
Lecture Notes on Symmetry 1994Proposition: We should always strive to construct theorieswith the highest possible symmetry even if these are not exactsymmetries of nature. The physics comes in the process ofbreaking the symmetry.Consider the case ofCe2Mg3(NO3)12 � 24H2O : Nd 3+� What symmetry does the Nd 3+ ion see in the rareearth double nitrates?� The entire breakdown of the symmetry could bedescribed by the chain of nested subgroupsSO3 � Kh � Th � C3� Global and Local SymmetriesA symmetry may be global or local.� Types of Symmetries� Discrete symmetries, such as re
ections, invers-ions, time reversal, charge conjugation, parity, �-nite rotations, permutations etc. are associatedwith multiplicative or phase-like quantum numbers.� Continuous symmetries such as translations androtations are associated with additive quantumnumbers (e.g. angular momentum J or linear mo-mentum p).
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� Bosons and Fermions� The particles we commonly encounter in physicscan be divided into two classes bosons and fermions.Bosons are associated with integer spin, examplesbeing photons, gluons and the weak interactionbosons Z0 and W�. Fermions are associated withhalf-integer spin, examples being electrons, neutri-nos and quarks. Bosons establish the interactionsbetween fermions. Thus the photon, a masslessspin 1 particle, is the exchange particle associ-ated with electromagnetic interactions. In most ofatomic and molecular physics we can restrict ourattention to quantum electrodynamics (QED). Theweak interactions manifest themselves in atomicand molecular physics in very small parity viola-tions. Bosons and fermions obey di�erent statis-tics, namely Bose-Einstein and Fermi-Dirac, re-spectively. That requires us to construct totallysymmetric wavefunctions for many-boson systemsand totally antisymmetric wavefunctions formany-fermion systems.� Permutational SymmetryBosons and fermions di�er with respect to theirbehaviour under an interchange of their position, orequivalently with respect to a rotation through 2� or360o. We shall designate the wavefunction for a singlefermion or boson as �(�) where � is an appropriateset of single particle quantum numbers associated withsome single particle solution of , for example, somecentral �eld potential. Thus for a hydrogen atom wemight use � = fns`msm`g or � = fns`jmjg.2



A N�particle system will involve N�single particlewavefunctions (�i i = 1; 2; : : : ; N) and N�sets of sin-gle particle quantum numbers (�k k = 1; 2; : : : ; N).The wavefunction, 	, for the N�particle system willbe such that 	 = 	(�1; �2; : : : ; �N ) (1:1)For a two-particle system we could write	(�1; �2) = 1p2f�1(�1)�2(�2)� �1(�2)�2(�1)g (1:2)� The positive sign corresponds to a symmetric wave-function and the minus sign corresponds to an an-tisymmetric wavefunction. Note that we have per-muted the quantum numbers with respect to thecoordinates of the particles. The wavefunction ofa pair of fermions, unlike a pair of bosons, under-goes a change of sign. If �1 = �2 then for identicalfermions Eq.(1.2) vanishes though not for bosons.That is consistent with the Pauli exclusion princi-ple for identical fermions.� Thus permutational symmetry, required by the in-distinguishability of identical particles, leads forN�fermions to the construction of of determinantalstates to give totally antisymmetric states while forN�bosons to the construction of permanental statesto give totally symmetric states.
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� Hence for an N�fermion system we have the to-tally antisymmetric wavefunction	(�1; �2; : : : ; �N ) =1pN ! ��������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N (�1) �N (�2) : : : �N (�N ) ���������f1Ng (1:3)� In LS�coupling basis we use � = fns`msm`gwhereas in jj�coupling we would use � = fns`jmjg.� The information content of the determinantal statemay be fully speci�ed by the abbreviated formf�1�2 : : : �Ng (1:4)� In the case of bosons we are required to constructpermanental states to yield totally symmetricwavefunctions,	(�1; �2; : : : ; �N ) =1pN ! ��������� �1(�1) �1(�2) : : : �1(�N )�2(�1) �2(�2) : : : �2(�N )... ... . . . ...�N (�1) �N (�2) : : : �N (�N ) ���������fNg (1:5)� The information content of the permanental statemay be fully speci�ed by the abbreviated form[�1�2 : : : �N ] (1:6)4



� Many-particle states of Bosons and FermionsLet us for the moment consider the states of N identicalbosons or fermions. Suppose the boson has an angularmomentum j = 2 (i.e. a d�boson) and hence mj =0;�1;�2 while the fermion has angular momentum j =5=2 and hence mj = �1=2;�3=2;�5=2. If N = 2 in bothcases what are the allowed values of J ? We note thatMJ = mj1 +mj2Just considering the non-negative values of MJ we ob-tain for the fermions the following table of determi-nantal states:Table 1.1 Determinantal states for (5=2)2 fermions.MJ States4 f5=2 3=2g3 f5=2 1=2g2 f5=2 � 1=2g f3=2 1=2g1 f5=2 � 3=2g f3=2 � 1=2g0 f5=2 � 5=2g f3=2 � 3=2g f1=2 � 1=2g� Inspection of the above table leads to the con-clusion that the allowed values of J in (5=2)2 areJ = 0; 2; 4.
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The corresponding d2 boson states for non-negativeMJare given in Table 1.2.Table 1.2. Permanental states for d2 bosonsMJ States4 [2 2]3 [2 1]2 [2 0] [1 1]1 [2 � 1] [1 0]0 [2 � 2] [1 � 1] [0 0]Inspection of the above table leads to the conclu-sion that the allowed values of J in d2 are J = 0; 2; 4exactly those found for (5=2)2.Exercises1.1 Show that the totally antisymmetric orbital angu-lar momentum states of g3 (` = 4) (i.e. the statesof maximum multiplicity) are the same as for thetotally symmetric states of (5=2)4.1.2 Determine the allowed values of J for thejj�coupled con�gurations (5=2)2; (5=2 7=2) and(7=2)2.1.3 Determine the allowed values of S and L for theelectron con�guration f2.1.4 Given that for an LS�coupled term 2S+1L we haveJ = L + S andJ = L+ S;L+ S � 1; : : : ; jL� Sj (1:7)Show that the values of J for the list of terms foundin Ex 1.3. are the same as those found in Ex 1.2.6



1.5 Show that in the con�guration j2 the only allowedvalues of J are the even integers 0; 2; : : : ; 2j � 1.1.6 Starting with the angular momentum commuta-tion relations[Jx; Jy] = iJz ; [Jy; Jz] = iJx ; [Jz; Jx] = iJy (1:8)show that if J� = Jx � iJy thenJ2 = J+J� + J�J+2 + J2z (1:9)1.7 If J = L + S show thatJ(J +1)�L(L+1)�S(S +1) = S+L�+S�L+ +2SzLz(1:10)� Ladder Operators and Determinantal StatesFor the electron con�guration f2 we can enumerate theset of determinantal states for non-negative MS , ML asin Table 2.1.Table 2.1. Determinantal states for the Electron Con-8



�guration f2.MLMS = 0 MS = 16 f+3 �3 g5 f+3 �2 g f+2 �3 g f+3 +2 g4 f+3 �1 g f+2 �2 g f+1 �3 g f+3 +1 g3 f+3 �0 g f+2 �1 g f+1 �2 g f+0 �3 g f+3 +0 g f+2 +1 g2 f+2 �0 g f+3 ��1g f+1 �1 g f+0 �2 g f+3 +�1g f+2 +0 gf +�1 �3 g1 f+1 �0 g f+2 ��1g f+3 ��2g f+0 �1 g f+3 +�2g f+1 +0 gf +�1 �2 g f +�2 �3 g f+2 +�1g0 f+0 �0 g f+1 ��1g f+2 ��2g f+3 ��3g f+3 +�3g f+2 +�2gf +�1 �1 g f +�3 �3 g f +�2 �2 g f+1 +�1g� For an electron in an f�orbital ` = 3 hencem` = 0;�1;�2;�3. There are just two values of thespin projection ms = �1=2.� In writing a determinantal state it su�ces to justdisplay the values of m` and indicate the value ofms as a + or � sign placed above m`.� For a given determinantal stateMS = nXi=1msi and ML = nXi=1m`i (2:1)� Every determinantal state may be associated withde�nite values of MS and ML.� Form appropriate linear combinations of the deter-minantal states to give eigenstates jSLMSML >.9



� Write a state as j2S+1LMSML > where (2S + 1) isthe spin multiplicity.� The quantum number L is associated with alpha-betical letters0S 1P 2D 3F 4G 5H 6I 7K 8M� A spectroscopic term will be designated as2S+1L� Associated with a given value on S there are (2S+1)values of MS and with L there are (2L + 1) valuesof ML whereMS = S; S � 1; : : : ;�S + 1;�SML = L;L� 1; : : : ;�L+ 1;�LInspection of Table 2.1 shows that the spectro-scopic terms of the electron con�guration f2 are3PFH 1SDGIChoose j1I06 >� f+3 �3 g (2:2)Let us now determine j1I05 >. To do this we use theproperties of ladder operators. RecallL�jLM >=pL(L+ 1)�M(M � 1)jLM � 1 > (2:3)10



and L� = nXi=1 `�i (2:4)Let (2.3) act on the left-hand-side of (2.2) and noting(2.3) act also on the determinantal state to giveL�j1I06 >= p6� 7� 6� 5j1I05 >= p12j1I05 > (2:5)and L�f+3 �3 g = p3� 4� 3� 2[f+2 �3 g+ f+3 �2 g] (2:5)Equating (2.4) and (2.5) givesj1I05 >= p22 [f+2 �3 g+ f+3 �2 g] (2:6)This state must be orthogonal to the state j3H05 > andhence after �xing a phase we havej3H05 >= p22 [f+2 �3 g � f+3 �2 g] (2:7)Application of the spin raising operator S+ to (2.7)givesS+j3H05 >= p2j3H15 >= p22 [f+2 +3 g � f+3 +2 g] (2:7a)and hence j3H15 >= �f+3 +2 g] (2:8)11



Note the appearance of the minus sign which comesfrom our particular choice of enumeration of the de-terminantal states.Exercises2.1 Determine the eigenstatesj1I04 > j3H04 > j1G04 > j3H14 >as linear combinations of determinantal states.2.2 Discuss how you could determine the eigenstatesj3HJM > as linear combinations of the statesj3HMSML >. Hint: use the fact that J� = L� + S�.� Permutations and the Symmetric GroupPermutations play an important role in the physics ofidentical particles. A permutation leads to a reorder-ing of a sequence of objects. We can place n objectsin the natural number ordering 1; 2; : : : ; n. Any otherordering can be discussed in terms of this ordering andcan be speci�ed in a two line notation1�(1) 2�(2) : : :: : : n�(n) (2:9)For n = 3 we have the six permutations� 1 2 31 2 3� � 1 2 32 1 3� � 1 2 31 3 2�� 1 2 33 2 1� � 1 2 33 1 2� � 1 2 32 3 1� (2:10)12



Permutations can be multiplied working from right toleft. Thus� 1 2 33 1 2�� � 1 2 32 3 1� = � 1 2 31 2 3�The six permutations in (2.10) satisfy the followingproperties:1. There is an identity element � 1 2 31 2 3�.2. Every element has an inverse among the set of el-ements.3. The product of any two elements yields elementsof the set.4. The elements satisfy the associativity conditiona(bc) = (ab)c.These conditions establish that the permutationsform a group. In general the n! permutations form theelements of the symmetric group Sn.� Cycle Structure of PermutationsIt is useful to express permutations as a cycle struc-ture. A cycle (i; j; k; : : : ; l) is interpreted as i! j, j ! kand �nally l ! i. Thus our six permutations have thecycle structures(1)(2)(3); (1; 2)(3); (1)(2; 3); (1; 3)(2); (1; 3; 2); (1; 2; 3) (2:11)The elements within a cycle can be cyclically permutedand the order of the cycles is irrelevant. Thus(123)(45) � (54)(312).� A k � cycle or cycle of length k contains k elements.It is useful to organise cycles into types or classes.13



We shall designate the cycle type of a permutation� by (1m1 2m2 : : : ; nmn) (2:12)where mk is the number of cycles of length k in thecycle representation of the permutation �.� For S4 there are �ve cycle types(14); (12 21); (22); (11 31); (41) (2:13)Normally exponents of unity are omitted andEq.(2.13) written as(14); (12 2); (22); (1 3); (4) (2:14)� Cycle types may be equally well labelled by or-dered partitions of the integer n� = (�1 �2 : : : �`) (2:15)where the �i are weakly decreasing andX̀i=1 �i = n (2:16)The partition is said to be of length ` and of weightn. In terms of partitions the cycle types for S5 are(15); (2 13); (22 1); (3 2); (3 12); (4 1); (5)� Conjugacy Classes of Sn14



In any group G the elements g and h are conjugates ifg = k h k�1 for some k 2 G (2:17)The set of all elements conjugate to a given g is callthe conjugacy class of g which we denote as Kg.Exercises2.3 Show that for S4 there are �ve conjugacy classesthat may be labelled by the �ve partitions of theinteger 4.2.4 Show that the permutations, expressed in cycleswith cycles of length one suppressed, divide amongthe conjugacy classes as(14) �e(2 12) �(1 2); (1 3); (1 4); (2 3); (2 4); (3 4)(22) �(1 2)(3 4); (1 3)(2 4); (1 4)(2 3)(3 1) �(1 2 3); (1 2 4); (1 3 2); (1 3 4); (1 4 2)(1 4 3); (2 3 4); (2 4 3)(4) �(1 2 3 4); (1 2 4 3); (1 3 4 2); (1 4 3 2) (2:18)In general two permutations are in the same con-jugacy class if, and only if, they are of the same cycletype. The number of classes of Sn is equal the numberof partitions of the integer n.If � = (1m1 2m2 : : : nmn) then the number of permuta-tions k� in the class (�) of Sn isk� = n!1m1 m1! 2m2 m2! : : : nmn mn! (2:19)15



� The Alternating Group An1. A cycle of order two is termed a transposition.2. A transposition (i; i+1) is termed an adjacent trans-position.3. The entire symmetric group Sn can be generated(or given a presentation in terms of the set of adja-cent transpositions(1 2); (2 3); : : : ; (n� 1n) (2:20)� If � = �1�2 : : : �k, where the �i are transpositionsthen the sign of � is de�ned to besgn(�) = (�1)k (2:21)If the number of cycles of even order is even thenthe permutation is even or positive; if it is odd thenthe permutation is odd or negative.The set of even permutations form a subgroup of Snknown as the alternating group An and has precisely halfthe elements of Sn i.e. ( 12)n!.Exercises2.5 Show that the set of six matrices� 1 00 1� � 0 1�1 �1 � ��1 �11 0 �� 0 11 0� ��1 �10 1 � � 1 0�1 �1 � (2:22)with the usual rule of matrix multiplication forma group isomorphic to S3.16



2.6 Show that the symmetric group Sn has two one-dimensional representations, a symmetric repre-sentation where every element is mapped ontounity and an antisymmetric representation wherethe elements are mapped onto the sign de�ned inEq. (2.21).Lecture ThreePartitions� A partition is any �nite or in�nite sequence of in-tegers � = (�1 �2 : : : �i : : :) (3:1)Unless otherwise stated we shall assume the sequenceinvolves non-negative integers in non-increasing order;�1 � �2 � : : : � �i � : : : (3:2)Normally we will omit zeros.� The non-zero �i form the parts of �. The numberof parts is the length, `(�), of � while the sum of itsparts, j�j, is the weight of �. If j�j = n then � is saidto be a partition of n.� We shall frequently write � ` n to indicate that �is a partition of n. Repeated parts of a partitionwill frequently be indicated as imi where mi is thenumber of times the part i occurs in the partition�.� The partitions for n = 6 are(6) (51) (42) (412) (32) (321) (313) (23) (2212) (214) (16)21



� Note, in the above example the partitions havebeen listed in reverse lexicographic order. The order-ing is such that the �rst non-vanishing di�erence�i � �i, for successive partitions �, � is positive.The Ferrers-Sylvester diagram� Every partition � ` n may be associated with aFerrers-Sylvester diagram, shape or frame involving ncells, dots or boxes in `(�) left-adjusted rows withthe i-th row containing �i cells, dots, or boxes.For n = 4 we have the �ve diagrams
� We will formally designate the frame associatedwith a partition � as F�.� The conjugate of a partition � is a partition �0 whosediagram is the transpose of the diagram of �. If�0 � � then the partition � is said to be self-conjugate.Thus andare conjugates whileis self-conjugate.Skew frames 22



� Given two partitions � and � such that � � � im-plies that the frame F� contains the frame F�, i.e.that �i � �i for all i � 1. The di�erence � = � � �forms a skew frame F�=�.Thus, for example, the skew frame F 542=21 has the formNote that a skew frame may consist of disconnectedpieces.Frobenius notation for partitions� There is an alternative notation for partitions dueto Frobenius. The diagonal of nodes in a Ferrers-Sylvester diagram beginning at the top left-handcorner is called the leading diagonal. The number ofnodes in the leading diagonal is called the rank ofthe partition.� If r is the rank of a partition then let ai be thenumber of nodes to the right of the leading diag-onal in the i�th row and let bi be the number ofnodes below the leading diagonal in the i�th col-umn. The partition is then denoted by Frobeniusas �a1; a2; : : : ; arb1; b2; : : : ; br � (3:3)We note that a1 > a2 > : : : > arb1 > b2 > : : : > br23



and a1 + a2 + : : :+ ar + b1 + b2 + : : :+ br + r = n� The partition conjugate to that of Eq.(3.3) is just� b1; b2; : : : ; bra1; a2; : : : ; ar � (3:4)As an example consider the partitions (5 4 32 2 1) and(6 5 4 2 1). Drawing their diagrams and marking theirleading diagonal we have� � � and � � �from which we deduce the respective Frobenius desig-nations � 4 2 05 3 1� and � 5 3 14 2 0�Young tableaux� A Young tableau is an assignment of n numbers tothe n cells of a frame F� with � ` n according tosome numbering sequence.24



� A tableau is standard if the assignment of the num-bers 1; 2; : : : ; n is such that the numbers are pos-itively increasing from left to right in rows anddown columns from top to bottom.Thus for the partitions of the integer 4 we have thestandard Young tableaux1 2 3 41 2 34 1 2 43 1 3 421 23 4 1 32 41 234 1 324 1 4231234� In the above examples the number of standardtableaux for conjugate partitions is the same. In-deed the number of standard tableaux associatedwith a given frame F� is the dimension f�n of an irre-ducible representation f�g of the symmetric groupSn.
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Hook lengths and dimensions for Sn� The hook length of a given box in a frame F� is thelength of the right-angled path in the frame withthat box as the upper left vertex.For example, the hook length of the marked box in� � � �����is 8.Theorem 3.1: To �nd the dimension of the representa-tion of Sn corresponding to the frame F�, divide n ! by thefactorial of the hook length of each box in the �rst column ofF� and multiply by the di�erence of each pair of such hooklengths.Thus for the partition (5 4 32 2 1) we have the hooklengths 1086531and hence a dimensionf54322118 = 18 !2� 4� 5� 7� 9� 2� 3� 5� 7� 1� 3� 5� 2� 4� 210 !� 8 !� 6 !� 5 !� 3 !� 1 != 10720710 26



It is not suggested that you check the above result byexplicit enumeration!� The above evaluation can also be equivalentlymade by computing the hook lengths hij for everybox at position (i,j) and then noting thatf�n = n !Q(i;j)2� hij (3:5)which is the celebrated result of Frame, Robinsonand Thrall.Exercises3.1 Show that the dimension of of the representationfp+2; 2g = � � �is 12(p+4)(p+1)3.2 Calculate the dimensions of the irreducible repre-sentations of S6 and show thatX�`6(f�6 )2 = 6 !
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The symmetric group and tensors� Let T�1:::�n be a \generic" n-index tensor, withoutany special symmetry. (For the moment, \tensor"means just a function of n indices, not necessar-ily with any geometrical realization. It must bemeaningful, however, to add (and form linear com-binations of) tensors of the same rank.)� The entries 1; 2; : : : n in the standard numbering of atableau indicate the n successive indices of T�1����n .� The tableau de�nes a certain symmetrization op-eration on these indices: symmetrize on the set ofindices indicated by the entries in each row, thenantisymmetrize the result on the set of indices indi-cated by the entries in each column.� The resulting object is a tensor, T , with certain in-dex symmetries. Now let each permutation in Snact (separately) upon T . The n! results are not lin-early independent; they span a vector space whichsupports an irreducible representation of Sn .� Di�erent tableaux corresponding to the sameframe yield equivalent (but not identical) repre-sentations.Example: The partition f2 2g of 4 has two standardtableaux: 1 23 4 and 1 32 4 (3:6)Let us construct the symmetrized tensor T correspond-ing to the second of these.28



� First symmetrize over the �rst and third indices,and over the second and fourth:14�Tabcd + Tcbad + Tadcb + Tcdab�:Now antisymmetrize the result over the �rst andsecond indices, and the third and fourth; droppingthe combinatorial factor 116 , we getTabcd = Tabcd + Tcbad + Tadcb + Tcdab� Tbacd � Tcabd � Tbdca � Tcdba� Tabdc � Tdbac � Tacdb � Tdcab+ Tbadc + Tdabc + Tbcda + Tdcba : (3:7)It is easy (though tedious) to check that T pos-sesses the symmetries characteristic of the Rie-mann tensor.Exercise3.3 Construct a set of three 4-index tensors corre-sponding to the three Young tableaux associatedwith the partition f3 1g.Unitary numbering of Young tableaux� Many di�erent prescriptions can be given for in-jecting numbers into the boxes of a frame.� The standard numbering is intimately associatedwith the symmetric group Sn.� Another important numbering prescription is thatof unitary numbering where now numbers 1; 2; : : : ; dare injected into the boxes of a frame F� such that:29



i. Numbers are non-decreasing across a row goingfrom left to right.ii. Numbers are positively increasing in columns fromtop to bottom.� The �rst condition permits repetitions of integers.Using the numbers 1; 2; 3 in the frame F 2 1 we obtainthe 8 tableaux1 12 1 13 1 221 23 1 32 1 33 2 23 2 33 (3:8)Had we chosen d = 2 we would have obtained just twotableaux while d = 4 yields twenty tableaux. In general,for a frame F� a unitary numbering using the integers1; 2; : : : ; d leads to f�d = G�dH� (3:9)where H� is the product of the hook lengths hij of theframe and G�d = Y(i;j)2�(d+i�j) (3:10)Thus for d = 5 and � = (4 2 1) we have H(4 2 1) = 144 andGf4 2 1g5 = 100800 from which we deduce thatff4 2 1g5 = 700which is the dimension of the irreducible representa-tion f4 2 1g of the general linear group GL(5).30



� In general, f�d is the dimension of the irreduciblerepresentation f�g of GL(d). Since the represen-tations of GL(d) labelled by partitions � remainirreducible under restriction to the unitary groupU(d) Eq.(3.9) is valid for computing the dimensionsof the irreducible representations of the unitarygroup U(d).� The same rules for a unitary numbering may be ap-plied to the skew frames F�=� introduced in x3.3.Thus for F 542=21 an allowed unitary numbering us-ing just the integers 1 and 2 would be1 1 11 2 21 2� Note that our unitary numbering yields what inthe mathematical literature are commonly referredto as semistandard Young tableaux. Other number-ings are possible and have been developed for allthe classical Lie algebras.Exercises3.4 Draw the frames F 22=1, F 4321=4212, and F 321=21.3.5 Use the integers 1; 2; 3 to construct the completeset of semistandard tableaux for the frameF 4321=4212 and show that the same number oftableaux arise for the frame F 21.3.6 Make a similar unitary numbering for the frameF 321=21 and show that the same number of semis-tandard tableaux arise in the set of framesF 3 + 2F 21 + F 13 . 31
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Lecture FourYoung tableaux and monomialsA numbered frame may be associated with a uniquemonomial by replacing each integer i by a variable xi.Thus the Young tableau1 1 2 4 53 3 3 54 6 75 7 86 87can be associated with the monomialx21 x2 x33 x24 x35 x26 x37 x28Monomial symmetric functionsConsider a set of variables (x) = x1; x2; : : : ; xd. Asymmetric monomial m�(x) =P� x� (4:1)involves a sum over all distinct permutations � of (�) =(�1; �2; : : :). Thus if (x) = (x1; x2; x3) thenm21(x) = x21 x2 + x21 x3 + x1 x22 + x1 x23 + x22 x3m13(x) = x1 x2 x3The unitary numbering of (�) = (2 1) with 1; 2; 3 corre-sponds to the sum of monomialsm21(x) + 2m13(x)32



The same linear combination occurs for any number ofvariables with d � 3.The monomials m�(x) are symmetric functions. If � ` nthen m�(x) is homogeneous of degree n. Unless other-wise stated we shall henceforth assume that x involvesan in�nite number of variables xi.The ring of symmetric functions � = �(x) is the vectorspace spanned by all the m�(x). This space can bedecomposed as � = �n�0�n (4:2)where �n is the space spanned by all m� of degree n.Thus the fm�j� ` ng form a basis for the space �n whichis of dimension p(n) where p(n) is the number of parti-tions of n. It is of interest to ask if other bases can beconstructed for the space �n.The classical symmetric functionsThree other classical bases are well-known - some sincethe time of Newton.1. The elementary symmetric functionsThe n�th elementary symmetric function en is thesum over all products of n distinct variables xi,with e0 = 1 and generallyen = m1n = Xi1<i2:::<in xi1 xi2 : : : xin (4:3)The generating function for the en isE(t) =Xn�0 entn =Yi�1(1+xit) (4:4)33



2. The complete symmetric functionsThe n�th complete or homogeneous symmetric func-tion hn is the sum of all monomials of total degreen in the variables x1; x2; : : :, with h0 = 1 and gener-ally hn = Xj�j=nm� = Xi1�i2:::�in xi1 xi2 : : : xin (4:5)The generating function for the hn isH(t) =Xn�0hntn =Yi�1(1�xit)�1 (4:6)3. The power sum symmetric functionThe n�th power sum symmetric function ispn = mn =Xi�1 xni (4:7)The generating function for the pn isP (t) =Xn�1 pntn�1 =Xi�1Xn�1xni tn�1=Xi�1 xi1� xit=Xi�1 ddt log 11� xit (4:8)and hence P (t) = ddt logYi�1(1� xit)�1= ddt logH(t)= H 0(t)=H(t) (4:9)34



Similarly, P (�t) = ddt logE(t) = E0(t)=E(t) (4:10)Equation (4.9) leads to the relationshipnhn = nXr=1 pr hn�r (4:11)It follows from (4.9) thatH(t) = expXn�1 pn tn=n= Yn�1 exp(pn tn=n)= Yn�1 1Xmn=0(pn tn)mn=nmn :mn! (4:12)and hence H(t) =X� z�1� p� tj�j (4:13)where z� =Yi�1 imi:mi! (4:14)where mi = mi(�) is the number of parts of � equalto i.De�ning "� = (�1)j�j�`(�) (4:15)35



we can show in an exactly similar manner to thatof Eq.(4.13) thatE(t) =X� "�z�1� p� tj�j (4:16)It then follows from Eqs.(4.13) and (4.16) thathn = Xj�j=n z�1� p� (4:17)anden = Xj�j=n "�z�1� p� (4:18)Exercises4.1 Show that for n = 3p3 = x31 + x32 + x33 + : : :e3 = x1 x2 x3 + x1 x2 x4 + x2 x3 x4 + : : :h3 = x31 + x32 + : : :+ x21 x2 + x1 x22 + : : :+ x1 x2 x3 + x1 x2 x4 + : : :(4:19)4.2 Noting Eqs. (4.4) and (4.6) and that H(t)E(�t) = 1,show that nXr=0(�1)rhn�r er = 0 (4:20)for n � 1. 36



4.3 Use Eq.(4.20) to show thaten = det(h1�i+j)1�i;j�n (4:21)and hence hn = det(e1�i+j)1�i;j�n (4:22)
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4.4 Use Eq.(4.11) to obtain the determinantal expres-sions pn = �������� e1 1 0 : : : 02e2 e1 1 : : : 0... ... ... ...nen en�1 en�2 : : : e1 �������� (4:23)n!en = ���������� p1 1 0 : : : 0p2 p1 2 : : : 0... ... ... ...pn�1 pn�2 : : : : n� 1pn pn�1 : : : : p1 ���������� (4:24)(�1)n�1pn = �������� h1 1 0 : : : 02h2 h1 1 : : : 0... ... ... ...nhn hn�1 hn�2 : : : h1 �������� (4:25)n!hn = ���������� p1 �1 0 : : : 0p2 p1 �2 : : : 0... ... ... ...pn�1 pn�2 : : : : �n+ 1pn pn�1 : : : : p1 ����������(4:26)
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Multiplicative bases for �nThe three types of symmetric functions, hn; en; pn, donot have enough elements to form a basis for �n, theremust be one function for every partition � ` n. To thatend in each case we form multiplicative functions f� sothat for each � ` nf� = f�1 f�2 : : : f�` (4:27)where f = e; h; or p Thus, for example,e21 = e2 � e1 = (x1 x2 + x1 x3 + x2 x3 + : : :)(x1 + x2 + x3 + : : :)The Schur functionsThe symmetric functionsm�; e�; h�; p� (4:28)where � ` n each form a basis for �n. A very important�fth basis is realised in terms of the Schur functions,s�, or for brevity, S�functions which may be variouslyde�ned. Combinatorially they may be de�ned ass�(x) =XT xT (4:29)where the summation is over all semistandard��tableaux T . For example, consider the S�functionss� in just three variables (x1; x2; x3). For � = (2 1) wehave the eight tableaux T found earlier1 12 1 13 1 22 1 23 1 32 1 33 2 23 2 33(3:8)39



Each tableaux T corresponds to a monomial xT to gives2 1(x1; x2; x3) =x21 x2 + x21 x3 + x1 x22 + x1 x2 x3 + x1 x2 x3 + x1 x23+ x22 x3 + x2 x23 (4:30)We note that the monomials in Eq.(4.30) can be ex-pressed in terms of just two symmetric monomials in thethree variables (x1; x2; x3) to gives2 1(x1; x2; x3) = m2 1(x1; x2; x3) + 2m13(x1; x2; x3) (4:31)In an arbitrary number of variabless2 1(x) = m2 1(x) + 2m13(x) (4:32)This is an example of the general result that theS�function may be expressed as a linear combinationof symmetric monomials as indeed would be expectedif the S�functions are a basis of �n. In facts�(x) =X�`nK��m� (4:33)where j�j = n and K�� = 1. The K�� are the elementsof an upper triangular matrix K known as the Kostkamatrix. K is an example of a transition matrix that re-lates one symmetric function basis to another.Calculation of the elements of the Kostka matrixThe elements K�� of the Kostka matrix may be readilycalculated by the following algorithm :40



i. Draw the frame F�.ii. Form all possible semistandard tableaux that arisein numbering F� with �1 ones, �2 twos etc.iii. K�� is the number of semistandard tableaux soformed.Thus calculating K(42) (22 12) we obtain the four semis-tandard tableaux1 1 2 23 4 1 1 2 32 4 1 1 2 42 3 1 1 3 42 2and hence K(42) (22 12) = 4.Exercises4.5 Construct the Kostka matrix for �; � ` 4.4.6 Show that in the variables (x1; x2; x3) the evalua-tion of the determinantal ratio������x41 x21 1x42 x22 1x43 x23 1 ������������x21 x1 1x22 x2 1x23 x3 1 ������yields the monomial content of the S�function s21in three variables as found in Eq.(4.30). N.B. Theabove exercise is tedious by hand but trivial usingMAPLEV. 41



The last exercise is an example of the classical de�-nition, as opposed to the equivalent combinatorial de�-nition given in Eq.(4.29), given �rst by Jacobi, namely,s� = s�(x1; x2; : : : ; xn) = a�+�a� (4:34)where � is a partition of length � n and� = (n� 1; n� 2; : : : ; 1; 0) witha�+� = det(x�j+n�ji )1�i;j�n (4:35)and a� = Y1�i;j�n(xi � xj) = det(xn�ji ) (4:36)is the Vandermonde determinant.Non-standard S�functionsThe S�functions are symmetric functions indexedby ordered partitions �. We shall frequently writeS�functions s�(x) as f�g(x) or, since we will generallyconsider the number of variables to be unrestricted,just f�g. As a matter of notation the partitions willnormally be written without spacing or commas sepa-rating the parts where �i � 9. A space will be left afterany part �i � 10. Thus we write f12; 11; 9; 8; 3; 2; 1g �f12 11 98321g While we have de�ned the S�functionin terms of ordered partitions we sometimes encounterS�functions that are not in the standard form andmust convert such non-standard S�functions into stan-dard S�functions. Inspection of the determinantal42



forms of the S�function leads to the establishment ofthe following modi�cation rules :f�1; �2; : : : ;��`g = 0 (4:37)f�1; : : : ; �i; �i+1; : : : ; �`g = �f�1; : : : ; �i+1 � 1; �i + 1; : : : ; �`g(4:38)f�g = 0 if �i+1 = �i + 1 (4:39)Repeated application of the above three rules will re-duce any non-standard S�function to either zero or toa signed standard S�function. In the process of usingthe above rules trailing zero parts are omittedExercise4.7 Show that f24g = �f32g; f141g = �f321gf14� 25� 14g = �f332gf3042g = 0; f3043g = f322gSkew S�functionsThe combinatorial de�nition given for S�functions inEq.(4.29) is equally valid for skew tableaux and canhence be used to de�ne skew S�functions s�=�(x) orf�=�g. Since the s�=�(x) are symmetric functions theymust be expressible in terms of S�functions s�(x) suchthat s�=� =X� c���s� (4:40)43



It may be shown that the coe�cients c��� are necessarilynon-negative integers and symmetric with respect to �and �. The coe�cients c��� are commonly referred toas Littlewood-Richardson coe�cients.
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The Littlewood-Richardson ruleThe product of two S�functions can be written asa sum of S�functions, viz.s�:s� =X� c���s� (4:41)The Littlewood-Richardson coe�cients c��� inEqs. (4.40) and (4.41) are identical, though the sum-mations are of course di�erent. In both cases j�j+ j�j =j�j. A rule for evaluating the coe�cients c��� was givenby Littlewood and Richardson in 1934 and has playeda major role in all subsequent developments. The rulemay be stated in various ways. We shall state it �rstin terms of semistandard tableaux and then also givethe rule for evaluating the product given in Eq.(4.41)which is commonly referred to as the outer multiplica-tion of S�functions. In each statement the concepts ofa row-word and of a lattice permutation is used.De�nition 4.1 A wordLet T be a tableau. From T we derive a row-word or se-quence w(T ) by reading the symbols in T from right to left(i.e. as in Arabic or Hebrew) in successive rows startingat the top row and proceeding to the bottom rowThus for the tableau 1 1 2 2 32 2 3 34 45 678 45



we have the word w(T ) = 322113322446578 and for theskew tableau 1 1 11 2 21 2we have the word w(T ) = 11122121.De�nition 4.2 A lattice permutationA word w = a1a2 : : : aN in the symbols 1; 2; : : : ; n is said tobe a lattice permutation if for 1 � r � N and 1 � i � n�1,the number of occurrences of the symbol i in a1a2 : : : ar isnot less than the number of occurrences of i+ 1.Thus the word w(T ) = 322113322446578 is clearly not alattice permutation whereas the word w(T ) = 11122121is a lattice permutation. The word w(T ) = 12122111 isnot a lattice permutation since the sub-word 12122 hasmore twos than ones.Theorem 4.1 The value of the coe�cient c��� is equal to thenumber of semistandard tableaux T of shape F�=� and content� such that w(T ) is a lattice permutation.By content � we mean that each tableau T contains �1ones, �2 twos, etc.
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ExampleLet us evaluate the coe�cient cf542gf431gf21g. We �rstdraw the frame F f542=21g.Into this frame we must inject the content of f431g i.e.4 ones, 3 twos and 1 three in such a way that we havea lattice permutation. We �nd two such numberings1 1 11 2 22 3 1 1 12 2 21 3and hence cf542gf431gf21g = 2. Note that in the evaluation wehad a choice, we could have, and indeed more simply,evaluated cf542gf21gf431g. In that case we would have drawnthe frame F f542=431g to getNote that in this case the three boxes are disjoint. Thisskew frame is to be numbered with two ones and one2 leading to the two tableaux112 12147



verifying the previous result. Theorem 4.1 gives a di-rect method for evaluating the Littlewood-Richardsoncoe�cients. These coe�cients can be used to evaluateboth skews and products. It is sometimes useful tostate a procedure for directly evaluating products.Theorem 4.2 to evaluate the S�function product f�g:f�g1. Draw the frame F� and place �1 ones in the �rst row, �2twos in the second row etc until the frame is �lled withintegers.2. Draw the frame F � and inject positive integers to form asemistandard tableau such that the word formed by readingfrom right to left starting at the top row of the �rst frameand moving downwards along successive rows to the bottomrow and then continuing through the second frame is alattice permutation.3. Repeat the above process until no further words can be con-structed.4. Each word corresponds to an S�function f�g where �1 isthe number of ones, �2 the number of twos etc.As an example consider the S�function productf21g:f21g.Step 1 gives the tableau 1 12Steps 2 and 3 lead to the eight numbered frames1 12 1 13 1 22 1 23 1 32 1 34 2 33 2 3448



Step 4 then lead to the eight words112112 112113 112212 112213112312 112314 112323 112324from which we conclude thatf21g:f21g = f42g+f412g+f32g+2f321g+f313g+f23g+f2212gExercises4.8 Show that cf753213gf4321g:f4321g = 8.4.9 Show thatf31g:f31g =f62g+ f612g+ f53g+ 2f521g+ f513g+ f42g+ 2f431g+ f422g+ f4212g+ f322g+ f3212g4.10 Show that f321=21g = f3g+ 2f21g+ f13gRelationship to the unitary groupWe have explored various symmetric functions indexedby partitions and de�ned on sets of variables. Thevariables can admit many interpretations. In some in-stances we may choose a set of variables 1; q; q2; : : : ; qnor we could even use a set of matrices. The link be-tween S�functions and the character theory of groupsis such that, if � is a partition with `(�) � N and the49



eigenvalues of a group element, g, of the unitary groupUN are given by xj = exp(i�j) for j = 1; 2; : : : ; N then theS�function f�g = f�1�2 : : : �Ng = s�(x)= s�(exp(i�1) exp(i�2) : : : exp(i�N ))is nothing other than the character of g in the irre-ducible representation of UN conventionally designatedby f�g.The Littlewood-Richardson rule gives the resolu-tion of the Kronecker product f�g � f�g of UN asf�g � f�g = Xj�j=j�j+j�j cf�gf�g:f�gf�g (4:42)where the cf�gf�g:f�g are the usual Littlewood-Richardsoncoe�cients. Equation (4.42) must be modi�ed for par-titions � involving more than N parts. Here the modi-�cation rule is very simple. We simply discard all par-titions involving more than N parts. We shall returnto these matters later in this course when we use ourresults to discuss the classi�cation of many-electronstates, especially for the electronic f�shell.Symmetry and Spectroscopic CalculationsLecture Five5.1 S�function seriesIn�nite series of S�functions play an important rolein determining branching rules and furthermore lead51



to concise symbolic methods well adapted to computerimplementation. Consider the in�nite seriesL = 1Yi=1(1� xi)= 1�Xx1 +Xx1x2 � : : : (5:1)where the summations are over all distinct terms.e.g.Xx1x2 = x1x2 + x1x3 + : : :+ x2x3 + x2x4 + : : : (5:2)Recalling Eq.(4.3) we see that Eq.(5.1) is simply asigned sum over an in�nite set of elementary symmet-ric functions en withen = m1n = s1n = f1ng (5:3)and hence Eq.(5.1) may be written as an in�nite sumof S�functions such thatL = 1� f1g+ f12g � f13g+ : : := 1Xm=0(�1)mf1mg (5:4)We may de�ne a further in�nite series of S�functionsby taking the inverse of Eq.(5.1) to getM = 1Xi=1(1� xi)�1= 1+ f1g+ f2g+ : : := 1Xm=0fmg (5:5)52



Clearly LM = 1 (5:6)a result that is by no means obvious by simply lookingat the product of the two series.In practice large numbers of in�nite series and theirassociated generating functions may be constructed.We list a few of them below:A =P�(�1)w�f�g B = P�f�gC = P
(�1)w
=2f
g D =P�f�gE = P�(�1)(w�+r)=2f�g F = P�f�gG =P�(�1)(w��r)=2f�g H =P�(�1)w�f�gL = Pm(�1)mf1mg M =PmfmgP = Pm(�1)mfmg Q =Pmf1mg (5:7)where (�) and (
) are mutually conjugate parti-tions, which in the Frobenius notation take the form(�) = � a1 a2 : : : ara1 + 1 a2 + 1 : : : ar + 1� (5:8a)and (
) = �a1 + 1 a2 + 1 : : : ar + 1a1 a2 : : : ar � (5:8b)(�) is a partition into even parts only and (�) is conjugateto (�). (�) is any partition and (�) is any self-conjugatepartition. r is the Frobenius rank of (�), (
) and (�).These series occur in mutually inverse pairs:AB = CD = EF = GH = LM = PQ = f0g = 1 (5:9)53



Furthermore,LA = PC = E MB = QD = FMC = AQ = G LD = PB = H (5:10)We also note the seriesR = f0g � 2Xa;b (�1)a+b+1� ab � S = f0g+ 2Xa;b � ab �(5:11)where we have again used the Frobenius notation, andV =X! (�1)qf~!g W =X! (�1)qf!gX =X! f~!g Y =X! f!g (5:12)where (!) is a partition of an even number into at mosttwo parts, the second of which is q, and ~! is the con-jugate of !. We have the further relationsRS = VW = f0g = 1 (5:13)and PM = AD =W LQ = BC = VMQ = FG = S LP = HE = R (5:14)5.2 Symbolic manipulationThe above relations lead to a method of describingmany of the properties of groups via symbolic manip-ulation of in�nite series of S�functions. Thus if f�g54



is an S�function then we may symbolically write, forexample, f�=Mg =Xm f�=mg (5:15)We can construct quite remarkable identities such as:BD =X� f�g � f�g (5:16)or for an arbitrary S�function f�gBD � f�g =X� f�g � f�=�g (5:17)Equally remarkably we can �nd identities such asf� � �g=Z = f�=Zg � f�=Zg for Z = L;M;P;Q;R; S; V;W(5:18a)f� � �g=Z =X� f�=�Zg � f�=�Zg for Z = B;D; F;H(5:18b)f� ��g=Z =X� (�1)w�f�=�Zg �f�=~�Zg for Z = A;C;E;G(5:18c)These various identities can lead to a symbolic methodof treating properties of groups particulary amenableto computer implementation.5.3 The Un ! Un�1 branching ruleAs an illustration of the preceding remarks we applythe properties of S�functions to the determination of55



the Un ! Un�1 branching rules. The vector irrep f1g ofUn can be taken as decomposing under Un ! Un�1 asf1g ! f1g+ f0g (5:19)that is into a vector f1g and scalar f0g of Un�1. Ingeneral, the spaces corresponding to tensors for whicha particular number of indices, say m, take on thevalue n, de�ne invariant subspaces. Such indices mustbe mutually symmetrised. The irreducible representa-tions speci�ed by the quotient f�=mg are those corre-sponding to tensors obtained by contracting the indicesof the tensor corresponding to f�g with an m�th ranksymmetric tensor. Thus we may symbolically write thegeneral branching rule as simplyf�g ! f�=Mg (5:20)Thus for example under U3 ! U2 we havef21g ! f21=Mg! f21=0g+ f21=1g+ f21=2g! f21g+ f2g+ f11g+ f1g (5:21)5.4 The Gel'fand states and the betweenness conditionThe so-called Gel'fand states play an important role inthe Unitary Group Approach (UGA) to many-electrontheory. This comes about from considering the canon-ical chain of groupsUn � Un�1 � : : : U2 � U1 (5:22)56



The states of such a chain follow directly from consid-eration of Eq.(5.20). Each state may be represented bya triangular array having n rows. There are n entriesmi;n with i = 1; 2; : : : ; n corresponding to the usual par-tition (�) padded out with zeroes to �ll the row if needbe. The second row contains n�1 entries mi;n�1 placedbelow the �rst row so that the entry m1;n�1 occurs be-tween the entries m1;n and m2;n etc. Each successiverow contains one less entry with the bottom row con-taining just one entry m1;1. The number of such statesis just the dimension of the irrep f�g of Un.Consider the irrep of U3 labelled as f21g. We �nd theeight Gel'fand states0@ 2 1 02 12 1A 0@ 2 1 02 11 1A0@ 2 1 02 02 1A 0@ 2 1 02 01 1A0@ 2 1 02 00 1A 0@ 2 1 01 11 1A0@ 2 1 01 01 1A 0@ 2 1 01 00 1A5.5 Using SCHUR to evaluate properties ofS�functionsAll of the properties of S�functions we have so far57



discussed, and many more, can be readily found us-ing the programme SCHUR which has been placed onon the Pc's here for your experimentation.It will domany things besides just S�functions. e.g. Proper-ties of irreps of all the compact Lie groups such asdimensions, Kronecker products and branching rules.However at this stage we will restrict our attentionto S�functions. Later on in this course we will lookat other features. The programme as installed hasa principal �le SCHUR.EXE and a large number ofHELP �les. Ignore all other �les at this stage. Go tothe SCHUR directory and enter the command SCHURand after a few moments your screen should look likeSCHUR #0333User:StudentsSite:Instytut FizykiUniwersytet Mikolaja Kopernikaul. Grudziadzka 5/787-100 TorunPOLANDCopyright. Distribution and copying prohibited[Version 5.0] (c) Schur Software Associates 1984,1986,1987,1988,1989(If you wish to EXIT, enter 'END')(If you wish to obtain HELP, enter ?'help')DPrep Mode (with function)DP>-Note that you can EXIT the programme any time byentering END. Also while I will indicate commandsto be entered in CAPITALS the entry of commands58



is not case sensitive. To get to the S�function modeenter SFN and you will seeDP>SFNSchur Function ModeSFN>- You can obtain a list of commands in the SchurFunction Mode by entering ?'SFNMODE' to giveSFN>?'SFNMODE'SFNmodeThis mode does all calculations involving Sfns.Commands available are:ABsval, ADd, ALARM, ALlskew, ATtach, BELl,CDiv ,CLEave,COeffs,COLour,CONJ, CUT, DEtach,DIGits,DIR,DISK,DIStinct,DPMode, END, EXit, FACtor, FN,FRame, FULL, FULLSA,FSA,HALlp, Inner, INSert, LAPs, LAst, LEngth,LIMit, LOad,LOG, LRAIse, MCount, MKWeight, MORe, MUlt, NLIMit,Outer,PAUSE, PHase, PLeth, PLInner, POwer, QEXpand, QFN,QOUTer,QQExpand, QQSeries, QSEries, QSKew, QSTD, RAIse,RCOnvert,REDuce, REM, REPmode, REVerse, RInner, RQINner, RL-RAIse,RRaise, SAMewt, SAve, SCONvert, SETSfn, SKew, SQIN-ner,STAtus,STD,STIme, SUb,SVar,TCount,TIme, TRunc,TRWt, WEight, Zero. 59



Some of the Sfn commands make use of the Sfn in-finiteseries (SKew,TRunc, TRWt).The Sfn series in Schur are:A, B, C, D, E, F, G, H, L, M, P, Q, R, S, T, V, W,X, Y.These series may be accessed by upper or lower caseletters.SFN>-Many of the commands you won't need to consider atthe beginning. Each command has it's own help�le.Try entering the command FRAME 54321 and youshould see on your screen the frame F 54321 drawn as
The following give examples of syntax as explained inthe Help�le DIGITS and SYNTAX. Try other framessuch as 5322211 which could be entered as eitherFRAME5323̂12̂ or as just FRAME5322211 or even asFRA5322211. To draw the frame for the partition 1210 43221 you enter FRA !12 !10 4321 . Note that theexclamation mark (!) is put in front of digits largerthan 9 and a space then follows the digits. Spaces areoptional for numbers <= 9. If you enter FRA5.4321you will see on the screen the frame F 4321 with the60



digit 5 above it. To see the signi�cance of that tryentering OUTER 21,21 and you will obtain the outputSFN>OUTER 21,21{42} + {41^2 } + {3^2 } + 2{321} + {31^3 }+ {2^3 } + {2^2 1^2 }SFN>- Notice that the S�function f321g appears with amultiplicity of 2. Now enter FRAME LAST and youwill see the frames for each partition drawn on thescreen with a 2 appearing above the frame for f321g.Now try the command FRAME OUTER 21,21 and youwill start to learn how you can combine sequences ofcommands. Enter OUTER 4321,4321 and note thatyou get a screen full of S�functions with the wordMORE appearing on the left. Pressing a key will showyou the next screen full. You can turn o� MORE byentering MORE FALSE now repeat OUTER 4321,4321and 206 S�functions will scroll by. TryFRAME OUTER 4321,4321 and 206 frames will 
ashby with their associated multiplicities. To count thenumber of frames simply enter TCOUNT LAST andto count the sum of the multiplicities enter MCOUNTLAST.Look at the help�les associated with the commandsSKEW, TRWT, WEIGHT, LENGTH and see if youcan determine the terms in each of the S�functionseries we have discussed today up to say weight 8.Feel free to explore the various features. See if youcan make yourself a LOGFILE in which you obtainthe aforementioned series and then edit the log�le and61



print out a neat table with suitable captions etc., pos-sibly as a TEX�le.
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