
Symmetry and Spectroscopic CalculationsLecture One1.1 IntroductionIn this course of lectures I want to introduce you to the role of symmetry in making practicalcalculations of spectroscopic properties of atoms. However, many of the techniques weshall consider have an applicability in other areas of physics such as can be encounteredin nuclear physics, particle physics, molecular physics and solid-state physics. This isbecause the concepts of symmetry are universal in there applicability in physics. Indeedthey are profoundly unifying concepts. Throughout we will emphasise practical methodsrather than abstract theory. Thus we shall try to explain results but will not be going intoformal proofs. I will be expecting you to apply these results in calculations for models ofreal systems. Note I say models of real systems. Every calculation is associated with aparticular model that will never correspond exactly to a real system in its full diversity.Nevertheless we would hope that some of our calculations will be a good approximationto some system.To start we will �rst consider just what we mean by symmetry and then review some ofthe properties of symmetric functions which arise in the theory of the symmetric group.There we will encounter some of the basic ideas of mathematical groups which is that areaof mathematics that allows us to create a framework to develop applications of symmetry.Among the various symmetric functions considered will be the so-called Schur functions.These functions play a key role in calculation of the properties of not only the symmetricgroup but perhaps more importantly for us properties of the continuos Lie groups such asthe unitary and rotation groups. The key results here will be the Littlewood-Richardsonrule for multiplying Schur functions, the use of Young tableaux, Young's remarkable de-scription of the representations of the symmetric group Sn and the Murnaghan-Nakayamaprocedure for calculating characters of Sn.I shall be assuming you have some knowledge of the quantum theory of angular momentumsuch as commonly associated with the angular momentum states jJM > and the use ofladder operators. I shall use that knowledge to develop the theory of tensor operatorswhich allow us to go beyond just symmetry to develop quantitative calculations via thecelebrated Wigner-Eckart theorem. Here we will encounter the 3j� and 6j� symbols ofangular momentum which will allow us to calculate matrix elements of interactions, �rstfor simple one- and two-electron systems and, with further development, for n�electronsystems.In some cases the calculations we shall attempt will be very simple, the sort of back-of-the-envelope calculations so dear to many physicists. Other calculations will require extensivecomputation best left to computer algebraic packages such as Maple or Mathematica. Asto group theory calculations I shall take the opportunity to introduce you to the package1



SCHUR that takes the tedium out of many practical applications. I think it is veryimportant to have practice at making simple hand calculations �rst before jumping intoheavy computer based calculations. We need also to develop procedures for checkingcalculations.Among the calculations I would like us to investigate will be such things as magneticinteractions, hyper�ne structure, transition probabilities, and crystal �eld interactions. Iwould also like to emphasise ideas of e�ective interactions and ab initio calculations.1.2 Why Symmetry?Symmetry is usually associated with an action or transformation of a system or object suchthat after carrying the operation the system or object is in a state indistinguishable fromthat which it had prior to carrying out the action or transformation. Thus there is a closerelationship between symmetry and impossible experiments. The existence of a symmetryimplies that it is impossible to devise an experiment to distinguish the before and aftersituation. If you succeed then the symmetry does not exist. All the great conservation lawsare associated with the assertion that a particular experiment is impossible. Indeed in theearly 1900's Emmy N�oether showed that every conservation law is associated with a certaininvariance which in turn is associated with the statement of an impossible experiment. Forexample, the conservation of angular momentum is associated with the statement that noexperimentalist has been able to determine a preferred direction in space.Thus the existence of a symmetry tells us what is NOT possible but does not tell us what ISpossible. Thus the symmetry rules out some possibilities. It leads to selection rules. Theexistence of a symmetry constrains the form of theories used to model the system possessingan observed symmetry. We must strongly emphasise that the existence of a symmetry canonly be determined by experiment and is always a tentative statement. We can never besure that some improvement in experimental technique or some experiment not hithertocontemplated will reveal an inexactitude in the symmetry. As examples consider theparity violation experiment or the CP violation experiments of kaons. In practice very fewsymmetries are 'exact' and in most cases we are led to consider 'approximate' symmetries.A symmetry need not be exact to be useful. Indeed I would assert the following:Proposition: We should always strive to construct theories with the highest possible sym-metry even if these are not exact symmetries of nature. The physics comes in the processof breaking the symmetry.1.3 An exampleConsider the case of Ce2Mg3(NO3)12 � 24H2O : Nd 3+What symmetry does the Nd 3+ ion see in the rare earth double nitrates? In free spaceit sees spherical symmetry associated with the three-dimensional rotation group SO3.The total electron angular momentum J has no preferred direction in free space and is2



a conserved quantity.* Associated with the conservation of the angular momentum J isa degeneracy of (2J + 1) since each component Jz occurs at the same energy. Switchon a magnetic �eld in the z�direction and create a locally preferred direction and thedegeneracy is lifted and we observe 2J + 1 sublevels.**Placing the Nd 3+ ion in the crystal breaks the spherical symmetry so that J ceases tobe a conserved quantity - there are local preferred directions imposed by the geometricalarrangement of the various ions clustering about the Nd 3+ ion. To a �rst approximationwe descend to the symmetry group of the icosahedron Kh and for J � 52 there will be apartial lifting of the (2J + 1)�fold degeneracy.The nitrate ions cluster around the vertices of a slightly distorted tetrahedron and thesymmetry is approximately that of the group of the tetrahedron, Th. Again the degeneracyis further reduced. These reductions in degeneracy manifest themselves in the appearanceof sublevels. The actual point symmetry observed by X�ray structural analysis is that ofthe trigonal point group, C3.Thus the entire breakdown of the symmetry could be described by the chain of nestedsubgroups *** SO3 � Kh � Th � C31.4 Global and Local SymmetriesA symmetry may be global or local. As already seen in the previous example a localsymmetry need not be global. In most of this course we will discussing local symmetries.1.5 Types of SymmetriesThere are a wide range pf possible symmetries we might consider. Two major categorieswould be discrete and continuous symmetries. Discrete symmetries, such as reections,inversions, time reversal, charge conjugation, parity, �nite rotations, permutations etc.are associated with multiplicative or phase-like quantum numbers. Continuous symmetriessuch as translations and rotations are associated with additive quantum numbers (e.g.angular momentum J or linear momentum p).*Of course if we recognise that Nd 3+ possesses a nuclear magnetic moment which weakly couples thenuclear angular momentum I to the electronic angular momentum J such that the total angular momen-tum becomes F = I + J. Thus strictly speaking the conserved quantity is F rather than J . This ismanifested in the appearance of magnetic hyper�ne structure at high enough resolution.**N.B. Lowering the symmetry of a system usually results in a partial or total lifting of the degeneracy.Technologically this is very important.***For further details see S.D.Devine, Th symmetry in rare earth double nitrates J.Chem.Phys. 47, 1844(1967) and references therein. 3



1.6 Bosons and FermionsThe particles we commonly encounter in physics can be divided into two classes bosonsand fermions. Bosons are associated with integer spin, examples being photons, gluonsand the weak interaction bosons Z0 and W�. Fermions are associated with half-integerspin, examples being electrons, neutrinos and quarks. Bosons establish the interactionsbetween fermions. Thus the photon, a massless spin 1 particle, is the exchange particleassociated with electromagnetic interactions. In most of atomic and molecular physicswe can restrict our attention to quantum electrodynamics (QED). The weak interactionsmanifest themselves in atomic andmolecular physics in very small parity violations. Bosonsand fermions obey di�erent statistics, namely Bose-Einstein and Fermi-Dirac, respectively.That requires us to construct totally symmetric wavefunctions for many-boson systems andtotally antisymmetric wavefunctions for many-fermion systems.1.7 Permutational SymmetryBosons and fermions di�er with respect to their behaviour under an interchange of theirposition, or equivalently with respect to a rotation through 2� or 360o. We shall desig-nate the wavefunction for a single fermion or boson as �(�) where � is an appropriateset of single particle quantum numbers associated with some single particle solution of, for example, some central �eld potential. Thus for a hydrogen atom we might use� = fns`msm`g or � = fns`jmjg. A N�particle system will involve N�single particlewavefunctions (�i i = 1; 2; : : : ;N) and N�sets of single particle quantum numbers(�k k = 1; 2; : : : ;N). The wavefunction , 	, for the N�particle system will be suchthat 	 = 	(�1; �2; : : : ; �N) (1:1)For a two-particle system we could write	(�1; �2) = 1p2f�1(�1)�2(�2) � �1(�2)�2(�1)g (1:2)The positive sign corresponds to a symmetric wavefunction and the minus sign correspondsto an antisymmetric wavefunction. Note that we have permuted the quantumnumbers withrespect to the coordinates of the particles. The wavefunction of a pair of fermions, unlike apair of bosons, undergoes a change of sign. If �1 = �2 then for identical fermions Eq.(1.2)vanishes though not for bosons. That is consistent with the Pauli exclusion principle foridentical fermions. Thus permutational symmetry, required by the indistinguishability ofidentical particles, leads for N�fermions to the construction of of determinantal states togive totally antisymmetric states while for N�bosons to the construction of permanentalstates to give totally symmetric states. Hence for anN�fermion system we have the totally4



antisymmetric wavefunction	(�1; �2; : : : ; �N) = 1pN ! �������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N(�1) �N (�2) : : : �N (�N ) ��������f1Ng (1:3)In LS�coupling basis we use � = fns`msm`g whereas in jj�coupling we would use� = fns`jmjg. The information content of the determinantal state may be fully speci�edby the abbreviated form f�1�2 : : : �Ng (1:4)In the case of bosons we are required to construct permanental states to yield totallysymmetric wavefunctions,	(�1; �2; : : : ; �N) = 1pN ! �������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N (�1) �N (�2) : : : �N(�N ) ��������fNg (1:5)The information content of the permanental state may be fully speci�ed by the abbreviatedform [�1�2 : : : �N ] (1:6)We shall use square brackets [ ] to indicate boson states and curly brackets f g for fermionstates. Equations (1.3) and (1.6) look remarkably similar. We have distinguished themby superscripts f1Ng and fNg, respectively. The matrix of the single particle functionsare the same in both cases but the action on the matrix is di�erent. In the �rst case thedeterminant of the matrix is formed and in the second the permanent of the matrix isformed. Could we form other objects of interest by other actions on a matrix?1.8 Many-particle states of Bosons and FermionsLet us for the moment consider the states of N identical bosons or fermions. Suppose theboson has an angular momentum j = 2 (i.e. a d�boson) and hence mj = 0;�1;�2 whilethe fermion has angular momentum j = 5=2 and hence mj = �1=2;�3=2;�5=2. If N = 2in both cases what are the allowed values of J ? We note thatMJ = mj1 +mj2Just considering the non-negative values of MJ we obtain for the fermions the followingtable of determinantal states: 5



Table 1.1 Determinantal states for (5=2)2 fermions.MJ States4 f5=2 3=2g3 f5=2 1=2g2 f5=2 � 1=2g f3=2 1=2g1 f5=2 � 3=2g f3=2 � 1=2g0 f5=2 � 5=2g f3=2 � 3=2g f1=2 � 1=2gInspection of the above table leads to the conclusion that the allowed values of J in(5=2)2 are J = 0; 2; 4.The corresponding d2 boson states for non-negative MJ are given in Table 1.2.Table 1.2. Permanental states for d2 bosonsMJ States4 [2 2]3 [2 1]2 [2 0] [1 1]1 [2 � 1] [1 0]0 [2 � 2] [1 � 1] [0 0]Inspection of the above table leads to the conclusion that the allowed values of J ind2 are J = 0; 2; 4 exactly those found for (5=2)2.*Exercises1.1 Show that the totally antisymmetric orbital angular momentum states of g3 (` = 4)(i.e. the states of maximum multiplicity) are the same as for the totally symmetricstates of (5=2)4.1.2 Determine the allowed values of J for the jj�coupled con�gurations (5=2)2; (5=2 7=2)and (7=2)2.1.3 Determine the allowed values of S and L for the electron con�guration f2.1.4 Given that for an LS�coupled term 2S+1L we have J = L + S andJ = L+ S;L+ S � 1; : : : ; jL� Sj (1:7)Show that the values of J for the list of terms found in Ex 1.3. are the same as thosefound in Ex 1.2.*In general the antisymmetric states of N identical particles each having angular j = m=2 and thesymmetric states of N particles each having angular momentum j = (m+n+1)=2 have the same totalangular momentum J values. See B.G.Wybourne, Hermite's reciprocity Law and the Angular MomentumStates of Equivalent Particle Con�gurations J.Math.Phys. 10, 467-71 (1969).6



1.5 Show that in the con�guration j2 the only allowed values of J are the even integers0; 2; : : : ; 2j � 1.1.6 Starting with the angular momentum commutation relations[Jx; Jy] = iJz ; [Jy; Jz] = iJx ; [Jz; Jx] = iJy (1:8)show that if J� = Jx � iJy thenJ2 = J+J� + J�J+2 + J2z (1:9)1.7 If J = L + S show thatJ(J + 1)� L(L+ 1)� S(S + 1) = S+L� + S�L+ + 2SzLz (1:10)
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Symmetry and Spectroscopic CalculationsLecture Two2.1 Ladder Operators and Determinantal StatesFor the electron con�guration f2 we can enumerate the set of determinantal states fornon-negative MS , ML as in Table 2.1.Table 2.1. Determinantal states for the Electron Con�guration f2.ML MS = 0 MS = 16 f+3 �3 g5 f+3 �2 g f+2 �3 g f+3 +2 g4 f+3 �1 g f+2 �2 g f+1 �3 g f+3 +1 g3 f+3 �0 g f+2 �1 g f+1 �2 g f+0 �3 g f+3 +0 g f+2 +1 g2 f+2 �0 g f+3 ��1g f+1 �1 g f+0 �2 g f +�1 �3 g f+3 +�1g f+2 +0 g1 f+1 �0 g f+2 ��1g f+3 ��2g f+0 �1 g f +�1 �2 g f +�2 �3 g f+3 +�2g f+1 +0 g f+2 +�1g0 f+0 �0 g f+1 ��1g f+2 ��2g f+3 ��3g f +�1 �1 g f +�3 �3 g f+3 +�3g f+2 +�2g f+1 +�1gf +�2 �2 gRecall that for an electron in an f�orbital ` = 3 and hence m` = 0;�1;�2;�3. Thereare just two values of the spin projection ms = �1=2. Thus it su�ces in writing adeterminantal state to just display the values of m` and indicate the value of ms as a +or � sign placed above m`. For a given determinantal state we haveMS = nXi=1msi and ML = nXi=1m`i (2:1)Thus every determinantal state may be associated with de�nite values of MS and ML.That does not mean that they are eigenstates of the total spin S and orbital L angularmomentum. To form such eigenstates we must form appropriate linear combinations of thedeterminantal states to give eigenstates jSLMSML >. Following tradition we will normallywrite such a state as j2S+1LMSML > where (2S + 1) is known as the spin multiplicity.The quantum number L is usually associated with alphabetical letters0S 1P 2D 3F 4G 5H 6I 7K 8MA spectroscopic term will be designated as2S+1LAssociated with a given value on S there are (2S + 1) values of MS and with L there are(2L+ 1) values of ML whereMS = S;S � 1; : : : ;�S + 1;�S and ML = L;L� 1; : : : ;�L+ 1;�L8



Inspection of Table 2.1 shows that the spectroscopic terms of the electron con�guration f2are 3PFH 1SDGIChoose j1I06 >� f+3 �3 g (2:2)Let us now determine j1I05 >. To do this we use the properties of ladder operators. RecallL�jLM >=pL(L + 1) �M(M � 1)jLM � 1 > (2:3)and L� = nXi=1 `�i (2:4)Let (2.3) act on the left-hand-side of (2.2) and noting (2.3) act also on the determinantalstate to give L�j1I06 >= p6� 7� 6� 5j1I05 >= p12j1I05 > (2:5)and L�f+3 �3 g = p3� 4� 3� 2[f+2 �3 g+ f+3 �2 g] (2:5)Equating (2.4) and (2.5) givesj1I05 >= p22 [f+2 �3 g+ f+3 �2 g] (2:6)This state must be orthogonal to the state j3H05 > and hence after �xing a phase we havej3H05 >= p22 [f+2 �3 g � f+3 �2 g] (2:7)Application of the spin raising operator S+ to (2.7) givesS+j3H05 >= p2j3H15 >= p22 [f+2 +3 g � f+3 +2 g]and hence j3H15 >= �f+3 +2 g] (2:8)Note the appearance of the minus sign which comes from our particular choice of enumer-ation of the determinantal states. 9



Exercises2.1 Determine the eigenstatesj1I04 > j3H04 > j1G04 > j3H14 >as linear combinations of determinantal states.2.2 Discuss how you could determine the eigenstates j3HJM > as linear combinations ofthe states j3HMSML >. Hint: use the fact that J� = L� + S�.2.2 Permutations and the Symmetric GroupPermutations play an important role in the physics of identical particles. A permutationleads to a reordering of a sequence of objects. We can place n objects in the naturalnumber ordering 1; 2; : : : ; n. Any other ordering can be discussed in terms of this orderingand can be speci�ed in a two line notation1�(1) 2�(2) : : :: : : n�(n) (2:9)For n = 3 we have the six permutations� 1 2 31 2 3� � 1 2 32 1 3� � 1 2 31 3 2� � 1 2 33 2 1� � 1 2 33 1 2� � 1 2 32 3 1� (2:10)Permutations can be multiplied working from right to left. Thus� 1 2 33 1 2��� 1 2 32 3 1� = � 1 2 31 2 3�In this example we see that the two permutations on the left are inverses of each other.The result has been the identity permutation.The six permutations in (2.10) satisfy the following properties:1. There is an identity element � 1 2 31 2 3�.2. Every element has an inverse among the set of elements.3. The product of any two elements yields elements of the set.4. The elements satisfy the associativity condition a(bc) = (ab)c. These conditionsestablish that the permutations form a group. In general the n! permutations formthe elements of the symmetric group Sn.2.3 Cycle Structure of PermutationsIt is useful to express permutations as a cycle structure. A cycle (i; j; k; : : : ; l) is interpretedas i! j, j ! k and �nally l! i. Thus our six permutations have the cycle structures(1)(2)(3); (1; 2)(3); (1)(2; 3); (1; 3)(2); (1; 3; 2); (1; 2; 3) (2:11)10



Note that the elements within a cycle can be cyclically permuted and that the order of thecycles is irrelevant. Thus (123)(45) � (54)(312).A k� cycle or cycle of length k contains k elements. For reasons that will shortly becomeapparent it is useful to organise cycles into types or classes. We shall designate the cycletype of a permutation � by (1m1 2m2 : : : ; nmn) (2:12)wheremk is the number of cycles of length k in the cycle representation of the permutation�. Thus for the case of S4 we have the �ve cycle types(14); (12 21); (22); (11 31); (41) (2:13)Without confusion we will normally omit exponents of unity and write Eq.(2.13) moresimply as (14); (12 2); (22); (1 3); (4) (2:14)Cycle types may be equally well labelled by ordered partitions of the integer n� = (�1 �2 : : : �`) (2:15)where the �i are weakly decreasing andX̀i=1 �i = n (2:16)The partition is said to be of length ` and of weight n. In terms of partitions we have thecycle types for S5 (15); (2 13); (22 1); (3 2); (3 12); (4 1); (5)2.4 Conjugacy Classes of SnIn any group G we say the elements g and h are conjugates ifg = k hk�1 for some k 2 G (2:17)The set of all elements conjugate to a given g is call the conjugacy class of g which wedenote as Kg.Exercises2.3 Show that for S4 there are �ve conjugacy classes that may be labelled by the �vepartitions of the integer 4. 11



2.4 Show that the permutations, expressed in cycles with cycles of length one suppressed,divide among the conjugacy classes as(14) �e(2 12) �(1 2); (1 3); (1 4); (2 3); (2 4); (3 4)(22) �(1 2)(3 4); (1 3)(2 4); (1 4)(2 3)(3 1) �(1 2 3); (1 2 4); (1 3 2); (1 3 4); (1 4 2); (1 4 3); (2 3 4); (2 4 3)(4) �(1 2 3 4); (1 2 4 3); (1 3 4 2); (1 4 3 2) (2:18)From the preceding exercise we can show in general two permutations are in the sameconjugacy class if, and only if, they are of the same cycle type. The number of classes ofSn is equal the number of partitions of the integer n.If � = (1m1 2m2 : : : nmn) then the number of permutations k� in the class (�) of Sn isk� = n!1m1 m1! 2m2 m2! : : : nmn mn! (2:19)2.5 The Alternating Group AnA cycle of order two is termed a transposition. A transposition (i; i + 1) is termed anadjacent transposition. The entire symmetric group Sn can be generated (or given a pre-sentation in terms of the set of adjacent transpositions(1 2); (2 3); : : : ; (n � 1n) (2:20)If � = �1�2 : : : �k, where the �i are transpositions then the sign of � is de�ned to besgn(�) = (�1)k (2:21)If the number of cycles of even order is even then the permutation is even or positive; if itis odd then the permutation is odd or negative.The set of even permutations form a subgroup of Sn known as the alternating group Anand has precisely half the elements of Sn i.e. (12 )n!.Exercises2.5 Show that the set of six matrices� 1 00 1 � � 0 1�1 �1 � ��1 �11 0 � � 0 11 0 � ��1 �10 1 � � 1 0�1 �1 � (2:22)with the usual rule of matrix multiplication form a group isomorphic to S3.2.6 Show that the symmetric group Sn has two one-dimensional representations, a sym-metric representation where every element is mapped onto unity and an antisymmetricrepresentation where the elements are mapped onto the sign de�ned in Eq. (2.21).12
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Symmetry and Spectroscopic CalculationsLecture Three3.1 Properties of Symmetric FunctionsIn this, and the following, lecture we seek to explore some of the properties of symmet-ric functions and in particular to try to develop generalisations of the determinants andpermanents leading to the Schur functions and the immanants of matrices of which thedeterminants and permanents are special cases. Here we follow the de�nitive notationoutline by Macdonald24.3.2 PartitionsPartitions play a key role in much of the following. We shall take a partition as any �niteor in�nite sequence integers � = (�1 �2 : : : �i : : :) (3:1)Unless otherwise stated we shall assume the sequence involves non-negative integers innon-increasing order; �1 � �2 � : : : � �i � : : : (3:2)Normally we will omit zeros. The non-zero �i form the parts of �. The number of parts isthe length, `(�), of � while the sum of its parts, j�j, is the weight of �. If j�j = n then � issaid to be a partition of n. We shall frequently write � ` n to indicate that � is a partitionof n. Repeated parts of a partition will frequently be indicated as imi where mi is thenumber of times the part i occurs in the partition �. Thus we shall write the partitionsfor n = 6 as (6) (51) (42) (412 ) (32) (321) (313) (23) (2212) (214) (16)Note, in the above example the partitions have been listed in reverse lexicographic order.The ordering is such that the �rst non-vanishing di�erence �i��i, for successive partitions�, � is positive.3.2 The Ferrers-Sylvester diagramEvery partition � ` n may be associated with a Ferrers-Sylvester diagram, shape or frameinvolving n cells, dots or boxes in `(�) left-adjusted rows with the i-th row containing �icells, dots, or boxes. Thus for n = 4 we have the �ve diagramsWe will formally designate the frame associated with a partition � as F�.16



The conjugate of a partition � is a partition �0 whose diagram is the transpose of thediagram of �. If �0 � � then the partition � is said to be self-conjugate. Thusandare conjugates whileis self-conjugate.3.3 Skew framesGiven two partitions � and � such that � � � implies that the frame F� contains theframe F�, i.e. that �i � �i for all i � 1. The di�erence � = � � � forms a skew frameF�=�. Thus, for example, the skew frame F 542=21 has the formNote that a skew frame may consist of disconnected pieces.3.4 Frobenius notation for partitionsThere is an alternative notation for partitions due to Frobenius. The diagonal of nodesin a Ferrers-Sylvester diagram beginning at the top left-hand corner is called the leadingdiagonal. The number of nodes in the leading diagonal is called the rank of the partition.If r is the rank of a partition then let ai be the number of nodes to the right of the leadingdiagonal in the i�th row and let bi be the number of nodes below the leading diagonal inthe i�th column. The partition is then denoted by Frobenius as� a1; a2; : : : ; arb1; b2; : : : ; br � (3:3)We note that a1 > a2 > : : : > arb1 > b2 > : : : > brand a1 + a2 + : : :+ ar + b1 + b2 + : : :+ br + r = n17



The partition conjugate to that of Eq.(3.3) is just� b1; b2; : : : ; bra1; a2; : : : ; ar � (3:4)As an example consider the partitions (5 4 32 2 1) and (6 5 4 2 1). Drawing their diagramsand marking their leading diagonal we have� � � and � � �from which we deduce the respective Frobenius designations� 4 2 05 3 1� and � 5 3 14 2 0�3.5 Young tableauxA Young tableau is an assignment of n numbers to the n cells of a frame F� with � ` naccording to some numbering sequence. A tableau is standard if the assignment of thenumbers 1; 2; : : : ; n is such that the numbers are positively increasing from left to right inrows and down columns from top to bottom. Thus for the partitions of the integer 4 wehave the standard Young tableaux 1 2 3 41 2 34 1 2 43 1 3 421 23 4 1 32 41 234 1 324 1 4231234We notice in the above examples that the number of standard tableaux for conjugatepartitions is the same. Indeed the number of standard tableaux associated with a givenframe F� is the dimension f�n of an irreducible representation f�g of the symmetric groupSn. 18



3.6 Hook lengths and dimensions for SnThe hook length of a given box in a frame F� is the length of the right-angled path in theframe with that box as the upper left vertex. For example, the hook length of the markedbox in � � � �����is 8.Theorem 3.1: To �nd the dimension of the representation of Sn corresponding tothe frame F�, divide n ! by the factorial of the hook length of each box in the �rst columnof F� and multiply by the di�erence of each pair of such hook lengths.Thus for the partition (5 4 32 2 1) we have the hook lengths1086531and hence a dimensionf54322118 = 18 !2� 4� 5� 7� 9� 2� 3� 5� 7� 1� 3� 5� 2� 4� 210 !� 8 !� 6 !� 5 !� 3 ! � 1 != 10720710It is not suggested that you check the above result by explicit enumeration! The aboveevaluation can also be equivalently made by computing the hook lengths hij for every boxat position (i,j) and then noting thatf�n = n !Q(i;j)2� hij (3:5)which is the celebrated result of Frame, Robinson and Thrall.Exercises3.1 Show that the dimension of of the representation*fp+2; 2g = � � �*This is in fact the number of independent index orders of the di�erentiated Riemann tensor,rpR, whenthe noncommutativity of covariant derivatives is ignored5.19



is 12(p+4)(p+1)3.2 Calculate the dimensions of the irreducible representations of S6 and show that**X�`6(f�6 )2 = 6 !3.7 The symmetric group and tensorsWhile it is not our intention here to develop the detailed connection between Youngtableaux and tensors in detail the connection is too important to totally ignore. Formore details you should consult the literature5;8;19;39.Let T�1:::�n be a \generic" n-index tensor, without any special symmetry. (For the moment,\tensor" means just a function of n indices, not necessarily with any geometrical realization.It must be meaningful, however, to add (and form linear combinations of) tensors of thesame rank.)The entries 1; 2; : : : n in the standard numbering of a tableau indicate the n successiveindices of T�1����n . The tableau de�nes a certain symmetrization operation on these indices:symmetrize on the set of indices indicated by the entries in each row, then antisymmetrizethe result on the set of indices indicated by the entries in each column. The resultingobject is a tensor, T , with certain index symmetries. Now let each permutation in Sn act(separately) upon T . The n! results are not linearly independent; they span a vector spacewhich supports an irreducible representation of Sn . Di�erent tableaux corresponding tothe same frame yield equivalent (but not identical) representations.Example: The partition f2 2g of 4 has two standard tableaux:1 23 4 and 1 32 4 (3:6)Let us construct the symmetrized tensor T corresponding to the second of these. Firstsymmetrize over the �rst and third indices, and over the second and fourth:14�Tabcd + Tcbad + Tadcb + Tcdab�:**This is an example of the general result thatX�`n(f�n )2 = n !20



Now antisymmetrize the result over the �rst and second indices, and the third and fourth;dropping the combinatorial factor 116 , we getTabcd = Tabcd + Tcbad + Tadcb + Tcdab� Tbacd � Tcabd � Tbdca � Tcdba� Tabdc � Tdbac � Tacdb � Tdcab+ Tbadc + Tdabc + Tbcda + Tdcba : (3:7)It is easy (though tedious) to check that T possesses the symmetries characteristic of theRiemann tensor. There are two independent orders of its indices, and applying any permu-tation to the indices produces some linear combination of those two basic objects. On theother hand, performing on T the operations prescribed by the �rst tableau in (3.6) pro-duces a di�erent expression, which, however, generates a 2-dimensional representation ofS4 with the same abstract structure as that generated by T . A nonstandard tableau wouldalso yield such a representation, but the tensors within it would be linear combinations ofthose already found.Remark: In (3.7) we have adopted the convention that the second round of permuta-tions interchanges indices with the same names, rather than indices in the same positionsin the various terms. The opposite convention is tantamount to antisymmetrizing �rst,which leads to a di�erent, but mathematically isomorphic, development of the represen-tation theory (see Ref. 19 , pp _312{314). The issue here is analogous to the distinctionbetween space-�xed and body-�xed axes in the study of the rotation group.Exercise3.3 Construct a set of three 4-index tensors corresponding to the three Young tableauxassociated with the partition f3 1g.3.8 Unitary numbering of Young tableauxMany di�erent prescriptions can be given for injecting numbers into the boxes of a frame.We have already noted the standard numbering which is intimately associated with thesymmetric group Sn. Another important numbering prescription is that of unitary num-bering where now numbers 1; 2; : : : ; d are injected into the boxes of a frame F� suchthat:i. Numbers are non-decreasing across a row going from left to right.ii. Numbers are positively increasing in columns from top to bottom.The �rst condition permits repetitions of integers. Thus using the numbers 1; 2; 3 in theframe F 2 1 we obtain the 8 tableaux1 12 1 13 1 22 1 23 1 32 1 33 2 23 2 33 (3:8)21



Had we chosen d = 2 we would have obtained just two tableaux while d = 4 yields twentytableaux. In general, for a frame F� a unitary numbering using the integers 1; 2; : : : ; dleads to f�d = G�dH� (3:9)where H� is the product of the hook lengths hij of the frame andG�d = Y(i;j)2�(d+i�j) (3:10)Thus for d = 5 and � = (4 2 1) we have H(4 2 1) = 144 and Gf4 2 1g5 = 100800 from whichwe deduce that ff4 2 1g5 = 700which is the dimension of the irreducible representation f4 2 1g of the general linear groupGL(5). In general, f�d is the dimension of the irreducible representation f�g of GL(d). Sincethe representations of GL(d) labelled by partitions � remain irreducible under restrictionto the unitary group U(d) Eq.(3.9) is valid for computing the dimensions of the irreduciblerepresentations of the unitary group U(d).The same rules for a unitary numberingmay be applied to the skew frames F�=� introducedin x3.3. Thus for F 542=21 an allowed unitary numbering using just the integers 1 and 2would be 1 1 11 2 21 2Note that our unitary numbering yields what in the mathematical literature are commonlyreferred to as semistandard Young tableaux. Other numberings are possible and have beendeveloped for all the classical Lie algebras.Exercises3.4 Draw the frames F 22=1, F 4321=4212 , and F 321=21.3.5 Use the integers 1; 2; 3 to construct the complete set of semistandard tableaux for theframe F 4321=4212 and show that the same number of tableaux arise for the frame F 21.3.6 Make a similar unitary numbering for the frame F 321=21 and show that the samenumber of semistandard tableaux arise in the set of frames F 3 + 2F 21 + F 13 .22



Symmetry and Spectroscopic CalculationsLecture Four4.1 Young tableaux and monomialsA numbered frame may be associated with a unique monomial by replacing each integer iby a variable xi. Thus the Young tableau1 1 2 4 53 3 3 54 6 75 7 86 87can be associated with the monomial x21 x2 x33 x24 x35 x26 x37 x284.2 Monomial symmetric functionsConsider a set of variables (x) = x1; x2; : : : ; xd. A symmetric monomialm�(x) =P� x� (4:1)involves a sum over all distinct permutations � of (�) = (�1; �2; : : :). Thus if (x) =(x1; x2; x3) then m21(x) = x21 x2 + x21 x3 + x1 x22 + x1 x23 + x22 x3m13(x) = x1 x2 x3The unitary numbering of (�) = (2 1) with 1; 2; 3 corresponds to the sum of monomialsm21(x) + 2m13(x)The same linear combination occurs for any number of variables* with d � 3.The monomials m�(x) are symmetric functions. If � ` n then m�(x) is homogeneous ofdegree n. Unless otherwise stated we shall henceforth assume that x involves an in�nitenumber of variables xi.The ring of symmetric functions � = �(x) is the vector space spanned by all the m�(x).This space can be decomposed as � = �n�0�n (4:2)*For two variables just m21(x) survives while in terms of a single variable neither monomial survives.23



where �n is the space spanned by all m� of degree n. Thus the fm�j� ` ng form a basisfor the space �n which is of dimension p(n) where p(n) is the number of partitions of n.It is of interest to ask if other bases can be constructed for the space �n.4.3 The classical symmetric functionsThree other classical bases are well-known - some since the time of Newton.1. The elementary symmetric functionsThe n�th elementary symmetric function en is the sum over all products of n distinctvariables xi, with e0 = 1 and generallyen = m1n = Xi1<i2:::<in xi1 xi2 : : : xin (4:3)The generating function for the en isE(t) =Xn�0 entn =Yi�1(1+xit) (4:4)2. The complete symmetric functionsThe n�th complete or homogeneous symmetric function hn is the sum of all monomialsof total degree n in the variables x1; x2; : : :, with h0 = 1 and generallyhn = Xj�j=nm� = Xi1�i2:::�in xi1 xi2 : : : xin (4:5)The generating function for the hn isH(t) =Xn�0hntn =Yi�1(1�xit)�1 (4:6)3. The power sum symmetric functionThe n�th power sum symmetric function ispn = mn =Xi�1 xni (4:7)The generating function for the pn isP (t) =Xn�1 pntn�1 =Xi�1Xn�1xni tn�1=Xi�1 xi1� xit=Xi�1 ddt log 11� xit (4:8)24



and hence P (t) = ddt logYi�1(1 � xit)�1= ddt logH(t)= H 0 (t)=H(t) (4:9)Similarly, P (�t) = ddt logE(t) = E0(t)=E(t) (4:10)Equation (4.9) leads to the relationshipnhn = nXr=1 pr hn�r (4:11)It follows from (4.9) thatH(t) = expXn�1 pn tn=n= Yn�1 exp(pn tn=n)= Yn�1 1Xmn=0(pn tn)mn=nmn :mn! (4:12)and hence H(t) =X� z�1� p� tj�j (4:13)where z� =Yi�1 imi :mi! (4:14)where mi =mi(�) is the number of parts of � equal to i. De�ning"� = (�1)j�j�`(�) (4:15)we can show in an exactly similar manner to that of Eq.(4.13) thatE(t) =X� "�z�1� p� tj�j (4:16)25



It then follows from Eqs.(4.13) and (4.16) thathn = Xj�j=n z�1� p� (4:17)anden = Xj�j=n "�z�1� p� (4:18)Exercises4.1 Show that for n = 3p3 = x31 + x32 + x33 + : : :e3 = x1 x2 x3 + x1 x2 x4 + x2 x3 x4 + : : :h3 = x31 + x32 + : : : + x21 x2 + x1 x22 + : : :+ x1 x2 x3 + x1 x2 x4 + : : : (4:19)4.2 Noting Eqs. (4.4) and (4.6) and that H(t)E(�t) = 1, show thatnXr=0(�1)rhn�r er = 0 (4:20)for n � 1.4.3 Use Eq.(4.20) to show that en = det(h1�i+j)1�i;j�n (4:21)and hence hn = det(e1�i+j )1�i;j�n (4:22)
26



4.4 Use Eq.(4.11) to obtain the determinantal expressionspn = �������� e1 1 0 : : : 02e2 e1 1 : : : 0... ... ... ...nen en�1 en�2 : : : e1 �������� (4:23)n!en = ���������� p1 1 0 : : : 0p2 p1 2 : : : 0... ... ... ...pn�1 pn�2 : : : : n� 1pn pn�1 : : : : p1 ���������� (4:24)(�1)n�1pn = �������� h1 1 0 : : : 02h2 h1 1 : : : 0... ... ... ...nhn hn�1 hn�2 : : : h1 �������� (4:25)n!hn = ���������� p1 �1 0 : : : 0p2 p1 �2 : : : 0... ... ... ...pn�1 pn�2 : : : : �n+ 1pn pn�1 : : : : p1 ���������� (4:26)4.4 Multiplicative bases for �nThe three types of symmetric functions, hn; en; pn, do not have enough elements to forma basis for �n, there must be one function for every partition � ` n. To that end in eachcase we form multiplicative functions f� so that for each � ` nf� = f�1 f�2 : : : f�` (4:27)where f = e; h; or p Thus, for example,e21 = e2 � e1 = (x1 x2 + x1 x3 + x2 x3 + : : :)(x1 + x2 + x3 + : : :)4.5 The Schur functionsThe symmetric functions m�; e�; h�; p� (4:28)where � ` n each form a basis for �n. A very important �fth basis is realised in termsof the Schur functions, s�, or for brevity, S�functions which may be variously de�ned.27



Combinatorially they may be de�ned ass�(x) =XT xT (4:29)where the summation is over all semistandard ��tableaux T . For example, consider theS�functions s� in just three variables (x1; x2; x3). For � = (2 1) we have the eight tableauxT found earlier1 12 1 13 1 22 1 23 1 32 1 33 2 23 2 33 (3:8)Each tableaux T corresponds to a monomial xT to gives2 1(x1; x2; x3) = x21 x2+x21 x3+x1 x22+x1 x2 x3+x1 x2 x3+x1 x23+x22 x3+x2 x23 (4:30)We note that the monomials in Eq.(4.30) can be expressed in terms of just two symmetricmonomials in the three variables (x1; x2; x3) to gives2 1(x1; x2; x3) =m2 1(x1; x2; x3) + 2m13(x1; x2; x3) (4:31)In an arbitrary number of variabless2 1(x) = m21(x) + 2m13(x) (4:32)This is an example of the general result that the S�function may be expressed as a linearcombination of symmetric monomials as indeed would be expected if the S�functions area basis of �n. In fact s�(x) =X�`nK��m� (4:33)where j�j = n and K�� = 1. The K�� are the elements of an upper triangular matrixK known as the Kostka matrix. K is an example of a transition matrix that relates onesymmetric function basis to another.4.6 Calculation of the elements of the Kostka matrixThe elements K�� of the Kostka matrix may be readily calculated by the following algo-rithm :i. Draw the frame F�.ii. Form all possible semistandard tableaux that arise in numbering F� with �1 ones, �2twos etc.iii. K�� is the number of semistandard tableaux so formed.28



Thus calculating K(42) (22 12) we obtain the four semistandard tableaux1 1 2 23 4 1 1 2 32 4 1 1 2 42 3 1 1 3 42 2and hence K(42) (22 12) = 4.Exercises4.5 Construct the Kostka matrix for �; � ` 4.4.6 Show that in the variables (x1; x2; x3) the evaluation of the determinantal ratio������x41 x21 1x42 x22 1x43 x23 1 ������������x21 x1 1x22 x2 1x23 x3 1 ������yields the monomial content of the S�function s21 in three variables as found inEq.(4.30). N.B. The above exercise is tedious by hand but trivial using MAPLEV.The last exercise is an example of the classical de�nition, as opposed to the equivalentcombinatorial de�nition given in Eq.(4.29), given �rst by Jacobi, namely,s� = s�(x1; x2; : : : ; xn) = a�+�a� (4:34)where � is a partition of length � n and � = (n � 1; n� 2; : : : ; 1; 0) witha�+� = det(x�j+n�ji )1�i;j�n (4:35)and a� = Y1�i;j�n(xi � xj ) = det(xn�ji ) (4:36)is the Vandermonde determinant.4.7 Non-standard S�functionsThe S�functions are symmetric functions indexed by ordered partitions �. We shallfrequently write S�functions s�(x) as f�g(x) or, since we will generally consider the num-ber of variables to be unrestricted, just f�g. As a matter of notation the partitions willnormally be written without spacing or commas separating the parts where �i � 9. A space29



will be left after any part �i � 10. Thus we write f12; 11; 9; 8; 3; 2; 1g � f12 11 98321gWhile we have de�ned the S�function in terms of ordered partitions we sometimes en-counter S�functions that are not in the standard form and must convert such non-standardS�functions into standard S�functions. Inspection of the determinantal forms of theS�function leads to the establishment of the following modi�cation rules :f�1; �2; : : : ;��`g = 0 (4:37)f�1; : : : ; �i; �i+1; : : : ; �`g = �f�1; : : : ; �i+1 � 1; �i + 1; : : : ; �`g (4:38)f�g = 0 if �i+1 = �i + 1 (4:39)Repeated application of the above three rules will reduce any non-standard S�functionto either zero or to a signed standard S�function. In the process of using the above rulestrailing zero parts are omitted*.Exercise4.7 Show that f24g = �f32g; f141g = �f321g; f14� 25� 14g = �f332gand f3042g = 0; f3043g = f322g4.8 Skew S�functionsThe combinatorial de�nition given for S�functions in Eq.(4.29) is equally valid for skewtableaux and can hence be used to de�ne skew S�functions s�=�(x) or f�=�g. Since thes�=�(x) are symmetric functions they must be expressible in terms of S�functions s�(x)such that s�=� =X� c���s� (4:40)It may be shown that the coe�cients c��� are necessarily non-negative integers and symmet-ric with respect to � and �. The coe�cients c��� are commonly referred to as Littlewood-Richardson coe�cients.*See also: R.C.King, B.G.Wybourne and M. Yang, Slinkies and the S�function content of certain gen-erating functions, J.Phys.A:Math.Gen. 22, 4519-35 (1989).30



4.9 The Littlewood-Richardson ruleThe product of two S�functions can be written as a sum of S�functions, viz.s�:s� =X� c���s� (4:41)The Littlewood-Richardson coe�cients c��� in Eqs. (4.40) and (4.41) are identical, thoughthe summations are of course di�erent. In both cases j�j+ j�j = j�j. A rule for evaluatingthe coe�cients c��� was given by Littlewood and Richardson in 1934 and has played a majorrole in all subsequent developments. The rule may be stated in various ways. We shallstate it �rst in terms of semistandard tableaux and then also give the rule for evaluatingthe product given in Eq.(4.41) which is commonly referred to as the outer multiplicationof S�functions. In each statement the concepts of a row-word and of a lattice permutationis used.De�nition 4.1 A wordLet T be a tableau. From T we derive a row-word or sequence w(T ) by reading thesymbols in T from right to left (i.e. as in Arabic or Hebrew) in successive rows startingat the top row and proceeding to the bottom rowThus for the tableau 1 1 2 2 32 2 3 34 45 678we have the word w(T ) = 322113322446578 and for the skew tableau1 1 11 2 21 2we have the word w(T ) = 11122121.De�nition 4.2 A lattice permutationA word w = a1a2 : : : aN in the symbols 1; 2; : : : ; n is said to be a lattice permutationif for 1 � r � N and 1 � i � n � 1, the number of occurrences of the symbol i ina1a2 : : : ar is not less than the number of occurrences of i+ 1.Thus the word w(T ) = 322113322446578 is clearly not a lattice permutation whereas theword w(T ) = 11122121 is a lattice permutation. The word w(T ) = 12122111 is not alattice permutation since the sub-word 12122 has more twos than ones.31



Theorem 4.1 The value of the coe�cient c��� is equal to the number of semistandardtableaux T of shape F�=� and content � such that w(T ) is a lattice permutation.By content � we mean that each tableau T contains �1 ones, �2 twos, etc.ExampleLet us evaluate the coe�cient cf542gf431gf21g. We �rst draw the frame F f542=21g.Into this frame we must inject the content of f431g i.e. 4 ones, 3 twos and 1 three in sucha way that we have a lattice permutation. We �nd two such numberings1 1 11 2 22 3 1 1 12 2 21 3and hence cf542gf431gf21g = 2. Note that in the evaluation we had a choice, we could have, andindeed more simply, evaluated cf542gf21gf431g. In that case we would have drawn the frameF f542=431g to getNote that in this case the three boxes are disjoint. This skew frame is to be numberedwith two ones and one 2 leading to the two tableaux112 121verifying the previous result. Theorem 4.1 gives a direct method for evaluating theLittlewood-Richardson coe�cients. These coe�cients can be used to evaluate both skewsand products. It is sometimes useful to state a procedure for directly evaluating products.Theorem 4.2 to evaluate the S�function product f�g:f�g1. Draw the frame F� and place �1 ones in the �rst row, �2 twos in the second row etcuntil the frame is �lled with integers.2. Draw the frame F � and inject positive integers to form a semistandard tableau suchthat the word formed by reading from right to left starting at the top row of the �rst32



frame and moving downwards along successive rows to the bottom row and then con-tinuing through the second frame is a lattice permutation.3. Repeat the above process until no further words can be constructed.4. Each word corresponds to an S�function f�g where �1 is the number of ones, �2 thenumber of twos etc.As an example consider the S�function product f21g:f21g. Step 1 gives the tableau1 12Steps 2 and 3 lead to the eight numbered frames1 12 1 13 1 22 1 23 1 32 1 34 2 33 2 34Step 4 then lead to the eight words112112 112113 112212 112213 112312 112314 112323 112324from which we conclude thatf21g:f21g = f42g+ f412g+ f32g+ 2f321g+ f313g+ f23g+ f2212gExercises4.8 Show that* cf753213gf4321g:f4321g = 8.4.9 Show that f31g:f31g =f62g+ f612g+ f53g+ 2f521g+ f513g+ f42g+ 2f431g+ f422g+ f4212g+ f322g+ f3212g4.10 Show that f321=21g = f3g+ 2f21g+ f13g4.10 Relationship to the unitary groupWe have explored various symmetric functions indexed by partitions and de�ned on setsof variables. The variables can admit many interpretations. In some instances we may*The complete evaluation of the S�function product f4321g:f4321g leads to 206 distinct frames anda total of 930 words. 33



choose a set of variables * 1; q; q2; : : : ; qn or we could even use a set of matrices. The linkbetween S�functions and the character theory of groups is such that, if � is a partitionwith `(�) � N and the eigenvalues of a group element, g, of the unitary group UN aregiven by xj = exp(i�j) for j = 1; 2; : : : ;N then the S�functionf�g = f�1�2 : : : �Ng = s�(x) = s�(exp(i�1) exp(i�2) : : : exp(i�N ))is nothing other than the character of g in the irreducible representation of UN conven-tionally designated by f�g.The Littlewood-Richardson rule gives the resolution of the Kronecker productf�g � f�g of UN as f�g � f�g = Xj�j=j�j+j�jcf�gf�g:f�gf�g (4:42)where the cf�gf�g:f�g are the usual Littlewood-Richardson coe�cients. Equation (4.42) mustbe modi�ed for partitions � involving more than N parts. Here the modi�cation rule isvery simple. We simply discard all partitions involving more than N parts. We shall returnto these matters later in this course when we use our results to discuss the classi�cationof many-electron states, especially for the electronic f�shell.

*For a practical application see R. J. Farmer, R. C. King and B. G. Wybourne, Spectrum-generating functions for strings and superstrings, J. Phys. A:Math.Gen. 21 3979{4007(1988). 34



Symmetry and Spectroscopic CalculationsLecture FiveBefore leaving the topic of S�functions I would like to make a few remarks aboutS�function series and briey indicate applications to branching rules which later will playan important role in applications to atomic shell calculations.5.1 S�function seriesIn�nite series of S�functions play an important role in determining branching rules andfurthermore lead to concise symbolic methods well adapted to computer implementation.Consider the in�nite series L = 1Yi=1(1 � xi)= 1�Xx1 +Xx1x2 � : : : (5:1)where the summations are over all distinct terms.e.g. X x1x2 = x1x2 + x1x3 + : : :+ x2x3 + x2x4 + : : : (5:2)Recalling Eq.(4.3) we see that Eq.(5.1) is simply a signed sum over an in�nite set ofelementary symmetric functions en withen = m1n = s1n = f1ng (5:3)and hence Eq.(5.1) may be written as an in�nite sum of S�functions such thatL = 1� f1g+ f12g � f13g+ : : := 1Xm=0(�1)mf1mg (5:4)We may de�ne a further in�nite series of S�functions by taking the inverse of Eq.(5.1) toget M = 1Yi=1(1� xi)�1= 1 + f1g+ f2g+ : : := 1Xm=0fmg (5:5)Clearly LM = 1 (5:6)35



a result that is by no means obvious by simply looking at the product of the two series.In practice large numbers of in�nite series and their associated generating functions maybe constructed. We list a few of them below:A =P�(�1)w�f�g B =P�f�g C =P(�1)w=2fgD =P�f�g E = P�(�1)(w�+r)=2f�g F = P�f�gG =P�(�1)(w��r)=2f�g H =P�(�1)w�f�g L = Pm(�1)mf1mgM =Pmfmg P = Pm(�1)mfmg Q =Pmf1mg (5:7)where (�) and () are mutually conjugate partitions, which in the Frobenius notationtake the form(�) = � a1 a2 : : : ara1 + 1 a2 + 1 : : : ar + 1� () = � a1 + 1 a2 + 1 : : : ar + 1a1 a2 : : : ar � (5:8)(�) is a partition into even parts only and (�) is conjugate to (�). (�) is any partition and(�) is any self-conjugate partition. r is the Frobenius rank of (�), () and (�).These series occur in mutually inverse pairs:AB = CD = EF = GH = LM = PQ = f0g = 1 (5:9)Furthermore, LA = PC = E MB = QD = FMC = AQ = G LD = PB = H (5:10)We also note the seriesR = f0g � 2Xa;b (�1)a+b+1� ab � S = f0g+ 2Xa;b � ab� (5:11)where we have again used the Frobenius notation, andV =X! (�1)qf~!g W =X! (�1)qf!gX =X! f~!g Y =X! f!g (5:12)where (!) is a partition of an even number into at most two parts, the second of which isq, and ~! is the conjugate of !. We have the further relationsRS = VW = f0g = 1 (5:13)36



and PM = AD =W LQ = BC = VMQ = FG = S LP = HE = R (5:14)5.2 Symbolic manipulationThe above relations lead to a method of describing many of the properties of groups viasymbolic manipulation of in�nite series of S�functions. Thus if f�g is an S�function thenwe may symbolically write, for example,f�=Mg =Xm f�=mg (5:15)We can construct quite remarkable identities such as:BD =X� f�g � f�g (5:16)or for an arbitrary S�function f�gBD � f�g =X� f�g � f�=�g (5:17)Equally remarkably we can �nd identities such asf� � �g=Z = f�=Zg � f�=Zg for Z = L;M;P;Q;R; S; V;W (5:18a)f� � �g=Z =X� f�=�Zg � f�=�Zg for Z = B;D;F;H (5:18b)f� � �g=Z =X� (�1)w�f�=�Zg � f�=~�Zg for Z = A;C;E;G (5:18c)These various identities can lead to a symbolic method of treating properties of groupsparticulary amenable to computer implementation.5.3 The Un ! Un�1 branching ruleAs an illustration of the preceding remarks we apply the properties of S�functions to thedetermination of the Un ! Un�1 branching rules. The vector irrep f1g of Un can be takenas decomposing under Un ! Un�1 asf1g ! f1g+ f0g (5:19)that is into a vector f1g and scalar f0g of Un�1. In general, the spaces corresponding totensors for which a particular number of indices, saym, take on the value n, de�ne invariant37



subspaces. Such indices must be mutually symmetrised. The irreducible representationsspeci�ed by the quotient f�=mg are those corresponding to tensors obtained by contractingthe indices of the tensor corresponding to f�g with an m�th rank symmetric tensor. Thuswe may symbolically write the general branching rule as simplyf�g ! f�=Mg (5:20)Thus for example under U3 ! U2 we havef21g ! f21=Mg! f21=0g+ f21=1g+ f21=2g! f21g+ f2g+ f11g+ f1g (5:21)5.4 The Gel'fand states and the betweenness conditionThe so-called Gel'fand states play an important role in the Unitary Group Approach(UGA) to many-electron theory. This comes about from considering the canonical chainof groups Un � Un�1 � : : : U2 � U1 (5:22)The states of such a chain follow directly from consideration of Eq.(5.20). Each statemay be represented by a triangular array having n rows. There are n entries mi;n withi = 1; 2; : : : ; n corresponding to the usual partition (�) padded out with zeroes to �ll therow if need be. The second row contains n� 1 entries mi;n�1 placed below the �rst row sothat the entry m1;n�1 occurs between the entries m1;n and m2;n etc. Each successive rowcontains one less entry with the bottom row containing just one entry m1;1. The numberof such states is just the dimension of the irrep f�g of Un.Consider the irrep of U3 labelled as f21g. We �nd the eight Gel'fand states0@ 2 1 02 12 1A 0@ 2 1 02 11 1A 0@ 2 1 02 02 1A 0@2 1 02 01 1A0@ 2 1 02 00 1A 0@ 2 1 01 11 1A 0@ 2 1 01 01 1A 0@2 1 01 00 1A5.5 Using SCHUR to evaluate properties of S�functionsAll of the properties of S�functions we have so far discussed, and many more, can bereadily found using the programme SCHUR which has been placed on on the Pc's here foryour experimentation.It will do many things besides just S�functions. e.g. Properties of38



irreps of all the compact Lie groups such as dimensions, Kronecker products and branchingrules. However at this stage we will restrict our attention to S�functions. Later on inthis course we will look at other features. The programme as installed has a principal �leSCHUR.EXE and a large number of HELP �les. Ignore all other �les at this stage. Goto the SCHUR directory and enter the command SCHUR and after a few moments yourscreen should look likeSCHUR #0333User:StudentsSite:Instytut FizykiUniwersytet Mikolaja Kopernikaul. Grudziadzka 5/787-100 TorunPOLANDCopyright. Distribution and copying prohibited[Version 5.0] (c) Schur Software Associates 1984,1986,1987,1988,1989(If you wish to EXIT, enter 'END')(If you wish to obtain HELP, enter ?'help')DPrep Mode (with function)DP>-Note that you can EXIT the programme any time by entering END. Also while I will indi-cate commands to be entered in CAPITALS the entry of commands is not case sensitive.To get to the S�function mode enter SFN and you will seeDP>SFNSchur Function ModeSFN>- You can obtain a list of commands in the Schur Function Mode by entering?'SFNMODE' to giveSFN>?'SFNMODE'SFNmodeThis mode does all calculations involving Sfns.Commands available are:ABsval, ADd, ALARM, ALlskew, ATtach, BELl,CDiv ,CLEave, COeffs,COLour,CONJ, CUT, DEtach,DIGits,DIR,DISK,DIStinct, DPMode, END, EXit, FACtor,FN,FRame, FULL, FULLSA, FSA, HALlp, Inner, INSert, LAPs, LAst, LEngth,LIMit, LOad, LOG, LRAIse, MCount, MKWeight, MORe, MUlt, NLIMit, Outer,39



PAUSE, PHase, PLeth, PLInner, POwer, QEXpand, QFN, QOUTer, QQExpand,QQSeries, QSEries, QSKew, QSTD, RAIse, RCOnvert,REDuce, REM, REPmode,REVerse, RInner, RQINner, RLRAIse, RRaise, SAMewt, SAve, SCONvert,SETSfn, SKew, SQINner,STAtus,STD,STIme, SUb,SVar,TCount,TIme, TRunc,TRWt, WEight, Zero.Some of the Sfn commands make use of the Sfn infinite series (SKew,TRunc, TRWt).The Sfn series in Schur are:A, B, C, D, E, F, G, H, L, M, P, Q, R, S,T, V, W, X, Y.These series may be accessed by upper or lower case letters.SFN>-Many of the commands you won't need to consider at the beginning. Each command hasit's own help�le. Try entering the command FRAME 54321 and you should see on yourscreen the frame F 54321 drawn asThe following give examples of syntax as explained in the Help�le DIGITS and SYNTAX.Try other frames such as 5322211 which could be entered as either FRAME5323̂12̂ or asjust FRAME5322211 or even as FRA5322211. To draw the frame for the partition 12 104321 you enter FRA !12 !10 4321 . Note that the exclamation mark (!) is put in front ofdigits larger than 9 and a space then follows the digits. Spaces are optional for numbers<= 9. If you enter FRA5.4321 you will see on the screen the frame F 4321 with the digit5 above it. To see the signi�cance of that try entering OUTER 21,21 and you will obtainthe outputSFN>OUTER 21,21{42} + {41^2 } + {3^2 } + 2{321} + {31^3 } + {2^3 } + {2^2 1^2 }SFN>- Notice that the S�function f321g appears with a multiplicity of 2. Now enterFRAME LAST and you will see the frames for each partition drawn on the screen witha 2 appearing above the frame for f321g. Now try the command FRAME OUTER 21,21and you will start to learn how you can combine sequences of commands. Enter OUTER4321,4321 and note that you get a screen full of S�functions with the word MORE ap-pearing on the left. Pressing a key will show you the next screen full. You can turn o�MORE by entering MORE FALSE now repeat OUTER 4321,4321 and 206 S�functions40



will scroll by. Try FRAME OUTER 4321,4321 and 206 frames will ash by with theirassociated multiplicities. To count the number of frames simply enter TCOUNT LASTand to count the sum of the multiplicities enter MCOUNT LAST.Look at the help�les associated with the commands SKEW, TRWT, WEIGHT, LENGTHand see if you can determine the terms in each of the S�function series we have discussedtoday up to say weight 8. Feel free to explore the various features. See if you can makeyourself a LOGFILE in which you obtain the aforementioned series and then edit the log�leand print out a neat table with suitable captions etc., possibly as a TEX�le.
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Symmetry and Spectroscopic CalculationsLecture Six6.1 Resum�e of the quantum theory of angular momentumAt the beginning of this course we introduced determinantal states. We now give an al-ternative description for fermions in terms of second-quantisation. The description forboson states is very similar and is left to the student to develop. Elementary courses onthe quantum theory of angular momentum revolve around the structure of two importantgroups which are usually skillfully hidden from the student who often acquires a consider-able knowledge of groups without either the teacher or student being aware of it. Thesetwo groups are the rotation group in three-dimensions SO3 with its trivial subgroup SO2and the covering group of SO3 the special unitary group in two dimensions SU2. In thequantum theory of angular momentum we become familiar with the standard relations(throughout I take �h = 1) [Ji; Jj ] = i�ijkJk (6:1)where i; j; k = 1; 2; 3 and the Ji form the three components of the angular momentum J.Putting J� = (J1 � iJ2)=p2 (6:2)we can rewrite the angular momentum commutation relations as[J3; J3] = 0; [J3; J�] = �J�; [J+; J�] = J3 (6:3)which are the standard commutation relations associated with the locally isomorphic Liealgebras so3 and su2.We can also form an operator J2 = J21 + J22 + J23 (6:4)which commutes with all the components Ji and is the Casimir operator associated withthe Lie algebra. As a result it is possible to construct eigenfunctions jjm > that aresimultaneous eigenfunctions of J2 and J3 with the eigenvalue relationsJ3jjm > = mjjm >J2jjm > = j(j + 1)jjm > (6:5)where m = j; j � 1; : : : ;�j + 1;�j (6:6)and J�jjm >=pj(j + 1)�m(m� 1)jjm� 1 > (6:7)42



The quantum numbers m are known as weights with m = j being the highest weight. Weuse the highest weight j to label the irreducible representations of SO3 as [j] and it followsfrom Eq.(6.6) that [j] is of degree (2j +1). If j is a non-negative integer then [j] is said tobe an ordinary or tensor representation whereas if j is a half-odd integer then [j] is terma spin or projective representation. Both types of representations are true representationsof SU2.6.2 De�nition of a Lie algebraThe angular momentum operators Ji form the in�nitesimal generators of the Lie groupSO3 and likewise the elements of the Lie algebra su2.Formally we de�ne a Lie algebra as follows: Let A be an r�dimensional vector space overa �eld K in which the law of composition for vectors is such that to each pair of vectorsX and Y there corresponds a vector Z = [X;Y ] in such a way that[�X + �Y;Z] = �[X;Z] + �[Y;Z][X;Y ] + [Y;X] = 0[X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y ]] = 0 (6:8)for all �; �; : : : ;2 K and all X;Y;Z; : : : ;2 A. A vector space satisfying the above relation-ships is said to constitute a Lie algebra. A given Lie algebra will be said to be real if K isthe �eld of real numbers and complex if K is the �eld of complex numbers.In many physical applications we are interested in the in�nitesimal generators X� of a Liegroup which satisfy the commutation relations[X�;X� ] = c��� (6:9)with c��� = �c��� and hence [X�;X�] = 0 (6:10)The classi�cation of the classical Lie algebras was essentially completed in Eli�e Cartan'sthesis of 1894 who showed that the complex semisimple Lie algebras fall into four sequencesof simple Lie algebras which he designated as Ak, Bk, Ck, and Dk where k is the rank ofthe Lie algebra. In addition Cartan found �ve exceptional Lie algebras which occurred forspeci�c ranks. These were designated as G2, F4, E6, E7 and E8. The number of groupgenerators is equal to the dimension of the adjoint representation of the Lie algebra.43



Table 6.1 The simple Lie algebras and Lie groupsLie group Lie algebra Number of group generatorsSUk+1 Ak k(k + 2)SO(2k + 1) Bk k(2k + 1)Sp2k Ck k(2k + 1)SO2k Dk k(2k � 1)G2 G2 14F4 F4 52E6 E6 78E7 E7 133E8 E8 2486.3 Second quantisationAs we saw earlier we may specify a state as jsms`m` > in an LS�basis or as js`jm > in ajj�basis. Frequently we shall suppress the detailed single particle quantum numbers andjust use suitable Greek letters.It is convenient to represent angular momentum states in the language of second quan-tisation. For a fermionic system introduce annihilation or destruction operators a� andcreation operators ay� such that if j0 > is the vacuum state then:ay�j0 >= j� > (6:11)i.e. the action of the operator ay� on the vacuum state j0 > is to create a single particle ina state speci�ed by the set of quantum numbers �. To satisfy the antisymmetry propertiesof fermions we must have the anticommutation relationsfa�; a�g = fay�; ay�g = 0 (6:12a)fay�; a�g = ��;� (6:12b)The requirement of orthonormality will be met if we takea�j0 >= 0 and < 0jay� = 0 (6:13)The antisymmetrisation postulate for fermions, i.e. the Pauli exclusion principle, is assuredif we take a�a� = ay�ay� = 0 (6:14)An N�particle state can be created by having a sequence of N fermion creation operatorsact on the vacuum state such thatay�ay� : : : ay!j0 >� f�; �; : : : ; !g (6:15)44



Taking adjoints gives < 0ja! : : : a�a� � f�; �; : : : ; !g� (6:16)The number operator is de�ned as X� ay�a� (6:17)and acting on an arbitrary N�particle state ay�ay� : : : ay!j0 > gives the eigenvalue N .6.4 One- and Two-body interactionsSingle particle operators of the type F = NXi=1 fi (6:18)may be expressed in second quantised form asF =X�;� ay� < �jf j� > a� (6:19)while for two particle operators of the typeG = X1=i<j gij (6:20)the second quantised form isG = 12 X�;�;�;�ay�ay� < �1�2jg12j�1�2 > a�a� (6:21)For the angular momentum operator J we haveJ =X�;� ay� < �jjj� > a� (6:22)Taking � = jm gives the commutators[Jz; ayjm] =mayjm (6:23a)[J�; ayjm] =pj(j + 1)�m(m� 1)ayjm�1 (6:23b)6.5 Tensor operators in generalConsider a simple compact group G having elements g. Let Ug denote a unitary, notnecessarily irreducible, representation of G on a Hilbert space H. The various unitary45



representations will be distinguished, when necessary, by writing Ug(�) or for brevity justas (�). Let j�� > be basis vectors of the representation (�), where � labels individualbasis vectors.Let the complete set of basis vectors j�� > span the in�nite Hilbert space H in which thelinear operator Rg (or just R) corresponding to the element g of G is represented by theblock-diagonal matrix j < ��jRj��0 > j. An individual matrix element will be designatedas < ��jRj��0 >. The e�ect of the linear operator R acting on a basis vector j�� > willbe to produce a linear combination of those basis vectors that span the representation (�),that is Rj�� >=X�0 < ��0jRj�� > j��0 > (6:24)The set T(�) of [�] linearly independent operators T (��) is said to form a tensor operatorunder the group G belonging to the representation (�) of G if under the operations of thegroup it transforms according to the representation (�) i.e., ifRT (��)R�1 =< ��0jRj�� > T (��0) (6:25)A tensor operator T(�) will be said to be irreducible, reducible or equivalent if the grouprepresentation (�) is correspondingly irreducible, reducible or equivalent.For an in�nitesimal transformation in GR = 1 + �a�X� (6:26)where �a� are the in�nitesimal parameters and X� the corresponding in�nitesimal opera-tors. Keeping terms to �rst order in the �a�,[X�; T (��)] =X�0 < ��0jX�j�� > T (��0) (6:27)and from Eq.(6.25) X�j�� >=X�0 < ��0jX�j�� > j��0 > (6:28)6.6 Tensor operators for SO3For the group SO3 the in�nitesimal operators are Jz; J� and in an angular momentumbasis that diagonalises J2 and JzJzjJM > =M jJM > (6:29a)J�jJM > =pJ(J + 1)�M(M � 1)jJM � 1 > (6:29b)which is the SO3 equivalent of Eq.(6.25). 46



If T(k) is an irreducible tensor operator in SO3 transforming as the irreducible represen-tation D(k) of SO3 it follows from Eq.(6.27) that the (2k + 1) components T (kq) whereq = �k;�k + 1; : : : ; k � 1; k must satisfy the commutation relations[Jz; T (kq)] = qT (kq) (6:30a)[J�; T (kq)] =pk(k + 1) � q(q � 1)T (k; q � 1) (6:30b)which we will take as the de�ning relations for irreducible tensor operators for SO3. Thetensor operator T(k) will be said to be of rank k.6.7 Coupling coe�cientsIf j�1�1 > and j�2�2 > are two basis vectors of (�1) and (�2), respectively, then thereduction of the Kronecker product is accomplished by the coupling coe�cients< �1�1�2�2j�1�2;��12�12 >where j��12�12 >= X�1;�2 < �1�1�2�2j�1�2;��12�12 > j�1�1 > j�2�2 > (6:31)with � being a multiplicity symbol to distinguish repeated irreducible representations. Inthe case of SO3 the coupling coe�cients are just the usual Clebsch-Gordan coe�cients.The inverse transformation can be written asj�1�1 > j�2�2 >= X�;�12;�12 < ��12�12j�1�2 >� j�1�2;��12�12 > (6:32)Since the transformations are unitary, we have the orthogonality relationsX�1;�2 < ��12�12j�1�2 >�< �1�2j�0�012�012 > = ���0��12�012��12�012 (6:33a)X�;�1;�2 < �1�2j��12�12 >�< ��12�12j�01�02 > = ��1�01��2�02 (6:33b)6.8 The Wigner-Eckart theorem in generalIt is the Wigner-Eckart theorem that makes group theoretical calculations quantitative.Consider a tensor operator T (��) acting on a basis state j�2�2 >. ThenT (��)j�2�2 >= X�;�1;�1 < ��1�1j���2�2 >� jT (�)�2;��1�1 > (6:34)47



The matrix elements of T (��) are given by< �1�1jT (��)j�2�2 >=X� < ��1�1j���2�2 >�< �1�1jT (�)j�2;��1�1 > (6:35)Consider the transformationj��1�1 >=X� < ��1�1j��1�1 > j��1�1 > (6:36)Suppose that X� is an arbitrary in�nitesimal operator of the group G and thatj��1�1 + � >=X� < ��1�1 + �j��1�1 + � > j��1�1 + � > (6:37)For � 6= 0 j��1�1 + � > = X�j��1�1 >< �1�1 + �jX�j�1�1 >=X� < ��1�1j��1�1 > j��1�1 + � > (6:38)Comparison with Eq.(6.37) gives< ��1�1 + �j��1�1 + � >=< ��1�1j��1�1 > (6:39)for all � 6= 0, and hence the coe�cients < ��1�1j��1�1 > must be independent of thecomponent �1.Making use of Eq.(6.35) gives the Wigner-Eckart theorem as< �1�1jT (��)j�2�2 >=X� < ��1�1j��2 >�< ��1kT (�)k�2 > (6:40)where we have written < ��1kT (�)k�2 > in the place of < �1�1jT (�)j�2;��1�1 >,since the latter is independent of �1. The double-barred matrix elements are independentof the weights of �i of the representations (�i) and are referred to as reduced matrixelements. The entire dependence of the matrix element on the weights of the bra and ketrepresentations together with the component of the tensor operator T(�) is encased in thecoupling coe�cients < ��1�1j��2 >�. Inverting Eq.(6.40) gives< ��1kT (�)k�2 >= X�1;�2 < ��2j��1�1jT (��)j�2�2 > (6:41)Ultimately the calculation of matrix elements comes down to the evaluation of couplingcoe�cients and reduced matrix elements. The Wigner-Eckart theorem may be generalisedto apply successively to every group-subgroup along a chain of nested groups.48



6.9 Selection rulesThe Wigner-Eckart theorem leads directly to selection rules which follow from the require-ments for the vanishing of the coupling coe�cients. The coupling coe�cient in Eq.(6.40)will vanish unless the weights of the bra, ket and tensor operator component satisfy therelation � + �2 = �1 (6:42)The coupling coe�cient will vanish unless the triple Kronecker product��1 ��� �2 � 0 (6:43)where here 0 is the identity representation of G. We will write c(�1;�;�2) for the numberof times the identity representation occurs in the triple Kronecker product. This numbergives the number of terms that occur in Eq. (6.40).6.10 The Wigner-Eckart theorem for SO3The group SO3 is multiplicity free and the Wigner-Eckart theorem in this case simpli�esto just < �1j1m1jT (k)q j�2j2m2 >= Cj1kj2m1qm2 < �1j1kT (k)k�2j2 > (6:44)where Cj1kj2m1qm2 is the usual Clebsch-Gordan coe�cient. In terms of the 3j�symbol we have< �1j1m1jT (k)q j�2j2m2 >= (�1)j1�m1 � j1 k j2�m1 q m2� < �1j1kT (k)k�2j2 > (6:45)The matrix elements of T (k)q vanish unlessm1 = q +m2 (6:46)while the reduced matrix element will vanish unlessj1 + j2 � k � jj1 � j2j (6:47)
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Symmetry and Spectroscopic CalculationsLecture Seven7.1 The Clebsch-Gordan coe�cientsIn our last lecture we introduced the Wigner-Eckart theorem for states in an angularmomentum basis jjm > noting that for tensor operators T(k) we can write< �1j1m1jT (k)q j�2j2m2 >= Cj1kj2m1qm2 (�1j1kT (k)k�2j2) (6:44)where Cj1kj2m1qm2 is the usual Clebsch-Gordan coe�cient or in terms of the 3j�symbol< �1j1m1jT (k)q j�2j2m2 >= (�1)j1�m1 � j1 k j2�m1 q m2� < �1j1kT (k)k�2j2 > (6:45)The Clebsch-Gordan coe�cient < j1m1j2m2jj1j2jm > represents the elements of a unitarytransformation that couples the uncoupled states jj1m1 > jj2m2 > to produce the coupledstates jj1j2jm >. i.e.,jj1j2jm >= Xm1;m2 < j1m1j2m2jj1j2jm > jj1m1 > jj2m2 > (7:1)Such transformations arise, for example in relating basis states in the jSMSLML > schemeto the coupled basis states jSLJM > where M =MS +ML. Thus,jSLJM >= XMS ;ML < MSMLjSLJM > jSMSLML > (7:2)Note that we shall often abbreviate the Clebsch-Gordan coe�cient < j1m1j2m2jj1j2jm >to just < m1m2jj1j2jm >. The Clebsch-Gordan coe�cients may be expressed precisely as< m1m2jj1j2jm >= �m1+m2;m�s (2j + 1)(j1 + j2 � j)! (j1 �m1)! (j2 �m2)! (j +m)! (j �m)!(j1 + j2 + j + 1)! (j + j1 � j2)! (j � j1 + j2)! (j1 +m1)! (j2 +m2)!�Xz (�1)j1�m1�z (j1 +m1 + z)! (j + j2 �m1 � z)!z! (j �m� z)! (j1 �m1 � z)! (j2 � j +m1 + z)! (7:3)While Clebsch-Gordan coe�cients possesses considerable symmetry a more symmetricalobject was de�ned by Wigner and is now commonly known as the 3j�symbol.7.2 The 3j�symbolThe 3j�symbol is related to the Clebsch-Gordan coe�cient by� j1 j2 j3m1 m2 m3� = (�1)j1�j2�m3 < m1m2jj1j2j3 �m3 >p(2j3 + 1) (7:4)62



The 3j�symbol is invariant with respect to an even permutation of its columns while forodd permutations of its columns is multiplied by a phase factor equal to the sum of thearguments in its top row. i.e.,� j1 j2 j3m1 m2 m3� = (�1)j1+j2+j3 � j2 j1 j3m2 m1 m3� (7:5)Furthermore, changing the sign of all three lower arguments results also in multiplicationby a phase factor equal to the sum of the arguments in its top row. i.e.,� j1 j2 j3m1 m2 m3� = (�1)j1+j2+j3 � j1 j2 j3�m1 �m2 �m3� (7:6)A 3j�symbol having all its m quantum numbers zero will be null unless j1 + j2 + j3 iseven. Likewise any 3j�symbol having two identical columns will vanish unless j1+ j2+ j3is even.The unitarity property of the Clebsch-Gordan coe�cients lead directly to the orthonor-mality conditions for the 3j�symbolsXj3;m3(2j3 + 1)� j1 j2 j3m1 m2 m3�� j1 j2 j3m01 m02 m3� = �m1;m01�m2;m02 (7:6a)Xm1;m2� j1 j2 j3m1 m2 m3�� j1 j2 j03m1 m2 m03� = �j3;j03�m3;m03p(2j3 + 1) (7:6b)7.3 Computing 3j�symbolsThe 3j�symbols may be variously expressed starting with the result given for the Clesch-Gordan formula given in Eq. (7.3). Extensive tables exist such as those of Rotenbrg,Bivins, Metropolis and Wooten, "The 3� j and 6 � j Symbols" Technology Press, Mass.(1959). The di�culty with implementing formulas based upon Eq.(7.3) is the summationterm which often leads to large intermediate numbers that overow. Roothan(privatecommunication 1990) has noted that the 3j�symbol formula can be usefully written inthe form � a b c� � � =q�( b+c��2 ; c+a��2 ; a+b+�+�2 )�( b+c+�2 ; c+a+�2 ; a+b����2 )�Xz (�1)a+b+���+z� a + b � cz �� c+ a � ba � �� z�� b + c� ab + � � z� (7:7)where �(abc)�1 = � a+ b+ cb+ c� a�� 2ac+ a � b� (a + b+ c+ 1) (7:8)63



The binomial coe�cients in Eq. (7.7) are �rst computed as integers in a Pascal's trian-gle and then read from the table as required and thus the awkward summation may becalculated as a sum of reals which may be rounded to produce an exact integer. The� terms are rapidly calculated using prime number arithmetic to produce integers andthe resulting symbol outputted as a squared number expressed in prime number notationwith a phase factor. With 32-bit words almost the entire tables of Rotenberg etal may berapidly reproduced. With a 64-bit word such as on SUN machines the entire table andmuch more can be generated without overow. On packages such as MapleV the entirecalculation can be carried out using the exact arithmetic routines of MapleV.7.4 Reduced matrix elements of angular momentum operatorsThe angular momentum J is a rank 1 tensor operator J(1) with the z� component Jzcorresponding to the tensor operator component J (1)0 . Application of the Wigner-Eckarttheorem as in Eq.(6.45) gives< �jmjJ (1)0 j�0j0m0 >= (�1)j�m � j 1 j0�m 0 m0� < �jkJ (1)k�0j0 > (7:9)However, from the elementary quantum theory of angular momentum we have< �jmjJzj�0j0m0 >= ��;�0�j;j0�m;m0m (7:10)The matrix element is independent of all other quantum numbers � and diagonal in theangular momentum j. Comparison of Eqs. (7.9) and (7.10) then leads to< jmjJ (1)0 jjm > = m= (�1)j�m � j 1 j�m 0 m� < jkJ (1)kj > (7:11)The 3j�symbol may be explicitly evaluated to give(�1)j�m � j 1 j�m 0 m� = mpj(j + 1)(2j + 1)from which we immediately deduce the important reduced matrix element< jkJ (1)kj >=pj(j + 1)(2j + 1) (7:12)In deriving Eq.(7.12) we have made no assumptions as to the nature of the angular mo-mentum and our result holds equally well for spin or orbital angular momentum operators.7.5 The 6j�symbolThe 3j�symbol arose in the problem of coupling two angular momentum states to pro-duce a coupled state. In the case of coupling three angular momenta, say j1; j2; j3, to64



produce a total angular momentum state jjm > di�erent orders of coupling the threeangular momenta can be considered. Both j(j1j2)j12; j3; jm > and jj1; (j2j3)j23; jm >represent distinct coupling procedures. The two coupling schemes are linked by a unitarytransformation such thatjj1; (j2j3)j23; jm >=Xj12 < (j1j2)j12; j3; jmjj1; (j2j3)j23; jm > j(j1j2)j12; j3; jm > (7:13)Acting on both sides with j+ shows that the transformation coe�cients are independentof m.The 6j�symbol is de�ned by the relation< (j1j2)j12; j3; jmjj1; (j2j3)j23; jm >=(�1)j1+j2+j3+jp(2j12 + 1)(2j23 + 1)� j1 j2 j12j3 j j23� (7:14)The 6j�symbol may be evaluated by �rst expressing it as a sum over a triple product of3j�symbols and then using the fact that the 6j�symbol is independent of m to producea sum involving a single variable to �nally yield� a b cd e f � =p�(abc)�(aef)�(dbf)�(dec)�Xz (�1)z(z + 1)!� [(z � a� b� c)!(z � a� e� f)!(z � d� b � f)!(z � d� e� c)!� (a + b+ d+ e� z)!(b + c+ e+ f � z)!(a + c+ d+ f � z)!]�1 (7:15)The 6j�symbol vanishes unless the four triangular conditions portrayed below are satis�ed.8<: �. . . . . .� �9=;8<: � � � � � � � � �9=;8<: �. . .� � � � � 9=;8<: � . . . � � � � �9=; (7:16)where for example a + b � c � ja � bj.The 6j�symbol is invariant with respect to any interchange of columns and also withrespect to the interchange of the upper and lower arguments of any two columns.The6j�symbols satisfy the orthogonality conditionXj12 (2j12 + 1)(2j23 + 1)� j3 j j12j1 j2 j23�� j3 j j12j1 j2 j023�= �j23;j023 (7:17)65



Roothan(private communication 1990) has given the computationally convenient form forcalculating 6j�symbols� a b cd e f �=p�(abc)�(dbf)�(dec)�(aef)�Xz (�1)z � z + 1z � a� b � c�� b + c� az � a � e� f �� c+ a � bz � d� b� f �� a+ b� az � d� e� c�(7:18)7.6 The 9j�symbolThe 6j�symbol arose in discussing the coupling of three angular momentum. Clearly morecomplex nj�symbols will arise for couplings involving more than three angular momentum.The 9j�symbol may be de�ned as< (j1j2)j12; (j3j4)j34; jj(j1j3)j13; (j2j4)j24; j >=p(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)8<: j1 j2 j12j3 j4 j34j13 j24 j 9=; (7:19)The 9j�symbol may be expressed in terms of 6j�symbols as8<: a b cd e fg h i 9=;=Xz (�1)2z � a d gh i z�� b e hd z f �� c f iz a b� (7:20)The 9j�symbol is left invariant with respect to any even permutation of its rows or columnsor a transposition of rows and columns. Under an odd permutation of rows or columnsthe symbol is invariant but for a phase factor equal to the sum of its arguments. If oneargument of the 9j�symbol is zero the symbol collapses to a single 6j�symbol viz.8<: a b cd e fg h 09=; = �c;f�g;h (�1)b+d+f+gp(2c+ 1)(2g + 1) � a b ce d g� (7:21)7.7 Coupled tensor operatorsWe have noted the close connection between the transformation properties of tensor op-erators and angular momentum states. Consider two tensor operators T(k1 and U(k2 . Wecan de�ne a coupled tensor operator X(k1k2;K) viaXk1k2;KQ = Xq1;q2 T (k1)q1 U (k2)q2 < k1q1k2q2jk1k2;KQ > (7:22)66



Explicit evaluation of the Clebsch-Gordan coe�cient for the case of K = 0 leads to[T(k)U(k)]00 = (�1)kp(2k + 1)Xq (�1)�qT (k)q U (k)�q (7:23)The scalar product of two tensor operators is de�ned as(T(k) �U(k)) =Xq (�1)qT (k)q U (k)�q (7:24)It follows from Eqs.(7.22) and (7.24) that[T(k)U(k)]00 = (�1)kp(2k + 1)(T(k) �U(k)) (7:25)7.8 Matrix elements of tensor operatorsHenceforth we shall often write simply X(K) rather than X(k1k2;K) for a coupled tensoroperator. It follows immediatedly from the Wigner-Eckart theorem that< �j1j2JM jX(K)Q j�0j01j02J 0M 0 >= (�1)J�M � J K J 0�M Q M � < �j1j2JkX(K)k�0j01j02J 0 > (7:26)Our problem is now to evaluate the reduced matrix element in Eq.(7.26). Basically thisis done by an uncoupling of the bra and ket states and of the tensor operator followed byappropriate recouplings and summations. For the details I refer you to the books of Juddand of Edmonds.If T(k) and U(k) act separately on parts 1 and 2 of a system such as in spin and orbitspaces or on di�erent particles, or sets of particles, then we obtain the result< �j1j2JkX(K)k�0j01j02J 0 > =X�" < �j1kT (k1)k�"j01 >< �"j2kU (k2)k�0j02 >�p(2J + 1)(2K + 1)(2J 0 + 1)8<: j1 j01 k1j2 j02 k2J J 0 K9=; (7:27)We can specialise the above result for K = 0 to obtain the scalar product as< �j1j2JMk(T(k) �U(k))k�0j01j02J 0M 0 >= �J;J0�M;M 0(�1)j01+j2+J � j01 j02 Jj2 j1 k ��X�" < �j1kT (k)k�"j01 >< �"j2kU (k)k�0j02 > (7:28)67



The action of an operator T(k) acting on part 1 of a system can be found by putting k2 = 0in Eq.(7.27) to yield< �j1j2JkT (k)k�0j01j02J 0 > = �j2 ;j02(�1)j1+j2+J0+kp(2J + 1)(2J 0 + 1)� J k J 0j01 j2 j1 �� < �j1kT (k)k�0j01 > (7:29)while the action on part 2 is found by putting k1 = 0 in Eq.(7.27) to yield< �j1j2JkU (k)k�0j01j02J 0 > = �j1;j01(�1)j1+j02+J+kp(2J + 1)(2J 0 + 1)� J k J 0j02 j1 j2 �� < �j2kU (k)k�0j02 > (7:30)A weaker result applicable to both cases where the operators act either on di�erent partsof a system or indeed the same system may be derived to give< �JkX(K)k�0J 0 > = (�1)J+K+J0p(2K + 1) X�";J"� k2 K k1J J" J 0 �� < �JkT (k1)k�"J" >< �"J"kU (k2)k�0J 0 > (7:31)The results given by Eqs. (7.22) to (7.31) form the basis for all subsequent applications ofthe theory of tensor operators.7.9 Spherical harmonics as tensor operatorsThe spherical harmonics Ykq(�; �) play a key role in many atomic and crystal �eld cal-culations. The spherical harmonics transform under the action of the generators of SO3just like the angular momentum states jkq >. Rather than using the spherical harmonicsthemselves it is usual to use tensor operators C(k) whose 2k + 1 components C(k)q arerelated to the spherical harmonics asC(k)q =r 4�2k + 1Ykq(�; �) = (�1)qs (k � q)!(k + q)!P qk (cos �) exp iq� (7:32)where the P qk (cos �) are the usual Legendr�e polynomials.The reduced matrix elements of C(k) may be calculated by choosing to evaluate the matrixelement of the component C(k)0 in an `s�basis between states with m` = 0 as done, forexample, by Judd to give< `kC(k)k`0 >= (�1)`p(2`+ 1)(2`0 + 1)� ` k `00 0 0 � (7:33)68



The 3j�symbol vanishes unless `+ `0+ k is even. The corresponding result for a jj�basiscan be found by use of Eq. (7.30) followed by Eq. (7.33) to give< s`jkC(k)ks`0j0 >= (�1)j� 12p(2j + 1)(2j0 + 1)� j k j0�12 0 12 � (7:34)where necessarily `+ `0 + k is even.7.10 Two sum rulesIn discussing transition probabilities we are often interested in summing over a set of �nalstates to produceXmf ;q j < jimijT (k)q jjfmf > j2 = 1(2ji + 1) j < jikT (k)kjf > j2 (7:35)or sometimes over both initial and �nal states to produceXmi;mf ;q j < jimijT (k)q jjfmf > j2 = j < jikT (k)kjf > j2 (7:36)7.11 Electric dipole transitionsThe spontaneous emission transition probability per unitA time for anN�electron makingtransitions from an excited state j�0J 0M 0 > to a lower state j�JM > isA(J 0M 0 ! JM) = 64�4e2a20�33h Xq j < �JM jT (1)q j�0J 0M 0 > j2 (7:37)where T (1)q = NXi=1 r(1)q (i) = NXi=1 riC(1)q (i) (7:38)and � is the wavenumber of the transition expressed in cm�1.The crucial quantity is the matrix element < �JM jC(1)q j�0J 0M 0 >. Application of theWigner-Eckart theorem gives< �JM jC(1)q j�0J 0M 0 >= (�1)J�M � J 1 J 0�M q M � < �JkC(k)k�0J 0 > (7:39)The 3j�symbol will vanish unless (J; J 0; 1) satisfy the triangular condition and hence wehave the selection rules �J = 0;�10$ 0 forbidden69



Inspection of the bottom row of the 3j�symbol requires thatM + q +M 0 = 0with q = 0;�1. This determines the polarisation properties of the radiation. If �M = 0the emitted light is polarised linearly and parallel to the z�axis. If �M = �1 we obtaincircularly polarised light.We can enlarge our description of the reduced matrix elements of C(1) to give in anLSJ�basis< �SLJkC(1)k�0S0L0J 0 > = �S;S0(�1)S+L0+J+1p(2J + 1)(2J 0 + 1)� J 1 J 0L0 S L �� < �LkC(1)k�0L0 > (7:40)where we note that the tensor operator acts only on the orbital space and hence we canmake use of Eq. (7.29). Inspection of the 6j�symbol shows it will vanish unless (L;L0; 1)satisfy the triangular condition and hence we have the selection rules�S = 0; �L = 0;�1; L = 0$ L = 0 forbiddenNote these selection rules assume S and L are "good" quantum numbers. For a singleelectron orbit ` we can use Eq. (7.33) to evaluate the reduced matrix element in Eq.(7.40) and obtain the parity selection rule�` = �1a selection rule valid also for the N�electron case. The evaluation of the reduced matrixelements for the N�electron case will be considered later.7.12 Electric dipole line strengthsThe quantity S = j < �JkrC(1)k�0J 0 > j2 (7:41)is commonly referred to as the electric dipole line strength. The total transition probabilityfrom a state j�0J 0M 0 > to all of the states j�JM > of the level �J follows from applicationof Eq. (7.35) to give A = 64�4e2a20�33h(2J 0 + 1)S (7:42)In theoretical calculations the square root of the line strength S 12 is the important quantity.We calculate the wavefunctions j�JM > and j�0J 0M 0 > in some basis so thatj�JM >=X� a�J�J j�J > (7:43)70



and the square root of the line strength becomesS 12 (�J $ �0J 0) =X�;�0 a�J�J < �JkrC(1)k�0J 0 > a�0J0�0J0 (7:44)Such calculations of the square root of the line strength are important in taking intoaccount departures from LS�coupling.Exercises7.1 Obtain a compact expression for the matrix element< �SLJM jLz + 2Szj�SLJM >7.2 Show that< �SLJM jLz + 2Szj�SLJ + 1M >=p(J + 1)2 �M2�s (S + L+ J + 2)(S + J + 1� L)(L+ J + 1� S)(S + L� J)4(J + 1)2(2J + 1)(2J + 3)In the above exercises the following special 3j� and 6j�symbols are useful� j 1 j�m 0 m� = (�1)j�m mpj(2j + 1)(j + 1)� j1 j2 j3j2 j1 1 � = (�1)j1+j2+j3+1 (j1(j1 + 1) + j2(j2 + 1)� j3(j3 + 1)p4j1(j1 + 1)(2j1 + 1)j2(j2 + 1)(2j2 + 1)� j1 j2 j3j2 � 1 j1 1 �= (�1)j1+j2+j3s2(j1 + j2 + j3 + 1)(j1 + j2 � j3)(j2 + j3 � j1)(j1 � j2 + j3 + 1)2j1(2j1 + 1)(2j1 + 2)(2j2 � 1)2j2(2j2 + 1)Symmetry and Spectroscopic CalculationsLecture Eight8.1 The Zeeman e�ect - Weak �eldConsider a magnetic �eld Bz directed along the z�axis and a set of states j�SLJM >associated with a spectroscopic term 2S+1L. The presence of the magnetic �eld adds tothe Hamiltonian a term Hmag = �Bz�z = Bz�0[Lz + gsSz] (8:1)72



where gs �= 2:0023. In terms of tensor operators we need to evaluate the matrix elementsof the operator L(1)0 + gsS(1)0 . Consider �rst the diagonal matrix elements< �SLJM jL(1)0 + gsS(1)0 j�SLJM >Application of the Wigner-Eckart theorem, Eq.(6.45), gives< �SLJM jL(1)0 + gsS(1)0 j�SLJM >= (�1)J�M � J 1 J�M 0 M � < �SLJkL(1) + gsS(1)k�SLJ >= MpJ(J + 1)(2J + 1) < �SLJkL(1)+ gsS(1)k�SLJ > (8:2)Use of Eq.(7.29) gives< �SLJkgsS(1)k�SLJ >= gs(�1)S+L+J+1(2J + 1)� J 1 JS L S� < �SkS(1)k�S > (8:3a)Use of Eq.(7.30) gives< �SLJkL(1)k�SLJ >= (�1)S+L+J+1(2J + 1)� J 1 JL S L� < �LkL(1)k�L > (8:3b)The reduced matrix elements follow from Eq.(7.12) and the 6j�symbols may be evaluatedexplicitly as in Ex.(7.2). Combining terms we �nally obtain< �SLJM jHmagj�SLJM >= Bz�0Mg(SLJ) (8:4)where g(SLJ) = 1 + (gs � 1)J(J + 1)� L(L+ 1) + S(S + 1)2J(J + 1) (8:5)is the so-called Land�e g�factor. Eq.(8.4) shows that for a weak magnetic �eld with statesof di�erent J well separated the magnetic �eld will produce splittings linearly dependenton the M quantum number. This is the so-called weak �eld Zeeman e�ect. For a J = 12level we obtain the pattern MJ12. . . "J = 12 g�0Bz 73



. . . # �12Note that we have not only determined the number of sublevels (two) but also themagnitude of splitting. For a J = 1 level we obtain the patternMJ1. . . "J = 1 . . . 0. . . # �1In this case we obtain three sublevels. In general we obtain (2J + 1) sublevels. Fora system having an odd number of electrons we obtain an even number of sublevels whilefor an even number of electrons we obtain an odd number of sublevels.8.2 O�-diagonal matrix elements and the Zeeman e�ectFor a magnetic �eld in the z�direction the M�quantum number remains a good quantumnumber. This is because we have preserved SO2 symmetry. However, Hmag does notpreserve SO3 symmetry - we have chosen a particular direction in 3�space. The totalangular momentum J is no longer a good quantum number. There exist matrix elementsof Hmag coupling states with �J = �1. We �rst note that Jz = Lz + Sz and henceLz+gsSz = Jz+(gs�1)Sz. But the matrix elements of Jz are diagonal in J and hence tocalculate the o�-diagonal matrix elements we need only calculate the o�-diagonal matrixelement of Sz as follows:< �SLJM jS(1)0 j�SLJ + 1M >= (�1)J�M � J 1 J + 1�M 0 M � < �SLJkS(1)k�SLJ + 1 > (8:6)Explicit evaluation of the 3j�symbol gives(�1)J�M � J 1 J + 1�M 0 M � = �2s (J +M + 1)(J �M + 1)(2J + 1)(2J + 2) (8:7)Evaluation of the reduced matrix element in Eq.(8.6) using Eq.(7.29) gives< �SLJkS(1)k�SLJ + 1 >= (�1)S+L+Jp(2J + 1)(2J + 3)� J 1 J + 1S L S � < SkS(1)kS >= �s(S + L+ J + 2)(S + J + 1� L)(J + 1 + L� S)(S � J +L)4(J + 1) (8:8)74



Combining Eqs. (8.7) and (8.8) in Eq.(8.6) �nally yields< �SLJM jHmagj�SLJ + 1M >= Bz�0(gs � 1)p(J + 1)2 �M2)�s (S + L+ J + 2)(S + J + 1� L)(J + 1 + L� S)(S � J + L)4(J + 1)2(2J + 1)(2J + 3) (8:9)8.3 Calculation for a 3P termA 3P term has S = 1 and L = 1 from which we deduce that we can have J = 0; 1and 2.In a free atom we expect the spin-orbit coupling to give rise to the three spectroscopiclevels: 3P2 3P1 3P0For simplicity we will assume gs = 2. From Eq.(8.5) we �ndg(3P2) = 32 g(3P1) = 32(Recall the diagonal matrix element for a state with MJ = 0.) The o�-diagonal matrixelements follow from Eq. (8.9) and we can obtain separate matrices, one for each value ofMJ . The matrices for MJ and �MJ di�er only in the sign of the diagonal elements whichis just the sign of MJ . In units of �0Bz we obtain the following matrices:MJ = �2 � j3P2� 2 ><3 P2� 2j �3 � (8:10a)MJ = �1 0@ j3P2� 1 > j3P1� 1 ><3 P2� 1j �32 12<3 P1� 1j 12 �32 1A (8:10b)MJ = 0 0BB@ j3P20 > j3P10 > j3P00 ><3 P20j 0 p33 0<3 P10j p33 0 p63<3 P00j 0 p63 0 1CCA (8:10c)The e�ect of the o�-diagonal matrix elements is to mix states of di�erent J and to lead tolevel shifts non-linear in MJ .8.4 Strong magnetic �elds and the Paschen-Back E�ectIf the external magnetic �eld is strong and the energy separation of the di�erent J statessmall then there will be strong J�mixing. So far we have considered states in an jSLJM >75



basis. The calculation of energy levels requires that we add to the above matrices the otherterms in the Hamiltonian such as the Coulomb and spin-orbit interactions. In the event ofa very strong magnetic �eld we may consider states in a jSLMSML > basis. In that casewe have the matrix elements< �SLMSMLjHmag j�SLMSML >= �0Bz < �SLMSMLjL(1)0 + gsS(1)0 j�SLMSML >= �0BzML + gsMS (8:11)whereMJ =MS +ML. For the states j3PMSML >, taking gs = 2 we have, again in unitsof �0Bz: MJ = �2 � j3P � 1� 1 ><3 P � 1� 1j 3 � (8:12a)MJ = �1 0@ j3P10 > j3P01 ><3 P10j 2 0<3 P01j 0 1 1A (8:12b)MJ = 0 0BB@ j3P1� 1 > j3P � 11 > j3P00 ><3 P1� 1j 1 0 0<3 P � 11j 0 �1 0<3 P00j 0 0 0 1CCA (8:12c)We note, as expected these matrices are diagonal. Their eigenvalues are presiselt theeigenvalues that would be obtained if the matrices in Eq.(8.10) were diagonalised. Thisgives a method of checking Zeeman matrices calculated in the jSLJM > basis. Upondiagonalisation we must obtain the corresponding values found in the jSLMSML > basis.Exercises(8.1). Compute the Land�e g�values for 2P 12 and 2P 32 .(8.2). Compute the matrix element <2 P 12 12 jLz + 2Szj2P 32 12 >.(8.3). Compute the complete set of Zeeman matrices for the complete set of states associatedwith the 2P multiplet in both the jSLJM > and jSLMSML > bases.(8.4). Use your results from the above exercises to produce a sketch showing the way thedegeneracy is completely lifted by a weak magnetic �eld. Sketch how the sublevelsbehave with increasing magnetic �eld strength and how some degeneracies arise in thelimit of a very strong magnetic �eld. Note in making your sketch you will want tomake use of the no crossing theorem. In our case that means that levels of the sameMJ do not cross. 76



(8.5). Make a list of examples from modern technology where the lifting of degeneracies bya magnetic �eld are exploited.(8.6). Discuss the technological signi�cance of departures from linearity of Zeeman splittings.8.5 Magnetic dipole transitionsMagnetic dipole transitions are associated with the matrix elements of the magnetic dipolemoment M = � e2mc nXi=1(L + 2S)i (8:13)In tensor operator form we need the matrix elements of the tensor operatorM(1) = nXi=1(L + 2S)(1)i (8:14)and hence the calculation of these matrix elements is exactly as for the Zeeman e�ectjust discussed. For magnetic dipole transitions to occur they must satisfy the followingselection rules:�` = 0 �S = 0 �L = 0 �J = 0;�1 J = 0$ 0 forbidden (8:15)Thus there can be no change of parity and within the approximation of LS�couplingtransitions occur only between states of the same (2S+1)L multiplet.Following Ofelt ( Intensities of crystal spectra of rare earth ions, J.Chem.Phys.37, 511-520,1962) it is useful to write the line strength in the formS(�; �)= (j < �jM (1)1 j� > j2 + j < �jM (1)�1 j� > j2) + j < �jM (1)0 j� > j2 (8:16)The �rst term enclosed in curved brackets corresponds to � polarised light (i.e. linearlypolarised parallel to the z�direction) and the remaining term to � polarised light (i.e.circularly polarised). Note that this is exactly the opposite situation to electric dipoletransitions and hence gives us an experimental method for distinguishing the electric dipoletransitions from magnetic dipole transitions. This can be very important in crystallinematerials where the "forbidden" magnetic dipole and "forced" electric dipole transitionscan both occur.Exercises(8.7). Discuss the technological signi�cance of magnetic dipole transitions.(8.8). Magnetic dipole transitions are commonly referred to as "forbidden" transitions andare very di�cult to observe in atomic spectra in the laboratory but are readily seenin the spectra of gaseous nebulae. Explain why this is the case.77



(8.9). Polarisation studies show that the transitions 7F0 ,5 D1 within the 4f6 con�gurationof europium salts are magnetic dipole in origin and yet such a transion appears toviolate the �S = 0 and �L = 0 magnetic dipole selection rules. Develop a hypothesisto explain this selection rule breakdown.(8.10). Magnetic dipole transitions, unlike electric dipole transitions, are very di�cult toobserve in the optical spectra of atoms but are readily seen in microwave spectrawhereas electric dipole transitions are not. Explain this observation.
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Symmetry and Spectroscopic CalculationsLecture Nine9.1 Spin-orbit interaction for a single electronThe spin-orbit interaction plays an important part in both atomic and nuclear physics.It arises directly out of considerations of the relativistic Dirac equation. It leads to theinclusion in the Hamiltonian of a termHs�o = NXi=1 �n`(ri)(s � l)i (9:1)where in the central-�eld approximation the radial integral �n`(ri) involves just the quan-tum numbers n`. The radial integral �n` is commonly referred to as the spin-orbit couplingconstant and gives a measure of the strength of the spin-orbit interaction. Hs�o is a scalaroperator and in a jJM > basis its matrix elements are diagonal in J and M and are inde-pendent of M . As a consequence in writing down matrix elements we shall often suppressthe M quantum number. For a single electron the relevant quantity is just (s � l) whoseeigenvalues may be evaluated simply by noting that j = l + s and hencej � j = l � l + s � s+ 2s � l (9:2)and hence s � l = 12[j(j + 1)� `(`+ 1)� s(s + 1)] (9:3)But for a single electron s = 12 and j� = `� 12 and hence we have< j+js � ljj+ >= 2̀ (9:4a)and < j�js � ljj� >= � (`+ 1)2 (9:4b)Thus for ` > 0 a level characterised by the quantum numbers ns` splits into two sublevelsseparated in energy by �En` = En`j+ �En`j� = 2`+ 12 �n` (9:5)with the state with lowest j lying lowest to produce the pattern:78



2̀�n`. . . "` �En`. . . # � (`+1)2 �n`Under charge conjugation the sign of the spin-orbit interaction changes sign. Thisamounts to interchanging particles for holes and hence for a single hole in an otherwise�lled shell (i.e. the electron con�guration n`4`+1)we simply change the sign in Eqs. (9.4a)and (9.4b) and obtain the state with j = ` + s lying lowest. Note that in nuclei the signof the spin-orbit interaction is found to have the opposite sign to that for electrons andhence for a single nucleon the state of highest j has the lowest energy.In triply ionised cerium, Ce3+, one has the following fragment of its energy level table (incm�1) given in Atomic Energy Levels - The Rare-Earth Elements by Martin, Zalubus andHagan 5p64f 2F 52 02F 72 22535p65d 2D 32 497372D 52 522265p66p 2P 12 1225852P 32 127292Remembering that the energy separation for a single electron due to spin-orbit interactiongiven in Eq. (9.5) we deduce the following empirical values for the spin-orbit couplingconstants in cm�1 �4f = 644 �5d = 996 �6p = 3071In triply ionised ytterbium, Y b3+ one �nds4f13 2F 72 0:002F 52 10214:0from which we deduce �4f = 291879



9.2 Spin-orbit interaction in jj�couplingjj�coupling is the natural basis for calculating spin-orbit interactions. For a statejjN�JM > the interaction is completely diagonal and is simply N times that found fora single electron. We saw in earlier lectures that the states of the p2 con�guration in anjp2SLJM > basis gave rise to two terms with J = 0 (1S0 and 3P0), one term withJ = 1 (3P1) and two terms with J = 2 (1D2 and 3P2). Precisely the same J�valuesarise for the jj�coupled con�gurations p212 (J = 0), p232 (J = 0; 2) and p 32 p 12 (J = 1; 2)leading to the spin-orbit matrices ( in units of �np)J = 2 0@ jp232 2 > jp 32 p 12 2 >< p232 2j 1 0< p 32 p 12 2j 0 �12 1A (9:6a)J = 1 � jp 32 p 12 1 >< p 32 p 12 1j 1 � (9:6b)J = 0 0@ jp212 0 > jp232 0 >< p212 0j �2 0< p232 0j 0 �1 1A (9:6c)9.3 Spin-orbit interaction in n`N con�gurationsThe calculation of the matrix elements of the spin-orbit interaction Hs�o within the statesjn`N�SLJM > starts by use of Eq.(7.28) (NB in the notes of Lecture 7 replace the k byj on the left-hand-side of Eq.(7.28)) to give< n`N�SLJ j NXi=1(s � l)ij�0S0L0J >= (�1)S0+L+J �S0 L0 JL S 1 �� NXi=1X�00 < �Sks(1)i k�00S0 >< �00Lk`(1)i k�0L0 > (9:7)The triangular conditions required to be satis�ed for the non-vanishing of the 6j�symbolin Eq.(9.7) lead to the selection rules for spin-orbit interaction matrix elements. Thesematrix elements will assuredly vanish unless�S = 0;�1 �L = 0;�1 (9:8a)80



or if S = S0 = 0 or L = L0 = 0 (9:8b)These selection rules hold independently of the number of electrons.The fact that the spin-orbit interaction can couple states of di�erent spin S and/or orbitalL angular momentum means that in the presence of spin-orbit interaction the quantumnumbers S and L will cease to be good quantum numbers and hence we will obtain statesthat involve linear combinations of the basis states j�SLJM >. As far as the spin-orbit interaction is concerned the quantum numbers JM will remain as good quantumnumbers. Thus spin-orbit interaction can lead to a breakdown of the selection rules forelectric-dipole, magnetic-dipole or electric-quadrupole transitions as well as departures inthe Land�e g�factors calculated for j�SLJM > states. These e�ects are often referred toas arising from intermediate coupling where one has neither of the extremes of LS� orjj�coupling.9.4 The Land�e interval ruleFor the particular case of the diagonal matrix elements of the spin-orbit interaction the6j� symbol, and its associated phase factor, in Eq.(9.7) simpli�es to (see page 71 of lecturenotes) (�1)S+L+J �S L JL S 1 �= [J(J + 1)� L(L+ 1)� S(S + 1)]p4S(S + 1)(2S + 1)L(L+ 1)(2L+ 1) (9:9)Comparison with Eq.(9.7) shows that the entire dependence of the diagonal matrix ele-ments on the total angular momentum J is contained in the numerator of Eq.(9.9).Consider a term 2S+1L and assume that the spin-orbit interaction is weak compared withthe energy separation from other terms so that o�-diagonal spin-orbit matrix elementsmay be ignored then we may writeE(2S+1LJ )�E(2S+1LJ�1) = 12[J(J + 1)a(SL)� J(J � 1)a(SL)]= Ja(SL) (9:10)where a(SL) is independent of J and is characteristic of the particular 2S+1L term andthus we may conclude that the energy interval between two levels of a term 2S+1L withconsecutive values of the total angular momentum J is proportional to the larger of the twovalues of J which is known as the Land'e interval rule.9.5 Spin-orbit interaction in `2 con�gurationsFor more than two electrons the solution of Eq.(9.7) is non-trivial requiring use of coe�-cients of fractional parentage. Recall that for an electron con�guration `2 the terms 2S+1L81



all have S +L even. To use Eq.(9.7) for `2 we need to evaluate the matrix sum2Xi=1 < (ss)Sks(1)i k(ss)S0 >< (``)Lk`(1)i k(``)L0 > (9:11)We may take for i = 1 the tensor operators acting on part one of the system and henceuse Eq.(7.29) and for i = 2 the tensor operators acting on part two of the system and useEq.(7.30). Remembering that both S + L and S0 + L0 are even we can combine the twoterms introducing a factor of 2. The single particle reduced matrix elements < sks(1)ks >and < `k`(1)k` > follow from Eq.(7.12) leading us to the �nal result< `2SLJ j 2Xi=1(s � l)ij`2S0L0J >= �2ps(s + 1)(2s + 1)`(` + 1)(2` + 1)(2S + 1)(2S0 + 1)(2L + 1)(2L0 + 1)� (�1)S0+L+J �S0 L0 JL S 1 ��S S0 1s s s��L L0 1` ` `� (9:12)9.6 Calculation of spin-orbit matrices in p2For the electron con�guration p2 we have s = 12 and ` = 1 and hence Eq. (9.12) becomes< p2SLJ j 2Xi=1(s � l)ijp2S0L0J >= �6p(2S + 1)(2S0 + 1)(2L+ 1)(2L0 + 1)(�1)S0+L+J��S0 L0 JL S 1 ��S S0 112 12 12 ��L L0 11 1 1� (9:13)The values of the 6j�symbols may be readily obtained from tables or computer to yieldthe spin-orbit matrices for p2 in an LS�basis asJ = 2 0@ j3P2 > j1D2 ><3 P2j 12 p22<1 D2j p22 0 1A (9:14a)J = 1 � j3P1 ><3 P1j �12 � (9:14b)J = 0 0@ j3P0 > j1S0 ><3 P0j �1 �p2<1 S0j �p2 0 1A (9:14c)82



9.7 Checking spin-orbit matricesIn any calculation it is highly desirable to have checking procedures. The LS�basis statesdi�er from those in the jj�basis by a unitary transformation. This implies that for acomplete set of states of the `N with a particular value of J we should have1. The traces of the matrices in either basis should be the same.2. The eigenvalues � in either basis should be the same.3. If A is a unitary matrix then T r(Ap) =P�p9.8 The Hund's rule groundstateThe groundstate for the states of a con�guration `N can be predicted using Hund's rulesas follows:(1). Select the terms of maximum spin multiplicity (i.e largest (2S + 1)).(2). From those terms select the term having the largest orbital angular momentum quan-tum number L.(3). ForN � 2`+1 select the state 2S+1LJ having the smallest value of J while ifN > 2`+1select the largest value of J . By way of example, in the con�guration f3 we havethe terms with (2S + 1) = 2 and 4 so the ground term must be chosen from thequartets 4SDGHI. Of the quartets the term with largest L is 4I which can haveJ = 92 ; 112 ; 132 ; 152 . Thus the Hund's rule groundstate for f3 is 4I 92 while for f11 thegroundstate is 4I 152 as is indeed found for the groundstates of the Nd3+ and Er3+rare earth ions respectively.9.9 Spin-orbit interaction in the Hund's ground multipletConsider the con�guration `N with N � 2` + 1. Let 2S+1L be the Hund's rule groundterm. If J = L+ S and MJ = J then for MS = S and ML = L we havej2S+1LJM >= j2S+1LMSML > (9:15)There is a unique determinantal state associated with this special state, namely,f +̀ +`� 1 : : : +`�N g (9:16)Allowing the operator PNi=1(sz`z)i to act on this determinantal state we readily �nd that<2S+1 LJM j NXi=1(s � l)ij2S+1LJM >= L2 (9:17)It follows from Eqs.(9.8) and (9.9) that<2S+1 LJM j NXi=1(s � l)ij2S+1LJM >= [J(J + 1)� L(L+ 1) � S(S + 1)]f(SL) (9:18)83



putting J = L + S and then comparing Eqs. (9.17) and (9.18) gives for the Hund's rulemultiplet f(SL) = 14S = 12N (9:19)and hence we have for any member of the Hund's rule ground state< `NSLJ j NXi=1(s � l)ij`NSLJ >= 14S [J(J + 1) �L(L + 1) � S(S + 1)] (9:20)For N > 2`+ 1 we simply take the negative of the right-hand-side of Eq.(9.20).Exercises(9.1). Verify that the spin-orbit matrices given in Eqs. (9.6) and (9.14) satisfy the abovechecks.(9.2). Calculate the spin-orbit interaction matrices for the complete set of jj�coupled statesassociated with f2.(9.3). Calculate the spin-orbit matrices for the complete set of LS�coupled states of f2.(9.4). The lowest electron con�gurations of the neutral rare earths Nd and Dy are 4f46s2and 4f106s2, respectively. The maximal multiplicity terms of these two con�gurationsare the 5SDGHI terms. Atomic beam measurements for the groundstates of Ndand Er give the Land�e g�factors of g(Nd) = 0:60329 and g(Dy) = 1:24159. Givea quantitative interpretation of these results with reasons for discrepancies betweenyour calculated results and the experimental values.(9.5). The ground multiplet for neutral Sm is 4f66s2(7F ). The energies of the seven levelsof the multiplet, and their associated g�factors have been measured asJ E(7FJ ) cm�1 g(7FJ )0 0:001 292:58 1:498392 811:92 1:497793 1489:55 1:497074 2273:09 1:496255 3125:46 1:495326 4020:66 1:49417Use Eq.(9.20) to deduce a value of the spin-orbit coupling constant for neutral samar-ium and determine to what extent the Land�e interval rule is satis�ed. Calculate theLand�e g�factors for each state and compare them with the corresponding experimen-tal values. 84



(9.6). Perform a similar analysis for the ground multiplet of neutral Promethium (Pm)4f56s2(6H). The energies of the six levels of the multiplet, and their associatedg�factors have been measured asJ E(6HJ ) cm�1 g(6HJ )52 0:00 0:30572 803:82 0:827992 1748:78 1:068112 2797:10 1:205132 3919:03 1:307152 5089:79 1:33Exercises1. Show that if the Slater radial integrals in the f�shell satisfy the special valuesF4F2 = 611 and F6F2 = 111then in f2 the Coulomb energies degenerate toE(3P ) = E(3F ) = E(3H) = F0 � 54F2E(1D) = E(1G) = E(1I) = F0 + 30F2E(1S) = F0 + 324F2This is an example of the Laporte-Platt degeneracies.2. Show that for f2 in jj�coupling the two J = 0 states come from the 722 and 522con�gurations.3. Show that in jj�coupling for the f�shell< 72 2J = 0jHC j722J = 0 >=F0 + 3757 F2 + 8917 F4 + 429F6< 52 2J = 0jHC j522J = 0 >=F0 + 3607 F2 + 7267 F4< 72 2J = 0jHC j522J = 0 >=27p345F2 + 495F4 + 9009F692



4. Use the values of the Slater radial integrals from 1. and diagonalise the rank 2 matrixfound in 3. to show that the energies obtained are identical to those for E(1S) andE(3P ) found in 1.
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