Symmetry and Spectroscopic Calculations
Lecture One
1.1 Introduction
In this course of lectures I want to introduce you to the role of symmetry in making practical
calculations of spectroscopic properties of atoms. However, many of the techniques we
shall consider have an applicability in other areas of physics such as can be encountered
in nuclear physics, particle physics, molecular physics and solid-state physics. This is
because the concepts of symmetry are universal in there applicability in physics. Indeed
they are profoundly unifying concepts. Throughout we will emphasise practical methods
rather than abstract theory. Thus we shall try to explain results but will not be going into
formal proofs. I will be expecting you to apply these results in calculations for models of
real systems. Note I say models of real systems. Every calculation is associated with a
particular model that will never correspond exactly to a real system in its full diversity.
Nevertheless we would hope that some of our calculations will be a good approximation
to some system.
To start we will first consider just what we mean by symmetry and then review some of
the properties of symmetric functions which arise in the theory of the symmetric group.
There we will encounter some of the basic ideas of mathematical groups which is that area
of mathematics that allows us to create a framework to develop applications of symmetry.
Among the various symmetric functions considered will be the so-called Schur functions.
These functions play a key role in calculation of the properties of not only the symmetric
group but perhaps more importantly for us properties of the continuos Lie groups such as
the unitary and rotation groups. The key results here will be the Littlewood-Richardson
rule for multiplying Schur functions, the use of Young tableaux, Young’s remarkable de-
scription of the representations of the symmetric group 5, and the Murnaghan-Nakayama
procedure for calculating characters of S,.
I shall be assuming you have some knowledge of the quantum theory of angular momentum
such as commonly associated with the angular momentum states |JM > and the use of
ladder operators. I shall use that knowledge to develop the theory of tensor operators
which allow us to go beyond just symmetry to develop quantitative calculations via the
celebrated Wigner-Eckart theorem. Here we will encounter the 35— and 6j— symbols of
angular momentum which will allow us to calculate matrix elements of interactions, first
for simple one- and two-electron systems and, with further development, for n—electron
systems.
In some cases the calculations we shall attempt will be very simple, the sort of back-of-the-
envelope calculations so dear to many physicists. Other calculations will require extensive
computation best left to computer algebraic packages such as Maple or Mathematica. As

to group theory calculations I shall take the opportunity to introduce you to the package
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SCHUR that takes the tedium out of many practical applications. I think it is very
important to have practice at making simple hand calculations first before jumping into
heavy computer based calculations. We need also to develop procedures for checking
calculations.

Among the calculations I would like us to investigate will be such things as magnetic
interactions, hyperfine structure, transition probabilities, and crystal field interactions. I
would also like to emphasise ideas of effective interactions and ab initio calculations.

1.2 Why Symmetry?

Symmetry is usually associated with an action or transformation of a system or object such
that after carrying the operation the system or object is in a state indistinguishable from
that which it had prior to carrying out the action or transformation. Thus there is a close
relationship between symmetry and impossible experiments. The existence of a symmetry
implies that it is impossible to devise an experiment to distinguish the before and after
situation. If you succeed then the symmetry does not exist. All the great conservation laws
are associated with the assertion that a particular experiment is impossible. Indeed in the
early 1900’s Emmy Noether showed that every conservation law is associated with a certain
invariance which in turn is associated with the statement of an impossible experiment. For
example, the conservation of angular momentum is associated with the statement that no
experimentalist has been able to determine a preferred direction in space.

Thus the existence of a symmetry tells us what is NOT possible but does not tell us what IS
possible. Thus the symmetry rules out some possibilities. It leads to selection rules. The
existence of a symmetry constrains the form of theories used to model the system possessing
an observed symmetry. We must strongly emphasise that the existence of a symmetry can
only be determined by experiment and is always a tentative statement. We can never be
sure that some improvement in experimental technique or some experiment not hitherto
contemplated will reveal an inexactitude in the symmetry. As examples consider the
parity violation experiment or the CP violation experiments of kaons. In practice very few
symmetries are ‘exact’ and in most cases we are led to consider ’approximate’ symmetries.
A symmetry need not be exact to be useful. Indeed I would assert the following:
Proposition: We should always strive to construct theories with the highest possible sym-
metry even if these are not exact symmetries of nature. The physics comes in the process
of breaking the symmetry.

1.3 An example

Consider the case of

062M93(N03)12 . 24H20 . Nd3+

What symmetry does the Nd®T ion see in the rare earth double nitrates? In free space
it sees spherical symmetry associated with the three-dimensional rotation group SOs.

The total electron angular momentum J has no preferred direction in free space and is
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a conserved quantity.* Associated with the conservation of the angular momentum .J is
a degeneracy of (2J + 1) since each component J, occurs at the same energy. Switch
on a magnetic field in the z—direction and create a locally preferred direction and the
degeneracy is lifted and we observe 2.J + 1 sublevels.**

Placing the Nd®T ion in the crystal breaks the spherical symmetry so that J ceases to
be a conserved quantity - there are local preferred directions imposed by the geometrical
arrangement of the various ions clustering about the Nd3* ion. To a first approximation
we descend to the symmetry group of the icosahedron K} and for J > % there will be a
partial lifting of the (2.J + 1)—fold degeneracy.

The nitrate ions cluster around the vertices of a slightly distorted tetrahedron and the
symmetry is approximately that of the group of the tetrahedron, T}. Again the degeneracy
is further reduced. These reductions in degeneracy manifest themselves in the appearance
of sublevels. The actual point symmetry observed by X —ray structural analysis is that of
the trigonal point group, Cj.

Thus the entire breakdown of the symmetry could be described by the chain of nested
subgroups ***

SO3 DK DT, DCs

1.4 Global and Local Symmetries

A symmetry may be global or local. As already seen in the previous example a local
symmetry need not be global. In most of this course we will discussing local symmetries.
1.5 Types of Symmetries

There are a wide range pf possible symmetries we might consider. Two major categories
would be discrete and continuous symmetries. Discrete symmetries, such as reflections,
inversions, time reversal, charge conjugation, parity, finite rotations, permutations etc.
are associated with multiplicative or phase-like quantum numbers. Continuous symmetries
such as translations and rotations are associated with additive quantum numbers (e.g.

angular momentum J or linear momentum p).

*Of course if we recognise that Nd3* possesses a nuclear magnetic moment which weakly couples the
nuclear angular momentum I to the electronic angular momentum .J such that the total angular momen-
tum becomes F = I 4 J. Thus strictly speaking the conserved quantity is F' rather than J. This is

manifested in the appearance of magnetic hyperfine structure at high enough resolution.

**N.B. Lowering the symmetry of a system usually results in a partial or total lifting of the degeneracy.
Technologically this is very important.

***For further details see S.D.Devine, T}, symmetry in rare earth double nitrates J.Chem.Phys. 47, 1844

(1967) and references therein.



1.6 Bosons and Fermions

The particles we commonly encounter in physics can be divided into two classes bosons
and fermions. Bosons are associated with integer spin, examples being photons, gluons
and the weak interaction bosons Z° and W#*. Fermions are associated with half-integer
spin, examples being electrons, neutrinos and quarks. Bosons establish the interactions
between fermions. Thus the photon, a massless spin 1 particle, is the exchange particle
associated with electromagnetic interactions. In most of atomic and molecular physics
we can restrict our attention to quantum electrodynamics (QED). The weak interactions
manifest themselves in atomic and molecular physics in very small parity violations. Bosons
and fermions obey different statistics, namely Bose-Einstein and Fermi-Dirac, respectively.
That requires us to construct totally symmetric wavefunctions for many-boson systems and

totally antisymmetric wavefunctions for many-fermion systems.
1.7 Permutational Symmetry

Bosons and fermions differ with respect to their behaviour under an interchange of their
position, or equivalently with respect to a rotation through 27 or 360°. We shall desig-
nate the wavefunction for a single fermion or boson as ¢(«) where « is an appropriate
set of single particle quantum numbers associated with some single particle solution of
, for example, some central field potential. Thus for a hydrogen atom we might use
a = {nslmsmy} or « = {nsljm;}. A N—particle system will involve N —single particle
wavefunctions (¢, i = 1,2,...,N) and N—sets of single particle quantum numbers
(ak k=1,2,...,N). The wavefunction , ¥, for the N —particle system will be such
that

\I}:\I}(¢17¢27"'7¢N) (11)

For a two-particle system we could write

U(61,62) = i?{mml)asz(az) £ 61(an)én(ar)} (12)

The positive sign corresponds to a symmetric wavefunction and the minus sign corresponds
to an antisymmetric wavefunction. Note that we have permuted the quantum numbers with
respect to the coordinates of the particles. The wavefunction of a pair of fermions, unlike a
pair of bosons, undergoes a change of sign. If a; = ay then for identical fermions Eq.(1.2)
vanishes though not for bosons. That is consistent with the Pauli exclusion principle for
identical fermions. Thus permutational symmetry, required by the indistinguishability of
identical particles, leads for N —fermions to the construction of of determinantal states to
give totally antisymmetric states while for N—bosons to the construction of permanental

states to give totally symmetric states. Hence for an N —fermion system we have the totally
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antisymmetric wavefunction

451(&1% 451(&2) ¢1(OzN) aNy

1 P2l Pa(az) P2(an)
on(a1) ¢n(az) ... oén(an)
In LS—coupling basis we use o = {nslmgymy} whereas in jj—coupling we would use

a = {nsljm;}. The information content of the determinantal state may be fully specified
by the abbreviated form

{ayas ... an} (1.4)

In the case of bosons we are required to construct permanental states to yield totally

symmetric wavefunctions,

\I’(¢17¢27---7¢N):\/—N—! : : : (1.5)

on(a1) on(az) ... ¢N(@N)

The information content of the permanental state may be fully specified by the abbreviated

form
[arag ... an] (1.6)

We shall use square brackets [] to indicate boson states and curly brackets { } for fermion
states. Equations (1.3) and (1.6) look remarkably similar. We have distinguished them
by superscripts {1V} and {N}, respectively. The matrix of the single particle functions
are the same in both cases but the action on the matrix is different. In the first case the
determinant of the matrix is formed and in the second the permanent of the matrix is
formed. Could we form other objects of interest by other actions on a matrix?

1.8 Many-particle states of Bosons and Fermions

Let us for the moment consider the states of N identical bosons or fermions. Suppose the
boson has an angular momentum j = 2 (i.e. a d—boson) and hence m; = 0,41, £2 while
the fermion has angular momentum j = 5/2 and hence m; = £1/2,4£3/2,45/2. f N =2

in both cases what are the allowed values of J 7 We note that
My =mj +mj,

Just considering the non-negative values of M; we obtain for the fermions the following

table of determinantal states:



Table 1.1 Determinantal states for (5/2)? fermions.

My States

{5/23/2}

{5/21/2}

{5/2 —1/2} {3/21/2}

{5/2 —3/2} {3/2 —1/2}

{5/2 = 5/2} {3/2 —3/2} {1/2 = 1/2}

Inspection of the above table leads to the conclusion that the allowed values of J in
(5/2)% are J =0,2,4.

The corresponding d* boson states for non-negative M are given in Table 1.2.

S =N O

Table 1.2. Permanental states for d? bosons

M States

4 29]

3 [21]

2 20] [11]

1 2 —1] [10]

0 2 -2 1o 00

Inspection of the above table leads to the conclusion that the allowed values of J in
d* are J = 0,2,4 exactly those found for (5/2).*

Exercises

1.1 Show that the totally antisymmetric orbital angular momentum states of ¢* (¢ = 4)
(i.e. the states of maximum multiplicity) are the same as for the totally symmetric
states of (5/2)*.

1.2 Determine the allowed values of J for the jj—coupled configurations (5/2)?,(5/27/2)
and (7/2)%.

1.3 Determine the allowed values of S and L for the electron configuration f2.

1.4 Given that for an LS—coupled term ?°t1L we have J = L + S and

J=L+SL+S-1,...,|L-5| (1.7)

Show that the values of J for the list of terms found in Ex 1.3. are the same as those
found in Ex 1.2.

*In general the antisymmetric states of N identical particles each having angular ] = m/2 and the

symmetric states of N particles each having angular momentum j = (m +n+ 1)/2 have the same total
angular momentum J values. See B.G.Wybourne, Hermite’s reciprocity Law and the Angular Momentum

States of Equivalent Particle Configurations J.Math.Phys. 10, 467-71 (1969).
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1.5 Show that in the configuration j2 the only allowed values of J are the even integers

0,2,...,2j — 1.

1.6 Starting with the angular momentum commutation relations
[T, Tyl =0, [Ty, T =dde [T, Je) =0y

show that if J4+ = J, £ ¢J, then

32
1.7 IfJ =L + S show that

JJ+1)—L(L+1)-S(S+1)=54L_+S_Ly+2S.L.

(1.8)

(1.9)

(1.10)




Symmetry and Spectroscopic Calculations
Lecture Two
2.1 Ladder Operators and Determinantal States
For the electron configuration f? we can enumerate the set of determinantal states for
non-negative Mg, My as in Table 2.1.
Table 2.1. Determinantal states for the Electron Configuration f2.

MLMs—O Mszl

6 31

50 {43} {33}

4 {I0 *‘ *5 {37}

3 {+0}{ }{ }{ (T {37

2 {+0}{3—1 +1 {53 5 e

1 {7 o {3 ST 5 S {5 LMoy 100

0 {+0}{1_1}{2_2}{3_3}{_11}{_33 {27 0
{—22

Recall that for an electron in an f—orbital ¢ = 3 and hence my = 0,£1,£2, £3. There
are just two values of the spin projection m, = +1/2. Thus it suffices in writing a
determinantal state to just display the values of m, and indicate the value of ms as a +

or — sign placed above my. For a given determinantal state we have
n n
MS:ZmSi and My, :ngi (2.1)

Thus every determinantal state may be associated with definite values of Mg and M.
That does not mean that they are eigenstates of the total spin S and orbital L angular
momentum. To form such eigenstates we must form appropriate linear combinations of the
determinantal states to give eigenstates |SLMgsM/, >. Following tradition we will normally
write such a state as [**t!LMsM; > where (25 + 1) is known as the spin multiplicity.

The quantum number L is usually associated with alphabetical letters

o 1 2 3 4 5 6 7 8
S P D F G H I K M

A spectroscopic term will be designated as

ZS—I—lL

Associated with a given value on S there are (25 + 1) values of Mg and with L there are
(2L + 1) values of M, where

M¢=S8,S-1,...,-S+1,-S and M,=L.L—-1,...,~L+1,—-L
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Inspection of Table 2.1 shows that the spectroscopic terms of the electron configuration f?

are

*PFH 'SDGI

Choose
1706 >= 2.2

Let us now determine |* 705 >. To do this we use the properties of ladder operators. Recall

Li|LM >=/L(L +1)— M(M £ 1)|LM +1 > (2.3)

and

Li= Zﬁii (2.4)
=1

Let (2.3) act on the left-hand-side of (2.2) and noting (2.3) act also on the determinantal

state to give

L_|'106 >= 6 x T — 6 x 5|'105 >= /12|'105 > (2.5)
and N N N
L{. }=V3x4—-3x2[{  _ R 2.
lg gt=vexda=3x2l{, Jh+{, ] (2.5)
Equating (2.4) and (2.5) gives
V2 4+ - -
7 == 2.
105 >= T-[{, s 1+15 5} (2.6)

This state must be orthogonal to the state |* H05 > and hence after fixing a phase we have

P05 >= 2 E - (L) (2.7)

Application of the spin raising operator S4 to (2.7) gives

V2 + + + +
H = V2PPH15 >= *= _
S+PHO05 >= V2]°H15 > 2[{23} {32}]
and hence by
PH15 >= —{ 5 9 1 (2.8)

Note the appearance of the minus sign which comes from our particular choice of enumer-

ation of the determinantal states.



Exercises

2.1 Determine the eigenstates
17104 > |PH04 > [|'GO4> [*H14 >

as linear combinations of determinantal states.
2.2 Discuss how you could determine the eigenstates |* HJM > as linear combinations of
the states |3HM5ML >. Hint: use the fact that Jy = L4 + S4.

2.2 Permutations and the Symmetric Group

Permutations play an important role in the physics of identical particles. A permutation
leads to a reordering of a sequence of objects. We can place n objects in the natural
number ordering 1,2, ..., n. Any other ordering can be discussed in terms of this ordering

and can be specified in a two line notation
(2.9)

For n = 3 we have the six permutations

231D GE )G ew

Permutations can be multiplied working from right to left. Thus

123><123_123
3 1 2 2 3 1) \1 2 3

In this example we see that the two permutations on the left are inverses of each other.
The result has been the identity permutation.

The six permutations in (2.10) satisfy the following properties:
1 2 3

1. There is an identity element (1 5 3/

2. Every element has an inverse among the set of elements.
3. The product of any two elements yields elements of the set.
4. The elements satisfy the associativity condition a(bc) = (ab)c. These conditions
establish that the permutations form a group. In general the n! permutations form
the elements of the symmetric group S,.
2.3 Cycle Structure of Permutations
It is useful to express permutations as a cycle structure. A cycle (7,5, k, ..., 1) is interpreted

as 1 — J, J — k and finally [ — 7. Thus our six permutations have the cycle structures

DE)3),  (1,2)3),  WZ3), (1L,3)2), (1,32, (1,23 (211
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Note that the elements within a cycle can be cyclically permuted and that the order of the
cycles is irrelevant. Thus (123)(45) = (54)(312).

Ak — cycle or cycle of length k contains k elements. For reasons that will shortly become
apparent it 1s useful to organise cycles into types or classes. We shall designate the cycle
type of a permutation © by

(1m12m2 | pme) (2.12)

)

where my, is the number of cycles of length k in the cycle representation of the permutation

7. Thus for the case of §; we have the five cycle types
(1%), (1%21), (2%), (17 31), (41) (2.13)

Without confusion we will normally omit exponents of unity and write Eq.(2.13) more

simply as

(1%), (172), (2%), (13), (4) (2.14)

Cycle types may be equally well labelled by ordered partitions of the integer n
A=A Az .. M) (2.15)

where the \; are weakly decreasing and

J4
d Ai=n (2.16)
=1

The partition is said to be of length ¢ and of weight n. In terms of partitions we have the

cycle types for S
(17), (217), (271), (32), (31%), (41), (5)

2.4 Conjugacy Classes of S,

In any group G we say the elements ¢ and h are conjugates if
g=khk™! for some keG (2.17)

The set of all elements conjugate to a given ¢ is call the conjugacy class of ¢ which we

denote as K.

Exercises
2.3 Show that for &, there are five conjugacy classes that may be labelled by the five
partitions of the integer 4.
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2.4 Show that the permutations, expressed in cycles with cycles of length one suppressed,

divide among the conjugacy classes as
(1*) De
D(12), (13), (14), (23), (24), (34)

D(12)(34), (13)(24), (14)(23)
S(123), (124), (132), (134), (142), (143), (234), (243)
O

1234), (1243), (1342), (1432) (2.18)

(21
(2?
(31

?)
)
)
(4)

From the preceding exercise we can show in general two permutations are in the same
conjugacy class if, and only if, they are of the same cycle type. The number of classes of
Sy 1s equal the number of partitions of the integer n.

If A= (1m2™2 . n™n) then the number of permutations ky in the class () of S, is

!
ks = o (2.19)

1M1 1 2m2 ;my! Lo n™meom,!

2.5 The Alternating Group A,
A cycle of order two is termed a transposition. A transposition (¢, ¢ + 1) is termed an
adjacent transposition. The entire symmetric group S, can be generated (or given a pre-

sentation in terms of the set of adjacent transpositions
(12),(23), ..., (n—1n) (2.20)

If 7 =7y72...7, where the 7; are transpositions then the sign of 7 is defined to be

sgn(m) = (=1)" (2.21)
If the number of cycles of even order is even then the permutation is even or positive; if it
is odd then the permutation is odd or negative.

The set of even permutations form a subgroup of S,, known as the alternating group A,

and has precisely half the elements of S,, i.e. (%)n’

Exercises
2.5 Show that the set of six matrices

BT A I A L] e

with the usual rule of matrix multiplication form a group isomorphic to Ss.
2.6 Show that the symmetric group S, has two one-dimensional representations, a sym-
metric representation where every element is mapped onto unity and an antisymmetric

representation where the elements are mapped onto the sign defined in Eq. (2.21).
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Symmetry and Spectroscopic Calculations
Lecture Three
3.1 Properties of Symmetric Functions
In this, and the following, lecture we seek to explore some of the properties of symmet-
ric functions and in particular to try to develop generalisations of the determinants and
permanents leading to the Schur functions and the immanants of matrices of which the
determinants and permanents are special cases. Here we follow the definitive notation
outline by Macdonald??.
3.2 Partitions
Partitions play a key role in much of the following. We shall take a partition as any finite

or infinite sequence integers

A= (M As Al (3.1)

Unless otherwise stated we shall assume the sequence involves non-negative integers in

non-increasing order;

M>A > > N> (3.2)

Normally we will omit zeros. The non-zero \; form the parts of A. The number of parts is
the length, ((X\), of X\ while the sum of its parts, |A], is the weight of A. If |A\| = n then A is
said to be a partition of n. We shall frequently write A F n to indicate that A is a partition
of n. Repeated parts of a partition will frequently be indicated as " where m; is the
number of times the part ¢ occurs in the partition A. Thus we shall write the partitions

for n = 6 as

(6)(51)(42)(41%)(3%)(321)(31°)(2°) (2°1%) (21%) (1%)

Note, in the above example the partitions have been listed in reverse lexicographic order.
The ordering is such that the first non-vanishing difference A\; — 11;, for successive partitions

A, [ 1s positive.

3.2 The Ferrers-Sylvester diagram

Every partition A - n may be associated with a Ferrers-Sylvester diagram, shape or frame
involving n cells, dots or boxes in {(\) left-adjusted rows with the ¢-th row containing A,

cells, dots, or boxes. Thus for n = 4 we have the five diagrams

(T N e

We will formally designate the frame associated with a partition A as F*.
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The conjugate of a partition A\ is a partition A’ whose diagram is the transpose of the

diagram of A. If A’ = A then the partition \ is said to be self-conjugate. Thus

|
[ ] and

are conjugates while

is self-conjugate.

3.3 Skew frames

Given two partitions A\ and p such that A\ D p implies that the frame F* contains the
frame F* i1e. that A\; > p; for all ¢ > 1. The difference p = A — p forms a skew frame

FAM# Thus, for example, the skew frame F5*2/2! has the form

Note that a skew frame may consist of disconnected pieces.

3.4 Frobenius notation for partitions

There is an alternative notation for partitions due to Frobenius. The diagonal of nodes
in a Ferrers-Sylvester diagram beginning at the top left-hand corner is called the leading
diagonal. The number of nodes in the leading diagonal is called the rank of the partition.
If r 1s the rank of a partition then let a; be the number of nodes to the right of the leading
diagonal in the :—th row and let b; be the number of nodes below the leading diagonal in

the 2—th column. The partition is then denoted by Frobenius as
ay, das, B £ 7
(bl, by ... br> (3:3)
We note that

ay > asg > ... > A4y

by > by > ...> b,

and

ar+ay+...4+a+by+by+...+b.+r=n

17



The partition conjugate to that of Eq.(3.3) is just

(bl, by, ..., br> (3.4)
ay, das, B £ 7
As an example consider the partitions (543%21) and (65421). Drawing their diagrams

and marking their leading diagonal we have

and °

from which we deduce the respective Frobenius designations
4 2 0 d 5 3 1
5 3 1 o 420

3.5 Young tableaux

A Young tableau is an assignment of n numbers to the n cells of a frame F* with A - n
according to some numbering sequence. A tableau is standard if the assignment of the
numbers 1,2, ..., n is such that the numbers are positively increasing from left to right in
rows and down columns from top to bottom. Thus for the partitions of the integer 4 we

have the standard Young tableaux

1]2]3] 1]2[4]

314]

N
130
(o]

2] 4]

|+>|c,o =
o]

We notice in the above examples that the number of standard tableaux for conjugate
partitions is the same. Indeed the number of standard tableaux associated with a given

frame F* is the dimension f7 of an irreducible representation {\} of the symmetric group

Sh.
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3.6 Hook lengths and dimensions for S,

The hook length of a given box in a frame F* is the length of the right-angled path in the
frame with that box as the upper left vertex. For example, the hook length of the marked

box in

1s 8.

Theorem 3.1: To find the dimension of the representation of S, corresponding to
the frame F?, divide n! by the factorial of the hook length of each box in the first column
of F* and multiply by the difference of each pair of such hook lengths.

Thus for the partition (543%21) we have the hook lengths
|

|=eo oo oo |2

and hence a dimension

543221:18!2><4><5><7><9><2><3><5><7><1><3><5><2><4><2
' 101 x 8! x 6! x5! x3!x1!
= 10720710

It is not suggested that you check the above result by explicit enumeration! The above
evaluation can also be equivalently made by computing the hook lengths h;; for every box

at position (i,j) and then noting that
B n!
H(i,j)EA hij

which is the celebrated result of Frame, Robinson and Thrall.

m (3.5)

Exercises

3.1 Show that the dimension of of the representation™

{p-|—2,2}: | | | j:l

*This is in fact the number of independent index orders of the differentiated Riemann tensor, V¥ R, when

the noncommutativity of covariant derivatives is ignored5.
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L))

3.2 Calculate the dimensions of the irreducible representations of Sg and show that™*

>_(fe)* =6!

ARG

3.7 The symmetric group and tensors

While it 1s not our intention here to develop the detailed connection between Young
tableaux and tensors in detail the connection is too important to totally ignore. For
more details you should consult the literature®®:19:39,

Let Ty, .4, be a “generic” n-index tensor, without any special symmetry. (For the moment,
“tensor” means just a function of n indices, not necessarily with any geometrical realization.
It must be meaningful, however, to add (and form linear combinations of) tensors of the
same rank.)

The entries 1,2, ...n in the standard numbering of a tableau indicate the n successive
indices of T),, ..., . The tableau defines a certain symmetrization operation on these indices:
symmetrize on the set of indices indicated by the entries in each row, then antisymmetrize
the result on the set of indices indicated by the entries in each column. The resulting
object is a tensor, T', with certain index symmetries. Now let each permutation in 5, act
(separately) upon T'. The n! results are not linearly independent; they span a vector space
which supports an irreducible representation of S, . Different tableaux corresponding to
the same frame yield equivalent (but not identical) representations.

Example: The partition {22} of 4 has two standard tableaux:

112 113
511 and 5T1 (3.6)

Let us construct the symmetrized tensor T' corresponding to the second of these. First

symmetrize over the first and third indices, and over the second and fourth:

<Tabcd + Tepad + Tudes + Tcdab)-

=] =

**This is an example of the general result that

> (f2) =n!

AFn
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Now antisymmetrize the result over the first and second indices, and the third and fourth;

dropping the combinatorial factor %, we get

Tabcd - Tabcd + chad + Tadcb + Tcdab

- Tbacd - Tcabd - deca - Tcdba

— Labde — Tdbac - Tacdb - Tdcab
+ Tbadc + Tdabc + Tbcda + Tdcba . (37)

It is easy (though tedious) to check that T" possesses the symmetries characteristic of the
Riemann tensor. There are two independent orders of its indices, and applying any permu-
tation to the indices produces some linear combination of those two basic objects. On the
other hand, performing on T the operations prescribed by the first tableau in (3.6) pro-
duces a different expression, which, however, generates a 2-dimensional representation of
Sy with the same abstract structure as that generated by T'. A nonstandard tableau would
also yield such a representation, but the tensors within it would be linear combinations of
those already found.

Remark: In (3.7) we have adopted the convention that the second round of permuta-
tions interchanges indices with the same names, rather than indices in the same positions
in the various terms. The opposite convention is tantamount to antisymmetrizing first,
which leads to a different, but mathematically isomorphic, development of the represen-
tation theory (see Ref. 19 , pp3127314). The issue here is analogous to the distinction
between space-fixed and body-fixed axes in the study of the rotation group.

Exercise
3.3 Counstruct a set of three 4-index tensors corresponding to the three Young tableaux
associated with the partition {31}.

3.8 Unitary numbering of Young tableaux

Many different prescriptions can be given for injecting numbers into the boxes of a frame.
We have already noted the standard numbering which is intimately associated with the
symmetric group S,. Another important numbering prescription is that of unitery num-
bering where now numbers 1, 2, ..., d are injected into the boxes of a frame F? such
that:

1. Numbers are non-decreasing across a row going from left to right.

i1. Numbers are positively increasing in columns from top to bottom.
The first condition permits repetitions of integers. Thus using the numbers 1, 2, 3 in the
frame F?! we obtain the 8 tableaux

a] [afa] [al2) [af2] [1]3] [13] [2]2] |[2]3] (3.8)
2 3 2 3 2 3 3 3 '
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Had we chosen d = 2 we would have obtained just two tableaux while d = 4 yields twenty

tableaux. In general, for a frame F* a unitary numbering using the integers 1,2, ..., d
leads to \
G
A d
= —4 3.9
d H—)\ ( )

where H) is the product of the hook lengths h;; of the frame and

Gy= [ (d+i-j) (3.10)
(7,7)EX

Thus for d = 5 and A = (421) we have H,1) = 144 and Gé“l} = 100800 from which
we deduce that
421
21— 700

which is the dimension of the irreducible representation {421} of the general linear group
GL(5). In general, 7 is the dimension of the irreducible representation {\} of GL(d). Since
the representations of GL(d) labelled by partitions A remain irreducible under restriction
to the unitary group U(d) Eq.(3.9) is valid for computing the dimensions of the irreducible
representations of the unitary group U(d).

The same rules for a unitary numbering may be applied to the skew frames F/# introduced
in §3.3. Thus for F°*?/2! an allowed unitary numbering using just the integers 1 and 2

would be

1[1]1]
1[2]2
1]2

Note that our unitary numbering yields what in the mathematical literature are commonly
referred to as semistandard Young tableaux. Other numberings are possible and have been

developed for all the classical Lie algebras.

Exercises

3.4 Draw the frames F22/1, F4321/4212, and F321/21

3.5 Use the integers 1, 2, 3 to construct the complete set of semistandard tableaux for the

F43°1/421° 414 show that the same number of tableaux arise for the frame F21.

frame
3.6 Make a similar unitary numbering for the frame F?2!/2! and show that the same

number of semistandard tableaux arise in the set of frames F? + 2F?! 4+ e
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Symmetry and Spectroscopic Calculations
Lecture Four
4.1 Young tableaux and monomials

A numbered frame may be associated with a unique monomial by replacing each integer ¢

by a variable ;. Thus the Young tableau

4]5]

QO [=~T | |

0 ~T | [ |

o=

can be associated with the monomial 2% xo 73 23 22 22 23 22

4.2 Monomial symmetric functions

Consider a set of variables (z) = x1,23,...,24. A symmetric monomial

ma(e) =3 2%

involves a sum over all distinet permutations « of (A\) = (A1, Ag,...). Thus if (2) =

(x1,22,3) then

2 2 2 2 2
moy(x) = af €2 + 2] 3 + 1 25 + x1 05 + 5 3

mys(x) = a1 12 T3

The unitary numbering of (A\) = (21) with 1, 2, 3 corresponds to the sum of monomials

may () + 2mys ()

The same linear combination occurs for any number of variables* with d > 3.

The monomials my(x) are symmetric functions. If X+ n then ma(z) is homogeneous of
degree n. Unless otherwise stated we shall henceforth assume that x involves an infinite
number of variables z;.

The ring of symmetric functions A = A(x) is the vector space spanned by all the m(x).
This space can be decomposed as

A = BnsoA” (4.2)

*For two variables just mgl(x) survives while in terms of a single variable neither monomial survives.
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where A™ is the space spanned by all m) of degree n. Thus the {mx|A F n} form a basis
for the space A™ which is of dimension p(n) where p(n) is the number of partitions of n.

It is of interest to ask if other bases can be constructed for the space A”.

4.3 The classical symmetric functions

Three other classical bases are well-known - some since the time of Newton.
1. The elementary symmetric functions
The n—th elementary symmetric function e, is the sum over all products of n distinct

variables x;, with eg = 1 and generally
€p = Min = Z Tiy Tiy oee Tj (4.3)
11 <tg...<ip
The generating function for the e, is
B(t)= ) ent" = [[(1+ait) (4.4)
n>0 i>1

2. The complete symmetric functions

The n—th complete or homogeneous symmetric function h,, is the sum of all monomials

of total degree n in the variables z1, x5, ..., with hy = 1 and generally
hy, = Z my = Z Tiy Tiy oee Tj (4.5)
IAl=n i1 <iy...<in

The generating function for the h,, is

H(t) =) hot" =[J(1—2it)™ (4.6)

n>0 i>1

3. The power sum symmetric function

The n—th power sum symmetric function is

The generating function for the p,, is

P(t)y=> pat" ' =D apn!

n>1 1>1n>1

=>
] — gt
1>1

d 1
— Z - log g (4.8)
1>1
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and hence
P(t) = 4 log [J(1 —ait)™
dt = !
1>1

d

= —log H(¢#
7 log H (1)

— H'(1)/H()

Similarly,
d )
P(=t) = log Blt) = E'(1)/E(1)
Equation (4.9) leads to the relationship

nhn = zn:pr hn—r
r=1

It follows from (4.9) that

H(t) = epopnt"/n

n>1

— [ exolpn /)

n>1

= H Z (pr t™)™n [0 my,!

n>1 m,=0

and hence

where

Zy = H ;!

i>1

where m; = m;(\) is the number of parts of A equal to i. Defining
£ = (_1)|A|—K(A)
we can show in an exactly similar manner to that of Eq.(4.13) that

E(t) = Z 5)\2;1]?)\ ¢l
A
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It then follows from Eqs.(4.13) and (4.16) that

hy, = Z Z;lp)\ (4.17)
[A|l=n
and
€n = Z eAzglpA (4.18)
[A|l=n
Exercises
4.1 Show that for n = 3
P3 :xi)—l—xg—l—xg—l—...
€3 = L1 X223 +T1L224 + T2T324 + ...
hs=ad4+ad +. . +atayfaoiai+.. Frixoxs FrizoxyF... (4.19)
4.2 Noting Eqs. (4.4) and (4.6) and that H(t)E(—t) = 1, show that
Z(_l)rhn—r e, =0 (4.20)
r=0
for n > 1.
4.3 Use Eq.(4.20) to show that
en = det(h1—itj)1<ij<n (4.21)
and hence
hyn = det(e1-itj)1<i,j<n (422)
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4.4 Use Eq.(4.11) to obtain the determinantal expressions

€1 1 0 .o 0
262 €1 1 ce 0
pn=1| . : . . (4.23)
nen €n—1 €n—2 Ce €1
b1 1 0 ... 0
P2 P1 2 ... 0
Pn-1 Ppn—2 . ... n—1
Pn Pn—1 . e P1
hy 1 0 .. 0
2hs hy 1 .. 0
(=D)"'pa =] . . . (4.25)
nhn hn—l hn—2 Ce hl
P2 P1 -2 ce 0
nho=| 51 (4:26)
Pn—1 Pn-2 . ... —n+1
Pn Pn—1 . e P1

4.4 Multiplicative bases for A"

The three types of symmetric functions, h,, €,, p,, do not have enough elements to form
a basis for A", there must be one function for every partition A = n. To that end in each

case we form multiplicative functions fy so that for each A - n

=7 I (4.27)

where f = e, h, or p Thus, for example,

€1 =€z €1 =(xrax2taraz+aoas+...)(ex1 +az+as+...)

4.5 The Schur functions

The symmetric functions
my, e, h)\v P (428)

where A F n each form a basis for A™. A very important fifth basis is realised in terms

of the Schur functions, sy, or for brevity, S—functions which may be variously defined.

27



Combinatorially they may be defined as
sa(w)=> a’ (4.29)
T

where the summation is over all semistandard A—tableaux T. For example, consider the
S—functions sy in just three variables (z1, x2, x3). For A = (21) we have the eight tableaux

T found earlier

1] ] [af2) [al2] [af3] (]3] [2]2] [2]3] (3.8)
2 3 2 3 2 3 3 3 ‘

Each tableaux T corresponds to a monomial 2”7 to give
2 2 3 2 2., 2 2
So1(w1, X, x3) = a7 g a7 2° f 21 25+ 21 X2 v3+ 21 Toxs + 11 25 + a5 x5 + 22 25 (4.30)

We note that the monomials in Eq.(4.30) can be expressed in terms of just two symmetric

monomials in the three variables (a1, x2, x3) to give
sg1(w1, xa, v3) = maq(x1, v2, 3) + 2mys(x1, T2, 23) (4.31)
In an arbitrary number of variables
sg1(x) = mai(x) + 2mys(a) (4.32)

This is an example of the general result that the S—function may be expressed as a linear
combination of symmetric monomials as indeed would be expected if the S—functions are
a basis of A”. In fact
salz) = Z Ky,my (4.33)
pFn
where |A| = n and Ky = 1. The K), are the elements of an upper triangular matrix
K known as the Kostka matrix. K is an example of a transition matriz that relates one

symmetric function basis to another.

4.6 Calculation of the elements of the Kostka matrix

The elements K, of the Kostka matrix may be readily calculated by the following algo-
rithm :
i. Draw the frame F.
ii. Form all possible semistandard tableaux that arise in numbering F* with 1 ones, j
twos etc.

ii. Ky, is the number of semistandard tableaux so formed.
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Thus calculating K (49) (22 12) We obtain the four semistandard tableaux

1[1]212] [1l1[213] [1]1][2]4] [1]1]3]4]
314 214 213 212

—

and hence I&’(42) (2212) = 4.

Exercises

4.5 Construct the Kostka matrix for A, p = 4.

4.6 Show that in the variables (21, 2, x3) the evaluation of the determinantal ratio

xf 2?1
3 22 1
3 a1
:1;% 1 1
3wy 1
22 w3 1

yields the monomial content of the S—function s;; in three variables as found in

Eq.(4.30). N.B. The above exercise is tedious by hand but trivial using MAPLEV.

The last exercise is an example of the classical definition, as opposed to the equivalent

combinatorial definition given in Eq.(4.29), given first by Jacobi, namely,

SX :8)\(1'1, T, 71;11) = e (434)
as
where A is a partition of length <nand 6 =(n —1,n =2, ..., 1, 0) with
Ai+n—j
arts = det(e; " i< < (4.35)

and

as = H (z; —xj) = det(:z;?_j) (4.36)

1<i,j<n

is the Vandermonde determinant.

4.7 Non-standard S—functions

The S—functions are symmetric functions indexed by ordered partitions A. We shall
frequently write S—functions sx(x) as {A}(«) or, since we will generally consider the num-
ber of variables to be unrestricted, just {A}. As a matter of notation the partitions will

normally be written without spacing or commas separating the parts where A; < 9. A space
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will be left after any part A; > 10. Thus we write {12,11,9,8,3,2,1} = {12 11 98321}
While we have defined the S—function in terms of ordered partitions we sometimes en-
counter S—functions that are not in the standard form and must convert such non-standard
S—functions into standard S—functions. Inspection of the determinantal forms of the

S—function leads to the establishment of the following modification rules :

D das e =N} =0 (4.37)
{/\1,...,/\1‘,/\1‘_1_1,...,/\[} = _{/\17---7/\i—|—1 -1, A+ 1,...,/\[} (438)
{/\} =0 if /\i-l-l =X\ +1 (439)

Repeated application of the above three rules will reduce any non-standard S—function
to either zero or to a signed standard S—function. In the process of using the above rules

trailing zero parts are omitted™*.

Exercise
4.7 Show that

{24} = —{3%}, {141} = —{321}, {14—-25—-14} = —{3°2}

and

{3042} =0, {3043} = {32}

4.8 Skew S—functions

The combinatorial definition given for S—functions in Eq.(4.29) is equally valid for skew
tableaux and can hence be used to define skew S—functions sy, (x) or {\/u}. Since the
sx/ul7) are symmetric functions they must be expressible in terms of S—functions s,(x)
such that

Sx\/p = C;‘VS,, (4.40)

v

It may be shown that the coefficients ci‘u are necessarily non-negative integers and symmet-

A

oy are commonly referred to as Littlewood-

ric with respect to p and v. The coefficients ¢

Richardson coefficients.

*See also: R.C.King, B.G.Wybourne and M. Yang, Slinkies and the S— function content of certain gen-
erating functions, J.Phys.A:Math.Gen. 22, 4519-35 (1989).
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4.9 The Littlewood-Richardson rule

The product of two S—functions can be written as a sum of S—functions, viz.

S8y = ZC;‘VSA (4.41)

A
The Littlewood-Richardson coefficients ci‘u in Eqs. (4.40) and (4.41) are identical, though
the summations are of course different. In both cases |u| + || = |A|. A rule for evaluating

the coeflicients ci‘u was given by Littlewood and Richardson in 1934 and has played a major
role in all subsequent developments. The rule may be stated in various ways. We shall
state it first in terms of semistandard tableaux and then also give the rule for evaluating
the product given in Eq.(4.41) which is commonly referred to as the outer multiplication
of S—functions. In each statement the concepts of a row-word and of a lattice permutation

1s used.

Definition 4.1 A word

Let T be a tableauw. From T we derive a row-word or sequence w(T) by reading the
symbols in T from right to left (i.e. as in Arabic or Hebrew) in successive rows starting

at the top row and proceeding to the bottom row

Thus for the tableau

1[1]2]2]3]
2121313
414
15|16
17|
18]
we have the word w(7T') = 322113322446578 and for the skew tableau
1[1]1]
11212
112
we have the word w(T) = 11122121.
Definition 4.2 A lattice permutation
A word w = ajas ...an n the symbols 1,2,....n s said to be a lattice permutation

if for 1 < r < N and 1 <1 < n—1, the number of occurrences of the symbol 1 in

ajas ... ay 18 not less than the number of occurrences of 1 + 1.

Thus the word w(T') = 322113322446578 is clearly not a lattice permutation whereas the
word w(T) = 11122121 is a lattice permutation. The word w(T) = 12122111 is not a

lattice permutation since the sub-word 12122 has more twos than ones.
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Theorem 4.1 The value of the coefficient ci‘u 18 equal to the number of semistandard

tableauz T of shape FMN* and content v such that w(T) is a lattice permutation.
By content v we mean that each tableau T contains 1 ones, v twos, etc.
Example

Let us evaluate the coefficient ciigﬁ{ﬂ}. We first draw the frame F1542/21}

Into this frame we must inject the content of {431} i.e. 4 ones, 3 twos and 1 three in such

a way that we have a lattice permutation. We find two such numberings

1]1]1] 1]1]1]
11212 212]2
12[3 [1]3
and hence c}igﬁ{zl} = 2. Note that in the evaluation we had a choice, we could have, and
{542}

indeed more simply, evaluated Clo1) {431} In that case we would have drawn the frame

Fi542/431} 1 get

Note that in this case the three boxes are disjoint. This skew frame is to be numbered

with two ones and one 2 leading to the two tableaux

1] 1]

verifying the previous result. Theorem 4.1 gives a direct method for evaluating the

Littlewood-Richardson coefficients. These coefficients can be used to evaluate both skews

and products. It is sometimes useful to state a procedure for directly evaluating products.

Theorem 4.2 to evaluate the S—function product {p}.{v}
1. Draw the frame F* and place vy ones in the first row, vo twos in the second row etc
until the frame s filled with integers.
2. Draw the frame F" and inject positive integers to form a semistandard tableaw such
that the word formed by reading from right to left starting at the top row of the first
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frame and moving downwards along successive rows to the bottom row and then con-
tinuing through the second frame 1s a lattice permutation.
3. Repeat the above process until no further words can be constructed.
4. Each word corresponds to an S—function {\} where \y is the number of ones, Ay the
number of twos etc.

As an example consider the S—function product {21}.{21}. Step 1 gives the tableau

1[1]
2

Steps 2 and 3 lead to the eight numbered frames

11] [1]1] [212] [1]2] [1]3] [113] [2]3] [2]3]
2 3 2 3 2 4 3 4

Step 4 then lead to the eight words
112112 112113 112212 112213 112312 112314 112323 112324

from which we conclude that

{21}.{21} = {42} + {417} + {32} +2{321} + {31°} + {2°} + {221%}

Exercises
4.8 Show that* ¢
4.9 Show that

{75321%}

{4321} {4321} — 8.

{31}.{31} ={62} + {61?} + {53} +2{521} + {51%} + {4*}
+ 24431} 4 {422} + {4217} + {3%2} + {3717}

4.10 Show that
{321/21} = {3} + 2{21} + {1°}

4.10 Relationship to the unitary group

We have explored various symmetric functions indexed by partitions and defined on sets

of variables. The variables can admit many interpretations. In some instances we may

*The complete evaluation of the S—function product {4321}.{4321} leads to 206 distinct frames and
a total of 930 words.
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choose a set of variables * 1,¢,¢%,...,¢" or we could even use a set of matrices. The link
between S—functions and the character theory of groups is such that, if A is a partition
with ¢(A) < N and the eigenvalues of a group element, ¢, of the unitary group Uy are
given by z; = exp(i¢;) for y =1,2,..., N then the S—function

{AY={ A A2 AN} = sa(x) = sa(exp(igr)exp(iga)...exp(ion))

is nothing other than the character of ¢ in the irreducible representation of Uy conven-
tionally designated by {A}.
The Littlewood-Richardson rule gives the resolution of the Kronecker product
{p} x{v} of Uy as
_ {A}
{w}x{vy= > luy gy M (4.42)

IM=[pl+v]

where the 03;{”} are the usual Littlewood-Richardson coefficients. Equation (4.42) must
be modified for partitions A involving more than N parts. Here the modification rule is
very simple. We simply discard all partitions involving more than N parts. We shall return
to these matters later in this course when we use our results to discuss the classification

of many-electron states, especially for the electronic f—shell.

*For a practical application see R. J. Farmer, R. C. King and B. G. Wybourne, Spectrum-
generating functions for strings and superstrings, J. Phys. A:Math.Gen. 21 3979-4007
(1988).
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Symmetry and Spectroscopic Calculations

Lecture Five

Before leaving the topic of S—functions I would like to make a few remarks about
S—tfunction series and briefly indicate applications to branching rules which later will play

an important role in applications to atomic shell calculations.
5.1 S—function series

Infinite series of S—functions play an important role in determining branching rules and
furthermore lead to concise symbolic methods well adapted to computer implementation.

Consider the infinite series

L:1:[1(1—xi)
zl—z:zjl—l—z:z;lxg—... (5.1)

where the summations are over all distinct terms.

c.g.
Zl’ll'z 21}11’2—|—$1$3—|—...—|—$2$3—|—$2$4—|—... (52)

Recalling Eq.(4.3) we see that Eq.(5.1) is simply a signed sum over an infinite set of
elementary symmetric functions ¢,, with
€n = min = $1n = {1"} (5.3)

and hence Eq.(5.1) may be written as an infinite sum of S—functions such that

L=1-{1}4+{1%} —{1°} +...

(. @)

- S (~ymm (5.4)

m=0

We may define a further infinite series of S—functions by taking the inverse of Eq.(5.1) to

get
M = H(1 — ;)"
=14+ {1} +{2}+...
=3 {m) (5.5)
Clearly

LM =1 (5.6)
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a result that is by no means obvious by simply looking at the product of the two series.
In practice large numbers of infinite series and their associated generating functions may

be constructed. We list a few of them below:

a1 {a} B =>5{8} C

= 2510} E =Y (-1 {e} F
2 (1 H =2 (=1)"{¢} L=
2mim} P=> n(=1)"{m} Q

~—
—~
g
™
|
<
~—
~
[N~}
—~=
[
——

(5.7)

where («) and (v) are mutually conjugate partitions, which in the Frobenius notation
take the form

_ ai as ar _fa+1 a+1 ... ar+1
(a)_<a1+1 ar+1 ... ar—|—1> (7)_< aq as ay ) (5.8)
(6) is a partition into even parts only and (/) is conjugate to (). (¢) is any partition and

(€) is any self-conjugate partition. r is the Frobenius rank of («), (v) and (€).

These series occur in mutually inverse pairs:
AB=CD=FEF=GH=LM=PQ={0}=1 (5.9)
Furthermore,

LA=PC=E MB=QD=F
MC=AQ=G LD=PB=H (5.10)

We also note the series
R:{O}_Qaz,z;(_l)HbH (Z) S:{0}+2%<Z> (5.11)
where we have again used the Frobenius notation, and
V=3 (e W= (-1}
X=){@}) v=) {«} (5.12)

where (w) is a partition of an even number into at most two parts, the second of which is

g, and @ is the conjugate of w. We have the further relations
RS=VW ={0} =1 (5.13)
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and

PM=AD=W LQ=BC=V
MQ=FG=S LP=HE=R (5.14)

5.2 Symbolic manipulation

The above relations lead to a method of describing many of the properties of groups via
symbolic manipulation of infinite series of S—functions. Thusif {A} is an S—function then

we may symbolically write, for example,

MY = S {A/m) (5.15)

m

We can construct quite remarkable identities such as:

BD =Y {¢}-{¢) (5.16)
¢

or for an arbitrary S—function {e}

BD - {e} =Y {¢}-{¢/e) (5.17)
¢

Equally remarkably we can find identities such as

{lo-1}/Z ={c/Z} {7/Z} for Z=L,MPQR,SV,W (5.18a)

{o-r}/Z2=> {0/¢Z}-{r/¢Z} for Z=B,D,F.H (5.18b)
¢

{U-T}/Z:Z(—l)wf{a/CZ}-{T/fZ} for Z=ACECG (5.18¢)
¢

These various identities can lead to a symbolic method of treating properties of groups

particulary amenable to computer implementation.
5.3 The U,, — U,,—; branching rule

As an illustration of the preceding remarks we apply the properties of S—functions to the
determination of the U,, — U, _y branching rules. The vector irrep {1} of U,, can be taken

as decomposing under U,, — U,,_; as

{1} = {1} + {0} (5.19)

that is into a vector {1} and scalar {0} of U,,_1. In general, the spaces corresponding to

tensors for which a particular number of indices, say m, take on the value n, define invariant
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subspaces. Such indices must be mutually symmetrised. The irreducible representations
specified by the quotient {\/m} are those corresponding to tensors obtained by contracting
the indices of the tensor corresponding to {A} with an m—th rank symmetric tensor. Thus

we may symbolically write the general branching rule as simply
{A} = {\/M} (5.20)
Thus for example under Us — Uy we have

(21} — {21/M)
— {21/0} + {21/1} + {21/2}
{21} 4 {2} + {11} + {1} (5.21)

5.4 The Gel’fand states and the betweenness condition

The so-called Gel’fand states play an important role in the Unitary Group Approach
(UGA) to many-electron theory. This comes about from considering the canonical chain
of groups

U, DUp,1D...Us DU, (522)

The states of such a chain follow directly from consideration of Eq.(5.20). Each state
may be represented by a triangular array having n rows. There are n entries m; , with
i =1,2,...,n corresponding to the usual partition (A\) padded out with zeroes to fill the
row if need be. The second row contains n — 1 entries m; ,—1 placed below the first row so
that the entry my ,—1 occurs between the entries m; ,, and mg , etc. Each successive row
contains one less entry with the bottom row containing just one entry m; ;. The number
of such states is just the dimension of the irrep {\} of U,.

Consider the irrep of Us labelled as {21}. We find the eight Gel'fand states

2 1 0 2 1 0 2 1 0 2 1 0
2 1 2 1 2 0 2 0
2 1 2 1
2 1 0 2 1 0 2 1 0 2 1 0
2 0 1 1 1 0 1 0
0 1 1 0

5.5 Using SCHUR to evaluate properties of S—functions

All of the properties of S—functions we have so far discussed, and many more, can be
readily found using the programme SCHUR which has been placed on on the Pc’s here for

your experimentation.It will do many things besides just S—functions. e.g. Properties of
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irreps of all the compact Lie groups such as dimensions, Kronecker products and branching
rules. However at this stage we will restrict our attention to S—functions. Later on in
this course we will look at other features. The programme as installed has a principal file
SCHUR.EXE and a large number of HELP files. Ignore all other files at this stage. Go
to the SCHUR directory and enter the command SCHUR and after a few moments your
screen should look like

SCHUR #0333

User:Students

Site:Instytut Fizyki

Uniwersytet Mikolaja Kopernika

ul. Grudziadzka 5/7

87-100 Torun

POLAND

Copyright. Distribution and copying prohibited

[Version 5.0] (c) Schur Software Associates 1984,1986,1987,1988,1989

(If you wish to EXIT, enter ’END’)

(If you wish to obtain HELP, enter ?7’help’)

DPrep Mode (with functiomn)

DP>
Note that you can EXIT the programme any time by entering END. Also while I will indi-
cate commands to be entered in CAPITALS the entry of commands is not case sensitive.
To get to the S—function mode enter SN and you will see

DP>

SFN

Schur Function Mode

SFN>

- You can obtain a list of commands in the Schur Function Mode by entering
P’SFNMODE’ to give

SFN>

72 SFNMODE”

SFNmode

This mode does all calculations involving Sfns.

Commands available are:

ABsval, ADd, ALARM, AlLlskew, ATtach, BEL1,CDiv ,CLEave, COeffs,COLour,

CONJ, CUT, DEtach,DIGits,DIR,DISK,DIStinct, DPMode, END, EXit, FACtor,

FN,FRame, FULL, FULLSA, FSA, HALlp, Inner, INSert, LAPs, LAst, LEngth,

LIMit, LOad, LOG, LRAIse, MCount, MKWeight, MORe, MUlt, NLIMit, Outer,
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PAUSE, PHase, PLeth, PLInner, POwer, (EXpand, QFN, QOUTer, QQExpand,
QQSeries, QSEries, QSKew, QSTD, RAIse, RCOnvert,REDuce, REM, REPmode,
REVerse, RInner, RQINner, RLRAIse, RRaise, SAMewt, SAve, SCONvert,
SETSfn, SKew, SQINner,STAtus,STD,STIme, SUb,SVar,TCount,TIme, TRunc,
TRWt, WEight, Zero.
Some of the Sfn commands make use of the Sfn infinite series (SKew,
TRunc, TRWt).
The Sfn series in Schur are:A, B, C, D, E, F, G, H, L, M, P, Q, R, S,
T, V, W, X, Y.
These series may be accessed by upper or lower case letters.
SFN>

Many of the commands you won’t need to consider at the beginning. Each command has

it’s own helpfile. Try entering the command FRAME 54321 and you should see on your

screen the frame F°4321 drawn as

The following give examples of syntax as explained in the Helpfile DIGITS and SYNTAX.
Try other frames such as 5322211 which could be entered as either FRAMES532312 or as
just FRAMEDS’322211 or even as FRA5322211. To draw the frame for the partition 12 10
4321 you enter FRA 112 110 4321 . Note that the exclamation mark (!) is put in front of
digits larger than 9 and a space then follows the digits. Spaces are optional for numbers
<= 9. If you enter FRA5.4321 you will see on the screen the frame F*3?! with the digit
5 above it. To see the significance of that try entering OUTER 21,21 and you will obtain

the output
SFN>
OUTER 21,21
{42} + {4172 } + {372 } + 2{321} + {31°3 } + {273 } + {272 12 }
SFN>

- Notice that the S—function {321} appears with a multiplicity of 2. Now enter
FRAME LAST and you will see the frames for each partition drawn on the screen with
a 2 appearing above the frame for {321}. Now try the command FRAME OUTER 21,21
and you will start to learn how you can combine sequences of commands. Enter OUTER
4321.,4321 and note that you get a screen full of S—functions with the word MORE ap-
pearing on the left. Pressing a key will show you the next screen full. You can turn off

MORE by entering MORE FALSE now repeat OUTER 4321,4321 and 206 S—functions
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will scroll by. Try FRAME OUTER 4321,4321 and 206 frames will flash by with their
associated multiplicities. To count the number of frames simply enter TCOUNT LAST
and to count the sum of the multiplicities enter MCOUNT LAST.

Look at the helpfiles associated with the commands SKEW, TRWT, WEIGHT, LENGTH
and see if you can determine the terms in each of the S—function series we have discussed
today up to say weight 8. Feel free to explore the various features. See if you can make
yourself a LOGFILE in which you obtain the aforementioned series and then edit the logfile
and print out a neat table with suitable captions etc., possibly as a TgXfile.
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Symmetry and Spectroscopic Calculations
Lecture Six
6.1 Resumé of the quantum theory of angular momentum

At the beginning of this course we introduced determinantal states. We now give an al-
ternative description for fermions in terms of second-quantisation. The description for
boson states is very similar and is left to the student to develop. Elementary courses on
the quantum theory of angular momentum revolve around the structure of two important
groups which are usually skillfully hidden from the student who often acquires a consider-
able knowledge of groups without either the teacher or student being aware of it. These
two groups are the rotation group in three-dimensions SO3 with its trivial subgroup SO-
and the covering group of SOj3 the special unitary group in two dimensions SU;. In the
quantum theory of angular momentum we become familiar with the standard relations
(throughout I take h = 1)

[Ji,J]‘] :ieijkjk (6.1)

where ¢, 7,k = 1,2, 3 and the J; form the three components of the angular momentum J.
Putting
Jr= (1 £iJy)/V?2 (6.2)

we can rewrite the angular momentum commutation relations as
[‘]37 J3] = 07 [‘]37 J:l:] = j:‘]:tv [‘]-1'7 ‘]—] = J3 (63)

which are the standard commutation relations associated with the locally isomorphic Lie
algebras soz and sus,.

We can also form an operator

Y =Jl+J;+ T3 (6.4)

which commutes with all the components J; and is the Casimir operator associated with
the Lie algebra. As a result it is possible to construct eigenfunctions [jm > that are

simultaneous eigenfunctions of J* and Js with the eigenvalue relations

J3lgm > =m|jm >

Pjm> =3+ 1)jm > (6.5)
where
m=g3,75—1,....,—3+1,—j (6.6)
and
Jilim>=jG+1) —m(m£1)|jm*1> (6.7)
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The quantum numbers m are known as weights with m = j being the highest weight. We
use the highest weight j to label the irreducible representations of SOs3 as [j] and it follows
from Eq.(6.6) that [j] is of degree (25 4+ 1). If j is a non-negative integer then [j] is said to
be an ordinary or tensor representation whereas if j is a half-odd integer then [j] is term

a spin or projective representation. Both types of representations are true representations

of SUQ
6.2 Definition of a Lie algebra

The angular momentum operators J; form the infinitesimal generators of the Lie group
S0; and likewise the elements of the Lie algebra sus,.

Formally we define a Lie algebra as follows: Let A be an r—dimensional vector space over
a field K in which the law of composition for vectors is such that to each pair of vectors

X and Y there corresponds a vector Z = [X,Y] in such a way that

[OzX + 7Y, Z] = Oz[X, Z] + ﬂ[Y, Z]
[X,Y] + [Y,X] =0
[Xv[sz]]—l_[Yv[ZvX]]—I_[Zv[XvY]]:0 (68)

forall a, f3,...,€ K and all XY, Z,... € A. A vector space satisfying the above relation-
ships is said to constitute a Lie algebra. A given Lie algebra will be said to be real if K is
the field of real numbers and complez if K is the field of complex numbers.

In many physical applications we are interested in the infinitesimal generators X, of a Lie

group which satisfy the commutation relations

(X, Xo] = ¢}, (6.9)
with 7, = —cg, and hence
[Xanp] =0 (6-10)

The classification of the classical Lie algebras was essentially completed in Elié Cartan’s
thesis of 1894 who showed that the complex semisimple Lie algebras fall into four sequences
of simple Lie algebras which he designated as Ay, By, Ci, and Dy where k is the rank of
the Lie algebra. In addition Cartan found five exceptional Lie algebras which occurred for
specific ranks. These were designated as G, Fy, Es, E7r and Eg. The number of group

generators is equal to the dimension of the adjoint representation of the Lie algebra.
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Table 6.1 The simple Lie algebras and Lie groups

Lie group Lie algebra Number of group generators

SUpsr Ag k(k +2)
SO(?k—I—l) By k(?k—l—l)
Spak Cs k(?k + 1)
SOu Dy K2k — 1)
Go G, 14

Fy Fy 52

Eg Eg 78

Er Er 133

Eyq Eyq 248

6.3 Second quantisation

As we saw earlier we may specify a state as |smglme > in an LS—basis or as |s{jm > in a
Jj—basis. Frequently we shall suppress the detailed single particle quantum numbers and
just use suitable Greek letters.

It is convenient to represent angular momentum states in the language of second quan-

tisation. For a fermionic system introduce annihilation or destruction operators a, and

creation operators al such that if |0 > is the vacuum state then:
all0 >=|a > (6.11)
i

i.e. the action of the operator a4 on the vacuum state |0 > is to create a single particle in
a state specified by the set of quantum numbers «. To satisfy the antisymmetry properties

of fermions we must have the anticommutation relations

{awrag} = {al,al} =0 (6.124)
{alvaﬁ} = 601,6 (612[))

The requirement of orthonormality will be met if we take
4a]0>=0 and  <O0lal =0 (6.13)

The antisymmetrisation postulate for fermions, i.e. the Pauli exclusion principle, is assured
if we take
— alaT =0 (6.14)

«

An N —particle state can be created by having a sequence of N fermion creation operators

act on the vacuum state such that
alag...alm >={a,f,...,w} (6.15)
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Taking adjoints gives
<0Olay...agaq ={a,f,...,w}"

The number operator is defined as

S ala,

¢
)

(6.16)

(6.17)

and acting on an arbitrary N —particle state aqag. .. al|0 > gives the eigenvalue N.

6.4 One- and Two-body interactions

Single particle operators of the type

N
F=) fi
=1
may be expressed in second quantised form as

F:Zal < alf|f > ag
a,B

while for two particle operators of the type
G= D g
1=i<j

the second quantised form is

G = Z agaj; < Em2lgr2|CG Az > arae

£1,0,A

N | —

For the angular momentum operator J we have

J:Zal < alj|f > ag
a,B

Taking o« = ym gives the commutators

[J I ]:maT

Z7ajm jm

Uxal,] = GG+ D —mm £ al,.,

6.5 Tensor operators in general

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23a)
(6.23b)

Consider a simple compact group G having elements ¢g. Let U, denote a unitary, not

necessarily irreducible, representation of G on a Hilbert space H. The various unitary
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representations will be distinguished, when necessary, by writing U,(A) or for brevity just
as (A). Let |[AX > be basis vectors of the representation (A), where A labels individual
basis vectors.
Let the complete set of basis vectors |[AX > span the infinite Hilbert space H in which the
linear operator R, (or just R) corresponding to the element ¢ of G is represented by the
block-diagonal matrix | < AAR|AN > |. An individual matrix element will be designated
as < AXR|AX >. The effect of the linear operator R acting on a basis vector |[AX > will
be to produce a linear combination of those basis vectors that span the representation (A),
that is

RIAN>=)" < AN|RIAN > [AN > (6.24)

v

The set T(A) of [A] linearly independent operators T(AM) is said to form a tensor operator
under the group G belonging to the representation (A) of G if under the operations of the

group it transforms according to the representation (A) i.e., if
RT(AMR™' =< AN |R|AN > T(AN) (6.25)

A tensor operator T(A) will be said to be wrreducible, reducible or equivalent if the group
representation (A) is correspondingly irreducible, reducible or equivalent.

For an infinitesimal transformation in G
R=14+6a"X, (6.26)

where 0a? are the infinitesimal parameters and X, the corresponding infinitesimal opera-

tors. Keeping terms to first order in the 6a?,

(X0, T(AN)] =) < AN[X,[AN > T(AN) (6.27)
)\/
and from Eq.(6.25)
Xo|AN >= 3 < AN[X,[AN > [AN > (6.28)
)\/

6.6 Tensor operators for SO;

For the group SO; the infinitesimal operators are J., J1 and in an angular momentum

basis that diagonalises J* and J.

J|JM > = M|JM > (6.29a)
JelJM >=/J(J+1)—MM+1)|[JM+1> (6.29b)

which is the SOs equivalent of Eq.(6.25).
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If T(k) is an irreducible tensor operator in SOs transforming as the irreducible represen-
tation D(k) of SO; it follows from Eq.(6.27) that the (2k 4+ 1) components T(kq) where

qg=—k,—k4+1,...,k— 1,k must satisfy the commutation relations

[J:, T(kq)] = ¢T(kq) (6.30a)
(T2, T(kq)] = V/k(k +1) — q(g £ 1)T(k,q £ 1) (6.300)

which we will take as the defining relations for irreducible tensor operators for SO3. The

tensor operator T(k) will be said to be of rank k.
6.7 Coupling coefficients

If [A7A1 > and |A2Az > are two basis vectors of (Ay) and (Ay), respectively, then the

reduction of the Kronecker product is accomplished by the coupling coefficients
< Al/\lAz/\2|A1A2; OéAlz/\lz >

where

aAiz A >= > < A A A Agsadin A > (A > [Ag)y > (6.31)
A1,A2

with « being a multiplicity symbol to distinguish repeated irreducible representations. In
the case of SO3 the coupling coefficients are just the usual Clebsch-Gordan coefficients.

The inverse transformation can be written as

|A1/\1 > |A2/\2 >= Z < OéA12/\12|/\1/\2 > |A1A2;OéA12/\12 > (632)

a,A12,A12

Since the transformations are unitary, we have the orthogonality relations

> < ahiphz Ay >M< MA@/ Al My > = baardaian, Saan,  (6.33a)
A1,A2

> < Mdafadinda >T< ahia Az AL > = 63, a 0 (6.33)
aaAlaA2
6.8 The Wigner-Eckart theorem in general

It 1s the Wigner-Eckart theorem that makes group theoretical calculations quantitative.

Consider a tensor operator T(AM) acting on a basis state |[A3 A2 >. Then

TAN[A2d2 >= Y < aMiA[AMA N, > [T(A)Az;ahs Ay > (6.34)
a,Al,)\l
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The matrix elements of T(A\) are given by

< MM IT(AN[AA >= > < e [AMA N2 >*< A\ [T(A)[Ags el Ny > (6.35)

Consider the transformation

aAi A >=>" < BA A ad Ay > [BALA > (6.36)
B

Suppose that X, is an arbitrary infinitesimal operator of the group G and that

lahi Ay + e >= ) < BALAL + pladi 4 > |BAN > (6.37)
B
For u # 0
X |OéA1/\1 >
AMA +p>= a
|05 i a <A1/\1—|—/,L|XN|A1/\1 >
=) < BANBAN > [BALA A+ g1 > (6.38)
B

Comparison with Eq.(6.37) gives
< 6A1/\1 + M|OéA1/\1 + pu>=< 6A1/\1|6A1/\1 > (639)

for all p # 0, and hence the coefficients < A1 A1|FA1 A1 > must be independent of the
component Aj.
Making use of Eq.(6.35) gives the Wigner-Eckart theorem as

< MMIT(AN[AzAs >= > < e\ [Ag >< aly|T(A)]|Az > (6.40)

where we have written < aA1||T(A)||[A2 > in the place of < AyjA|T(A)|A2; A1 A >,
since the latter is independent of A\;. The double-barred matrix elements are independent
of the weights of \; of the representations (A;) and are referred to as reduced matriz
elements. The entire dependence of the matrix element on the weights of the bra and ket
representations together with the component of the tensor operator T(A) is encased in the

coupling coefficients < aA;A1|A\2 >*. Inverting Eq.(6.40) gives

< al[|T(A)|A2 >= ) < Mafadi A [T(AN)]A2\; > (6.41)
A1,

Ultimately the calculation of matrix elements comes down to the evaluation of coupling
coefficients and reduced matrix elements. The Wigner-Eckart theorem may be generalised

to apply successively to every group-subgroup along a chain of nested groups.

48



6.9 Selection rules

The Wigner-Eckart theorem leads directly to selection rules which follow from the require-
ments for the vanishing of the coupling coefficients. The coupling coeflicient in Eq.(6.40)
will vanish unless the weights of the bra, ket and tensor operator component satisfy the

relation

A Ay = Ay (6.42)

The coupling coefficient will vanish unless the triple Kronecker product
AT XAXxA; D0 (6.43)

where here 0 is the identity representation of G. We will write ¢(A1, A, Az) for the number
of times the identity representation occurs in the triple Kronecker product. This number

gives the number of terms that occur in Eq. (6.40).
6.10 The Wigner-Eckart theorem for SO;

The group SOj3 is multiplicity free and the Wigner-Eckart theorem in this case simplifies
to just
< Oé1j1m1|Tq(k)|042j2m2 >=Ciki <y i ||TW)azgs > (6.44)

miqmmsz

where C,{;fﬁw is the usual Clebsch-Gordan coefficient. In terms of the 35 —symbol we have

< a1]1m1|Tq(k)|0z2]2m2 >= (—1)]1 ! (—]77111 q 7‘7]”622) < OélleT(k)HOézjz > (645)

The matrix elements of Tq(k) vanish unless
my = q + mo (6.46)
while the reduced matrix element will vanish unless

J1+J2 >k >j1 — g2 (6.47)
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Symmetry and Spectroscopic Calculations
Lecture Seven
7.1 The Clebsch-Gordan coefficients

In our last lecture we introduced the Wigner-Eckart theorem for states in an angular

momentum basis |jm > noting that for tensor operators T™ we can write

< ayjimi| TP Jagjame >= CIF2 (aqji||T™)||azjz) (6.44)

where C,{;fﬁh is the usual Clebsch-Gordan coefficient or in terms of the 35 —symbol

< a1]1m1|Tq(k)|0z2]2m2 >= (—1)]1 ! (—]77111 q 7‘7]”622) < OélleT(k)HOézjz > (645)

The Clebsch-Gordan coefficient < jimy jama|jij2jm > represents the elements of a unitary
transformation that couples the uncoupled states |jimq > |jams > to produce the coupled

states |j1j2gm >. i.e.,

|J1j2gm >= Z < jimajzma|jijegm > |jima > [jame > (7.1)

my,m2

Such transformations arise, for example in relating basis states in the |SMgL M} > scheme

to the coupled basis states |SLJM > where M = Mg + Mp,. Thus,

ISLIM >= Y < MsM|SLIM > |SMsLM; > (7.2)
Ms, My,

Note that we shall often abbreviate the Clebsch-Gordan coefficient < jymqjoms|jijaim >

to just < myma|jij2jm >. The Clebsch-Gordan coefficients may be expressed precisely as

< mimazljijegm >= Omy+ms,m

. \/ (2 + Dt + 2 =) Gr = m)! Ga = ma)! (G +m)! ( —m)

Ui +iz+7+DV G+ =52t G =+ 52) G +ma)! (2 4+ me)!
(J1 +mi+2)! (7 +J2 —ma — 2)!

% ;(_1)11_’”1_22! (J—m—=—2)(j1—m1—2) (2 —J +m1+ 2)! (7.3)

While Clebsch-Gordan coefficients possesses considerable symmetry a more symmetrical
object was defined by Wigner and is now commonly known as the 37 —symbol.

7.2 The 3j—symbol

The 35 —symbol is related to the Clebsch-Gordan coefficient by

( J1 J2 J3 ) _ (_1)11—12—”13 < m1m2|‘j1j2j3 — M3 > (74)
miq mo M3 (2]3 + 1)
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The 3j—symbol is invariant with respect to an even permutation of its columns while for
odd permutations of its columns is multiplied by a phase factor equal to the sum of the
arguments in its top row. i.e.,
jl j2 j3 — (_1)]1-1-]2-1-]3 j2 jl j3 (7 5)
my Mo Mg mo M1 Mms '
Furthermore, changing the sign of all three lower arguments results also in multiplication
by a phase factor equal to the sum of the arguments in its top row. i.e.,
jl j2 j3 — (_1)]1-1-]2-1-]3 jl j2 j3 (7 6)
mi1 Mo Mg —mi —m2 —M3 ‘
A 3j—symbol having all its m quantum numbers zero will be null unless j; + j2 + j3 1s
even. Likewise any 3j —symbol having two identical columns will vanish unless j; + j2 + j3
1s even.

The unitarity property of the Clebsch-Gordan coefficients lead directly to the orthonor-

mality conditions for the 37 —symbols
2 : - o2 U Ji o J2 s
1 M2 M3 my Mgy M3

j3am3
Z Ji J2 U3 U J2 73 _ 613’119,6"13’"1% (7.6b)
my M2 M3 mi  m2  my (275 + 1)

my,ms2

6m1,m’ 6m2,m’2 (76@)

1

7.3 Computing 3j—symbols

The 37 —symbols may be variously expressed starting with the result given for the Clesch-
Gordan formula given in Eq. (7.3). Extensive tables exist such as those of Rotenbrg,
Bivins, Metropolis and Wooten, ” The 3 — 7 and 6 — j Symbols” Technology Press, Mass.
(1959). The difficulty with implementing formulas based upon Eq.(7.3) is the summation
term which often leads to large intermediate numbers that overflow. Roothan(private

communication 1990) has noted that the 3j—symbol formula can be usefully written in

the form
a b ¢ — btc—a cta—B atbta+t b+ct+a cta+pB atb—a—
(oz p 7) _\/A( e e Y
_ atbta—gtz a+b—c ct+a—"5 b+c—a
XZ( b ( z )(a—a—z b+ 38—z
(7.7)
where

Alabe)™t = (Ziff;) <c+2a“_b> (a+b+c+1) (7.8)
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The binomial coefficients in Eq. (7.7) are first computed as integers in a Pascal’s trian-
gle and then read from the table as required and thus the awkward summation may be
calculated as a sum of reals which may be rounded to produce an exact integer. The
A terms are rapidly calculated using prime number arithmetic to produce integers and
the resulting symbol outputted as a squared number expressed in prime number notation
with a phase factor. With 32-bit words almost the entire tables of Rotenberg etal may be
rapidly reproduced. With a 64-bit word such as on SUN machines the entire table and
much more can be generated without overflow. On packages such as MapleV the entire
calculation can be carried out using the exact arithmetic routines of MapleV.

7.4 Reduced matrix elements of angular momentum operators

The angular momentum J is a rank 1 tensor operator I with the z— component J,
corresponding to the tensor operator component Jél). Application of the Wigner-Eckart
theorem as in Eq.(6.45) gives

< ajm|JgV|a’j'm' >= (~1)77" (—]m 0

!
J . .
m’) < aj||lJV)a'j" > (7.9)
However, from the elementary quantum theory of angular momentum we have
< ajml|J.|a'j'm' >= 84,010} i1 6 mm (7.10)

The matrix element is independent of all other quantum numbers « and diagonal in the

angular momentum j. Comparison of Eqs. (7.9) and (7.10) then leads to

< jm|]él)|jm >=m

=<—1>J‘—m(j ! f)<jw<1>ru> (7.11)

-m 0 m

The 35 —symbol may be explicitly evaluated to give

e (7L ) L m
= <—m 0 m> Vil +1)(27 +1)

from which we immediately deduce the important reduced matrix element

<GV >=ViG+ D2 + 1) (7.12)

In deriving Eq.(7.12) we have made no assumptions as to the nature of the angular mo-
mentum and our result holds equally well for spin or orbital angular momentum operators.
7.5 The 6 —symbol

The 3j—symbol arose in the problem of coupling two angular momentum states to pro-

duce a coupled state. In the case of coupling three angular momenta, say j1,J2,73, to
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produce a total angular momentum state [jm > different orders of coupling the three

angular momenta can be considered. Both |(j1j2)j12,J3;9m > and |j1,(J273)j23;5m >

represent distinct coupling procedures. The two coupling schemes are linked by a unitary
transformation such that

71, (J2J3)j23; Jm >= 2{: < (J172)712,J350mj1, (J273)7235 3 > [(J172)012, 333 0m > (7.13)
Ji2

Acting on both sides with j; shows that the transformation coefficients are independent

of m.
The 65 —symbol is defined by the relation

< (J172)712. 335 0m|51, (J273) 7235 Jm >=

(=1t 271 + 1)(270s + 1) {?1 o } (7.14)
Js3 7 J23

The 65 —symbol may be evaluated by first expressing it as a sum over a triple product of
3j —symbols and then using the fact that the 65 —symbol is independent of m to produce

a sum involving a single variable to finally yield
{a b ¢ } B
d e f
VA(abe)A(aef)A(dbf)A(dec)
XY (=1)7(z + 1)!

X[(z—a=b—c)l(z—a—e—f(z—d-b—fl(z—d—e—¢)!
><(a—l—b—l—d—l—e—Z)!(b—l—c—l—e—I—f—z:)!(a—|—c—|—al—|—f—z:)!]_1 (7.15)

The 65 —symbol vanishes unless the four triangular conditions portrayed below are satisfied.

(0] e e e}

(7.16)

(0] (0] e e}

where for example a + b > ¢ > |a — b|.
The 67 —symbol is invariant with respect to any interchange of columns and also with
respect to the interchange of the upper and lower arguments of any two columns.The
67 —symbols satisfy the orthogonality condition

; ; Js J  J12 Js ) J12
22 120 + AAE A L
(7.17)

= 0jya. it
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Roothan(private communication 1990) has given the computationally convenient form for

calculating 65 —symbols

a b ¢
{ d e f }
= /A(abe)A(dbf)A(dec)A(acf)

. z+1 b+c—a c+a—2> a+b—a
sz:(—l) (Z—a—b—0> (Z—a—e—f> (Z_d—b—f> (z—d—e—c)

(7.18)

7.6 The 97 —symbol
The 65 —symbol arose in discussing the coupling of three angular momentum. Clearly more
complex nj—symbols will arise for couplings involving more than three angular momentum.

The 95 —symbol may be defined as

< (jig2)inz, (J374)7345 7|(J173)013, (J274)g245 7 >

JiJ2 Ji2
= \/(2j12 + 1)(2754 + 1)(2713 + 1)(2j24 + 1)< Js Ja J3a (7.19)
Jis Jaa
The 95 —symbol may be expressed in terms of 6j) —symbols as

b ¢
e f
h

D SR VIS VST Y 20

The 97 —symbol is left invariant with respect to any even permutation of its rows or columns

@ QR

or a transposition of rows and columns. Under an odd permutation of rows or columns
the symbol is invariant but for a phase factor equal to the sum of its arguments. If one

argument of the 95 —symbol is zero the symbol collapses to a single 6 —symbol viz.

a b ¢ 1 A+ f4g
d e Fp=06.;6qn (1) {“ b c} (7.21)
g h 0 Vet )2g+1) Le d g

7.7 Coupled tensor operators
We have noted the close connection between the transformation properties of tensor op-
erators and angular momentum states. Consider two tensor operators T and U*2. We
(k1k2s K)

can define a coupled tensor operator X via

Xg' =Y TIULY < kiqikagelkiky KQ > (7.22)

91,492
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Explicit evaluation of the Clebsch-Gordan coefficient for the case of K = 0 leads to

k)y1(k)10 (=D* —qrp(k) (k)
[TOuh = WZ(_D Ll (7.23)
q
The scalar product of two tensor operators is defined as
k
(T(k) ) U(k)) _ Z(_l)qTq(k)U(_q) (7.24)
q
It follows from Eqs.(7.22) and (7.24) that
wywpe — _CEDY i
T UY] = (T - U™ (7.25)

(2k+1)

7.8 Matrix elements of tensor operators
Henceforth we shall often write simply X)) pather than XF1h2i5) for 5 coupled tensor
operator. It follows immediatedly from the Wigner-Eckart theorem that

< 04]'1]'2JM|X23K) o j1jy T M >

J—-M J K J SN ()| 5t 17!
S n ) < e X s @20
Our problem is now to evaluate the reduced matrix element in Eq.(7.26). Basically this
is done by an uncoupling of the bra and ket states and of the tensor operator followed by
appropriate recouplings and summations. For the details I refer you to the books of Judd
and of Edmonds.

If T® and UW act separately on parts 1 and 2 of a system such as in spin and orbit

spaces or on different particles, or sets of particles, then we obtain the result

< ajija J| X/ j1jh T > = Z < aji||T*la”j] >< a”jo|U*)|[a’j; >

a”

Ji g1k
x VI +DRK +1)2J +1){ jo jh ko p (7.27)
J J K

We can specialise the above result for A = 0 to obtain the scalar product as
< ajip JM|(TH - U)o’ 15T M >

R TP S L I
3 3 ]2 ]1 k

<Y < ap||[TWa”ji >< o2 [UF]a'j; > (7.28)

a”
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The action of an operator Tk acting on part 1 of a system can be found by putting ky = 0
in Eq.(7.27) to yield

. . ! l
<aj1j2JHT<’“>Ha’j1j;J’>:612,1;(—1)J1+]2+J+’“¢(2J+1><2J’“){y{ ; JJ}
1 2 1

x < aji || T a'j1 > (7.29)

while the action on part 2 is found by putting k&1 = 0 in Eq.(7.27) to yield

Jo2 J1 J2
x < ajo|UP|a'sh > (7.30)

. ) !
e AV X EaTET ey (A

A weaker result applicable to both cases where the operators act either on different parts

of a system or indeed the same system may be derived to give

<aJ|XB)a'J' > = (-1 2K +1) ) {k} ;‘ ];1,}

a” , J»

x < oJ|T*) ] >< T | URD||a' T > (7.31)

The results given by Eqs. (7.22) to (7.31) form the basis for all subsequent applications of
the theory of tensor operators.

7.9 Spherical harmonics as tensor operators

The spherical harmonics Y4(6, ¢) play a key role in many atomic and crystal field cal-
culations. The spherical harmonics transform under the action of the generators of SOs
just like the angular momentum states |kg >. Rather than using the spherical harmonics
themselves it is usual to use tensor operators C® whose 2k + 1 components C’;k) are

related to the spherical harmonics as

4 kE—ag)! )
Vil = (- U Pl epigs (732

k
cM =

where the P//(cos#) are the usual Legendré polynomials.
The reduced matrix elements of C'*) may be calculated by choosing to evaluate the matrix
element of the component C’ék) in an (s—basis between states with m, = 0 as done, for

example, by Judd to give

<P >= (=1)'/ (20 +1)(20' + 1) (g g g) (7.33)
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The 37 —symbol vanishes unless ¢ + ¢’ + k is even. The corresponding result for a jj—basis
can be found by use of Eq. (7.30) followed by Eq. (7.33) to give

. . - . . kg
<sGICWst' >= (=172 /(25 + 12" + 1) <_]1 0 1 ) (7.34)
2 2
where necessarily ¢ + (' + k is even.
7.10 Two sum rules
In discussing transition probabilities we are often interested in summing over a set of final

states to produce

1
< Jim| T® G pmyp > P = ———| < 3| T® |5 > | 7.35
S 1< gl TR |jpmy > | (2ji+1)| Jill T > | (7.35)

mpy,q

or sometimes over both initial and final states to produce

N < gmid TP limy > P = | < G Ty > 2 (7.36)

m;,my,q

7.11 Electric dipole transitions
The spontaneous emission transition probability per unit A time for an N —electron making

transitions from an excited state |a'J'M' > to a lower state |aJM > is

64rte?alo® 1 2
AWM — TM) = ———— zq] < aJM[TWV)a' J'M' > | (7.37)
where
N N
T =Y V) = eV (7.38)
=1 =1

and o is the wavenumber of the transition expressed in em 1.

The crucial quantity is the matrix element < oz]M|Cq(1)|0z'J'M' >. Application of the
Wigner-Eckart theorem gives

J 1T

< aJM|CM o ' M >:(—1)J—M<_M . M

) < aJ||CP)a’ T > (7.39)

The 3j—symbol will vanish unless (J,.J', 1) satisfy the triangular condition and hence we

have the selection rules

AJ=0,+1
0«0 forbidden
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Inspection of the bottom row of the 35 —symbol requires that
M+q¢+M =0

with ¢ = 0,+1. This determines the polarisation properties of the radiation. If AM =0
the emitted light is polarised linearly and parallel to the z—axis. If AM = 4+1 we obtain
circularly polarised light.

We can enlarge our description of the reduced matrix elements of cW to give 1n an

LS J—basis

, !
< aSLI|CW||a'S'L' T > = §5.5(—1)SH 1+ J0T £ 1) (2T + 1) { JoL }

x < aL|CW|e'L > (7.40)

where we note that the tensor operator acts only on the orbital space and hence we can
make use of Eq. (7.29). Inspection of the 6j—symbol shows it will vanish unless (L, L', 1)

satisfy the triangular condition and hence we have the selection rules
AS =0, AL =0,+1, L=0-L=0 forbidden

Note these selection rules assume S and L are ”good” quantum numbers. For a single
electron orbit ¢ we can use Eq. (7.33) to evaluate the reduced matrix element in Eq.

(7.40) and obtain the parity selection rule
Al =+1

a selection rule valid also for the N —electron case. The evaluation of the reduced matrix
elements for the N —electron case will be considered later.
7.12 Electric dipole line strengths
The quantity
S=|<at|[rcW|a'J > |? (7.41)

is commonly referred to as the electric dipole line strength. The total transition probability
from a state |o' J'M' > to all of the states |aJ M > of the level a.J follows from application
of Eq. (7.35) to give

B 64rte?ato?

C3R(2J' +1) (742)

In theoretical calculations the square root of the line strength S7 is the important quantity.

We calculate the wavefunctions |aJM > and |a'J'M' > in some basis so that

aJM >=Y"al’|8T > (7.43)
B
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and the square root of the line strength becomes
S%(oz] —aJ) = Za§§ < BI|lrcM|B'J" > aijﬁl, (7.44)
8,8’

Such calculations of the square root of the line strength are important in taking into
account departures from LS—coupling.
Exercises

7.1 Obtain a compact expression for the matrix element
< aSLJMI|L, +2S.|aSLJM >

7.2 Show that

< aSLIM|L. 4 2S.|aSLJ + 1M >=/(J +1)? — M?

(S+L+J+2)(S+T+1—LYL+J+1—8)S+L—J)
8 4T+ 1227 +1)(27 +3)

In the above exercises the following special 37— and 6j—symbols are useful

g N em m
<—m 0 m> = Viji+ 1) +1)

{j1 J2 U3 } e (J1(J1 + 1) +j2(ja +1) = j3(ys + 1)
2ol V101 + D21+ D2 + D(2j2 + 1)

{ J1 J2 js}
J2—1 51 1

— (—1)Jl+j2+jg\/2(j1 Fi2 s+ D01 +j2—Js)Uz +s —J)UL —J2 +ys + 1)

271(271 + 1)(251 + 2)(272 — 1)252(2j2 + 1)
Symmetry and Spectroscopic Calculations
Lecture Eight

8.1 The Zeeman effect - Weak field

Consider a magnetic field B, directed along the z—axis and a set of states |« SLJM >
associated with a spectroscopic term 2t!'L. The presence of the magnetic field adds to

the Hamiltonian a term

Hmag = _BZ/“LZ :BZMO[LZ+9352] (8]_)
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where ¢g; =2 2.0023. In terms of tensor operators we need to evaluate the matrix elements

of the operator L(()l) + 93581). Consider first the diagonal matrix elements
< aSLIM|LY + ¢,SV|aSLIM >
Application of the Wigner-Eckart theorem, Eq.(6.45), gives

< aSLIM|LYY + ¢,8V|aSLIM >

_ J 1 J
= (—1)/ M (_M 0 M) < aSLJ||I LY 4 ¢,5V||aSLJT >

M
= « + g5 o > .
< aSLJ|| LW SO\aSLT 8.2
VI +1)(2T +1)

Use of Eq.(7.29) gives

< aSLJ||gsSM||wSLT >

= g, (—1)" LT 27 4 1) { g )5 é} < aS|5W)as > (8.3a)
Use of Eq.(7.30) gives
< aSLJ||ILM||aSLT >
_(—1)SHEEIL 9T 4 1) { [ l{} < aL|LVaL > (8.3b)

The reduced matrix elements follow from Eq.(7.12) and the 6j—symbols may be evaluated
explicitly as in Ex.(7.2). Combining terms we finally obtain

< aSLIM|HpaglaSLIM >= B.pgMg(SLJ) (8.4)

where

J(J+1)—LIL+1)+S5S(S+1)
2J(J+1)

g(SLT) =1+ (95— 1) (8.5)

is the so-called Landé g—factor. Eq.(8.4) shows that for a weak magnetic field with states

of different J well separated the magnetic field will produce splittings linearly dependent

on the M quantum number. This is the so-called weak field Zeeman effect. For a J = %

level we obtain the pattern

J

(eI i

groB.

N[ —=
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1

2
Note that we have not only determined the number of sublevels (two) but also the

magnitude of splitting. For a J =1 level we obtain the pattern

In this case we obtain three sublevels. In general we obtain (2.J 4 1) sublevels. For
a system having an odd number of electrons we obtain an even number of sublevels while
for an even number of electrons we obtain an odd number of sublevels.
8.2 Off-diagonal matrix elements and the Zeeman effect
For a magnetic field in the z—direction the M —quantum number remains a good quantum
number. This is because we have preserved SO, symmetry. However, H,,,, does not
preserve SOz symmetry - we have chosen a particular direction in 3—space. The total
angular momentum J is no longer a good quantum number. There exist matrix elements
of Hpay coupling states with AJ = £1. We first note that J. = L. 4+ 5. and hence
L.+4¢sS.=J.+(9s—1)S.. But the matrix elements of J, are diagonal in J and hence to
calculate the off-diagonal matrix elements we need only calculate the off-diagonal matrix

element of S, as follows:

< aSLIM|SSV|aSLT + 1M >

:(—Ujﬂw<-jﬁ é tzzl><<aSLﬂw“Mm5LJ+1:> (8.6)

Explicit evaluation of the 37 —symbol gives

sm({ J 1 J+1\ (J+M+1)(J-M+1)
1) (—M 0 A4>_"_¢ BT+ 1)(2] +2) (87)

Evaluation of the reduced matrix element in Eq.(8.6) using Eq.(7.29) gives

< aSLJ||SW||aSLT +1 >

:(—US+“Jy42J+1XQJ+3){

J 1 J+41

s I & }<M$WW>

(8.8)

S+ LATH2)SHT+L1-L)T+1+L—S)S~J+L)
T 4T +1)
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Combining Eqs. (8.7) and (8.8) in Eq.(8.6) finally yields

< OzSLJM|Hmag|0zSL] + 1M >
= BZMO(QS - 1)\/('] + 1)2 - MZ)

L J(SHL+T+2(S+T+1-L)YJ+1+L—S)(S—J+L)
AT+ 1)2(2T +1)(27 +3)

(8.9)

8.3 Calculation for a *P term
A 3P term has S = 1 and L = 1 from which we deduce that we can have J = 0, land 2.
In a free atom we expect the spin-orbit coupling to give rise to the three spectroscopic

levels:

3P2 3P1 3P0

For simplicity we will assume ¢g; = 2. From Eq.(8.5) we find
3 3
3P _ 2 3P _ 2
9O =5 9Ch) =g

(Recall the diagonal matrix element for a state with M; = 0.) The off-diagonal matrix
elements follow from Eq. (8.9) and we can obtain separate matrices, one for each value of
M ;. The matrices for My and —M; differ only in the sign of the diagonal elements which

is just the sign of M ;. In units of poB. we obtain the following matrices:

PP24+2>
Mrp=%2 <3 p2+2 ( +3 ) (8.10a)
PP24+1> [PP1+1>
3 3 1
My =41 < P2EL £ 2 (8.100)
<* P1£1] : +3
2P20 > [*PP10> [*P00 >
<3 P20| 0 Y 0
M;p=0 <3pio|| £ 0 e (8.10¢)
<3 POO| 0 v 0

3

The effect of the off-diagonal matrix elements is to mix states of different J and to lead to
level shifts non-linear in M ;.

8.4 Strong magnetic fields and the Paschen-Back Effect

If the external magnetic field is strong and the energy separation of the different J states

small then there will be strong J—mixing. So far we have considered states in an |SLJM >

75



basis. The calculation of energy levels requires that we add to the above matrices the other
terms in the Hamiltonian such as the Coulomb and spin-orbit interactions. In the event of
a very strong magnetic field we may consider states in a |[SLMgMj, > basis. In that case

we have the matrix elements

< aSLMsMp|HpaglaoSLMgMy, >
= poB. < aSLMsMp|L\V + ¢,5$ |0 SLMsM, >
= poB. My + g Ms (8.11)
where My = Mg+ Mp. For the states | PMsMp >, taking g, = 2 we have, again in units
of upB.:
PPE14+1>
My=£2 B3pti1x] ( 3 ) (8.12a)
P10 > P01 >
<3 P10| 2 0

My =+1 (8.12b)
<3 P01 0 1
PP1—1> [PP—-11> [*P00 >
<3 P1—1] 1 0 0
Mr=0 <3 p_11 0 ~1 0 (8.12¢)
<3 P00 0 0 0

We note, as expected these matrices are diagonal. Their eigenvalues are presiselt the
eigenvalues that would be obtained if the matrices in Eq.(8.10) were diagonalised. This
gives a method of checking Zeeman matrices calculated in the |[SLJM > basis. Upon

diagonalisation we must obtain the corresponding values found in the |[SLMgMj > basis.

Exercises

(8.1). Compute the Landé g—values for ZP% and ZP%.

(8.2). Compute the matrix element <? P21|L. +2S5.]*P21 >

(8.3). Compute the complete set of Zeeman matrices for the complete set of states associated
with the 2P multiplet in both the |SLJM > and |SLMsMj, > bases.

(8.4). Use your results from the above exercises to produce a sketch showing the way the
degeneracy is completely lifted by a weak magnetic field. Sketch how the sublevels
behave with increasing magnetic field strength and how some degeneracies arise in the
limit of a very strong magnetic field. Note in making your sketch you will want to
make use of the no crossing theorem. In our case that means that levels of the same

My do not cross.

76



(8.5). Make a list of examples from modern technology where the lifting of degeneracies by
a magnetic field are exploited.

(8.6). Discuss the technological significance of departures from linearity of Zeeman splittings.

8.5 Magnetic dipole transitions
Magnetic dipole transitions are associated with the matrix elements of the magnetic dipole

moment
"

D (L + 28); (8.13)

=1

(&

M =

" 2me

In tensor operator form we need the matrix elements of the tensor operator

7

M® =31 + 28)1" (8.14)

=1
and hence the calculation of these matrix elements is exactly as for the Zeeman effect
just discussed. For magnetic dipole transitions to occur they must satisfy the following

selection rules:
Al=0 AS=0 AL=0 AJ=0,£1 J=0+0 forbidden (8.15)

Thus there can be no change of parity and within the approximation of LS—coupling
transitions occur only between states of the same 25tV L multiplet.

Following Ofelt ( Intensities of crystal spectra of rare earth tons, J.Chem.Phys.37,511-520,
1962) it is useful to write the line strength in the form

S(a, B)
= (| <alMPp> P+ <alMDB> )+ | < almV|p > (8.16)

The first term enclosed in curved brackets corresponds to = polarised light (i.e. linearly
polarised parallel to the z—direction) and the remaining term to o polarised light (i.e.
circularly polarised). Note that this is exactly the opposite situation to electric dipole
transitions and hence gives us an experimental method for distinguishing the electric dipole
transitions from magnetic dipole transitions. This can be very important in crystalline
materials where the "forbidden” magnetic dipole and “forced” electric dipole transitions

can both occur.

Exercises
(8.7). Discuss the technological significance of magnetic dipole transitions.
(8.8). Magnetic dipole transitions are commonly referred to as “forbidden” transitions and
are very difficult to observe in atomic spectra in the laboratory but are readily seen

in the spectra of gaseous nebulae. Explain why this is the case.
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(8.9).

(8.10).

Polarisation studies show that the transitions " Fy <° D; within the 4 f® configuration
of europium salts are magnetic dipole in origin and yet such a transion appears to
violate the AS = 0 and AL = 0 magnetic dipole selection rules. Develop a hypothesis
to explain this selection rule breakdown.

Magnetic dipole transitions, unlike electric dipole transitions, are very difficult to
observe in the optical spectra of atoms but are readily seen in microwave spectra

whereas electric dipole transitions are not. Explain this observation.
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Symmetry and Spectroscopic Calculations
Lecture Nine
9.1 Spin-orbit interaction for a single electron

The spin-orbit interaction plays an important part in both atomic and nuclear physics.
It arises directly out of considerations of the relativistic Dirac equation. It leads to the

inclusion in the Hamiltonian of a term

N

Hs—o — Z Cnf(ri)(s : l)z (91)

=1

where in the central-field approximation the radial integral (,,¢(r;) involves just the quan-
tum numbers nl. The radial integral (,,¢ is commonly referred to as the spin-orbit coupling
constant and gives a measure of the strength of the spin-orbit interaction. H,_, is a scalar
operator and in a |JM > basis its matrix elements are diagonal in J and M and are inde-
pendent of M. As a consequence in writing down matrix elements we shall often suppress
the M quantum number. For a single electron the relevant quantity is just (s -1) whose

eigenvalues may be evaluated simply by noting that j = 1 4+ s and hence

joj=11+s-s+2s-1 (9-2)
and hence 1
s-1= Sl +1) = 60+ 1) = s(s + 1) (9:3)

But for a single electron s = % and j4 =0+ % and hence we have

: . l
<Jtls-llj4 >=35 (9.4a)

and
((4+1)
2

Thus for ¢ > 0 a level characterised by the quantum numbers nsl splits into two sublevels

<j-ls-1j- >=—

(9.4b)

separated in energy by

20+1
AFE, = En£j+ - Engj_ = Tfng (9.5)

with the state with lowest j lying lowest to produce the pattern:
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Under charge conjugation the sign of the spin-orbit interaction changes sign. This
amounts to interchanging particles for holes and hence for a single hole in an otherwise
filled shell (i.e. the electron configuration n¢**1)we simply change the sign in Eqs. (9.4a)
and (9.4b) and obtain the state with j = ¢ + s lying lowest. Note that in nuclei the sign
of the spin-orbit interaction is found to have the opposite sign to that for electrons and
hence for a single nucleon the state of highest 7 has the lowest energy.

In triply ionised cerium, C'e®* | one has the following fragment of its energy level table (in

em™Y) given in Atomic Energy Levels - The Rare-Earth Elements by Martin, Zalubus and

Hagan
5pb4 f ZF% 0
ZF% 2253
5p®5d ZD% 49737
ZD% 52226
5p°6p ZP% 122585
ZP% 127292

Remembering that the energy separation for a single electron due to spin-orbit interaction
given in Eq. (9.5) we deduce the following empirical values for the spin-orbit coupling

constants in em ™!

Cof =644  (54=996 (g, = 3071

In triply ionised ytterbium, Y5*T one finds

413 ZF% 0.00
ZF% 10214.0
from which we deduce
Cay = 2918
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9.2 Spin-orbit interaction in jj—coupling

Jj—coupling is the natural basis for calculating spin-orbit interactions. For a state
|;NaJM > the interaction is completely diagonal and is simply N times that found for
a single electron. We saw in earlier lectures that the states of the p? configuration in an
|p> SLIJM > basis gave rise to two terms with J = 0 (}S; and 3P), one term with
J =1 (®P) and two terms with J = 2 (!D; and 32P,). Precisely the same J—values
arise for the jj—coupled configurations pz% (J =0), ng (J =0,2) and pspL (J =1,2)

leading to the spin-orbit matrices ( in units of ()

P2 > [papi2>
2

2

J=2 <rg2l ] 0 (9.6a)

<p%p%2| 0 —%

lpepil >
J=1 <p%p%1| < 1 > (9.60)
pi0> [p30>
<p20 -2 0
< p0| 0 -1

9.3 Spin-orbit interaction in n(" configurations

The calculation of the matrix elements of the spin-orbit interaction H,_, within the states
[ntNaSLJM > starts by use of Eq.(7.28) (NB in the notes of Lecture 7 replace the || by
| on the left-hand-side of Eq.(7.28)) to give

N
<nt™aSLI|Y (s -1)ila'S'L'T >

=1
/ s L
o \S LT
== {L s 1}
N
<33 < as|si oS >< o LIV L > (9.7)

=1 o'’

The triangular conditions required to be satisfied for the non-vanishing of the 65 —symbol
in Eq.(9.7) lead to the selection rules for spin-orbit interaction matrix elements. These

matrix elements will assuredly vanish unless

AS=0,41 AL=0,+1 (9.8a)
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or if

S=5=0 or L=L"=0 (9.8b)

These selection rules hold independently of the number of electrons.

The fact that the spin-orbit interaction can couple states of different spin S and/or orbital
L angular momentum means that in the presence of spin-orbit interaction the quantum
numbers S and L will cease to be good quantum numbers and hence we will obtain states
that involve linear combinations of the basis states |«SLJM >. As far as the spin-
orbit interaction is concerned the quantum numbers JM will remain as good quantum
numbers. Thus spin-orbit interaction can lead to a breakdown of the selection rules for
electric-dipole, magnetic-dipole or electric-quadrupole transitions as well as departures in
the Landé g—factors calculated for |« SLJM > states. These effects are often referred to
as arising from intermediate coupling where one has neither of the extremes of LS— or
Jj—coupling.

9.4 The Landé interval rule

For the particular case of the diagonal matrix elements of the spin-orbit interaction the

67 — symbol, and its associated phase factor, in Eq.(9.7) simplifies to (see page 71 of lecture

S L J
NSt
(-1) {L S 1}

T4+ 1) = L(L+1) - S(5+1)]
C VAS(S+1)(2S+ DL(L+ (2L +1)

notes)

(9.9)

Comparison with Eq.(9.7) shows that the entire dependence of the diagonal matrix ele-
ments on the total angular momentum J is contained in the numerator of Eq.(9.9).

Consider a term 29! L and assume that the spin-orbit interaction is weak compared with
the energy separation from other terms so that off-diagonal spin-orbit matrix elements

may be ignored then we may write

E*M L) — BT L) = %[J(J +1)a(SL) — J(J —1)a(SL)]
= Ja(SL) (9.10)

where a(SL) is independent of J and is characteristic of the particular 21 L term and
thus we may conclude that the energy interval between two levels of a term *5T1L with
consecutive values of the total angular momentum J s proportional to the larger of the two
values of J which is known as the Land’e interval rule.

9.5 Spin-orbit interaction in (* configurations

For more than two electrons the solution of Eq.(9.7) is non-trivial requiring use of coeffi-

cients of fractional parentage. Recall that for an electron configuration ¢2 the terms 2°+1L
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all have S 4 L even. To use Eq.(9.7) for 0% we need to evaluate the matrix sum

37 < (598 [1(s5)S" >< (0L V(0L > (9.11)
=1
We may take for ¢ = 1 the tensor operators acting on part one of the system and hence
use Eq.(7.29) and for ¢ = 2 the tensor operators acting on part two of the system and use
Eq.(7.30). Remembering that both S + L and S' 4+ L' are even we can combine the two

terms introducing a factor of 2. The single particle reduced matrix elements < s||s™||s >
and < (|¢™)||¢ > follow from Eq.(7.12) leading us to the final result

2
< CSLI|Y (s-1)il*S'L'T >

=1

= —2/s(5 + 1)(2s + 1)U(C 4+ 1)(20 + 1)(2S + 1)(2S" + 1)(2L + 1)(2L" + 1)
S+ L+ T St L S S 1 L L' 1
(D7 {L s 1}{3 s 3}{6 ( K} (912)

9.6 Calculation of spin-orbit matrices in p?

For the electron configuration p? we have s = % and ¢ = 1 and hence Eq. (9.12) becomes

2
<p*SLI| (s-1ilp*S'L'T >
=1

= —6\/(25 + 1)(25' + D)(2L + 1)(2L" + 1)(—1)5+1+7
TN

The values of the 65 —symbols may be readily obtained from tables or computer to yield

the spin-orbit matrices for p* in an LS—basis as

3 1 V2
=2 < I 2 2 (9.14a)
<1 D2| g 0
|3P1 >
J=1 <3H¢< _%> (9.14b)
|3P > |150 >
3 _ _
j=o < T L 2 (9.14c)



9.7 Checking spin-orbit matrices

In any calculation it is highly desirable to have checking procedures. The LS—basis states

differ from those in the jj—basis by a unitary transformation. This implies that for a

complete set of states of the ¢V with a particular value of J we should have

1. The traces of the matrices in either basis should be the same.
2. The eigenvalues A in either basis should be the same.
3. If A is a unitary matrix then 7V(AP) = > AP

9.8 The Hund’s rule groundstate

The groundstate for the states of a configuration (Y can be predicted using Hund’s rules

as follows:

(1). Select the terms of maximum spin multiplicity (i.e largest (25 + 1)).

(2). From those terms select the term having the largest orbital angular momentum quan-
tum number L.

(3). For N < 2041 select the state 2541 having the smallest value of J whileif N > 2¢41
select the largest value of J. By way of example, in the configuration f* we have
the terms with (25 4+ 1) =2 and 4 so the ground term must be chosen from the
quartets *SDGHI. Of the quartets the term with largest L is *I which can have
J = %, 12—1, 12—3, % Thus the Hund’s rule groundstate for f? is 4[3 while for f11 the
groundstate is 4I% as is indeed found for the groundstates of the Nd** and Er3™
rare earth ions respectively.

9.9 Spin-orbit interaction in the Hund’s ground multiplet

Consider the configuration ¢V with N < 204 1. Let **t!L be the Hund’s rule ground

term. If J =L+ S and M; = J then for Mg = S and M, = L we have

|2SHLIM >= |*T LMs My, > (9.15)

There is a unique determinantal state associated with this special state, namely,

+ +

) (9.16)

Allowing the operator Ef\;l(szﬁz)i to act on this determinantal state we readily find that

N
L
<SHULIM|Y (s 15T LIM >= 5 (9.17)

=1
It follows from Eqs.(9.8) and (9.9) that

N
SFULIM|Y (s DT LIM >=[J(J +1) = L(L + 1) = S(S + 1)]f(SL)  (9.18)

=1
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putting J = L 4+ S and then comparing Eqs. (9.17) and (9.18) gives for the Hund’s rule
multiplet

1 1
and hence we have for any member of the Hund’s rule ground state
> 1
< (NSLIY (s-1i|(NSLT >= g/ +1) = LL+1) = S(S +1)] (9.20)

=1

For N > 2( 4 1 we simply take the negative of the right-hand-side of Eq.(9.20).

Exercises

(9.1). Verify that the spin-orbit matrices given in Eqs. (9.6) and (9.14) satisfy the above
checks.

(9.2). Calculate the spin-orbit interaction matrices for the complete set of jj—coupled states
associated with f2.

(9.3). Calculate the spin-orbit matrices for the complete set of LS—coupled states of f2.
(9.4). The lowest electron configurations of the neutral rare earths Nd and Dy are 4 f*6s>
and 419652, respectively. The maximal multiplicity terms of these two configurations
are the °SDGHI terms. Atomic beam measurements for the groundstates of Nd
and Er give the Landé g—factors of ¢(Nd) = 0.60329 and ¢(Dy) = 1.24159. Give
a quantitative interpretation of these results with reasons for discrepancies between
your calculated results and the experimental values.

(9.5). The ground multiplet for neutral Sm is 4f96s%("F). The energies of the seven levels

of the multiplet, and their associated g—factors have been measured as

J E("F;) cem™t g("Fy)
0 0.00

1 292.58 1.49839

2 811.92 1.49779

3 1489.55 1.49707

4 2273.09 1.49625

5 3125.46 1.49532

6 4020.66 1.49417

Use Eq.(9.20) to deduce a value of the spin-orbit coupling constant for neutral samar-
ium and determine to what extent the Landé interval rule is satisfied. Calculate the
Landé g—factors for each state and compare them with the corresponding experimen-

tal values.
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(9.6). Perform a similar analysis for the ground multiplet of neutral Promethium (Pm)
4f56s*(°H). The energies of the six levels of the multiplet, and their associated

g—tactors have been measured as

J E(°H;) cem™ g(°Hy)
2 0.00 0.305

I 803.82 0.8279

g 174878 1.068
5279710 1.205

2 3919.03 1.307

15 5089.79 1.33

Exercises
1. Show that if the Slater radial integrals in the f—shell satisfy the special values
F, 6 d Fs 1
R u R 1
then in f% the Coulomb energies degenerate to

ECPP)=ECPF)=ECH)=F, - 54F,

E'D)=E('G)=E('I)=F, +30F,

E('S) = F, + 324F,

This is an example of the Laporte-Platt degeneracies.
2. Show that for f? in jj—coupling the two J = 0 states come from the %2 and %

configurations.
3. Show that in jj—coupling for the f—shell

72 72
<3 | c|2 >

375 891

Ey + TFz + TF4 + 429F5%

52 52
<3 | c|2 >

360 726
Fh+ —F + —F
o+ - 2 + - 4
72 52
<2 | c|2 >

2
——=45F, + 495F + 9009 F
3 2 4 6
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4. Use the values of the Slater radial integrals from 1. and diagonalise the rank 2 matrix
found in 3. to show that the energies obtained are identical to those for E('S) and
E(*P) found in 1.

93



