Lecture Notes on Symmetry 1994
Proposition: We should always strive to construct theories
with the highest possible symmetry even if these are not exact
symmetries of nature. The physics comes in the process of
breaking the symmelry.
Consider the case of

CGQMgg(NOg)lg : 24H20 . Nd3+

¢ What symmetry does the Nd>Tt ion see in the rare
earth double nitrates?

e The entire breakdown of the symmetry could be
described by the chain of nested subgroups

SOs O Ky, DTy, DOy

e Global and Local Symmetries
A symmetry may be global or local.

e Types of Symmetries

e Discrete symmetries, such as reflections, invers-
ions, time reversal, charge conjugation, parity, fi-
nite rotations, permutations etc. are associated
with multiplicative or phase-like quantum numbers.

e Continuous symmetries such as translations and
rotations are associated with additive quantum
numbers (e.g. angular momentum J or linear mo-
mentum p).



e Bosons and Fermions
e The particles we commonly encounter in physics
can be divided into two classes bosons and fermions.
Bosons are associated with integer spin, examples
being photons, gluons and the weak interaction
bosons Z° and W=*. Fermions are associated with
half-integer spin, examples being electrons, neutri-
nos and quarks. Bosons establish the interactions
between fermions. Thus the photon, a massless
spin 1 particle, is the exchange particle associ-
ated with electromagnetic interactions. In most of
atomic and molecular physics we can restrict our
attention to quantum electrodynamics (QED). The
weak interactions manifest themselves in atomic
and molecular physics in very small parity viola-
tions. Bosons and fermions obey different statis-
tics, namely Bose-Einstein and Fermi-Dirac, re-
spectively. That requires us to construct totally
symmetric wavefunctions for many-boson systems
and totally antisymmetric wavefunctions for
many-fermion systems.
¢ Permutational Symmetry
Bosons and fermions differ with respect to their
behaviour under an interchange of their position, or
equivalently with respect to a rotation through 27 or
360°. We shall designate the wavefunction for a single
fermion or boson as ¢(«) where «a is an appropriate
set of single particle quantum numbers associated with
some single particle solution of , for example, some
central field potential. Thus for a hydrogen atom we
might use a = {nsfmym,} or o = {nslym;}.
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A N —particle system will involve N —single particle
wavefunctions (¢; i=1,2,...,N) and N—sets of sin-
gle particle quantum numbers (oy k=1,2,...,N).
The wavefunction, ¥V, for the N —particle system will
be such that

U= W(p1,2,-..,0n) (1.1)

For a two-particle system we could write

1

V2

e The positive sign corresponds to a symmetric wave-
function and the minus sign corresponds to an an-
tisymmetric wavefunction. Note that we have per-
muted the quantum numbers with respect to the
coordinates of the particles. The wavefunction of
a pair of fermions, unlike a pair of bosons, under-
goes a change of sign. If a; = as then for identical
fermions Eq.(1.2) vanishes though not for bosons.
That is consistent with the Pauli exclusion princi-
ple for identical fermions.

e Thus permutational symmetry, required by the in-
distinguishability of identical particles, leads for
N —fermions to the construction of of determinantal
states to give totally antisymmetric states while for
N —bosons to the construction of permanental states
to give totally symmetric states.

U(p1,02) = {P1(a1)pa(a2) £ ¢1(as)pa(ar)} (1.2)



e Hence for an N—fermion system we have the to-
tally antisymmetric wavefunction

‘P(¢1,¢2,---7¢N):
$1(o1)  di(az) ... di(an) )
1 ¢2(061) ¢2(062) ce sz(oéN)
VNI P -
dn(ar) on(az) ... oén(an)

e In LS—coupling basis we use a = {nslmymy}
whereas in jj—coupling we would use a = {nsfym;}.

¢ The information content of the determinantal state
may be fully specified by the abbreviated form

{anas...an} (1.4)

e In the case of bosons we are required to construct
permanental states to yield totally symmetric
wavefunctions,

U (1, 02,...,0N8) =
$1(o1)  di(az) ... di(an) )
1 ¢2(061) ¢2(062) ce sz(oéN)
VNI P -
dn(ar) on(az) ... oén(an)

e The information content of the permanental state
may be fully specified by the abbreviated form

s ... apn] (1.6)



e Many-particle states of Bosons and Fermions
Let us for the moment consider the states of /V identical
bosons or fermions. Suppose the boson has an angular
momentum j = 2 (i.e. a d—boson) and hence m; =
0,%1,4+2 while the fermion has angular momentum j =
5/2 and hence m; = £1/2,4+3/2,+5/2. If N = 2 in both
cases what are the allowed values of J 7 We note that

MJ:mjl—l—mj2

Just considering the non-negative values of M ; we ob-
tain for the fermions the following table of determi-
nantal states:

Table 1.1 Determinantal states for (5/2)? fermions.

States
{5/23/2}
{5/21/2}
{5/2 —1/2} {3/21/2}
{5/2 =3/2}v  {3/2 —1/2}
{5/2 =5/2v  {3/2 =3/2} {1/2 —1/2}

e Inspection of the above table leads to the con-
clusion that the allowed values of J in (5/2)? are
J=0,2,4.

O = v W
S




The corresponding d?> boson states for non-negative M
are given in Table 1.2.

Table 1.2. Permanental states for d?> bosons

O = v W
=

States
[2 2]
[21]
[20] [11]
2 —1] [10]
2 —2] [1 —1] [00]

Inspection of the above table leads to the conclu-

sion that the allowed values of J in d*> are J = 0,2,4
exactly those found for (5/2)2.

Exercises

1.1

1.2

1.3

1.4

Show that the totally antisymmetric orbital angu-
lar momentum states of ¢g°> (¢ = 4) (i.e. the states
of maximum multiplicity) are the same as for the
totally symmetric states of (5/2)%.

Determine the allowed values of J for the
jj—coupled configurations (5/2)%,(5/27/2) and
(7/2)2.

Determine the allowed values of S and L for the
electron configuration f2.

Given that for an LS—coupled term ?°*!'L we have
J=L + S and

J=L+SL+S—1,...,|L—S (1.7)

Show that the values of J for the list of terms found
in Ex 1.3. are the same as those found in Ex 1.2.



1.5 Show that in the configuration j> the only allowed
values of J are the even integers 0,2,...,275 — 1.

1.6 Starting with the angular momentum commuta-
tion relations

o, B =dd, [0y, J] =i L[], o] =id, (1.8)

show that if Jy = J, £1J, then

J2

JyJ_+J_J
== ;r Y (1.9)

1.7 If J = L 4+ S show that

JJ+1) = L(L+1)—8(S+1) =S4 L_+S5_Ly+2S,L.
(1.10)

e Ladder Operators and Determinantal States

For the electron configuration f? we can enumerate the
set of determinantal states for non-negative Mg, M} as
in Table 2.1.

Table 2.1. Determinantal states for the Electron Con-



figuration f2.

My, Mg =0 Mg =1

6 {i;

5 {33} {33} {33}

4 {17y (33 {133 {51}

3 {3or {51 {5y (53 8y 01

2 §+5 2y {71y 832 G880

{7y 33 8501y G500
{—12 +2g {2—1

0 ?);5 {1+—1 {2+—2 {3—3 {3—3 {2—2
—11 —35 —2; {1—1

For an electron in an f—orbital ¢/ = 3 hence

my = 0,+1,£2,4£3. There are just two values of the
spin projection m, = +1/2.

In writing a determinantal state it suffices to just
display the values of m; and indicate the value of
ms as a + or — sign placed above my.

For a given determinantal state

MS = zn:msi and ML = zn:m& (2.1)
=1 =1

Every determinantal state may be associated with
definite values of M¢ and M;.

Form appropriate linear combinations of the deter-
minantal states to give eigenstates |SLMgsMp >.
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e Write a state as [**T'LMgM; > where (25 + 1) is
the spin multiplicity.

¢ The quantum number L is associated with alpha-
betical letters

o 1 2 3 4 5 6 7 8
s P D F G H I K M

e A spectroscopic term will be designated as

2S—|—1L

e Associated with a given value on S there are (25+1)
values of Mg and with L there are (2L + 1) values
of M; where

Mg=S8,8—1,....,—S+1,-8
Mp=LL—1,...,~L+1,—L

Inspection of Table 2.1 shows that the spectro-
scopic terms of the electron configuration f? are

SPFH 'SDGI

Choose
_|_ _

1 —
106 >=
| L

} (2.2)

Let us now determine |'/05 >. To do this we use the
properties of ladder operators. Recall

Li|lLM >=/L(L+1)—M(M+1)[LM+1>  (2.3)
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and

Li=) L, (2.4)
=1

Let (2.3) act on the left-hand-side of (2.2) and noting
(2.3) act also on the determinantal state to give

L_'106 >= /6 x 7 —6 x 5|1 105 >= V12| 105 >  (2.5)

and
L Y=V N @5)
Equating (2.4) and (2.5) gives
) V2 = -
s >= 2t ety (2.6

This state must be orthogonal to the state |[°H05 > and
hence after fixing a phase we have

5 V2 = -
PHO5>= -1, ;=14 5] (2.7)

Application of the spin raising operator S; to (2.7)
gives

2
Sy|PHO05 >= V2P H15 >= i[{Jr +} -~ {+ +}] (2.7a)
2 Y2 3 3 2
and hence by
PH15 >= —{ 5 9 } (2.8)



Note the appearance of the minus sign which comes
from our particular choice of enumeration of the de-
terminantal states.

Exercises
2.1 Determine the eigenstates

'7104 >  [PH04> |'Go4> |°H14 >

as linear combinations of determinantal states.
2.2 Discuss how you could determine the eigenstates

°HJM > as linear combinations of the states

|3HMSML >. Hint: use the fact that Jr = L4 + S4.

¢ Permutations and the Symmetric Group
Permutations play an important role in the physics of
identical particles. A permutation leads to a reorder-
ing of a sequence of objects. We can place n objects
in the natural number ordering 1,2,...,n. Any other
ordering can be discussed in terms of this ordering and
can be specified in a two line notation

1 2 ... n (2.9)
(1) w(2) ... w(n) '
For n = 3 we have the six permutations
1 2 3 1 2 3 1 2 3
1 2 3 2 1 3 1 3 2
1 2 3 1 2 3 1 2 3
(3 2 1) (3 1 2) (2 3 1) (2.10)
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Permutations can be multiplied working from right to
left. Thus

1 2 3 o I 2 3y (1 2 3

3 1 2 2 3 1) \1 2 3
The six permutations in (2.10) satisfy the following
properties:

1. There is an identity element (1 g 2

2. Every element has an inverse among the set of el-
ements.

3. The product of any two elements yields elements
of the set.

4. The elements satisfy the associativity condition
a(bc) = (ab)c.

These conditions establish that the permutations
form a group. In general the n! permutations form the
elements of the symmetric group §,.

e Cycle Structure of Permutations
It is useful to express permutations as a cycle struc-
ture. A cycle (i,7,k,...,l) is interpreted as i — j, j — k
and finally [ — 7. Thus our six permutations have the
cycle structures

(1)(2)(3),(1,2)(3), (1)(2,3), (1,3)(2),(1,3,2),(1,2,3) (2.11)

The elements within a cycle can be cyclically permuted
and the order of the cycles is irrelevant. Thus
(123)(45) = (54)(312).
o A k — cycle or cycle of length k contains k elements.
It is useful to organise cycles into types or classes.
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We shall designate the cycle type of a permutation
7 by
(1= 2™m2 o n"™n) (2.12)

where m;, is the number of cycles of length £ in the
cycle representation of the permutation .
e For S, there are five cycle types

(1%), (1721), (2%), (173%), (4)) (2.13)

Normally exponents of unity are omitted and
Eq.(2.13) written as

(1%), (172), (2°), (13), (4) (2.14)

e Cycle types may be equally well labelled by or-
dered partitions of the integer n

A=A As .l ) (2.15)

where the )\; are weakly decreasing and

> Ai=n (2.16)

The partition is said to be of length ¢ and of weight
n. In terms of partitions the cycle types for S; are

(1°), (217), (2 1), (32), (317), (41), (5)

e Conjugacy Classes of S,
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In any group G the elements g and h are conjugates if
g=khk™! for some ked (2.17)

The set of all elements conjugate to a given ¢ is call
the conjugacy class of g which we denote as K,,.

Exercises

2.3 Show that for S; there are five conjugacy classes
that may be labelled by the five partitions of the
integer 4.

2.4 Show that the permutations, expressed in cycles
with cycles of length one suppressed, divide among
the conjugacy classes as

(1*) De
(21 2), (13), (14), (23), (24), (34)

o(1
O(12)(34), (13)(24), (14)(23)
S(123), (124), (132), (134), (142)
(

(

)
(2°)
(31)

143), (234), (243)
(4) D(1234), (1243), (1342), (1432) (2.18)

In general two permutations are in the same con-
jugacy class if, and only if, they are of the same cycle
type. The number of classes of §,, is equal the number
of partitions of the integer n.

If A\ = (1" 2™ ... n™") then the number of permuta-
tions k), in the class (A\) of S, is
n!

ky = (2.19)

1M1 my ! 2m2 me! .. e om,,!
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The Alternating Group A,

. A cycle of order two is termed a transposition.
. A transposition (i, i+ 1) is termed an adjacent trans-

position.

. The entire symmetric group S, can be generated

(or given a presentation in terms of the set of adja-
cent transpositions

(12),(23),...,(n—1n) (2.20)

If = mym»...7;, where the 7; are transpositions
then the sign of 7 is defined to be

sgn(m) = (—=1)" (2.21)

If the number of cycles of even order is even then
the permutation is even or positive; if it is odd then
the permutation is odd or negative.

The set of even permutations form a subgroup of S,
known as the alternating group A, and has precisely half
the elements of S, i.e. ()nl.

2

Exercises
2.5 Show that the set of six matrices

(1 0|l [0 1| -1 —=1]

0 1] [-1 —-1|]1 0

(0 1] [—-1 —=1111 0

1 0] |0 1 -1 -1 (2:22)

with the usual rule of matrix multiplication form
a group isomorphic to Ss.

16



2.6 Show that the symmetric group S, has two one-
dimensional representations, a symmetric repre-
sentation where every element is mapped onto
unity and an antisymmetric representation where

the elements are mapped onto the sign defined in
Eq. (2.21).

Lecture Three
Partitions

e A partition is any finite or infinite sequence of in-
tegers

A= de oo X)) (3.1)

Unless otherwise stated we shall assume the sequence
involves non-negative integers in non-increasing order;

M>d > >N > (3.2)

Normally we will omit zeros.

e¢ The non-zero )\; form the parts of A\. The number
of parts is the length, {(\), of A while the sum of its
parts, |A|, is the weight of A. If |[A\| = n then ) is said
to be a partition of n.

¢ We shall frequently write A - n to indicate that A
is a partition of n. Repeated parts of a partition
will frequently be indicated as """ where m; is the
number of times the part ¢ occurs in the partition

A.

e The partitions for n = 6 are

(6) (51) (42) (417) (37) (321) (317) (27) (2°1%) (21%) (1°)
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e Note, in the above example the partitions have
been listed in reverse lexicographic order. The order-
ing is such that the first non-vanishing difference
Ai — u;, for successive partitions A, u is positive.

The Ferrers-Sylvester diagram

e Every partition A\ F n may be associated with a
Ferrers-Sylvester diagram, shape or frame involving n
cells, dots or boxes in /(\) left-adjusted rows with
the i-th row containing \; cells, dots, or boxes.

For n = 4 we have the five diagrams

¢ We will formally designate the frame associated
with a partition )\ as F*.
e The conjugate of a partition ) is a partition A’ whose
diagram is the transpose of the diagram of A. If
A" = X then the partition ) is said to be self-conjugate.
Thus

|| and

are conjugates while

is self-conjugate.
Skew frames
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e Given two partitions A and p such that A D p im-
plies that the frame F? contains the frame F*, i.e.
that \; > u,; for all + > 1. The difference p = A — u
forms a skew frame F",

Thus, for example, the skew frame F®*2/2! has the form

Note that a skew frame may consist of disconnected
pieces.

Frobenius notation for partitions

e There is an alternative notation for partitions due
to Frobenius. The diagonal of nodes in a Ferrers-
Sylvester diagram beginning at the top left-hand
corner is called the leading diagonal. The number of
nodes in the leading diagonal is called the rank of
the partition.

o If r is the rank of a partition then let a; be the
number of nodes to the right of the leading diag-
onal in the :—th row and let b, be the number of
nodes below the leading diagonal in the :—th col-
umn. The partition is then denoted by Frobenius

as
ag, az, ceey Gy
(bla 627 R br ) (33)

a; > as > ... > Ay
by > by >...> b,

We note that
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and
ar+ar+...+a,+by+ba4...+b,+r=n

¢ The partition conjugate to that of Eq.(3.3) is just
bi, ba, ..., b, (3.4)
ai, as, ..., Q '

As an example consider the partitions (543%21) and
(65421). Drawing their diagrams and marking their
leading diagonal we have

and °

from which we deduce the respective Frobenius desig-

nations
4 2 0 and 5 3 1
5 3 1 4 2 0

Young tableaux

e A Young tableau is an assignment of n numbers to
the n cells of a frame F'* with A - n according to
some numbering sequence.
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e A tableau is standard if the assignment of the num-
bers 1,2,...,n is such that the numbers are pos-
itively increasing from left to right in rows and
down columns from top to bottom.

Thus for the partitions of the integer 4 we have the
standard Young tableaux

3]4]

—_
N
e~
—_

213]

—_

—_
—_

A~ Q0 =
=D |—
WD =

= Q0 [N =

e In the above examples the number of standard
tableaux for conjugate partitions is the same. In-
deed the number of standard tableaux associated
with a given frame F* is the dimension f; of an irre-
ducible representation {\} of the symmetric group

Sn.
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Hook lengths and dimensions for S,

e The hook length of a given box in a frame F* is the
length of the right-angled path in the frame with
that box as the upper left vertex.

For example, the hook length of the marked box in

is 8.

Theorem 3.1: To find the dimension of the representa-
tion of S, corresponding to the frame F*, divide n! by the
factorial of the hook length of each box in the first column of
F* and multiply by the difference of each pair of such hook
lengths.

Thus for the partition (543*21) we have the hook
lengths

10
8
6
5
3
1
and hence a dimension
543291 2X 4 XHEXTXIX2XIXHXTXIX3XDEHXx2x4x%x?2
18 :18'

10! x 8! x6!xbH!Ix3!Ix1!
= 10720710
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It is not suggested that you check the above result by
explicit enumeration!
e The above evaluation can also be equivalently
made by computing the hook lengths h;; for every
box at position (i,j) and then noting that

n!

a H(i,j)E)\ hij

fa (3.5)

which is the celebrated result of Frame, Robinson
and Thrall.

Exercises
3.1 Show that the dimension of of the representation

{p+2,2} =

() (p1)

3.2 Calculate the dimensions of the irreducible repre-
sentations of S and show that

> (f8) =6!

A6
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The symmetric group and tensors

Let T,,...,, be a “generic” n-index tensor, without
any special symmetry. (For the moment, “tensor”
means just a function of n indices, not necessar-
ily with any geometrical realization. It must be
meaningful, however, to add (and form linear com-
binations of) tensors of the same rank.)

The entries 1, 2,...n in the standard numbering of a
tableau indicate the n successive indicesof 7). ...,

The tableau defines a certain symmetrization op-
eration on these indices: symmetrize on the set of
indices indicated by the entries in each row, then
antisymmetrize the result on the set of indices indi-
cated by the entries in each column.

The resulting object is a tensor, T', with certain in-
dex symmetries. Now let each permutation in S,
act (separately) upon 7. The n! results are not lin-
early independent; they span a vector space which
supports an irreducible representation of S, .
Different tableaux corresponding to the same
frame yield equivalent (but not identical) repre-
sentations.

Example: The partition {22} of 4 has two standard

tableaux:

112 113
T4 and 514 (3.6)

Let us construct the symmetrized tensor 7' correspond-
ing to the second of these.
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e First symmetrize over the first and third indices,
and over the second and fourth:

1
Z (Tabcd + Tevad + Tuder + T@d@b) )

Now antisymmetrize the result over the first and

second indices, and the third and fourth; dropping

the combinatorial factor 11—6, we get

Tabcd — Tabcd + chad + Tadcb + Tcdab
— Tbacd — Tcabd — deca — Tcdba

— Lagbde — Tdbac — Tacdb — Tdcab
+ Tbadc + Tdabc + Tbcda + Tdcba . (37)

It is easy (though tedious) to check that T pos-
sesses the symmetries characteristic of the Rie-
mann tensor.

Exercise

3.3 Construct a set of three 4-index tensors corre-
sponding to the three Young tableaux associated
with the partition {31}.

Unitary numbering of Young tableaux

¢ Many different prescriptions can be given for in-
jecting numbers into the boxes of a frame.

¢ The standard numbering is intimately associated
with the symmetric group S,.

¢ Another important numbering prescription is that
of unitary numbering where now numbers 1, 2, ..., d
are injected into the boxes of a frame F* such that:
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i. Numbers are non-decreasing across a row going
from left to right.
ii. Numbers are positively increasing in columns from
top to bottom.
e The first condition permits repetitions of integers.

Using the numbers 1, 2, 3 in the frame F'?! we obtain
the 8 tableaux

1

3 (3.8)

DO =] ||

| I
(N}
(V)

Lo DO =
(V)

2 2
3 3

Had we chosen d = 2 we would have obtained just two
tableaux while d = 4 yields twenty tableaux. In general,

for a frame F* a unitary numbering using the integers
1,2, ..., d leads to

G)\
A d
SE— 3.9
= (3.9
where ) is the product of the hook lengths h;; of the
frame and
Gi= ] (d+i-j) (3.10)
(4,J)EA

Thus for d =5 and A = (421) we have H,,) = 144 and
Gé” 1} — 100800 from which we deduce that

5{421} — 700

which is the dimension of the irreducible representa-
tion {421} of the general linear group GL(5).
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In general, f; is the dimension of the irreducible
representation {\} of GL(d). Since the represen-
tations of GL(d) labelled by partitions A remain
irreducible under restriction to the unitary group
U(d) Eq.(3.9) is valid for computing the dimensions
of the irreducible representations of the unitary
group U(d).

The same rules for a unitary numbering may be ap-
plied to the skew frames F'*" introduced in §3.3.
Thus for F°42/21 an allowed unitary numbering us-
ing just the integers 1 and 2 would be

1111
1122
112

Note that our unitary numbering yields what in
the mathematical literature are commonly referred
to as semistandard Young tableaux. Other number-
ings are possible and have been developed for all
the classical Lie algebras.

Exercises

3.4
3.5

3.6

Draw the frames F22/1, F4321/4212, and [321/21,

Use the integers 1, 2, 3 to construct the complete
set of semistandard tableaux for the frame
F43°1/421° 31d show that the same number of
tableaux arise for the frame F?!.

Make a similar unitary numbering for the frame
F321/21 and show that the same number of semis-

tandard table?ux arise in the set of frames
F3 4+ 92F21 4 17,
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Lecture Four

Young tableaux and monomials

A numbered frame may be associated with a unique

monomial by replacing each integer ¢ by a variable z;.
Thus the Young tableau

oW

0~ |0 | [

-J | [~ Qo =

can be associated with the monomial

2 3.2 .3 .2 ,..3,..2

Monomial symmetric functions

Consider a set of variables (z) = z1,29,...,24. A
symmetric monomial

my(z) => , z

(4.1)
involves a sum over all distinct permutations a of (A) =
()\1, )\2, . .). Thus if (ZIZ) = (5131,{132,333) then

may(x) = r2 xo + 22 x5 + T T3 + 21 :13?) + x5 3

mys(x) = x1 T T3

The unitary numbering of (A\) = (21) with 1, 2, 3 corre-
sponds to the sum of monomials

ma1(x) + 2mqs(x)
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The same linear combination occurs for any number of
variables with d > 3.

The monomials my(z) are symmetric functions. If A - n
then m)(z) is homogeneous of degree n. Unless other-
wise stated we shall henceforth assume that z involves
an infinite number of variables z;.

The ring of symmetric functions A = A(z) is the vector
space spanned by all the my(z). This space can be
decomposed as

where A" is the space spanned by all m) of degree n.
Thus the {m)|\ F n} form a basis for the space A" which
is of dimension p(n) where p(n) is the number of parti-
tions of n. It is of interest to ask if other bases can be
constructed for the space A".

The classical symmetric functions

Three other classical bases are well-known - some since
the time of Newton.
1. The elementary symmetric functions
The n—th elementary symmetric function ¢, is the
sum over all products of n distinct variables z;,
with e; = 1 and generally

€, = Min = Z Ti, Tiy oo Tj (4.3)

11 <22...<%p

The generating function for the e, is

E(t)=) ent" = [[(1+a:t) (4.4)

n>0 i>1
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2. The complete symmetric functions
The n—th complete or homogeneous symmetric func-
tion h, is the sum of all monomials of total degree

n in the variables z, x5, ..., with hy = 1 and gener-
ally
= Z my = Z Ti, Tiy oo Tj (4.5)
IA|=n i1 <ig...<in

The generating function for the h,, is
=) hot" =]](1—azt)"! (4.6)
n>0 i>1
3. The power sum symmetric function
The n—th power sum symmetric function is

=m, = Zaz (4.7)

1 2>1
The generating function for the p, is

_ antn—l _ Z Z ZC?tn_l

n>1 1>1 n>1

_Zl—azt

1 2>1

-> 4

1 2>1

:—logH 1 —at)”

1 2>1

and hence

d
— 2 log H(t
Al (t)

— H' (t)/H(t) (4.9)
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Similarly,

d

P(=t) = S log B(t) = E'(t) /E(1

dt

Equation (4.9) leads to the relationship

nhn — zn:pr hn—r
r=1

It follows from (4.9) that

H(t) = eXprn t" /n

n>1

= H exp(pn t" /n)

n>1

— H Z (pr t™)™ /™" .m

n>1 m,=0

and hence

H(t)=7 =5 'pat?

A

Zy = H " omy;!

i>1

where

!

mn -

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

where m; = m;(\) is the number of parts of )\ equal

to i.
Defining
£y = (_1)|A|—€(A)
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we can show in an exactly similar manner to that
of Eq.(4.13) that

E(t) =) exzy 'path (4.16)
A
It then follows from Eqs.(4.13) and (4.16) that

h, = Z z;1p>\ (4.17)

|)\|:n

and
en = Z 5>\z;1p>\ (4.18)
|)\|:n

Exercises

4.1 Show that for n =3

pgzx‘i’—l—az‘;’—l—azg—l—...

€3 =T1X2T3 +T1T2Tg4 +T2L3T4 + ...

3 3 2 2
hs =z{+z5+...+xjzs+x125+ ...+ 212923+ T1 2024+ ...

(4.19)

4.2 Noting Eqgs. (4.4) and (4.6) and that H(t)F(—t) =1,
show that

n

> (—1) hp—pe, =0 (4.20)

r=0

for n > 1.
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4.3 Use Eq.(4.20) to show that

en = det(hi_iyj)i<ij<n (4.21)

and hence

hn, = det(e1_iyj)1<ij<n (4.22)
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4.4 Use Eq.(4.11) to obtain the determinantal expres-

sions
e1 1 0 .. 0
262 €1 1 “ o 0
Pn = . . . . (423)
neq, €n—1 €n—92 .o €1
P2 P1 2 “ o 0
nle, =| : P (4.24)
Pn—1 Pn—2 . s n—1
Pn Pn—1 . s P1
hq 1 0 ... 0
2hs hq 1 ... 0
(=D)"pu =1 . : L (4.25)
nhn hn—l hn_g N hl
P1 —1 0 “ o 0
P2 P1 —2 .« 0
h,=| 511
Pn_1 Pn_2 . .. —n—+1
Pn Pn-1 P1

(4.26)
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Multiplicative bases for A"

The three types of symmetric functions, h,, e,, p,, do
not have enough elements to form a basis for A", there
must be one function for every partition A - n. To that

end in each case we form multiplicative functions f, so
that for each A Fn

Ix=DI0 P oo I (4.27)
where f = e, h, or p Thus, for example,

ex1 =€y €1 =(z1x0+ 123 +x223+... ) (1 +x2+235+...)

The Schur functions
The symmetric functions
my, €x, h)\a P (428)

where )\ - n each form a basis for A”. A very important
fifth basis is realised in terms of the Schur functions,
Sx, or for brevity, S—functions which may be variously
defined. Combinatorially they may be defined as

sa(z) =) 2" (4.29)

where the summation is over all semistandard
A—tableaux T'. For example, consider the S—functions
s in just three variables (z1, zo, z3). For A = (21) we
have the eight tableaux T found earlier

L] [a]a] [al2] [1]2] [[3] [1]3]
9 3 9 3 2 3

2] 3]

LN

2
3
(3.8)
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Each tableaux T corresponds to a monomial z to give

2 2 3 2 2
so1(x1, T2, 3) =x] o + 2] x° + 1 x5 + T1 T2 T3 + T1 T2 T3 + T1 T3
2 2
+ x5 w3 + T2 23 (4.30)

We note that the monomials in Eq.(4.30) can be ex-
pressed in terms of just two symmetric monomaials in the
three variables (z1, x9, z3) to give

s21(T1, T2, T3) = ma1(x1, T2, T3) + 2mqs(z1, T2, x3) (4.31)

In an arbitrary number of variables
so1(x) = moy(x) + 2mqs () (4.32)

This is an example of the general result that the
S—function may be expressed as a linear combination
of symmetric monomials as indeed would be expected
if the S—functions are a basis of A"”. In fact

sx(z) = ZKMmM (4.33)

where |A\| = n and K,, = 1. The K, are the elements
of an upper triangular matrix K known as the Kostka
matrix. K is an example of a transition matriz that re-
lates one symmetric function basis to another.

Calculation of the elements of the Kostka matrix

The elements K, of the Kostka matrix may be readily
calculated by the following algorithm :
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i. Draw the frame F*.
ii. Form all possible semistandard tableaux that arise
in numbering F* with p; ones, s twos etc.
ili. K, is the number of semistandard tableaux so
formed.
Thus calculating K(42)(2212) we obtain the four semis-
tandard tableaux

1111212 1111213
314 214 213 212

—
—
DO
W
—
—
)
W

and hence K (49)(2212) = 4.

Exercises

4.5 Construct the Kostka matrix for A\, uF 4.
4.6 Show that in the variables (z, 25, z3) the evalua-
tion of the determinantal ratio

ri x7 1
5 w5 1
rs z3 1
ri w1
5 my 1
:13% rs 1

yields the monomial content of the S—function s
in three variables as found in Eq.(4.30). N.B. The
above exercise is tedious by hand but trivial using
MAPLEV.

41



The last exercise is an example of the classical defi-
nition, as opposed to the equivalent combinatorial defi-
nition given in Eq.(4.29), given first by Jacobi, namely,

Ax+§

Sx = Sxa(T1, Ta,y oo, Tpy) = . (4.34)

where )\ is a partition of length < n and
b=m—-1,n—-2,...,1,0) with

(@7 ) 1<ij<n (4.35)

and

as = ][ (2i—z;)=det(z]7) (4.36)

1<ij<n

1s the Vandermonde determinant.

Non-standard S—functions

The S—functions are symmetric functions indexed
by ordered partitions A. We shall frequently write
S—functions s)(z) as {A\}(x) or, since we will generally
consider the number of variables to be unrestricted,
just {A\}. As a matter of notation the partitions will
normally be written without spacing or commas sepa-
rating the parts where )\; < 9. A space will be left after
any part A, > 10. Thus we write {12,11,9,8,3,2,1} =
{12 11 98321} While we have defined the S—function
in terms of ordered partitions we sometimes encounter
S—functions that are not in the standard form and
must convert such non-standard S—functions into stan-
dard S—functions. Inspection of the determinantal
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forms of the S—function leads to the establishment of
the following modification rules :

(A1, Aayeeey =N =0 (4.37)

(A, A A ts e A = = A — LA+ 1 A
(4.38)

(A} =0 if A=A +1 (4.39)

Repeated application of the above three rules will re-
duce any non-standard S—function to either zero or to
a signed standard S—function. In the process of using
the above rules trailing zero parts are omitted

Exercise
4.7 Show that

{24} = —{3%}, {141} = —{321}
{14 — 25 — 14} = —{3°2}
{3042} =0, {3043} = {3%2}

Skew S—functions

The combinatorial definition given for S—functions in
Eq.(4.29) is equally valid for skew tableaux and can
hence be used to define skew S—functions s,,,(z) or
{\/u}. Since the s,,,(z) are symmetric functions they
must be expressible in terms of S—functions s,(x) such
that

Sx/p = czys,, (4.40)

v
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It may be shown that the coefficients cl);y are necessarily

non-negative integers and symmetric with respect to u
and v. The coefficients cl);y are commonly referred to
as Littlewood- Richardson coefficients.
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The Littlewood-Richardson rule

The product of two S—functions can be written as
a sum of S—functions, viz.

Sp-Sy = cf;ysA (4.41)
A

The Littlewood-Richardson coefficients cl);y in
Eqs. (4.40) and (4.41) are identical, though the sum-
mations are of course different. In both cases |u|+|v| =
|A|. A rule for evaluating the coefficients cl);y was given
by Littlewood and Richardson in 1934 and has played
a major role in all subsequent developments. The rule
may be stated in various ways. We shall state it first
in terms of semistandard tableaux and then also give
the rule for evaluating the product given in Eq.(4.41)
which is commonly referred to as the outer multiplica-
tion of S—functions. In each statement the concepts of
a row-word and of a lattice permutation is used.

Definition 4.1 A word

Let T" be a tableau. From T we derive a row-word or se-
quence w(T') by reading the symbols in T from right to left
(i.e. as in Arabic or Hebrew) in successive rows starting
at the top row and proceeding to the bottom row

Thus for the tableau

LN
LN

O |~ DO |

O |~J [T | DD =
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we have the word w(7T) = 322113322446578 and for the
skew tableau

1111
1122
112

we have the word w(T) = 11122121.

Definition 4.2 A lattice permutation

A word w = ajas ...an n the symbols 1,2,...,n 1s said to
be a lattice permutation if for1 <r < N andl <1 <n-—1,
the number of occurrences of the symbolt in ajas...a, is
not less than the number of occurrences of 1 + 1.

Thus the word w(7') = 322113322446578 is clearly not a
lattice permutation whereas the word w(7T) = 11122121
is a lattice permutation. The word w(7T) = 12122111 is
not a lattice permutation since the sub-word 12122 has
more twos than ones.

Theorem 4.1 The value of the coefficient cfzy 18 equal to the

number of semistandard tableaux T of shape FM" and content
v such that w(T) is a lattice permutation.

By content v we mean that each tableau T contains 14
ones, v, twos, etc.
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Example

Let us evaluate the coefficient c}igﬁ{zl}. We first

draw the frame F1°42/21},

Into this frame we must inject the content of {431} i.e.
4 ones, 3 twos and 1 three in such a way that we have
a lattice permutation. We find two such numberings

1111 1111
1122 21212
213 113
{542}

and hence c y = 2. Note that in the evaluation we

{431}{21

had a choice, we could have, and indeed more simply,

evaluated Cgﬁh:ﬂ}' In that case we would have drawn

the frame F1542/431} to get

Note that in this case the three boxes are disjoint. This
skew frame is to be numbered with two ones and one
2 leading to the two tableaux

1 1
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verifying the previous result. Theorem 4.1 gives a di-
rect method for evaluating the Littlewood-Richardson
coefficients. These coefficients can be used to evaluate
both skews and products. It is sometimes useful to
state a procedure for directly evaluating products.

Theorem 4.2 to evaluate the S—function product {u}.{v}

1. Draw the frame F'" and place v ones in the first row, v
twos in the second row etc until the frame s filled with
integers.

2. Draw the frame F" and inject positive integers to form a
semistandard tableau such that the word formed by reading
from right to left starting at the top row of the first frame
and moving downwards along successive rows to the bottom
row and then continuing through the second frame is a
lattice permutation.

3. Repeat the above process until no further words can be con-
structed.

4. Each word corresponds to an S—function {\} where A1 is

the number of ones, Ay the number of twos etc.
As an example consider the S—function product
{21} .{21}.

Step 1 gives the tableau

—_
—_

Steps 2 and 3 lead to the eight numbered frames

—_
—_
—_
—_
—_
N
—_
N
—_
w
—_
w

= (DO
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Step 4 then lead to the eight words

112112 112113 112212 112213
112312 112314 112323 112324

from which we conclude that

{21}.{21} = {42} +{41°}+{3°}+2{321} +{31°} +{2°} +{2%1°}

Exercises
4.8 Show that ¢

4.9 Show that

{75321°%}

{4321}.{4321} — 8.

{31}.{31} ={62} + {612} + {53} + 2{521} + {51°} + {4%}
+2{431} + {427} + {421} + {32} + {3%1%}

4.10 Show that

{321/21} = {3} + 2{21} + {1°}

Relationship to the unitary group

We have explored various symmetric functions indexed
by partitions and defined on sets of variables. The
variables can admit many interpretations. In some in-
stances we may choose a set of variables 1,¢,4¢>,...,q¢"
or we could even use a set of matrices. The link be-
tween S—functions and the character theory of groups
is such that, if A is a partition with /(A) < N and the

49



eigenvalues of a group element, ¢, of the unitary group
Uy are given by z; = exp(i¢;) for 5 =1,2,..., N then the
S—function

{)\} = {)\1)\2 .. )\N} = 8)\(513)
= sx(exp(i¢1) exp(igz) .. .exp(ipn))

is nothing other than the character of ¢ in the irre-
ducible representation of Uy conventionally designated
by {\}.

The Littlewood-Richardson rule gives the resolu-
tion of the Kronecker product {u} x {v} of Uy as

<=3 ), (4.42)
|Al=]p|+v]

{2}

where the Ciy () ATe the usual Littlewood-Richardson

coefficients. Equation (4.42) must be modified for par-
titions A involving more than N parts. Here the modi-
fication rule is very simple. We simply discard all par-
titions involving more than N parts. We shall return
to these matters later in this course when we use our
results to discuss the classification of many-electron
states, especially for the electronic f—shell.
Symmetry and Spectroscopic Calculations

Lecture Five

5.1 S—function series

Infinite series of S—functions play an important role
in determining branching rules and furthermore lead
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to concise symbolic methods well adapted to computer
implementation. Consider the infinite series

L = H 1 — ;)
=1-— Zibl —|—ZZC1£C2 (51)

where the summations are over all distinct terms.
e.g.

25131332 251315132—|—ZC1£C3—|—...—|—ZCQZC3—|—ZC2£C4—|—... (52)

Recalling Eq.(4.3) we see that Eq.(5.1) is simply a
signed sum over an infinite set of elementary symmet-
ric functions e, with

e, = min = s1» = {1"} (5.3)

and hence Eq.(5.1) may be written as an infinite sum
of S—functions such that

L:1—{1}+{12}—{13}+...
- Z ) {1my (5.4)

We may define a further infinite series of S—functions
by taking the inverse of Eq.(5.1) to get

M = 2(1 — ;)7
{1} {2} 4.

=3 {m) (5.5)
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Clearly
LM =1 (5.6)

a result that is by no means obvious by simply looking
at the product of the two series.

In practice large numbers of infinite series and their
associated generating functions may be constructed.
We list a few of them below:

A=), (=1)"H{a} B =) {6}
>, (=12 {y} D =) 16}

= Y (=D {e} F=>A¢
> (=)= 2 e} H =) (=1)"{¢}
2 (=1)" 1"} M =), {m}

= 2 (—1)"{m} Q=)>,{1"}

(5.7)

where (a) and (v) are mutually conjugate parti-
tions, which in the Frobenius notation take the form

L aq a9 Ay
(a)_(al—l—l ar +1 ... ar—|—1> (5.8a)
and
far+1 ax+1 ... a,+1
(7)—( o o ) (5.8b)

(6) is a partition into even parts only and () is conjugate
to (6). (¢) is any partition and (¢) is any self-conjugate
partition. r is the Frobenius rank of («), (v) and (¢).
These series occur in mutually inverse pairs:

AB=CD=EF=GH=LM=PQ={0}=1  (5.9)
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Furthermore,

LA=PC=FE MB=QD=F
MC=AQ=G LD=PB=H (5.10)

We also note the series

R= {o}—2§: WM+1(Q> EL:{M~+2§;(Z>

(5.11)
where we have again used the Frobenius notation, and

V= Z yH{op W= Z )H{w}
X:Z{@} Y =) {w} (5.12)

where (w) is a partition of an even number into at most
two parts, the second of which is ¢, and & is the con-
jugate of w. We have the further relations

RS=VW ={0} =1 (5.13)
and

PM=AD=W LQ=BC=YV
MQ=FG=S LP=HE=R (5.14)

5.2 Symbolic manipulation

The above relations lead to a method of describing
many of the properties of groups via symbolic manip-
ulation of infinite series of S—functions. Thus if {\}
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is an S—function then we may symbolically write, for
example,

{A/M} =3 {A/m} (5.15)
We can construct quite remarkable identities such as:

BD =3 {¢}-{¢} (5.16)
C

or for an arbitrary S—function {¢}

BD-{e} = 3 {¢} - {¢/e} (5.17)
C

Equally remarkably we can find identities such as

{o-17}/7 ={c/Z} -{r/Z} for Z=L,M,P,Q,R,S, VW

(5.18a)
{o-7}/Z2=> {0/(Z}-{r/(Z} for Z=B,D,F,H
C (5.18b)
{o-7}/2 =) (-1)*{0/¢Z}-{r/{Z} for Z=A,C,E,G
C (5.18¢)

These various identities can lead to a symbolic method
of treating properties of groups particulary amenable
to computer implementation.

5.3 The U,, — U,,_; branching rule

As an illustration of the preceding remarks we apply
the properties of S—functions to the determination of
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the U,, — U, 1 branching rules. The vector irrep {1} of
U, can be taken as decomposing under U, — U,,_; as

{1} = {1} +{0} (5.19)

that is into a vector {1} and scalar {0} of U,_;. In
general, the spaces corresponding to tensors for which
a particular number of indices, say m, take on the
value n, define invariant subspaces. Such indices must
be mutually symmetrised. The irreducible representa-
tions specified by the quotient {\/m} are those corre-
sponding to tensors obtained by contracting the indices
of the tensor corresponding to {\} with an m—th rank
symmetric tensor. Thus we may symbolically write the
general branching rule as simply

{A} = {\/M} (5.20)
Thus for example under U; — Us; we have

{21} — {21/M}
— {21/0} + {21/1} + {21/2}
— {21} + {2} + {11} 4+ {1} (5.21)

5.4 The Gel’fand states and the betweenness condition

The so-called Gel’fand states play an important role in
the Unitary Group Approach (UGA) to many-electron
theory. This comes about from considering the canon-
ical chain of groups

U,D>U,-1D...Uy DU; (5.22)
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The states of such a chain follow directly from consid-
eration of Eq.(5.20). Each state may be represented by
a triangular array having n rows. There are n entries
m; ., wWith ¢ =1,2,...,n corresponding to the usual par-
tition (A\) padded out with zeroes to fill the row if need
be. The second row contains n—1 entries m; ,_; placed
below the first row so that the entry m; ,_; occurs be-
tween the entries m;, and msy, etc. Each successive
row contains one less entry with the bottom row con-
taining just one entry m; ;. The number of such states
is just the dimension of the irrep {\A} of U,.

Consider the irrep of Us labelled as {21}. We find the
eight Gel’fand states

2 1 0 2 1 0
2 1 2 1
2 1
2 1 0 2 1 0

(N
—_

o
—_

—_
o
—_
o

N
N
—_
-
-
N
—_
—_
—_
-
~—— S~ S~

5.5 Using SCHUR to evaluate properties of
S—functions

All of the properties of S—functions we have so far

57



discussed, and many more, can be readily found us-
ing the programme SCHUR which has been placed on
on the Pc’s here for your experimentation.It will do
many things besides just S—functions. e.g. Proper-
ties of irreps of all the compact Lie groups such as
dimensions, Kronecker products and branching rules.
However at this stage we will restrict our attention
to S—functions. Later on in this course we will look
at other features. The programme as installed has
a principal file SCHUR.EXE and a large number of
HELP files. Ignore all other files at this stage. Go to
the SCHUR directory and enter the command SCHUR
and after a few moments your screen should look like

SCHUR #0333

User:Students

Site:Instytut Fizyki

Uniwersytet Mikolaja Kopernika

ul. Grudziadzka 5/7

87-100 Torun

POLAND

Copyright. Distribution and copying prohibited

[Version 5.0] (c) Schur Software Associates 1984,1986,19

,1988,1989

(If you wish to EXIT, enter ’END’)

(If you wish to obtain HELP, enter 7’help’)

DPrep Mode (with function)

DP>
Note that you can EXIT the programme any time by
entering END. Also while I will indicate commands
to be entered in CAPITALS the entry of commands
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is not case sensitive. To get to the S—function mode
enter SFIN and you will see

DP>

SFN

Schur Function Mode

SFN>

- You can obtain a list of commands in the Schur
Function Mode by entering ?’SFNMODE’ to give

SFN>

?’SFNMODE’

SFNmode

This mode does all calculations involving Sfns.

Commands available are:

ABsval, ADd, ALARM, ALlskew, ATtach, BEL1,CDiv ,CLEave,

COeffs,COLour,CONJ, CUT, DEtach,DIGits,DIR,DISK,DIStinct

DPMode, END, EXit, FACtor, FN,FRame, FULL, FULLSA,
FSA,

HALlp, Inner, INSert, LAPs, LAst, LEngth,LIMit, LOad,

LOG, LRAIse, MCount, MKWeight, MORe, MUlt, NLIMit,
Outer,

PAUSE, PHase, PLeth, PLInner, POwer, QEXpand, QFN,
QO0UTer,

QQExpand, QQSeries, QSEries, QSKew, QSTD, RAIse,
RCOnvert,

REDuce, REM, REPmode, REVerse, RInner, RQINner, RL-
RAIse,

RRaise, SAMewt, SAve, SCONvert, SETSfn, SKew, SQIN-
ner,

STAtus,STD,STIme, SUb,SVar,TCount,TIme, TRunc,

TRWt, WEight, Zero.
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Some of the Sfn commands make use of the Sfn in-
finite

series (SKew,TRunc, TRWt).

The Sfn series in Schur are:

A, B, C, D, E, F, G, H, L, M, P, Q, R, S, T, V, W,
X, Y.

These series may be accessed by upper or lower case

letters.

SEN>
Many of the commands you won’t need to consider at
the beginning. Each command has it’s own helpfile.
Try entering the command FRAME 54321 and you
should see on your screen the frame F°%32! drawn as

The following give examples of syntax as explained in
the Helpfile DIGITS and SYNTAX. Try other frames
such as 5322211 which could be entered as either

FRAMES532312 or as just FRAMES5322211 or even as
FRA5322211. To draw the frame for the partition 12
10 43221 you enter FRA !12 !'10 4321 . Note that the
exclamation mark (!) is put in front of digits larger
than 9 and a space then follows the digits. Spaces are
optional for numbers <= 9. If you enter FRA5.4321
you will see on the screen the frame F*3?! with the
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digit 5 above it. To see the significance of that try
entering OUTER 21,21 and you will obtain the output

SFN>

OUTER 21,21

{42} + {4172 } + {372 } + 2{321} + {3173}

+ {2°3 } + {272 172 }

SFN>

- Notice that the S—function {321} appears with a
multiplicity of 2. Now enter FRAME LAST and you
will see the frames for each partition drawn on the
screen with a 2 appearing above the frame for {321}.
Now try the command FRAME OUTER 21,21 and you
will start to learn how you can combine sequences of
commands. Enter OUTER 4321,4321 and note that
you get a screen full of S—functions with the word
MORE appearing on the left. Pressing a key will show
you the next screen full. You can turn off MORE by
entering MORE FALSE now repeat OUTER 4321,4321
and 206 S—functions will scroll by. Try
FRAME OUTER 4321,4321 and 206 frames will flash
by with their associated multiplicities. To count the
number of frames simply enter TCOUNT LAST and
to count the sum of the multiplicities enter MCOUNT
LAST.
Look at the helpfiles associated with the commands
SKEW, TRWT, WEIGHT, LENGTH and see if you
can determine the terms in each of the S—function
series we have discussed today up to say weight 8.
Feel free to explore the various features. See if you
can make yourself a LOGFILE in which you obtain
the aforementioned series and then edit the logfile and
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print out a neat table with suitable captions etc., pos-

sibly as a TgXfile.

62



Some Relevant Literature
The following references have been chosen to give a
general background to the literature relevant to this
course. I shall at various times refer to them by num-
ber.
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