys. Rev. A 89, 062104  (2014).

118.
B. Bylicka, D. Chruściński, and S. Maniscalco,
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective,
Scientific Reports 4, 5720  (2014).

119.
D. Chruściński,
A class of symmetric Bell diagonal entanglement witnesses - a geometric perspective,
J. Phys. A: Math. Theor. 47, 424033  (2014).

120.
C. Addis, B. Bylicka, D. Chruściński, and S. Maniscalco,
Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models,
Phys. Rev. A 90, 052103  (2014).

121.
D. Chruściński and G. Sarbicki
Entanglement witnesses: construction, analysis and classification,
J. Phys. A: Math. Theor. 47, 483001  (2014).  (Topical Review)

122.
D. Chruściński and F. Wudarski,
Non-Markovianity degree for random unitary evolution,
Phys. Rev. A 91, 012104  (2015).

123.
F. Wudarski, P. Należyty, G. Sarbicki, and  D. Chruściński,
Admissible memory kernels for random unitary qubit evolution,
Phys. Rev. A 91, 042105  (2015).

124.
D. Chruściński, A. Messina, B. Militello, and A. Napoli,
Interaction-free evolutions in the presence of time-dependent Hamiltonians,
Phys. Rev. A 91, 042123  (2015).

125.
D. Chruściński, A. Napoli, M. Guccione, P. Należyty, and A. Messina,
Interaction free and decoherence free states,
Phys. Scr. 90, 074040 (2015).

126.
D. Chruściński,
Spectral properties of circulant positive maps: classical versus quantum,
Phys. Scr. 90, 074061 (2015).

127.
K. Siudzińska and D. Chruściński,
Decoherence of a qubit as a diffusion on the Bloch sphere,
J. Phys. A: Math. Theor. 48, 405202 (2015).