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The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

m 1.1 Introduction

This course is a continuation of the previous semester course but it
does not assume the subject matter of that course. The course will be given
in English. While the concluding examination paper will be set in English

students may elect to answer written questions in Polish.

In this semester I will be considering applications of symmetry concepts
to and more particularly groups to problems in physics with special emphasis
on applications to one- and many-particle systems. Some acquaintance with
the basics of finite groups would be useful though not essential. Full notes

will be available for each lecture.

I shall be assuming you have had a preliminary course in quantum theory
including the rudiments of perturbation theory and the quantum theory of
angular momentum. I propose to first give a brief review of atomic structure
in order to establish some notationand then move on to a discussion of some
relevant properties of finite groups taking the symmetric group as out prime
example and give a brief outline of the properties of symmetric functions. I
will then introduce you to the subject of Lie groups and algebras using the
quantum theory of angular momentum as an example. This will lead to direct
applications to the hydrogen atom and the harmonic oscillator and then to
the concept of a dynamical group. The remainder of the course will then be

devoted to a wide range of applications.

In making quantum calculations it is essential to be able to specify right
at the beginning (1). the Hamiltonian appropriate to the system being studied
and (2). by what manner we propose to solve the quantum problem. The
latter usually requires that we specify a particular perturbation procedure. I

would like to strongly emphasise the preceding two remarks. All to often one
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reads in the literature papers where neither remark is clearly stated.
m 1.2 The many-electron Hamiltonian

Only in very special cases can we write down a Hamiltonian for a system
and solve the quantum equations exactly. Examples of these special cases
include one-electron hydrogenic atoms. Note even when we say ”an exact
solution” we really mean an exact solution of a model system. For any real
system our solutions can only be approximate. In some cases the solutions
may apply to a system, such as, for example, a relativistic hydrogen atom
with astonishing precision while for a rare earth atom with ~ 60 electrons we

cannot expect to attain anything like the same precision.
For an N—electron atom we may write the Hamil- tonian, H, as

62

N Z62

H:;bﬂﬁTHmm.w+;a+m (1-1)
The first term represents the kinetic energy of the electrons, the second the
Coulomb attraction between the positively charge nucleus of atomic number
7 and the i—th electron, the third the spin-orbit coupling, and the fourth term
the Coulomb repulsion between pairs of electrons. The ... are there to remind
us that there may be many other terms such as internal, or external, mag-
netic or electric fields, hyperfine interactions coupling the nuclear magnetic
or electric quadrupole moments to the electrons, crystal fields and a multi-
tude of relativistic effects etc. Furthermore, we are assuming, for the moment
that the nucleus is an infinitely massive point object which means that we

ignore mass isotope effects and finite nuclear size effects. Given the above

Hamiltonian we wish to solve the eigenvalue equation
Hv = Ev (1-2)

This deceptively simple equation is incapable of exact solution, or even near
exact solution for nearly all atoms. We seek to solve a simpler problem and
then proceed to use perturbation theory.

m 1.3 Central Field approximation

In order to simplify our problem let us assume each electron moves

independently of the other electrons in a spherically averaged central field
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potential —U(r;)/e with a zero-order Hamiltonian, H,,

Hy=>" [% + U(m)] (1-3)
with
H:Z[_Z: —U(m)]—l—Z:Tj—l—ZC(m)(s 1), + (1—4)

To proceed we first solve the much simpler central field equation
HQ\IJQ = EO\IJQ (1 — 5)

This equation can be separated using a set of functions «(«;) such that

N N
\Ifo = H1/)Z(ozl) and Eo = ZEi(ai) (1 — 6)
i=1 i=1
leading to equations of the general form
2
|2+ 0] vte) = s(a)ia) (-1

This equation may be separated in spherical coordinates (r,9,¢) by writing

RHZ(T)YZTW (9’ ¢)

r

U(a) =

(1-38)

with the usual definition of the spherical harmonics as

20+ DI — me)! ym. im
Vion(0,6) = (=1 [ P ot e (1-9)

me

(1— 257 dttm
264! dzttme

Whereas the radial function R,(r) depends explicitly upon the central field

with

() = (=2 - 1)’ (1-10)

potential U(r) the angular part Y, (0,¢) is exactly the same as that for a

hydrogenic atom. Each electron carries a spin s = 1 with spin projection m, = +1

and hence we should augment the orbital eigenfunctions of Eq.(1-8) with a

two-component spinor x(s,m,) to give a complete spin-orbital eigenfunction

R.«(")Y o, (0,
o(r) Yy (9¢>)X

r

U(a) =

(s,ms) (1-11)
where now
a = (nfmysmy) (1-12)

describes a set of five quantum numbers associated with the state of a partic-
ular electron in the central field approximation (for the moment we suspend

discussion of the identity of electrons).

m 1.4 Electron Configurations

3



1.4 Electron Configurations

Note that the one-electron energies ¢,, depend only on the quantum

number pair »¢ and hence the sequence of quantum numbers
nlfl,nzfz,...,anN (1—13)

define an electron configuration. Within the central field approximation the states
associated with the same sequence of n¢/ quantum numbers, and hence electron
configuration, are degenerate in energy. Different electron configurations have
different energy eigenvalues. As is usual in designating a particular electron
configuration we will normally suppress the quantum numbers associated with
closed shells and will thus often refer to configurations giving just such as are
necessary for clarity e.g. 3¢° ( the 3d transition ions) or 4f° (the lanthanide

ions) with multiple occupation of an orbital being indicated by a superscript.
m 1.5 Single Configuration Approximation

The lowest energy configuration is the ground configuration. In neutral
atoms there are often several electron configurations competing for lowest
energy. Thus in the neutral 3¢ transition metal atoms the 3¢V, 3d¢V~'4s and
3dV~24s? are usually energetically close and strongly interacting. In that case
we have configuration mizing occurring. A similar situation arises in the neu-
tral lanthanides. As the ionisation of atoms increases the low lying electron
configurations tend to become energetically separated from one another and
the lowest states of the ion may be well characterised by those of a single
configuration. Thus the low lying states of the doubly charged transition ions
are well characterised by a single 3¢V (N =1,2,...,10) configuration and those of
the triply ionised lanthanides by a single 4fY (N =1,2,...,14). In much of our
work we shall assume a single configuration approximation though, as we shall
see later, there are important phenomena such as intensities of transitions in

solid state materials where such an assumption must abandoned.
m 1.6 Bosons and fermions

The particles we commonly encounter in physics can be divided into two
classes bosons and fermions. Bosons are associated with integer spin, examples
being photons, gluons and the weak interaction bosons 7° and W*. Fermions
are associated with half-integer spin, examples being electrons, neutrinos and

quarks. Bosons establish the interactions between fermions. Thus the pho-
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ton, a massless spin 1 particle, is the exchange particle associated with elec-
tromagnetic interactions. In most of atomic and molecular physics we can
restrict our attention to quantum electrodynamics (QED). The weak inter-
actions manifest themselves in atomic and molecular physics in very small
parity violations. Bosons and fermions obey different statistics, namely Bose-
Einstein and Fermi-Dirac, respectively. That requires us to construct totally
symmetric wavefunctions for many-boson systems and totally antisymmetric

wavefunctions for many-fermion systems.
m 1.7 Permutational Symmetry

Bosons and fermions differ with respect to their behaviour under an inter-
change of their position, or equivalently with respect to a rotation through
27 or 360°. We shall designate the wavefunction for a single fermion or bo-
son as ¢(a) where o is an appropriate set of single particle quantum num-
bers associated with some single particle solution of , for example, some cen-
tral field potential. Thus for a hydrogen atom we might use o = {nstm;m,}

or a = {nsljm;}. A N-particle system will involve N-single particle wave-

functions (¢; i=1,2,...,N) and N-sets of single particle quantum numbers
(g k=1,2,...,N). The wavefunction , ¥, for the N—particle system will be
such that

U = U1, bo,...,6n) (1.14)

For a two-particle system we could write
L
V2

The positive sign corresponds to a symmetric wavefunction and the minus sign

U(p1,d2) = —={01(a1)d2(a2) £ ¢1(az)da(a1)} (1.15)

corresponds to an antisymmetric wavefunction. Note that we have permuted
the quantum numbers with respect to the coordinates of the particles. The
wavefunction of a pair of fermions, unlike a pair of bosons, undergoes a change
of sign. If a; = a, then for identical fermions Eq.(1.15) vanishes though not for
bosons. That is consistent with the Pauli exclusion principle for identical
fermions. Thus permutational symmetry, required by the indistinguishability
of identical particles, leads for N—fermions to the construction of of deter-
minantal states to give totally antisymmetric states while for N—bosons to the
construction of permanental states to give totally symmetric states. Hence for an

N—-fermion system we have the totally antisymmetric wavefunction
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zlgalg zlgazg zlgm; 4
\If(fbl,sz,...,fbw):ﬁ 2:1 2:2 2:N (1.16)
on(a1)  on(az) ... én(an)

In .S—coupling basis we use o = {ns¢m,m,} whereas in jj—coupling we would use
a = {nstjm;}. The information content of the determinantal state may be fully

specified by the abbreviated form
{oavias .. .an} (1.17)

In the case of bosons we are required to construct permanental states to yield

totally symmetric wavefunctions,

zlgalg zlgazg zlgm; iy
‘I’(¢1,¢>2,~~~,¢>N)=\/% o 2:2 2.N (1.18)
on(a1)  on(as) ... on(an)

The information content of the permanental state may be fully specified by
the abbreviated form

[aras ... an] (1.19)

We shall use square brackets [] to indicate boson states and curly brackets
{} for fermion states. Equations (1.16) and (1.18) look remarkably similar.
We have distinguished them by superscripts {1V} and {N}, respectively. The
matrix of the single particle functions are the same in both cases but the
action on the matrix is different. In the first case the determinant of the matrix
is formed and in the second the permanent of the matrix is formed. Could we

form other objects of interest by other actions on a matrix?
m 1.8 Many-particle states of Bosons and Fermions

Let us for the moment consider the states of N identical bosons or fermions.
Suppose the boson has an angular momentum j = 2 (i.e. a d-boson) and
hence m; = 0,+1,42 while the fermion has angular momentum j = 5/2 and hence
m; = +1/2,43/2,45/2. If N = 2 in both cases what are the allowed values of J ?
We note that

My =mj, +my,
Just considering the non-negative values of M; we obtain for the fermions the

following table of determinantal states:
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Table 1.1 Determinantal states for (5/2)” fermions.

My States

4 {5/23/2}

3 (5/21/2}

2 (5/2 — 1/2} (3/21/2}

1 (5/2 — 3/2} (3/2 —1/2}

0 (5/2 —5/2} (3/2 — 3/2} (1/2 — 1/2}

Inspection of the above table leads to the conclusion that the allowed values
of J in (5/2)? are J =0,2,4.
The corresponding ¢> boson states for non-negative M; are given in Table 1.2.

Table 1.2. Permanental states for ¢ bosons

My States

4 [22]

3 [21]

2 [20] [11]

1 [2 - 1] [10]

0 [2 - 9] [1— 1] [00]

Inspection of the above table leads to the conclusion that the allowed values

of J in ¢% are J =0,2,4 exactly those ! found for (5/2)°.
m 1.9 Ladder Operators and Determinantal States

For the electron configuration f?> we can enumerate the set of determinantal

states for non-negative Mg, M; as in Table 1.3.

L' general the antisymmetric states of N identical particles each having angular j = m/2 and the symmetric

states of N particles each having angular momentum j = (m +n+ 1)/2 have the same total angular momentum .J values.
See B.G.Wybourne, Hermite’s reciprocity Law and the Angular Momentum States of Equivalent Particle Configurations

J.Math.Phys. 10, 467-71 (1969).
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Table 1.3. Determinantal states for the Electron Configuration f2.

My,

© = N W s Tt O

Ms =0

+ -
3 3

{532}
{57}
{50}
{30}
{70}
{50}

+ -
-2 2

{

+ -
2 3
+ -
2 2
+ -
21
+ -
3 -1
+ -
2 -1
+ -
1 -1

+ -
1 3
+ -
1 2
+ -
11
+ -
3 -2
+ -
2 -2

+_

0 3

+ - + -

0 2 -1 3

+ - + - + -
01 {—12} -2 3
+ - + - + -
3 -3 {—11} -3 3

Ms¢ =1

(SR
35}
a3y &4
T 5y A7 4
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Recall that for an electron in an f—orbital ¢ =3 and hence m;, =0,+1,4+2, 43.
There are just two values of the spin projection m, = £1/2. Thus it suffices in
writing a determinantal state to just display the values of m, and indicate the
value of m, as a + or — sign placed above m,. For a given determinantal state

we have
Ms = "m,, and Mp=> mg, (1.20)
=1 i=1

Thus every determinantal state may be associated with definite values of Ay
and M;. That does not mean that they are eigenstates of the total spin S
and orbital I angular momentum. To form such eigenstates we must form
appropriate linear combinations of the determinantal states to give eigen-
states |SLMsM; >. Following tradition we will normally write such a state
as |*+*'LMsM; > where (25 + 1) is known as the spin multiplicity. The quantum
number L is usually associated with alphabetical letters

0 1 2 3 4 5 6 7 8
s p D F G H I K M

A spectroscopic term will be designated as

2S+1L

Associated with a given value on S there are (25 + 1) values of My and with L

there are (2L + 1) values of M; where
Ms=S8,8S—1,...,-S+1,-S and My=1L,L—1,...,—L+1,—L

Inspection of Table 1.3 shows that the spectroscopic terms of the electron
configuration f* are
SprH  'SDGI
Choose
106 >= {1 ) (1.22)
={; .
Let us now determine |'705 >. To do this we use the properties of ladder

operators. Recall

Li|LM >=+/L(L+1)= M(M + 1)|LM +1 > (1.23)

and

Ly = Zﬁil (1.24)
i=1
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Let (1.23) act on the left-hand-side of (1.22) and noting (1.23) act also on the

determinantal state to give

L_|'106 >= /6 x 7— 6 x 5" 105 >= /12|'105 > (1.25)
and
T Ty ovsa—s<a T v+t Oy (1.26)
“l3 3 2 3 32 '
Equating (1.25) and (1.26) gives
V2 - -
1 —_ =
1105 >= —-[{, J1+{; , 1] (1.27)

This state must be orthogonal to the state 705 > and hence after fixing a
phase we have

V2 - -

P05 >= L2 =10 (1.28)

Application of the spin raising operator 5, to (1.28) gives
V2 o+ 4,

3 _ /53 _ _
StPH05 >= V2|PH15 >= 5y g1 =1y 1
and hence
3 _ + +
Pr15>=—{ )] (1.29)

Note the appearance of the minus sign which comes from our particular choice

of enumeration of the determinantal states.
m Exercises

1.1 Show that the totally antisymmetric orbital angular momentum states
of ¢ (¢t =4) (i.e. the states of maximum multiplicity) are the same as for

the totally symmetric states of (5/2)%.

1.2 Determine the allowed values of J for the jj—coupled configurations
(5/2)%,(5/27/2) and (7/2)°.

1.3 Determine the allowed values of S and L for the electron configuration
.

1.4 Given that for an LS—coupled term ?°*'L we have J =L + S and

J=L+SL+S—1,...,|[L—5| (1.30)

Show that the values of J for the list of terms found in Ex 1.3. are the
same as those found in Ex 1.2.

1.5 Show that in the configuration ;> the only allowed values of J are the

even integers 0,2,...,2j — 1.



FErercises

1.6

1.7

1.8

1.9

Starting with the angular momentum commutation relations

e Jyl=id. [y L =ide [T, T =iy

show that if J. = J, +iJ, then

_ eI+ Iy

2
J 2

+ J?
If J =L + S show that

JJ+1) = L(L+1)—S(S+1)=S4yL_ +S_Ly +2S. L.
Determine the eigenstates

104 > |PHO04> |'G04>  [PH14>

as linear combinations of determinantal states.

(1.31)

(1.32)

(1.33)

Discuss how you could determine the eigenstates [?H.JM > as linear com-

binations of the states |PHMsM; >. Hint: use the fact that j. = L. + 54.

11



12  Exercises

The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

m 2.1 Introduction The structure of an electron configuration develops when
we include the Coulomb repulsion and spin-orbit terms as a perturbation on
our zero-order central field solutions. In this lecture we review the basic

structure of ¢V and fV electron configurations.
m 2.2 Multiplets

The Coulomb interaction, H-, commutes with the angular momentum
operators J°, S and L” which ensures that the matrix elements of I are diag-
onal in the quantum numbers SLJ. Furthermore, 7 commutes with J., S, and
L. leading to the matrix elements being diagonal in M;, Ms and M; and inde-
pendent of the quantum numbers J, M;, Mg, M. Thus the effect of introducing
the Coulomb interaction in first order is to partially lift the degeneracies of
electron configurations In general a configuration splits into a series of multi-
plets that are characterised by the total spin S and orbital £ quantum numbers.
Each Sz multiplet is still degernerate with respect to the quantum numbers
Mg, Mz or equivalently with respect to the quantum numbers J, M;. Thus each
multiplet involves a set of (25 +1)(2L + 1)-fold degenerate states.

m 2.3 Spin-Orbit Splittings

The spin-orbit interaction term, H,,, commutes with J? and M, but
neither with S* or L” and hence the matrix elements of H,, are diagonal in the
quantum numbers J, M; and independent of M;. Very importantly, The spin-
orbit interaction is not diagonal in S and I and hence there is the possibility
of 5 and I ceasing to be ”good quantum numbers” and a state |aJM;) becomes
some linear combination of |[SLJM;) states

I M) =" a(S, L, J)|SLIM;) (2.1)
S,
This mixing of multiplets is often responsible for a breakdown of selection

rules and for departures from LS—coupling.
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The spin-orbit interaction results in a further lifting of degeneracy, each
S, L, multiplet splits into a series of sublevels each characterised by the total

angular momentum J where
J=L+SL+S—1,...,|L—25| (2.2)

with each level of total angular momentum J being 2/ +1-fold degenerate. This
residual degeneracy may be lifted by the application of an external magnetic
field as in the case of the Zeeman effect.
m 2.4 The LS terms of ¢V and fV configurations

We now give in table form the various LS terms that arise in the ¢V and
N configurations. Here I have used the theory of Lie groups to give a full
description of the states. In the case of the ¢V configuration we have for a
single d—orbital a total of 10 states |dm,m;) which can be regarded as a vector
in a 10-dimensional unitary space. The LS multiplets of ¢V and ¢'°~Vare the

same and hence we need only list the cases for N <5.
m 2.5 The Hund’s rule groundstates for atoms

The groundstate of an atomic configuration of the type ¢¥ may be de-

termined by application of Hund’s rules.
1. From the list of 1S multiplets select the multiplets of maximal s.
2. From the multiplets of maximal S select the multiplet of largest I.

3. If N <20+ 1 select the smallest value of the total angular momentum J

while for N > 2¢+ 1 select the largest value of J.

13



14 2.4 The LS terms of d and fV configurations

Table 2.1 LS multiplets of the ¢¥ (N = 0 to 5) configurations

# of states U1o SUS x SUE SOs 2541,
1 10} 10} x {0} [00] LS
10 1 (11 = {1 [10] D
45 (12} (2} % {12} [11] 3pF
{0} x {2} [20] DG
[00] 13
120 (13} (3} % {13} [11] ipF
{1} % {21} [21] 2PDFGH
[10] D
210 (14} {4} x {19} [10] 5D
{2} x {217} [21] SPDFGH
[10] 3D
{0} x {22} [22] LSDFGI
[20] e
[00] 13
252 (1%} (5} x {17} [00] 55
(3} x {215} [20] e
[11] ipf
{1} x {221} [22] 2SDFGI
[21] 2PDFGH
[10] D
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Table 2.2 LS multiplets of the f¥ (N = 1 to 5) configurations

# of states Uls SUS x SU¥ SO~ G 25+

1 (0} {0} % {0} [000] Lg

14 {1} {1} x {1} [100] 2p

45 {12} {2} x {12} [110] SpH

3p
{0} x {2} [200] LDGI
[000]

1DGI

iF

19
DFGHKL
IDGI

PH

F

S
364 (1%} 3} % {13} [111]

(1} x {21} [210]

*DGI

SF

59
SPFGHIKM
SDFGHKL
3DGI

3SPH

3F
'\SDGHILN
'DFGHKL
'DGI

'DGI

ls

1001 {14} {4} x {14} [111]

{2} x {211} [211]

{0} x {2} [220]

[200]
[000]

“PH

6F
1PFGHIKM
iDFGHKL
1DGI

iPH

2002 {15} {5} x {15} [110]

{3} % {213} [211]

[111]

19
PDFFGHHIIKKLMNO
PFGHIKM
DFGHKL
IDGI

PH

F
DFGHIKL
IDGI

PH

F

1} x {221} [221]

[210]

SN TN TN TN TN TN TN TN TN TN TN TN TN TN TN N N N s N | TN TN TN N TN N N N s S S s S eSS S S s S~ o~ o~
== NN = P NN WWOOFEDNFERFEFNNWRRFREIONDNNDN PR NNWORENI R R NNORFRDNON ==
O R O R OFRF O OF OO0 OO OO OOORFRNORFORFROODODO| O, ORFROOOoO| OO O
e e S e S e S e e e e e e e e S e S e e | e S N e e e e S e S e S S [ N D NN [ N e e [ |

[100]




16 2.4 The LS terms of d and fV configurations

Table 2.3 LS multiplets of the f° configuration

# of states

Uiy

SUS x SUE

SOr

25+1L

3003

{1°}

{6} x {1°}
{4} x {219}

{2} < {2217}

{0} x {2°}

[100]
[210]

[111]

[221]

[211]

[110]

[222]

F
SDFGHIKL
DGI

SPDFFGHHIIKKLMNO
SPFGHIKM
SDFGHKL
3DGI

spH

sp
SPFGHIKM
SDFGHKL
3DGI

spH

sp

spH

sp
L\SDFGGHITKLLMNQ
\PFGHIKM
LDGT

i

s
L\SDGHILN
\DFGHKL
LDGT

LDGT

s
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Table 2.4 LS multiplets of the f” configuration

17

25+1L

3

# of states Uls SUS x SUE SO~

89

SDGI

“PH

6F
1SDGHILN
iDFGHKL
1DGI
iPFGHIKM
iDFGHKL
1DGI

3432 {17} {7y x {17} [000]
{5} x {21°} [200]
[110]

{3} x {2213} [220]

[211]

[111]

{1} x {231} [222] *SDFGGHIIKLLMNQ
*PFGHIKM

2DGI

2F

25
*PDFFGHHIIKKLMNO
PFGHIKM

DFGHKL

2DGI

[221]

F

[210] DFGHIKL

NN AN AN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN N TN N N N s N
P ENNEEENNNWWORNWEREORFRENRFERFRENDNDWNNDN = PN O
OHRFORFROFRORFROF OO0 OO OROORNOFREOO
e e e et e e e e e e e e e e e e e e e N e et e e et e e N e e

[100]

Exercises

2.1 Construct a proof that the matrix elements of H. are independent of

J, My, Mg, Mg.

2.2 Draw up a list of the Hund’s rule groundstates for the ¢V and f" con-

figurations.
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The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

With the odd number five strange natures laws
Plays many freaks nor once mistakes the cause
And in the cowslap peeps this very day

Five spots appear which time neer wears away
Nor once mistakes the counting - look within
Each peep and five nor more nor less is seen
And trailing bindweed with its pinky cup

Five lines of paler hue goes streaking up

And birds a many keep the rule alive

And lay five eggs nor more nor less then five
And flowers how many own that mystic power
With five leaves making up the flower

John Clare = 1821

m Lecture 3
m 3.1 Permutations and the Symmetric Group

Permutations play an important role in the physics of identical particles. A
permutation leads to a reordering of a sequence of objects. We can place »
objects in the natural number ordering 1,2,...,n. Any other ordering can be
discussed in terms of this ordering and can be specified in a two line notation

1 2 n
(1) #(2) ... w(n)

For n =3 we have the six permutations
1 2 3 1
1 3 2
1
3

(3.1)

—_ N =N
LW N N

[N CREN}
— o
N~
TN
L =



2.4 The LS terms of dN and fN configurations

Permutations can be multiplied working from right to left. Thus

1 2 3 12 3\ _ (1 2 3
301 2)%\2 3 1)7\1 2 3
The six permutations in (3.2) satisfy the following properties:

1. There is an identity element (i g g)

2. Every element has an inverse among the set of elements.
3. The product of any two elements yields elements of the set.
4

. The elements satisfy the associativity condition a(bc) = (ab)e. These con-
ditions establish that the permutations form a group. In general the n!

permutations form the elements of the symmetric group S,.

m  Exercise 3.1 Construct a multiplication table (The Cayley Table) for the
six permutations given in (3.2) and verify that the set of six permutations

form a group.

m Exercise 3.2 Inspect your Cayley table and see what subsets of the elements

satisfy the four group axioms and thus form a subgroup of Ss.

m 3.2 Cycle Structure of Permutations
It is useful to express permutations as a cycle structure. A cycle (5,5, k,...,0) is
interpreted as i — j,j — k and finally { — i. Thus our six permutations have the
cycle structures

(1D(2)(3),(1,2)(3), (1)(2,3), (1,3)(2),(1,3,2),(1,2,3) (3.3)

The elements within a cycle can be cyclically permuted and the order of the

cycles is irrelevant. Thus (123)(45) = (54)(312).

m A k-cycle or cycle of length k contains k elements. It is useful to organise cycles

into types or classes. We shall designate the cycle type of a permutation = by

(1m1gme | ) (3.4)

*

where m; is the number of cycles of length k in the cycle representation of the

permutation r.

m For S, there are five cycle types

(1%, (1 21), (29, (11 3), (41) (3.5)

Normally exponents of unity are omitted and Eq.(3.5) written as

(1%, (12), (2%),(13), (4) (3.6)
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3.8 Conjugacy Classes of S,

m Cycle types may be equally well labelled by ordered partitions of the integer

n

A=(MAs. . A (3.6)

where the )\, are weakly decreasing and

dxi=n (3.7)

The partition is said to be of length ¢, and of weight w) =n. In terms of partitions

the cycle types for S; are

(17),(217),(2°1), (32), (31%), (41), (5) (3.8)
m 3.3 Conjugacy Classes of S,
In any group G the elements ¢ and h are conjugates if

g = khk™! for some kedG (3.9)

The set of all elements conjugate to a given ¢ is called the conjugacy class of ¢

which we denote as x,.

m Exercises

3.3 Show that for S, there are five conjugacy classes that may be labelled
by the five partitions of the integer 4.
3.4 Show that the permutations, expressed in cycles, with cycles of length
one suppressed, divide among the conjugacy classes as
(1*) De
(212) 5(12), (13), (14), (28), (24), (34)
(22) S(12)(34), (13)(24), (14)(23)
(31) D(123), (124), (132), (134), (142)
( (
(

U

143), (234), (243)

(4) D(1234), (1243), (1342), (1432) (3.10)

In general two permutations are in the same conjugacy class if, and only
if, they are of the same cycle type. The number of classes of S, is equal the
number of partitions of the integer n.

If A = (1m12m= . p™») then the number of permutations k, in the class (1) of S, is

|
ky = - (3.11)

1mimy12memy! . nMmrm,!
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m 3.4 The Cayley Table for S;

e (12) (13) (23) (132) (123)
e e (12) (13) (23) (132) (123)
(12) (12) e (132) (123) (13) (23)
(13) (13) (123) e (132) (23) (12)
(23) (23) (132) (123) e (12) (13)
(132) (132) (23) (12) (13) (123) e
(123) (123) (13) (23) (12) e (132)

m 3.5 Transpositions and cycles of S,
1. A cycle of order two is termed a transposition.
2. A transposition (i, i+ 1) is termed an adjacent transposition.
3. The entire symmetric group S, can be generated (or given a presentation
in terms of the set of adjacent transpositions

(12), (23), ..., (n—1n) (3.12)

m If r=nn.. .7, where the r, are transpositions then the sign of = is
defined to be

sgn(m) = (=1)F (3.13)
If the number of cycles of even order is even then the permutation is even
or positive; if 1t is odd then the permutation is odd or negative.

m 3.6 The Presentation of S,

Let us designate an adjacent transposition by
si= (6,0 +1) for i=12...n-1 (3.14)

then we can give a presentation of the symmetric group S, in terms of the s; via

the following three relations:-

si=1 for i=1,2,...n-1 (3.15a)
$iSi415i = Si415iSit1 for i=12,....n—2 (3.15b)
58) =88 for |i—j|>2 (3.15¢)

Every permutation r in S, can be expressed as a reduced word of minimal length

{(m) in the s,.

m Exercise

3.5 Verify the last sentence in the case of S3
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m 3.7 Note on Hecke algebra H,(q) of type A,_,

We can ¢-deform the presentation of S, to give the complex Hecke algebra

H.(q), with ¢ an arbitrary but fixed complex parameter, generated by ¢, with

i=1,2,...,n—1 subject to the relations:
9P =(qg—1)gi+q for i=1,2,...n-1 (3.16a)
Gigi+19i = Gi+19i9i+1 for i=1,2,....n-2 (3.16b)
9i95 = 9;9s for |i —j] > 2 (3.16¢)

For ¢ = 1 these relations are exactly those appropriate to the symmetric group
S,. There exists a map h from S, to H,(q) such that h(s;) = ¢, and h(r) = g;,9i, .. . i,
for any permutation = =s; s, ...s;,, €S,. The set of reduced words h(r) for all n!
permutations = € S, forms a basis of #,,(¢). For more details see-- R. C. King and B. G. Wybourne,

J. Phys. A: Math. Gen. 25 L1193 (1990).
m 3.8 The Alternating Group A,

The set of cven permutations form a subgroup of S, known as the alternating

group A, and has precisely half the elements of S, i.e. ($)nl.

m Exercises

3.6 Show that the set of six matrices
1 0 0 1 -1 -1
0 1 -1 -1 1 0
0 1 -1 -1 1 0
T e @17
with the usual rule of matrix multiplication form a group isomorphic to
Ss.

3.7 Show that the symmetric group S, has two one-dimensional represen-
tations, a symmetric representation where every element is mapped onto
unity and an antisymmetric representation where the elements are mapped

onto the sign defined in Eq. (3.13).
m 3.9 Partitions

The partition of integers play a key role in much that follows. Here we review

some of their properties and establish some notation for later usage.

m A partition is any finite or infinite sequence of integers

A=A de N L) (3.18)
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Unless otherwise stated we shall assume the sequence involves non-negative

integers in non-increasing order;
M>XAa> . >N > ... (3.19)

Normally we will omit zeros.

m The non-zero ); form the parts of A\. The number of parts is the length, ¢()),
of A while the sum of its parts, \lambda, is the weight of A. If \1ambda = n then X is

said to be a partition of n.

m We shall frequently write A - n to indicate that ) is a partition of n. Repeated
parts of a partition will frequently be indicated as /™ where m; is the number

of times the part i occurs in the partition ).

m The partitions for n =6 are
(6) (51) (42) (417) (3%) (321) (31%) (2°) (2°17) (21*) (1°)

m Note, in the above example the partitions have been listed in reverse lexico-
graphic order. The ordering is such that the first non-vanishing difference \; —y;,

for successive partitions A, y is positive.

m 3.10 The Ferrers-Sylvester diagram

m Every partition ) - » may be associated with a Ferrers-Sylvester diagram, shape
or frame involving n cells, dots or boxes in ¢()\) left-adjusted rows with the i-th

row containing ); cells, dots, or boxes.

For n =4 we have the five diagrams

[TT1] L u

m We will formally designate the frame associated with a partition A as F*.

m The conjugate of a partition ) is a partition ) whose diagram is the transpose

of the diagram of A. If )’ = ) then the partition ) is said to be self-conjugate.
Thus

[ ] and |

are conjugates while

is self-conjugate.
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3.11 Skew frames

m 3.11 Skew frames

m Given two partitions A and p such that A > yx implies that the frame r*
contains the frame 7#, i.e. that \; > y; for all ;i > 1. The difference p = X —y forms

a skew frame F*/&,

Thus, for example, the skew frame F°4?/?! has the form

Note that a skew frame may consist of disconnected pieces.

m 3.12 Frobenius notation for partitions

m There is an alternative notation for partitions due to Frobenius. The diagonal
of nodes in a Ferrers-Sylvester diagram beginning at the top left-hand corner
is called the leading diagonal. The number of nodes in the leading diagonal is

called the rank of the partition.

m If » is the rank of a partition then let «; be the number of nodes to the
right of the leading diagonal in the i—th row and let 5; be the number of nodes
below the leading diagonal in the i—th column. The partition is then denoted

ai, @z, ..., Gy
(bl, ba, ... b, ) (3.20)

by Frobenius as

We note that

a; > as > ... > 4y
by > bs>...> b,

and

ap+as+...+a,+by+bs+...+b.+r=n

m The partition conjugate to that of Eq.(3.20) is just
(bla bZa RS br) (321)

ay, az, RS Qy
As an example consider the partitions (543221) and (65421). Drawing their

diagrams and marking their leading diagonal we have

and .

from which we deduce the respective Frobenius designations

42 0 503 1
(531) and (420)
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s 3.13 Young tableaux

m A Young tableau is an assignment of » numbers to the »n cells of a frame F*

with A+ n according to some numbering sequence.

m A tableau is standard if the assignment of the numbers 1,2,...,n is such that
the numbers are positively increasing from left to right in rows and down

columns from top to bottom.

Thus for the partitions of the integer 4 we have the standard Young

tableaux
112]13] 1[2]4] 1[3]4]
14] 13 12]
112 13
304 214
2] 4]

|A>|oo —
[copo]—

m In the above examples the number of standard tableaux for conjugate par-
titions is the same. Indeed the number of standard tableaux associated with
a given frame F* is the dimension f» of an irreducible representation {)\} of the
symmetric group S,.

m 3.14 Hook lengths and dimensions for S,

m The hook length of a given box in a frame F* is the length of the right-angled
path in the frame with that box as the upper left vertex.

For example, the hook length of the marked box in
|

is 8.

Theorem 3.1: To find the dimension of the representation of S, corresponding to the
frame F*, divide n! by the factorial of the hook length of each box in the first column of
F* and multiply by the difference of each pair of such hook lengths.
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3.14 Hook lengths and dimensions for S,

Thus for the partition (543221) we have the hook lengths
10 |

|>—noocﬂc»oo

and hence a dimension

'2><4><5><7><9><2><3><5><7><1><3><5><2><4><2

543221:18
Ut 10'x8!x6!xb!x3!x1!

= 10720710

It is not suggested that you check the above result by explicit enumeration!
This is an example of a combinatorially explosive situation. Thus in S

one finds for the staircase partition {1413121110987654321} the number of standard

tableaux is equal to

dimension =513, 782, 568, 580, 731,957, 367, 019, 767, 803, 085, 320, 396

632,776,099, 975, 918, 380, 865, 685, 412, 418, 054, 992, 691, 200

m Exercise

Estimate how long it would take a supercomputer to enumerate the
number of tableaux and compare your result with the age of the uni-
verse. Would any forseeable developments in computer technology allow

the enumeration to be completed on the human scale?

m The above evaluation can also be equivalently

made by computing the hook lengths #;; for every box at position (i,j) and
then noting that

A n!
o= [l jyen s
which is the celebrated result of Frame, Robinson and Thrall.

(3.22)

m Exercises

3.8 Show that the dimension of of the representation

{p+2,2} = [T - _11

is
S ()

3.9 Calculate the dimensions of the irreducible representations of S; and
show that

> () =6!

A6
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m 3.15 The Symmetric group and Tensors

m Let 7,, , be a “generic” n-index tensor, without any special symmetry.
(For the moment, “tensor” means just a function of » indices, not necessarily
with any geometrical realization. It must be meaningful, however, to add (and

form linear combinations of) tensors of the same rank.)

m The entries 1,2,...n in the standard numbering of a tableau indicate the »

successive indices of 7}, ., .

m The tableau defines a certain symmetrization operation on these indices:
symmetrize on the set of indices indicated by the entries in each row, then
antisymmetrize the result on the set of indices indicated by the entries in each
column.

m The resulting object is a tensor, 7, with certain index symmetries. Now
let each permutation in S, act (separately) upon 7. The »n! results are not
linearly independent; they span a vector space which supports an irreducible
representation of S, .

m Different tableaux corresponding to the same

frame yield equivalent (but not identical) representations.

Example: The partition {22} of 4 has two standard tableaux:

HH and HEH (3.23)

Let us construct the symmetrized tensor 7 corresponding to the second of

these.
m First symmetrize over the first and third indices, and over the second and
fourth:
%(Tabcd + Tesad + Tades + Tedas)-
Now antisymmetrize the result over the first and second indices, and the third

and fourth; dropping the combinatorial factor -, we get
Taped = Taped + Tepad + Tader + Tedas
- Tbacd - Tcabd - deca - Tcdba

— Labde — Tdbac - Tacdb - Tdcab

+ Tbadc + Tdabc + Tbcda + Tdcba . (324)
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3.16 Unitary numbering of Young tableauz

It is easy (though tedious) to check that 7 possesses the symmetries charac-

teristic of the Riemann tensor.

m Exercise

3.10 Construct a set of three 4-index tensors corre-

sponding to the three Young tableaux associated with the partition {31}.

m 3.16 Unitary numbering of Young tableaux

m Many different prescriptions can be given for injecting numbers into the

boxes of a frame.

m The standard numbering is intimately associated with the symmetric group

Sp.

m  Another important numbering prescription is that of wnitary numbering
where now numbers 1,2, ..., d are injected into the boxes of a frame F* such

that:
i. Numbers are non-decreasing across a row going from left to right.
ii. Numbers are positively increasing in columns from top to bottom.
m The first condition permits repetitions of integers.

Using the numbers 1,2, 3 in the frame F?' we obtain the 8 tableaux

1] 1] 2]

2] 3]

o] fee]—

|oo>—t |w>—n
|oo>—t |w>—n

3] [2]2] [2]3]
2 2 (3.25)

Had we chosen d = 2 we would have obtained just two tableaux while d = 4
yields twenty tableaux. In general, for a frame F* a unitary numbering using

the integers 1,2, ..., d leads to

y_ Ga
=3 (3.26)
where /), is the product of the hook lengths &;; of the frame and
Gi= [[ (d+i-j) (3.27)

(i,5)ex
Thus for d =5 and X = (421) we have Hy,;) = 144 and G121 = 100800 from which
we deduce that

421

1421 = 700

which is the dimension of the irreducible representation {421} of the general

linear group GL(5).
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m In general, 7} is the dimension of the irreducible representation {\} of GL(d).
Since the representations of GI(d) labelled by partitions ) remain irreducible
under restriction to the unitary group U(d) Eq.(3.26) is valid for computing

the dimensions of the irreducible representations of the unitary group U(d).

m The same rules for a unitary numbering may be applied to the skew frames
FAM# introduced in S3.3. Thus for F°#?/?' an allowed unitary numbering using

just the integers 1 and 2 would be

1]1]1]
12]2
[1]2

m Note that our unitary numbering yields what in the mathematical literature
are commonly referred to as semistandard Young tableaux. Other numberings

are possible and have been developed for all the classical Lie algebras.

m Exercises
3.11 Draw the frames F2’/1, p43°1/421°  and p321/21,

3.12 Use the integers 1,2, 3 to construct the complete set of semistandard
tableaux for the frame
F43°1/421° and show that the same number of

tableaux arise for the frame F?!.

3.13 Make a similar unitary numbering for the frame r3?!/?! and show that
the same number of semistandard tableaux arise in the set of frames

F3 4 2F? 4 FV,
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The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

For every complex question there is a simple answer
_and it’s wrong.

_H. L. Mencken

m  Lecture Four
m 4.1 Young tableaux and monomials

A numbered frame may be associated with a unique monomial by replacing

each integer i by a variable z;. Thus the Young tableau

2]4[5]
5

3
7
8

OO [~ [Ty |2 [—

] = e N e

can be associated with the monomial

2 3.2.3,2,.3 2
xX{To T3TLTE TE TH X

m 4.2 Monomial symmetric functions

Consider a set of variables (z) = z1,2s,...,24. A symmetric monomial

‘ mk(aj)zzaw“‘

(4.1)

involves a sum over all distinct permutations o« of (A\) = (A, )2,...). Thus if
() = (z1,22,73) then

mo1(x) = @3 2o + 2] 25 + T1 23 + 1 25 + 25 23

mys(2) = 212023
The unitary numbering of ()\) = (21) with 1,2, 3 corresponds to the sum of

monomials

‘ may(2) + 2mys(x) ‘

The same linear combination occurs for any number of variables with 4 > 3.

The monomials m,(z) are symmetric functions. If A+ n then m,(x) is homogeneous
of degree n. Unless otherwise stated we shall henceforth assume that » involves

an infinite number of variables z;.
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The ring of symmetric functions A = A(z) is the vector space spanned by all the

my(x). This space can be decomposed as
A= @nZQAn (42)

where A” is the space spanned by all m, of degree n. Thus the {m,|AF n} form
a basis for the space A” which is of dimension p(n) where p(n) is the number of
partitions of n. It is of interest to ask if other bases can be constructed for

the space A".
m 4.3 The classical symmetric functions
Three other classical bases are well-known - some since the time of Newton.
1. The elementary symmetric functions
The n—th elementary symmetric function ¢, is the sum over all products
of n distinct variables z;, with ¢, =1 and generally

€n = Min = E T, Tiy ... X4, (4.3)
1<z <in

The generating function for the ¢, is

E(t) = ent" = [[(14ait) (4.4)

n>0 i>1

2. The complete symmetric functions
The n—th complete or homogeneous symmetric function 4, is the sum of
all monomials of total degree » in the variables z;, ., ..., with h; =1 and
generally
h, = Z my = Z T, Ty ... T, (4.5)
[A|=n i1<ia..<in
The generating function for the h, is

H(t) =Y hot" = [J(1—2it)~ (4.6)

n>0 i>1
3. The power sum symmetric function
The n—th power sum symmetric function is
Po=mn =&} (4.7)
i>1
The generating function for the p, is

Py=>Y put"t=> ">yt

n>1 i>1n>1

Ty
:Zl—l‘it

i>1
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32 FErercises

d 1
= — 4.
Z dt o9 1-— l‘it ( 8)
and hence

P(t) = %log [[a =zt~

= %log H(t)
= H (t)/H(t) (4.9)
Similarly,
P(—t) = %log E(t)=E (t)/E(t) (4.10)

Equation (4.9) leads to the relationship
nhy =3 prhn_r (4.11)
r=1
It follows from (4.9) that

H(t) = epopnt"/n

n>1
= H exp(pn t™/n)
n>1
=11 > ety /nm my! (4.12)
n>1l my=0
and hence
H(t)y =Yz path (4.13)
A
where
o= mi! (4.14)
i>1

where m; = m;(\) is the number of parts of A equal to 1.
Defining
ey = (=)A= (4.15)

we can show in an exactly similar manner to that of Eq.(4.13) that
E(t) =" exzy ' pat! (4.16)
A

It then follows from Eqs.(4.13) and (4.16) that

hn= Y 25'pa (4.17)
|Al=n
and
ey = Z inlp)\ (4.18)

|Al=n
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m Exercises

4.1 Show that for n=3
pg:x?—i—x‘;’—l—xg—l—...

€3 =212223+ 212284+ T223%a+ ...

3 3 2 2
hs=zi+a5+.. . +ejzot+xia5+ ... trrxoxst+x12024+ ...

4.2 Noting Egs. (4.4) and (4.6) and that #(t)E(—t) = 1, show that

Zn:(—l)rhn_r e, =0
r=0

for n > 1.

4.3 Use Eq.(4.20) to show that
en = det(hi—itj)i<ij<n

and hence

hn = det(e1—iyj)i<ij<n

4.4 Use Eq.(4.11) to obtain the determinantal expressions

ey 1 0 .. 0
262 €1 1 e 0
Pn = . . . .
Nnenp €n—1 €n—2 N €1
41 1 0o ... 0
P2 1 2 ce 0
nle, =| : :
Pn-1 Pn-2 . cee n—1
Pn Pn-1 S p1
hy 1 0 .0
2hs hy 1 .0
(_1)n_1pn = : : . .
nhn hn—l hn—2 N h1
1 -1 0 e
P2 1 -2 e 0
hao=| 8
Pn-1 Pn—-2 . —n—|—1
pn pn_l . N pl

m 4.4 Multiplicative bases for A?

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

The three types of symmetric functions, h,, ¢,, p,, do not have enough elements

to form a basis for A”, there must be one function for every partition A+ n. To
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that end in each case we form multiplicative functions f, so that for each A n

=0 (4.27)

where f =¢, h, orp Thus, for example,
€s1 =ez-e1 = (w2t aies+aoas+.. )1 +xa+aes+...)

m 4.5 The Schur functions

The symmetric functions

mx, ex, b, pa (4.28)

where ) - n each form a basis for A”. A very important fifth basis is realised
in terms of the Schur functions, s\, or for brevity, S—functions which may be

variously defined. Combinatorially they may be defined as
sa(w)=> " (4.29)
T

where the summation is over all semistandard
A—tableaux 7. For example, consider the S—functions s, in just three variables

(x1, x2, x3). For A =(21) we have the eight tableaux 7 found earlier

1] [aa] [af2] [f2] (3] [3] [2]2] [2]3] (3.8)
2 3 2 3 2 3 3 3 '

Each tableaux T corresponds to a monomial =7 to give
sa1(1, 22, r3) Il‘% 2 + l‘% 4+ l‘% +riro23+ 212223+ 21 90;2),
+xdxs 4 o2l (4.30)
We note that the monomials in Eq.(4.30) can be expressed in terms of just
two symmetric monomials in the three variables (z), z2, x3) to give
$21(x1, T2, ¥3) = ma1(@1, T2, ¥3) + 2mys(21, T2, T3) (4.31)
In an arbitrary number of variables
sa1(®) = maq(x) + 2mys(x) (4.32)
This is an example of the general result that the
S—function may be expressed as a linear combination of symmetric monomials
as indeed would be expected if the S—functions are a basis of A”. In fact

sa(z) = Z[(Mmu (4.33)

wEn

where |A\| = n» and K,, = 1. The K,, are the elements of an upper triangular
matrix K known as the Kostka matrix. K is an example of a {ransition matrix

that relates one symmetric function basis to another.
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m 4.6 Calculation of the elements of the Kostka matrix

The elements K,, of the Kostka matrix may be readily calculated by the fol-

lowing algorithm :
i. Draw the frame F*.

ii. Form all possible semistandard tableaux that arise in numbering F* with

11 ones, u, twos etc.
ili. K,, is the number of semistandard tableaux so formed.

Thus calculating K(4)(2:12) we obtain the four semistandard tableaux

23] [1[1]2]4] 314]

202] [1]1 1
214 203

111 11
314 212

and hence K4)(s212) = 4.

m Exercises
4.5 Construct the Kostka matrix for X, u - 4.

4.6 Show that in the variables (z;, z,, z3) the evaluation of the determinantal

ratio
x‘f x% 1
x% x% 1
l‘g x% 1
P T
2 oz 1
x% rs 1

yields the monomial content of the S—function s,; in three variables as
found in Eq.(4.30). N.B. The above exercise is tedious by hand but
trivial using MAPLEV.

The last exercise is an example of the classical definition, as opposed
to the equivalent combinatorial definition given in Eq.(4.29), given first by
Jacobi, namely,

sy = sa(@q, za, ...,xn):a;—:& (4.34)

where )\ is a partition of length <» and

§=mn-1,n-2,...,1,0) with
MY i en (4.35)
and

as = H (2 —xj) = det(x?_j) (4.36)

is the Vandermonde determinant. Note that the Vandermonde determinant is

an alternating or antisymmetric function. Any even power of the Vandermonde
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determinant is an symmelric function. This has important applications in the

interpretation of the quantum Hall effect.
m 4.7 Non-standard S—functions

The S—functions are symmetric functions indexed by ordered partitions \. We
shall frequently write S—functions s,(x) as {\}(z) or, since we will generally con-
sider the number of variables to be unrestricted, just {A\}. As a matter of no-
tation the partitions will normally be written without spacing or commas sep-
arating the parts where ); <9. A space will be left after any part ), > 10. Thus
we write {12,11,9,8,3,2,11 = {12 11 98321} While we have defined the S—function
in terms of ordered partitions we sometimes encounter S—functions that are
not in the standard form and must convert such non-standard S—functions into
standard S—functions. Inspection of the determinantal

forms of the S—function leads to the establishment of the following modification

rules :
(A, day o =2k =0 (4.37)
Dy X it dd = = di = L+ 1, )
(4.38)
{A}=0 if Ay =MN4+1 (4.39)
Repeated application of the above three rules will reduce any non-standard

S—function to either zero or to a signed standard S—function. In the process

of using the above rules trailing zero parts are omitted

m Exercise
4.7 Show that
{24} = —{3%}, {141} = —{321}
{14 — 25 — 14} = —{3°2}

{3042} =0, {3043} = {3%2}

m 4.8 Skew S—functions

The combinatorial definition given for S—functions in Eq.(4.29) is equally valid
for skew tableaux and can hence be used to define skew S—functions s,,,(z) or
{A/p}. Since the s,,,(z) are symmetric functions they must be expressible in

terms of S—functions s,(z) such that

Sx/u = Zcf;ys,, (4.40)
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It may be shown that the coefficients ¢, are necessarily non-negative integers
and symmetric with respect to ;4 and v. The coefficients ¢}, are commonly

referred to as Littlewood-Richardson coefficients.
m 4.9 The Littlewood-Richardson rule

The product of two S—functions can be written as a sum of S—functions, viz.

Sp.8y = cf;,,:;)\ (4.41)
A

The Littlewood-Richardson coefficients ¢}, in

Eqgs. (4.40) and (4.41) are identical, though the summations are of course

A

different. In both cases ||+ |v| = |Al. A rule for evaluating the coefficients ¢},

was given by Littlewood and Richardson in 1934 and has played a major role
in all subsequent developments. The rule may be stated in various ways. We
shall state it first in terms of semistandard tableaux and then also give the
rule for evaluating the product given in Eq.(4.41) which is commonly referred
to as the outer multiplication of S—functions. In each statement the concepts of

a row-word and of a lattice permutation is used.
m Definition 4.1 A word

Let T be a tableau. From T we derive a row-word or sequence w(T) by reading the
symbols in T from right to left (i.e. as in Arabic or Hebrew) in successive rows

starting at the top row and proceeding to the bottom row

Thus for the tableau

21213]

O | DN [—=

oo [~fe s o]

we have the word w(T) = 322113322446578 and for the skew tableau
1[1]1]

[1]2

we have the word w(T) = 11122121.
m Definition 4.2 A lattice permutation

A word w = ajas...ax in the symbols 1,2,... n is said to be a lattice permutation
if for1 <r < N and 1 <i<n—1, the number of occurrences of the symbol i in

aias . ..a, s not less than the number of occurrences of i + 1.

Thus the word (7)) = 322113322446578 is clearly not a lattice permutation whereas

37



38 4.9 The Littlewood-Richardson rule

the word w(T) = 11122121 is a lattice permutation. The word w(7T) = 12122111 is not

a lattice permutation since the sub-word 12122 has more twos than ones.

m Theorem 4.1 The value of the coefficient ¢}, is equal to the number of semistandard

tableaux T of shape FM* and content v such that w(T) is a lattice permutation.
By content v we mean that each tableau T contains v, ones, v, twos, etc.
m  Example

Let us evaluate the coefficient C}Zgﬁ{u}' We first draw the frame F{542/21},
|

Into this frame we must inject the content of {431} i.e. 4 ones, 3 twos and 1

three in such a way that we have a lattice permutation. We find two such

numberings

1]1]1] 1]1]1]
1]2]2 2[2]2

[2]3 [1]3

—_

5

and hence ci 423

431121y = 2. Note that in the evaluation we had a choice, we could

{542}

[91) {431} In that case we would have

have, and indeed more simply, evaluated ¢

D_[

Note that in this case the three boxes are disjoint. This skew frame is to be

drawn the frame F{542/431} to get

]

numbered with two ones and one 2 leading to the two tableaux
1] 1]

verifying the previous result. Theorem 4.1 gives a direct method for evaluat-

ing the Littlewood-Richardson coefficients. These coefficients can be used to
evaluate both skews and products. It is sometimes useful to state a procedure

for directly evaluating products.
m Theorem 4.2 to evaluate the S—function product {u}.{v}
1. Draw the frame F* and place vy ones in the first row, v, twos in the second row etc
until the frame s filled with integers.

2. Draw the frame F” and inject positive integers to form a semistandard tableau such
that the word formed by reading from right to left starting at the top row of the
first frame and moving downwards along successive rows to the bottom row and

then continuing through the second frame is a lattice permutation.
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3. Repeat the above process until no further words can be constructed.

4. Fach word corresponds to an S—function {\} where X\, is the number of ones, s

the number of twos etc.

As an example consider the S—function product
(21}.{21).

Step 1 gives the tableau

111]
2

Steps 2 and 3 lead to the eight numbered frames

1] [ala] [af2] [1]2) [113] [1]3] [2]3] [2]3]
2 3 2 3 2 4 3 4

Step 4 then lead to the eight words

112112 112113 112212 112213

112312 112314 112323 112324
from which we conclude that

{21} {21} = {42} + {417} + {37} + 2{321} + {31°} + {2°} + {271%}

m Exercises
4.8 Show that 17521} 8.

{4321}.{4321} —

4.9 Show that
{31}.{31} ={62} + {617} + {53} + 2{521} + {51} + {47}
+ 20431} + {427} + {4217} + {372} + {371%}

4.10 Show that
{321/21} = {3} + 2{21} + {1°}

m  4.10 Relationship to the unitary group

We have explored various symmetric functions indexed by partitions and de-
fined on sets of variables. The variables can admit many interpretations. In
some instances we may choose a set of variables 1,¢,4% ...,¢" or we could even
use a set of matrices. The link between S—functions and the character theory
of groups is such that, if ) is a partition with ¢)) < N and the eigenvalues
of a group element, g, of the unitary group Uy are given by z; = exp(i¢;) for

j=1,2,...,N then the S—function
)= e An) = sa(2)

= sa(exp(igr) exp(igz) . . .exp(ion))
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is nothing other than the character of 4 in the irreducible representation of Uy

conventionally designated by {)}.

The Littlewood-Richardson rule gives the resolution of the Kronecker

product {u} x {v} of Uy as
W= X ), (1.42)

[Al=lul+1v]

where the C%m are the usual Littlewood-Richardson coefficients. Equation
(4.42) must be modified for partitions ) involving more than N parts. Here the
modification rule is very simple. We simply discard all partitions involving more
than N parts. We shall return to these matters later in this course when we

use our results to discuss the classification of many-electron states, especially

for the electronic f—shell.
m 4.11 S—function series

Infinite series of S—functions play an important role in determining branch-
ing rules and furthermore lead to concise symbolic methods well adapted to

computer implementation. Consider the infinite series

L:lj[l(l—xi)
=1-> o+ wzs— ... (4.43)

where the summations are over all distinct terms.

e.g.
Zl‘ll‘z —xixes+x1x3+ ...+ o3+ X294+ ... (444)

Recalling Eq.(4.3) we see that Eq.(4.43) is simply a signed sum over an infinite

set of elementary symmetric functions ¢, with
en = Mmin = 51 = {17} (4.45)

and hence Eq.(4.43) may be written as an infinite sum of S—functions such
that

L=1-{1}+{1*} - {1’} +...
=3 (-1 my (4.46)

We may define a further infinite series of S—functions by taking the inverse of

Eq.(4.43) to get

M = H(1 — )
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14+ {1}+ {2} + ...

=> {m} (4.47)
Clearly
LM =1 (4.48)

a result that is by no means obvious by simply looking at the product of the
two series.

In practice large numbers of infinite series and their associated generating

functions may be constructed. We list a few of them below:

= 2 (=1)*{a} B =37,{8}
= 3, (=) {y} D =3>{s}
= P (=)t e} F =34
G = (-1 e} H =3 (-D*{¢}
L = 3. (=1)m{1m} M =37, {m}
P =3, (1" {m} Q=7>,{I"}
(4.49)

where (o) and (v) are mutually conjugate partitions, which in the Frobe-

nius notation take the form

_ a as a,
(04)_<a1+1 az+1 ... ar-|-1) (4.50q)
and
_fa+1 a4+l ... ar+1
)= ( a as ar ) (4.500)

(6) i1s a partition into even parts only and () is conjugate to (§). (¢) is any
partition and (¢) is any self-conjugate partition. r is the Frobenius rank of («),
(v) and (¢).

These series occur in mutually inverse pairs:
AB=CD=FF=GH=LM =PQ={0}=1 (4.51)
Furthermore,
LA=PC=F MB=Q@D=F
MC=AQ=G LD=PB=H (4.52)

We also note the series

R=1{0}— 2;(_1)a+b+1 (Cb‘) S=1{0}+ 2; (Cb‘) (4.53)
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42  4.14 The Gel’fand states and the betweenness condition

where we have again used the Frobenius notation, and

V=2 (-0Her W=D (-1}

X=>{e}y v=) {u} (4.54)
where (w) is a partition of an even number into at most two parts, the second
of which is ¢, and & is the conjugate of w. We have the further relations

RS=VW=1{0}=1 (4.55)
and
PM=AD=W ILQ=BC=V
MQ=FG=S LP=HE=R (4.56)
m 4.12 Symbolic manipulation

The above relations lead to a method of describing many of the properties of
groups via symbolic manipulation of infinite series of S—functions. Thus if {)\}

is an S—function then we may symbolically write, for example,

/MYy =) {M/m} (4.57)
We can construct quite remarkable ide:tities such as:
BD =7 {¢}-{¢} (4.58)
or for an arbitrary S—function {c} C
BD -{e} =) {C}-{¢/e} (4.59)
Equally remarkably we can find identitcies such as
{o-7}/Z2={c/2} -{r)Z2} for Z=L M PQRSV,W (4.60a)
{o-7}/Z2=> {o/cZ}-{r/¢2z} for Z=B,D FH (4.600)
{o-7})2 = Z(C—l)m{a/CZ} Ar/¢z}y for Z=ACEG (4.60¢)

¢
These various identities can lead to a symbolic method of treating properties

of groups particulary amenable to computer implementation.
m 4.13 The U, — U,_; branching rule

As an illustration of the preceding remarks we apply the properties of S—functions
to the determination of the U, — U,,_, branching rules. The vector irrep {1} of

U, can be taken as decomposing under U, — U,_; as

{1} — {1} + {0} (4.61)
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that is into a vector {1} and scalar {0} of U,_;. In general, the spaces cor-
responding to tensors for which a particular number of indices, say m, take
on the value n, define invariant subspaces. Such indices must be mutually
symmetrised. The irreducible representations specified by the quotient {\/m}
are those corresponding to tensors obtained by contracting the indices of the
tensor corresponding to {)\} with an m-th rank symmetric tensor. Thus we

may symbolically write the general branching rule as simply
{AY = {A/M} (4.62)
Thus for example under U; — U, we have
{21} — {21/M}
—{21/0} +{21/1} + {21/2}

— {21} + {2} + {11} + {1} (4.63)

m 4.14 The Gel’fand states and the betweenness condition

The so-called Gel’fand states play an important role in the Unitary Group
Approach (UGA) to many-electron theory. This comes about from considering

the canonical chain of groups
U,DUp-1D...Us DU (464)

The states of such a chain follow directly from consideration of Eq.(4.62).
Each state may be represented by a triangular array having » rows. There are
n entries m;, with i =1,2,... n corresponding to the usual partition (\) padded
out with zeroes to fill the row if need be. The second row contains n—1 entries
mi -1 placed below the first row so that the entry m;,_; occurs between the
entries m; , and m,, etc. Each successive row contains one less entry with the
bottom row containing just one entry m;;. The number of such states is just

the dimension of the irrep {)} of U,.
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44  4.14 The Gel'fand states and the betweenness condition

Consider the irrep of U3 labelled as {21}. We find the eight Gel’fand states

2 1 0 2 1 0
2 1 2 1
2 1
2 1 0 2 1 0
2 0 2 0
2 1
2 1 0 2 1 0
2 0 1 1
0 1
2 1 0 2 1 0
1 0 1 0
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Sy
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m 5.7 Orthogonality Properties of Characters

The rows of a character table satisfy the orthogonality relation

> " ho xS = hai (5.5)
4

while the columns satisfy

Z thE)i)XEj) = héop (5.6)

m 5.8 Compound Characters

A group character may be simple or compound. If the representation is irre-
ducible the character is simple. A fully reducible representation has a compound
character. A compound character ¢ with a set of characteristics ¢, may be

expressed as a sum of simple characters by use of the orthogonality relations.

Suppose
6= e (5.7)
k
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then the coefficients ¢, may be found as follows:-

Z hqu’pXE,l/C) = Z CkthE,j)thO(k)
P 25J
= hck

Thus
1
Ckp = E Zp:hqu)png) (58)
If ¢ is a simple or compound character, then

Z hp¢p¢p’ = Z CiC]'thE,i)XE,];)
P

p,J

and hence the condition that a character ¢ should be simple is that
> hpdpdy = h (5.10)
P

m 5.9 Calculation of 8, Characters

The characteristics of the symmetric group S, are the elements of the tran-
sition matrix relating the power sum symmetric functions to the Schur func-

tions. In fact

Pr =Y Xosa (5.11)

Abn
For a one part partition (r) Eq. (5.11) specializes to

r—1

br = Z (_1)b5(a+1,1b) (5.12)

a,b=0
a+b+1=r

Note that the partitions (a+1,1%) associated with the S—functions appearing in
Eq. (5.12) are all of the form of single hooks. Thus

P3 = 83 — S21 + 513

P2 = 8§32 — 812

PL=51 (5.13)

Recalling the multiplicative property of the power sum symmetric functions

we have
P21 =pP2 XN
= (s2 —812) X 81

= 83 — 8§13
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which gives us the column of the character table for S; for the class (21) where

the Littlewood-Richardson rule has been used to multiply out the S—function

products.

m  Exercise
5.1 Calculate the character table for S, using Eqs. (5.11) and (5.12) together

with the Littlewood-Richardson rule.

m 5.10 Character Table for S;

Continuing the above procedure we can compute the characters of ;. We

note that these calculations can be rapidly calculated using SCHUR and the

command p_to_s or using MAPLE V.
o (1%) (21%) (313) (41%) (221%) (321) (51) (6) (42) 23)
hs 1 15 40 90 45 120 144 120 90 15
(6} 1 1 1 1 1 1 1 1 1 1
§51% 5 3 2 1 1 0 0 -1 -1 -1
42 9 3 0 -1 1 0 -1 0 1 3
{41%} 10 2 1 0 —2 -1 0 1 0 —2
i32} 5 1 -1 -1 1 1 0 0 -1 -3

321} 16 0 —2 0 0 0 1 0 0 0

{23} 5 -1 -1 1 1 -1 0 0 ~1 3
{313; 10 —2 1 0 —2 1 0 -1 0 2
{2217} 9 -3 0 1 1 0 ~1 0 1 -3
{214} 5 -3 2 -1 1 0 0 1 -1 1
{16} 1 ~1 1 ~1 1 ~1 1 ~1 1 ~1

m 5.11 Kronecker Products of Representations

Let us consider two sets of functions ¢1,¢s,...,¢, and ¢,,¢,...,¢, which respec-

tively form bases for the n—dimensional irreducible representation I'» and the
m—dimensional irreducible representation I'q of the group G. Under the oper-
ations of the group ¢ the mn functions ¢;¢; transform into linear combinations
of themselves forming a basis for a representation I'r of G. This representation
is known as the Kronecker product (or direct product) of the representations I'p

and I'p and designated as I'p x I'g. Recall
gi%; = Y pri(i)dx
k
gi€e =Y que(i)Es

and hence

gi(@i€ell) = ) pij()se(i)(S1s)
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5.12 Worked Example of @ Compound Character of Sg

Since
Z;pjj(i)qzz(i) = (Zm(i)) (Z fm(i))
, j 5
we have for the characéers of the representations
X0 = X (D)) (5.13)
m 5.12 Worked Example of a Compound Character of S;

Let us review the preceding notes by first resolving a compound character for
Ss and at the same time introducing permutation matrices. There is a class for
every ordered partition of the integer 6. The orders h, of the eleven classes

can be computed via Eq. (3.11) to give

(1) (21%) (31°) (41%) (2°17) (321) (51) (6) (42)

ho 1 15 40 90 45 120 144 120 90

40

We can construct a typical permutation matrix for each class:-

1 0 0 0 0 0 1 0 0 0 0 0
0O 1 0 0 0 0 0O 1 0 0 0 0

s |00 1 0 0 0 o |00 1 0 0 o0
10 0 0 1 0 o GO 0 0 1 0 o0
0O 0 0 0 1 0 0O 0 0 0 0 1

0O 0 0 0 0 1 0O 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 0

0O 1 0 0 0 0 0O 1 0 0 0 0

s |00 1 0 0 0 oo |00 0 1 0 0
G0 0 0 0 1 o0 W00 0 0 0 1 o0
0O 0 0 0 0 1 0O 0 0 0 0 1

0O 0 0 1 0 0 0O 0 1L 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0O 1 0 0 0 0 0O 0 1L 0 0 0

s 00 0 1 0 0 o1 0 0 0 o

E1 0 01 0 0 0 G200 0 0 0 1 0
0O 0 0 0 0 1 0O 0 0 0 0 1

0O 0 0 0 1 0 0O 0 0 1 0 0

01 0 0 0 07 01 0 0 0 07

1 0 0 0 0 0 1 0 0 0 0 0
oo 0 1 0 o0 5 |00 0 1 0 0
@0 0 0 0 1 0 @)l 01 0 0 o
0O 0 0 0 0 1 0O 0 0 0 0 1

Lo 0 1 0 0 0. Lo 0 0 0 1 0.

0 1 0 0 0 07 10 0 0 0 07

0O 0 1L 0 0 0 0O 0 0 0 0 1

.o |1 0 0 0 0 o0 0O 1 0 0 0 0
G500 0 0 0 1 0 GO 1g 0 0 0 1 0
0O 0 0 0 0 1 0O 0 1L 0 0 0

Lo 0o 0 1 0 ol lo 0 0 1 0 0.
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(6) :

OO OO = O
OO O = OO
OO =R O OO
O =R OO oo
OO O oo
OO OO O

1

If we take the traces of these matrices we obtain a compound character of S;
6 =6,4,3.221,1,0,0,0 (5.14)

Recall Eq. (5.8)
e = %Zp:hpqspxiff) (5.8)
We have h = 6! = 720. Let us compute the number of times the simple character

(%} occurs in Eq. (5.14). Each of the characteristics y}” =1 leading to

1
e} = m(leﬁ + 1524 + 4023 + 9022 4+ 4522 4+ 12021 + 14421) =1

and hence Eq. (5.14) contains the simple character %} once. Subtracting the

simple character from ¢ leaves the residue
¢ =5311,00-1,-1,-1 (5.15)

Inspection of the character table of S; shows that ¢’ corresponds to the simple
character y**} and hence

6= 16 4y 151}

m 5.13 Example of a Kronecker Product in S,

Let us resolve the Kronecker product of the representation labelled by the
partition (31) with that labelled by (2?). Let us write this product as {31} o {27}

and we wish to determine the coefficients cgf’}o{ﬁ} where

(81} 0 {22} = 3 el o 1oey 1N

A4

We first calculate the characteristics for the Kronecker product using Eq.

(5.13) to obtain the compound character
6=9, —1, 0, —1, 1

We must now resolve the compound character ¢ into a sum of simple characters

using Eq. (5.8) and the character table for S,

1
Ckp = E Z hqu)pXE,l/C) (58)
P

49
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5.18 Example of a Kronecker Product in 84

to obtain

cEi}o{zﬁ} = %[9 —-64+0—-6+3]=0
Cgﬁo{zlz} = %[27 —64+04+6-3]=1
%zippy=§ﬂw+o+o+o+m:1
e iy = %[27 F640—6-3]=1
and hence we conclude that
¢ = 1P (12 2 g 0

The calculation of Kronecker products for the symmetric group is equivalent

to calculating the inner product of the corresponding S—functions. Thus in

SCHUR one finds:-
DP>
->sfn
Schur Function Mode
SFN>
->i31,2172
{313 + {272} + {2172 } + {174 }
SFN>

The resolution of Kronecker products plays an important role in solid state
physics in determining the splitting of levels in crystal fields and in selection
rules for transitions between crystal field levels. In the next lecture we will

examine such problems in relationship to the octahedral group ©
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The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

To do research you don’t have to know everything
All you have to know is one thing that is not known

—Art Schawlow Nobel Laureate

m Lecture 6
m 6.1 Example of the Octahedral Group ©

We now illustrate much of the material of the previous lecture by a detailed
consideration of the octahedral group 0. The octahedral group involves the
24 symmetry operations corresponding to the proper rotations that send a

cube into itself. These operations comprise:
1. The identity operation E.
2. The eight rotations 8C; through +120° about the four body diagonals.

3. The three rotations 3C, through 180° about axes passing through the

centres of opposite faces of the cube.

4. The 6 rotations 6C, through 180° about axes joining the midpoints of
opposite edges of the cube.

5. The 6 rotations 6C, through +90° about axes passing through the centres

of opposite faces of the cube.

The octahedral group O is isomorphic to the symmetric group S;. There are
five classes (F,Cs,Cs,Cy,C5) which are in one-to-one correspondence with the
five classes (e, (31),(2),(21%),(4)) of Sy;. The group O has five inequivalent irre-
ducible representations designated in Mulliken’s notation as A, 4,, £, 7}, 7> or
in Bethe’s ' notation as T'y,...,T's. These irreducible representations respec-
tively correspond to the irreducible representations {4}, {1*}, {27}, {217}, {31} of S,.

The character table for the group O is given below:-
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6.2 Kronecker Products for O

(@i

Class F 03 Cz 04 Cé

Order 1 8 3 6 6
Ay 1 1 1 1 1
Ao 1 1 1 —1 —1
E 2 -1 2 0 0
T 3 0 -1 1 -1
T 3 0 -1 1 1

m 6.2 Kronecker Products for ©

The Kronecker products of the irreducible representations of 0 can be readily
evaluated by using the character table for © to produce a compound charac-
ter and then using Eq. (5.8) to resolve the compound character into simple

characters of 0. We give a table of Kronecker products for 0.

Kronecker products for O

| [ A Ay ) 71 T,

[ A T A Ao L T, T,

| Az | A Ay E Ty Ia

| £ | E E A+ A+ E T+ 15 T+ 15

| v | T 15 T+ 15 A+ E+TV+ 15 As+ E+T + 15
L 75 | T T T+ T A+ B+ TV + T A+ E+TV+ T

m 6.3 Some Basis Functions for ©

Let us choose a set of axes r,y,» parallel to the edges of the cube and passing
through the centres of its faces and consider the action of a typical member

of each class on z,y,2. Typically we find:-

E($ayaz)_> ($ayaz)a CZ($,y;Z)_> (ya$a_z)a Cé($ayaz)_> ($a_ya_z)a 03($ayaz)_> (Za$ay)

Ca(z,y,2) — (x,—2,9) (6.1)

Each of the transformations can be represented by a rank three permutation

matrix to give respectively the typical matrices:-

(10 0] [0 1 0] 10 0
E:|0 1 0| Cy:|1 0 0 clo -1 0
0 0 1 0 0 —1] 0 0 -1
[0 0 1] (10 0]
Cs: |1 0 0| Ci:l0 0 -1 (6.2)
0 1 0] 0 1 0 |

Taking the traces of these matrices gives the character:

3,0 —1, 1, —1
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which corresponds to the simple character y™ of © thus we may conclude that
the functions z,y,: form a basis for the irreducible representation 7; of the

group O.
Let us now consider the transformation properties of the functions z2 y?, 22
Noting Eq. (6.1) we obtain
E(® %, 2%) — (2%,5%,27),  Oao(e®y?,2%) — (v7,2%2%), o2 %, 2%) — (22,7, 27%),
Cs:(2?,y,2%) — (2%y%),  Cae®y?,2%) — (27,2%97) (63)
Againg these transformations can be represented by rank three permutation

matrices and taking their traces we obtain the compound character
6=3,1,3 0 1 (6.4)
Using the character table for © we resolve the compound character ¢ as
¢=x"+x" (6.5)

We need three linear combinations of the functions z? 4, 2?> to span these two
irreducible representations of 0. One of these must be an invariant that trans-
forms as 4, and may be taken as x>+ y?> + 2> = +?>. The two linearly independent
combinations z? — y> and 322 —r?> can be taken as a basis for the F irreducible

representation of 0.
m 6.4 Example of a Kronecker Product

Take the functions z;,y,,2 and sy, 2> as representing the coordinates of two
electrons. Each set of functions forms a basis for a 7} irreducible representation
of 0. From these we can form a set of nine functions z,z,, z1ys, 2129, ..., 2120 Which

will span the Kronecker product 7; x 7; with a compound character
$=9,0 1,1, 1 (6.6)

Either using the Kronecker product table or using the character table of O
together with Eq. (5.8) we find

¢ =xM AT T T (6.7)
Noting Eq. (6.7) we can produce an orthonormal set of basis functions as

1
A1 = ﬁ(l‘wz + y1y2 + 2122) (6.8a)

1
E ¢y = ﬁ(l‘wz - ylyz)

1
¢)3 = \/;(22122 — 1Ty — ylyZ) (68b)
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6.5 Characters of SOs3

1

1) iy = ﬁ(@hzz + z1y2)
1

o5 = ﬁ(ml‘z + 2122)

¢6 = @(l‘lyz +y122) (6.8¢)

1

Ty 7 = ﬁ(@hzz — Z1Y2)
1

¢8 = 5(21902 - 1‘122)

1
¢9 = \/;($192 — y122) (6.8d)
m 6.5 Characters of 505

The group of continuous rotations that turn a sphere into itself is designated
as SO;. The octahedral group O is a subgroup of SO; as indeed are all the 32
point groups associated with crystals. The 2¢+ 1 spherical harmonics Y;,, (4, ¢)
of rank ¢ form a basis for a 2¢+ 1 dimensional irreducible representation D, of
S03;. All rotations through the same angle o« belong to the same class of 50;
irrespective of the axis of rotation. For a rotation through an angle « about
the »—axis

Yim(0, ¢ + ) = ™Y (0, ¢) (6.9)

Such a rotation can be represented by a rank (2¢+ 1) diagonal matrix with

diagonal matrix elements ¢”* and hence of trace, or character,
4
Xf;: Z gima
m=—4{

ei([+%)a _ e—i(Z+%)a

o

el —emi%

sin%(% + D

= Snal2t (6.10)
527150[

It is worth noting that the identity element of SO; corresponds to a rotation
through « =0° and hence
XE=(20+1) (6.11)

At this point we also note that the Kronecker products for 505 give

L1442
Dy, x D= >, Dy (6.12)
L=ty —1,]

as commonly encountered in the quantum theory of the addition of angular

momentum.

m 6.6 The SO; — © Branching Rules
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The octahedral group O is a subgroup of S0;, i.e. S0; € ©. The spher-
ical harmonics Y;,,(6,¢) for a basis for the SO; irreducible representation D,.
However this irreducible representation will normally be a reducible repre-
sentation of the octahedral subgroup and simple character of SO; will become
a compound character ¢ for 0. To obtain the compound character ¢ we cal-
culate the characteristics Y% of SO; for the angles of rotation associated with
each class of 0 using Eqns. (6.10) and (6.11). For 0 we note particularly the

characteristics

Xo=20+1),  xe=(=D" X = DI+ (=102, K = (=D (6.13)

s &

Note the characteristics for the classes ¢, and ¢} are the same. Thus for ¢ =4
we obtain the compound character
6=9,0 1,1, 1 (6.14)
which we may resolve into simple characters of O as
¢ =xM HxT AT+ (6.15)
or as a branching rule
Dy— A+ E4+T1+T, (6.16)
Continuing in this way we can establish the SO; — © branching rules
Dy — A
Dy =1
Dy — E+1T,
Dy — A+ T+ 15
Dy — A+ E+T+ 15
Dy — E4+2T 4+ T,

m 6.7 The ¢, Subgroup of 0

The group C; corresponds to the rotational symmetry of a square and involves
four elements, the identity £, ¢4, C5, C;'. These are a subset of those of the
octahedral group 0. Whereas in the octahedral group ¢, and C;' occur in the
same class in going to ¢, the class splits. Likewise only one of the C, elements
in @ survives and comes from the class ¢, of ©®. The character table of the

group C, is given below
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56 0.9 Application to a d—orbital

C4 E 04 CZ C14_1
# | -1 | 1

1 1 -1 —1
E 1 —1 -1 1

Note that the character F involves a pair of characters that are complex con-

jugates of each other.

m Exercises

6.1 Show that the group comprising the identity permutation ¢ and the

three permutations

(1234), (1432), (13)(24) form a group that is isomorphic to ¢,.

6.2 Show that for the group ¢, the function : transforms as 4 while the

functions z,y span the E irreducible representation.

m 6.8 The 0 — . Branching Rules

The 0 — CA» branching rules may be determined listing the characteristics of

the octahedral group O for the elements that are in common with those of the

group C;. Thus we obtain the following compound characters
=1, 1, 1
o2 =1, —1
¥ =20 2,0
¢t =31, -1
o™ =3, -1, -1, -1

These compound characters may be resolved into simple characters of ¢, using

Eq. (5.8) together with the character table of ¢, to yield the branching rules

given below:-

O — Cx» Branching Rules

A — A
As — B
F—A4+B
TN — A+ E

Ty — B+ E (6.18)
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m 6.9 Application to a d—orbital

Let us now apply some of our preceding results to a d—orbital. Under spherical
symmetry the d—orbital forms a basis for the D, irreducible representation of
SO; and has 5-fold degeneracy (we ignore spin at the moment). If the d—orbital
is place in a crystal field having octahedral symmetry then the 5-fold orbital
degeneracy will be partially lifted since under SO; — 0 we found that

D2—>E—|—T2

and thus we conclude that the energy levels will involve a 3-fold degenerate
level (73) and a 2—fold degenerate level (£). If we were to distort the octahedral
symmetry so as to leave the rotational symmetry of a square we would deduce
from Eq. (6.18) that the £ level of © would split into a pair of sublevels
belonging to the A and B levels of ¢, while the 7, level of © would split into a

non-degenerate level B and a 2—fold degenerate level £ of C,.

m Exercise

6.3 Repeat the above analysis for a f—orbital.

m 6.10 Half-Integer Angular Momentum

So far we have neglected spin and the possibility of half-integer angular mo-

mentum. We recall from the quantum theory of angular momentum that

JelJMY=+/J(J+1)— MM+ 1)|JM +1) (6.19a)
JNIM) = M|JM) (6.198)

which is valid for both integer and half-integer values of J. These operators
produce states with the same value of J and the states |JM) produce a basis

for a (27 + 1)~dimensional irreducible representation D; of SO;. Since
e\ TM) = et M| T M) (6.20)

it follows that the characteristics x/ of SO; will be exactly given as in Eq. (6.10)
except for the replacement of ¢ by J. Note that for half-integer values of J
the factor ¢ 27 = —1 and hence for a rotation about a :—axis through o = 2=
|JM) — —|JM). Under the group O rotations through 0 and 27 are equivalent
and hence it is impossible to form, for half-integer J, linear combinations of
|JM) that possess octahedral symmetry. The solution was given by Bethe in
1929 with the introduction of double groups or perhaps more accurately extended

groups. The finite group is augmented with an element £ which commutes
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6.11 The SO3 — O Branching Rules

with all the elements of the group and is such that £?> = £. This results in
additional group elements y when g=FExg=gx E if §# 4. This may lead to a
doubling of the number of elements to form the extended group (and hence
the name double group) except classes containing rotations through r are often
not doubled. Technically these extended groups are associated with the fact

that they are subgroups of SU; the covering group of SOs.

In the case of the octahedral group O we are led to the extended group

O whose character table is given below:-

O B E 8C5 8C 3C, 6C, 6C, 6@

3C, 6C7
A 1 1 1 1 1 1 1 1
Ao 1 1 1 1 1 -1 -1 -1
E 2 2 -1 -1 2 0 0 0
T, 3 3 0 0 -1 1 1 -1
i1 3 3 0 0 ] _] _] 1
B 2 -9 1 -1 0 V2 -2 0
B 2 -9 1 -1 0 -2 V2 0
ik 4 -4 -1 1 0 0 0 0

m 6.11 The S0; — O Branching Rules

The SO; — O branching rules may be evaluated in the same manner as previous
examples, namely using Eq. (5.8) and the character table for 0. There is no
change in the branching rules for the integer values of /. For the half-integer

values of J we obtain the branching rules given below.
D% — F
D% — U
Dy — E"+ U
D% — B+ B+ U
Dy — B +2U (6.19)

Note that for an octahedral symmetry states with / < 2 remain degenerate.

m Exercise

6.4 Enlarge the Kronecker product table given earlier for the octahedral

group O to cover the case for the extended group 0.

m 6.12 The Wigner-Eckart Theorem

So far we have used group theory to obtain largely qualitative information

for physical systems and have made no attempt to calculate matrix elements,
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the key to obtaining quantitative results. A typical matrix element may be

written in the form
(@ilts e} = [ 63k s (6.21)
We will choose the states ¢,y and the interaction term 4 to span the irreducible
representations I'y,I',, ', of the group G. Thus the states ¢; with i =1,2,...,p will
be chosen to form an orthonormal basis for the p—dimensional irreducible
representation I'y, those of y; with £ = 1,2,...,¢ an orthonormal basis for the
g—dimensional irreducible representation I',. The operators h; representing
an interaction term with j = 1,2,...,» and forming an orthonormal basis for a
r—dimensional irreducible representation I', of G. The Wigner-Eckart theorem
then leads to the result that:-
(ilhjlxe) = Y (Tpaillnj; k) Ra (6.22)

Where the first term on the right-hand-side is a coupling coefficient that con-
tains completely the dependence of the matrix element on the components of
the group irreducible representations while the final quantity R, is a reduced
matriz element that is totally independent of the components of the irreducible

representations appearing in the matrix element.
m 6.13 Selection Rules

The sum over « involves ¢, terms where ¢, is the number of times the irreducible
representation I';, occurs in the Kronecker product I, x I',. It follows that if
¢y =0 then the matrix element necessarily vanishes and we have a selection rule.
In the case of the octahedral group the angular momentum operators (L, L, L.)

form a basis for the 7; irreducible representation of ©. The Kronecker product
T1 x B = T1 + T2 (623)

from which we may conclude that the matrix elements of the angular mo-
mentum operators evaluated between states transforming as the irreducible
representation £ are necessarily null. This corresponds to the common state-

ment that orbital angular momentum is quenched in E levels.
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60 8.1 The Infinitesimal Operators of SO(3)

The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

No man is wise enough to think of all the ideas
that can occur to a fool

~ Rudolph Peierls Bird of Passage, Princeton 1985

m Lecture 8
m 8.1 The Infinitesimal Operators of SO(3)

The group SO;3 plays a central role in the quantum theory of angular momen-
tum. It is associated with the group of transformations that send a sphere in
three-dimensions into itself. The transformation matrices are degree three or-
thogonal matrices, 4, of determinant |4| = +1. The orthogonality requirement
requires that

TAA =14 (8.1)

where 75 is the three dimensional unit matrix. For infinitesimal rotations we
have

A=TI3+B (8.2)

where B is a matrix that has all its elements in the neighbourhood of zero.

For the transformation to preserve the orthogonality we must have
i.e
‘B+B=0 (8.3)

Thus B must be a skew-symmetric matrix with three independent components,

say

But ' = (Z5 + €)z, 1.e.

x+dx 1 0 0 0 a —b x
y+dy | = 0 1 0]4+|—-a 0 ¢ y (8.5)
z+dz 0 0 1 b —c 0 z
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Thus
dr = ay — bx
dy = ax + cz
dz =bx —cy (8.6)

Hence the infinitesimal operators of SO(3) are
Dez) & O(—ey) 0 0D

de Ay gc o0z oy Yo
L o(=bz) @ obe)d o D
Y=gt e, e Yo

Iay) 0  O(—ax) O 7, 7,

X, =

=50 et 00 oy Yo oy (87)
The above infinitesimal operators of SO(3) close under commutation:
(X1, X0]=Xs [Xp,X3]=X1 [X3X1]=2X> (8.8)

The normal operators associated with the quantum theory of angular mo-
mentum are J;, = —iX; k=1,2,3 and the corresponding commutation relations
are

[J1,Jo] = iJs  [Jo,Jal = iJ1  [Js, 1] = iJo (8.9)
where we have chosen our units so that » =1.

m 8.2 Irreducible representations of SO(3)

We now seek to find a basis for the irreducible representations of SO(3) ob-
taining results familiar in the quantum theory of angular momentum. We will
identify J; as the generator of infinitesimal rotations in two-dimensions and

hence associated with the subgroup of 50(3), namely, SO(2). Let us write

1
Jr = —=(J1 £ J 8.10
+ \/5( 1+ 1iJ2) ( )
leading to the commutation relations
[Ji,J_1=Js and [J3 Ji] =24y (8.11)
The operator
JE=Ji i+ =dp o+ I+ ) (8.12)

has the special property of commuting with the set of operators (J;, J,, J3) and is
termed the Casimir operator associated with the Lie algebra so(3) of the Lie group
S0(3). Of course we recognise it as the familiar square of the total angular

momentum J. Noting Eqn.(8.11) we have

2J1 0 =J*—Js(Js—1) and 2J_Jy =J? - J3(Js+ 1) (8.13)
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8.2 Irreducible representations of SO(3)

We seek the eigenvalue spectra of J? and J;. Let us label the representations of
SO; by the eigenvalues X of j2. We shall construct the eigenvectors [Xa) span-
ning the space of a particular representation to be simultaneous eigenvectors

of J?2 and J; and label them by their associated eigenvalues X and a.

Since J? is a sum of positive-definite Hermitian operators it must itself be a
Hermitian operator and hence for a unitary representation must have real and
positive eigenvalues. Likewise, J3, is a Hermitian operator and must have real
eigenvalues. Hence

J*Xa) = X|Xa) (X >0,X€ER) (8.14)
and
Js3|Xa) = a|Xa) (a€R) (8.15)
Use of Eqn.(8.13) leads to
2J4J_|Xa) = [X —a(a—1)]|Xa) (8.16a)
2J_Jy|Xa) = [X —a(a+1)]|Xa) (8.16b)
In a unitary representation we must have
Il =7 (8.17)

and hence the eigenvalues of 7_J, or /. J_ must be positive definite. Thus Eqns.

(8.16a) and (8.16b) imply that for a unitary representation we necessarily have

X —afax1)>0 (8.18)
Using Eqn (8.11) we obtain
(Xd'|[Js, J4]|Xa) = (a — &' ){(Xd'|J4]|Xa) = (Xd'|]4]| X a) (8.19)
leading to
W —a=1 (8.20)

For a given finite nonnegative value of X, it is possible to satisfy Eq. (8.15)
with real values of X and « only if ¢« has an upper positive bound «; and a

lower negative bound «_, with a; —«_ an integer. Solving Eq. (8.18) f0 ay gives

1 1
ax = -5 F VIFAX (8.21)
and hence
X=ay(ay +1) and a_ =-—ay —1 (8.22)

Since a; and «_ differ by an integer, 2¢;, must be a positive integer and hence

ay 1s limited to the field of positive integers or half odd integers.
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Let us put j = a, and replace « by m. It follows that a given unitary irreducible
representation of SO(3) may be labelled by the upper bound j with the eigen-
vectors designated as |jm) where for a given value of j there are 2j+1 values of
m

m=jj—1,.. . —ji+1,—j (8.23)
The range of m is bounded above and below and hence the unitary irreducible

representations of SO(3) are all of finite dimension equal to 2j + 1. It follows

from Eqns. (8.16a),(8.16b) and Eqn. (8.17) that

Tslim) = <5/ + 1) = m{m & Dljm & 1) (8.24)
where the arbitrary phase factor has been chosen as positive. The ladder

operators Jx allow us to step the value of m in steps of +1 with
Jelj, £m) = 0 (8.24)
Note that the preceding equations are invariant under the substitution
j——j—1 and m—m (8.25)
with 1/ and D=7-! being equivalent representations of SO(3).

m 8.3 Lie Algebras

In the preceding section we have been discussing the properties of a particular
example of a Lie algebra. Formally we may define a Lie algebra as follows: Let A
be a r-dimensional vector space over a field K in which the law of composition
for vectors is such that to each pair of vectors X and Y there corresponds a

vector Z =[X,Y] in such a way that

[aX + BY, Z] = o[X, Z] + ALY, Z] (8.26)
[X,Y]+[Y,X]=0 (8.27)
(X, [V 2]+ IV, [Z, XTI+ [Z, [X, Y]] =0 (8.28)

for all «,5,...,€ K and all X,v,7,....€ A. A vector space satisfying the above
relationships is said to constitute a Lie algebra. A given Lie algebra is said to
be real if K is the field of real numbers and complex if K is the field of complex

numbers.
m 8.4 Structure Constants

The formation of a Lie algebra requires that the » elements of the Lie algebra,

X, satisfy the closure condition

[X,, Xo] = ¢, X~ (8.29)
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64 8.3 Lie Algebras

where the ¢], = —¢], are known as the structure constants of the Lie algebra.

m 8.5 The Killing Form

We may form a symmetrical tensor from the structure constants by writing
Jox = Gro = CopCh, (8.30)

which is known as the metric tensor or Killing form. Every Lie algebra may

be associated with a particular metric tensor. A Lie algebra A is said to be

semisimple if and only if 4 can be written as a sum of simple Lie algebras. A

Lie algebra 4 will be semisimple if and only if

det|gon| P (8.31)

As an example consider the Lie algebra of so(3)

(X1, Xo] = X3, [Xo,X3]= X1, [Xs X1]=Xo (8.32)
We have from Eqn. (8.30)

g11 = ], ¢f, = clyeis + eigedy = (1)(=1) + (=1)(1) = —2
Continuing we find
Jor = =265

and hence s0(3) is semisimple and its metric tensor is negative definite

Now let us consider a Lie algebra whose elements satisfy

[X1,Xo] = X5,  [Xo, X5]=-X1, [X5,Xi]=X> (8.33)
We now find
-2 0 0
gr=|0 2 0 (8.34)
0 0 2
that is
det|gsn] = —8

and hence we have a semisimple Lie algebra but the metric is indefinite.
m 8.6 Lie Algebra of the Euclidean Plane
The Euclidean group of the plane, £, relates a point (z,y) to a point («/,y) in
a plane by the transformation
¥ =xcosl—ysind+a
y = & sinf +ycosf+b (8.35)

where ¢ is an angle of rotation in the plane about the origin and « and b are

the » and y components of a translation in the plane. Each point (z,y) in the
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plane may be associated with a vector (z,y, 1) which is transformed into («/,y,1)

cos§ —sinf a

sinf  cos0 b (8.36)
0 0 1

From that we may obtain three infinitesmal operators

0 -1 0 0 0 1 0 0 0
Xo=[1 0 o0 X.=[0 0 o0 Xp==1{0 0 1 (8.37)
0 0 0 0 0 0 0 0 0

which satisfy the commutation relations

by the matrix

[XGaXa] = Xba [XQ,X[]] = _Xaa [XaaXb] = 0 (838)
The metric tensor is now found to be

—2 0 0
gox=10 0 0 (8.39)
0 0 0

which is obviously non-singular and hence £, is not semisimple. The two
elements X,, X; form a non-trivial Abelian subalgebra. This Lie algebra cannot

be reduced to a direct sum of simple Lie algebras but is rather a semidirect sum

Ey =Ty @, Xy (8.40)

m Exercise

8.1 Show that the Euclidean group in three dimensions, £s, is not associated
with a semisimple Lie algebra and that it may be written as a semidirect
sum of an Abelian Lie algebra associated with the group of translations

75 and of the Lie algebra so(3).

m 8.7 Antisymmetric Tensors

Let us define a new tensor

Copuv = ga)\cf;y (841)
Recalling Eqn. (8.30) we have
Copy = c;pcf\TcZV = c;pcf;ycfw (8.42)

Use of the Jacobi identity, Eqn. (8.28), we have

_ T A P T A P
Copv = _capcurcu)\ ~ CopCruly
R D N < T A P
- cpacyrcu)\ + cpacTuc)\y (843)

The right-hand-side is invariant under any cyclic permutation of the indices.
Since g, is a symmetric tensor and ¢}, is antisymmetric in x and v it follows

that ¢,,, is a totally antisymmetric tensor under any interchange of its indices.
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8.8 Lie Algebras

m 8.8 The Casimir Operators

Let X, stand for an element of a Lie algebra A and define
0= ¢ X,X, (8.44)

The operator C is known as the Cuasimir operator and has the very important

property of commuting with all the elements of a semisimple Lie algebra.

m Exercises

8.2 Given the Lie algebra for so(3) defined by the commutation relations

given in Eqn. (8.8) show that its Casimir operator is given by
C= _%(Xf+xg+xg) (8.45)

8.3 The commutation relations given in Eqn. (8.33), which are those of the

non-compact Lie algebra so(2,1) has the Casimir operator

1
C= _5()(12 - X7 - X3 (8.46)

m  Concluding Remarks

The Casimir operators play an important role in applications to physical prob-
lems whereas the Lie algebra so(2,1) will lead us to simple solutions to a wide
range of problems in physics involving second-order differential equations, the

subject of Lecture 9.
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The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

People have now a-days, got a strange opinion that
everything should be taught by lectures. Now, I
cannot see that lectures can do so much good as

67

as reading the books from which the lectures are taken.

I know nothing that can best be taught by lectures,
except where experiments are to be shewn. You
may teach chymistry by lectures. You might teach
the making of shoes by lectures!

— Samuel Johnson 1766

m Lecture 10
m 10.1 Spectrum Generating Lie Algebras based upon so(2,1)
Most of the analytically solvable second-order differential equations involving

a single variable that are of interest in electromagnetic and quantum theory

can be transformed into the standard form:-
d*y
d—y2+f(y)y =0 (10.1)
where Y = Y(y).

Many of the differential equations can be expressed in terms of the elements of
the Lie algebra so(2,1) ~ su(1,1). If we know the spectral properties of these ele-
ments we can immediately generate the spectrum associated with the relevant

second-order differential equation.
m 10.2 A realisation of so(2,1)

The Lie algebra associated with the group S0(2,1) is characterised by the com-

mutation relationships
[[1, 2] = —il'5,  [I'2, 5] =4Iy, [, 1] =il (10.2)

A realisation in terms of a single dimensionless variable y may be obtained by

writing
62
r = w + ai(y)
Iy =1 |k( )i + as(y)
2= Y y 2y
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10.3 The Second-Order Differential Equation

Making use of Eqn. (10.2) then gives

o« (B —y)?

“EGor T 16

4 — 5

2T

o« (B —y)?

B R TR

Py

k= (10.4)

where o, 3 and v are integration constants.
The existence of the Casimir invariant
r?=ri-r?-r? (10.5)

requires that v =0 and hence

pro 23 (10.6)

If we choose g =0 we obtain the standard form for so(2,1) in terms of a single

variable y as

52 a oy
ST T
? 0 1
=3 (y—y " 5)
52 a oy
m 10.3 The Second-Order Differential Equation
Recall the standard form
d*Y
d—y2+f(y)Y =0 (10.1)
and let us put
fly) = :—2 +by’ +c (10.8)
We may now rewrite Eqn. (10.1) in the form
0? a 9 1 1
@+y—2+by —|—c_(§—|—8b)F1—|—(§—8b)F3—|—c (10.9)
Making the identification
o= —4r?— 1 (10.10)
4
yielding
(%+8b)1“1+(%—8b)1“3+c Y =0 (10.11)

m 10.4 The Tilting Angle
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Equation (10.11) can be greatly simplified by performing a rotation through
an arbitrary tilting angle 6 such that

e~ 02T 92 — T cosh 6 + T's sinh 0

and

e 2562 = Ty sinh 0 4 T'3 cosh 0 (10.12)
giving
1 . 1 1 . 1 ~
([(5 + 8b) sinh 0 + (5 — 8b) cosh 9] I+ [(5 + 8b) sinh 6 + (5 — 8b) cosh 9] s+ c) Y =0 (10.13)
where
Y = e ey (10.14)
The tilting angle ¢ may be chosen to either diagonalise TI'; to yield the discrete

spectrum or diagonalise I'; yielding the continuous part of the spectrum.

m 10.5 The Discrete Spectrum

If we put
3 +8b
tanh 0 = —; e (10.15)
equation (10.13) reduces to just
~ C ~
sy = —=Y 10.16

where Y is a simultaneous eigenvector of I'? and T's and hence the eigenvectors
must span one of the discrete infinite unitary irreducible representations D+ (o)
or D~ (®) of s0(2,1). In the case of D*(®) the eigenvalues of T'; will have a lower
bound @ which increases in steps of unity with no upper bound and conversely
for D~(®). Thus we may write the eigenvalue solution of Eqn. (10.16) as

I3V = (=@ + )Yy,

C

v =0,1,2,... 10.17

with
I =®(@+ )Y (8 <0) (10.18)
Noting Eqn. (10.17) we conclude that the existence of a discrete eigenvalue

solution associated with the second-order differential equation

6_24_14_[)24_ Y =0 (1019)
oy T YT T '
requires that
A—® +2) = — (10.20)

n
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10.6 The Continuous Eigenvalue Spectrum

This equation may be put into a more direct form by noting from Eqn. (10.6)
that

o 3
@ +1)= -7 - 17 (10.21)
and « = o« and hence
1 1 1
- - - —_a> .
¢=—g(l+\/7-a) (;-a20) (10.22)

where, since ® < 0 we keep only the negative root. Using this result in Eqn.

(10.20) yields the key result

C
dr4+2+VI—da=— 2=0,1,2,... 10.23
N (10.23)

m 10.6 The Continuous Eigenvalue Spectrum

In this case we diagonalise the non-compact generator I'; using the tilting

angle
1-8b
tanh = 2 5 (10.24)
2
Eqgn. (10.13) then reduces to
I 4;%1? (10.25)
The eigenvalue spectrum is characterised by a continuous spectrum ) where
—C
Ve (10.26)

Note that the continuous part of the spectrum only exists where tanh0 exists.
m 10.7 The Three-Dimensional Harmonic Oscillator

The three-dimensional isotropic harmonic oscillator is of great importance
in nuclear shell theory, vibrational states in molecules and solids and in the
theory of quantum dots. The appropriate radial differential equation is

(;‘l—; — W%l) —r? 4 QE) R(r)=0 (10.27)
Comparison with Eqn. (10.19) requires

a=—ll+1), b=-1, and c¢=2F
Using these values in Eqn. (10.23) gives
E:Qx—l—ﬁ—l—% (r=0,1,2,..)

Putting n = 2z + ¢ yields the familiar result

Ea=(nt3) (10.28)



2.4 The LS terms of dN and fN configurations

If we add a perturbing term 5 (¢ > 0) to the Hamiltonian Eqn. (10.27)
becomes
2
(d——W—rz—l—QE)R(r):o

dr? r
leading to
1
E=2c4+144/({+ 5)2—1-6 (10.29)

Note there is no continuous spectrum for the harmonic oscillator since putting
b=—11in Eqn. (10.24) leads to a tilting angle that falls outside of the allowed

limits of tanhd.
m 10.8 The Kepler Problem

Consider the differential equation
d? 2d t u
+ o4 ) RO =0 (10.30)

dr2 " rdr r2

We can transform it into standard form by putting

r=y> and R(r)=y "R(y) (10.31)
to give
> du-—3 2 —
(W + y—2 + doy* + 4t) R(y) =0 (10.32)
Using Eqns. (10.10) and (10.23) gives for the discrete spectrum
[
2ot 14 VT du= o= (2=0,12,.) (10.33)
For a non-relativistic hydrogen atom we have t = —27, « = —¢(¢ + 1) and v = 2F

which in Eqn. (10.33) yields the bound state spectrum as

E,=— (10.34)

2n?

with n=z+¢+1.

Adding an inverse-cube potential to the Hamiltonian puts « = —¢(¢+ 1) — ¢ to

yield the discrete spectrum

—7?
E = 5 (x:0,1,2,...) (10.35)

2[x+§+ (L4 1)? 426

which lifts the degeneracy of the H-atom in a manner similar to the normal

fine structure.
m 10.9 Klien-Gordon H-atom

The case of the Klien-Gordon equation for an H-atom leads to ¢t = —270°F,
u=7%>—(({+1), and v = %ﬁ in Eqn. (10.33) to yield the spectrum

1
o’F = ——— (10.36)

14 Z2a?

n2

71



72

10.8 The Kepler Problem

where n=2+1 +,/((+3)?— Z2a? and o is the fine structure constant.
m 10.10 The Morse Potential

The differential equation

d2
(E +pexp’™ +qexp™ —|—r) R(z)=0 (10.37)

arises in certain physical problems and may be transformed into the standard

form by putting

z=Iny* and R(z)= @
VY
to give
d? 6r+72 4p , 4q
st SVt = 10.
(dyz + Ar2y? YT 7_2) R(y) =0 (10.38)

Morse has considered the energy eigenvalue spectrum associated with the

differential equation

dr?
Noting Eqns. (10.37) and (10.38) we obtain the standard form

> 32E+r2 8D, 16D
—t - 5+ =
dyZ 4T2y2 T2 2

Use of Eqn. (10.23) leads to

d2
<— —2Dexp™?™ 44D exp™ " —|—2E) R(r) =0 (10.39)

) R(y) =0 (10.40)

2
—r2 (V2D 1
b= 9 ( T —(l‘—|— 5) (x—0a1a2a~~~a$max) (1041)
where
1 2D
Tmax + 5 < \/_ (1042)
T

m 10.11 Concluding Remark

In this lecture we have seen a few examples of the application of a non-
compact Lie algebra to solving differential equations in physics. This is just
a beginning. The subject of Lie symmetries and the differential equations of
physics has developed into an important research area in theoretical physics.
We have looked so far at just the three-parameter Lie groups. However, there
is a vast range of possible Lie groups, their associated Lie algebras and their

applications as will be discussed in subsequent lectures.



The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

m Lecture 11
m 11.1 Quantum Dots and Symmetry Physics

The subject of quantum dots involves the confinement of N electrons in two or
three dimensions, commonly by electrostatic fields, over a nano-metre scale.
The confining potential is, to a good approximation parabolic. The quantum
dot behaves as an N—electron atom without a nuclear core. One may add or
subtract a single electron from a quantum dot giving rise to the possibility of

nano-metre scale devices such as transitors etc.

In an atom the kinetic energy tends to dominate over the potential energy (the
confinement length is small) whereas in a quantum dot the two contributions
are roughly of the same order making normal perturbative methods difficult.
A closely analogous problem is that of nucleons confined in a harmonic oscil-
lator potential with quantised motion occuring about the centre of mass of
the N—nucleon system. We shall first review some of the properties of the
isotropic harmonic oscillator, the unitary group U(3) and the special unitary
group SU(3).

m 11.2 The Isotropic harmonic oscillator

The Hamiltonian H of a normalised isotropic harmonic oscillator (i.e. with

m=h=w=1) in three-dimensions may be written as
1
=" + 1) (11.1)

From Heisenberg’s quantisation postulate the coordinates ¢; and momenta p;

satisfy the commutation relations
(9, 4;] = [pi, pj] = 0, 45, ;] = ibs; (11.2)

Now introduce boson annihilation and creation operators ( a and a' respec-
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11.3 The Full Linear Group GL(n)

tively)
Sevip, = x(r—ip) (113
a4 = —F—=\7r 1 a = —F—\r—1 .
\/5 p bl \/5 p
which satisfy the bosonic commutation relation
[a;, al] = 6; (11.4)
The Hamiltonian can now be written as
t 3
H=a" a+ 3 (11.5)
Use of Eqn. (11.4) then leads to
[H,a]] = al, [H,a;] = —a; (11.6)

Thus we deduce that «! creates and ¢; annihilates a quantum in the j direction.

We recognise af -« as being the number operator with eigenvalues of
n=nj+ny+ns (11.7)
and hence the energy eigenvalues of H are
3
En=n+3 (n=012..) (11.8)

with normalised state vectors

al™
= d 11.
Ininans) 1:[1 ni!|000> (11.9)
with |000) being the vacuum state with

Noting that af = a* we have

3 n;
(ninans| = (00| T] 2 (11.11)
i=1

= v nl'
with

(000[al =0 (11.12)

m 11.3 The Full Linear Group GL(n)

Consider a vector space V, and linear transformations of contravariant vectors

with components z',... 2" such that

xiﬁx/i:a;:xj (11.13)



The coefficients o} are complex numbers and we assume the Einstein summa-
tion convention over repeated upper and lower indices. We restrict ourselves
to transformations which have an inverse and hence to non-singular matrices

[ai]. The set of all such transformations in V,, form the full linear group GL(n)

The set of matrix transformations of GL(n) involving unitary matrices of rank
n form the elements of the unitary group U(n). Transformations with the
property

det[aj] = +1 (11.14)
are called unimodular; the special unitary group, SU(n), is the subgroup of uni-

modular transformations in U(3).

We can define covariant vectors with components z,,...,z, which undergo linear
transformations
¥ — xh = bl (11.15)
such that
J:;»a:/i = p;xt
implying that
asbl = 65 (11.16)

Restricting transformations to those of U/(n) the relationship between covariant

and contravariant transformations is that of complex conjugation.
m 11.4 Note on Tensors

Tensors with covariant and contravariant indices are defined by their trans-
formation properties:-

Ty — abyal, . T BB (11.17)
A tensor with m upper suffixes and » lower indices is said to be of order m+ n.
The upper and lower indices of a tensor may be separately symmetrised and
antisymmetrised; in general an irreducible tensor must be such that on separate
permutation of its upper and lower indices it transforms according to an irre-
ducible representation of the group of permutations on the indices concerned.
In addition it must be separated into its irreducible parts by successive con-

tractions of upper and lower indices.

m 11.5 Irreducible representations of the Unitary group U(n)
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11.5 Irreducible representations of the Unitary group U(n)

There is a close relation between the properties of tensors as bases for the
irreducible representations of GL(n) and as bases for the irreducible represen-
tations of the groups of permutations acting on their indices. For the moment
let us restrict our attention to tensors that are purely covariant or contravari-
ant. For GL(n) (or U(n)) the irreducible tensors may be described by partitions
A+ m where m is the order of the tensor (i.e. the number of upper (or lower)
indices) and

A > Ao >, (11.18)

A symmetric tensor of rank three would correspond to the partition (3) while an
antisymmetric tensor of rank 3 would correspond to the partition (1%). Likewise,
there is an irreducible representation of the group U(n) for every partition into
not more than » parts. Note that there is an infinite number of irreducible rep-
resentations for a given U(n). For example, in the case of U(3) {100}, {210}, {321},...
all label distinct irreducible representations of U(3).

m 11.6 Irreducible representations of the Special Unitary group SU(n)

Under the restriction from U(n) — SU(n) the representations
{Al,/\z,...,/\n}E{/\1—|—l‘,/\2—|—l‘,...,/\n—|—l‘} (1119)

become equivalent for r a positive or negative integer. We can always choose
z to give ), =0 and hence it suffices for SU(n) to label inequivalent irreducible
representations of SU(n) by partitions into at most n — 1 non-zero parts. Thus
under U(3) — SU(3) we have {321} — {21}.

m 11.7 Characters of U(n)

The character of an irreducible representation {\} may be shown to be the
S—function s,(e,...,¢,) where the ¢,... ¢, are the eigenvalues of the unitary

transformation matrices. Note that the characters satisfy
Dt e dad e dndat = (1) A Aoy An) (11.20)
m 11.8 Degeneracy Group of the Isotropic Harmonic Oscillator
Let us introduce nine operators
Tij = %{aj,a]} (i,j=1,2,3) (11.21)
where {a,b} = ab + ba. Using the basic boson commutation relations of Eqn.

(11.4) we find
T, Trs = 85,155 — 03510 11.22
J J J



Thus the nine operators 7;; close under commutation and generate a Lie alge-
bra. Putting H, = 7;; (do not confuse this with the Hamiltonian) we find the

three H; form a self-commuting set and
[, T3] = (6 — 80T} (11.23)

all the roots are of the form ¢; —¢; where the ¢ are mutually orthogonal unit

vectors.

The set of nine operators 7;; may be identified as the generators of the unitary
group in three dimensions, U(3). The Hamiltonian # is related to the H; of
Eqgn. (11.23) via

H=H + Hy+ Hy (11.24)

commutes with all 7;;. The three operators

H
H' = Hi— (11.25)

taken with the 7;; (i # ;) can be taken as the generators of the special uni-
tary group SU(3) if we remember that since >, 4/ = 0 the H] are not linearly
independent. For reasons that will become apparent shortly we refer to U(3)

as the degeneracy group of the isotropic harmonic oscillator.

m 11.9 Labelling Representations and Weights

In the case of the angular momentum group 50(3) we label the angular mo-
mentum states as |JM) where M is the eigenvalue of 7, with J being the highest

weight of M. This idea carries over to Lie groups in general. We recall that in
the case of SO(3) we can write the defining commutation relations as
[J., J4] = L4 [Ty, J_]=J. (11.26)
with
Jo = — (], 4i],) (11.27)

V(2)

For a general semisimple Lie algebra of rank ¢ we have ¢ operators ,H; (i =

1,...,0), that commute among themselves. The Lie algebra can be cast into the

standard Cartan-Weyl form as
[H;, H;] =0 (i,j=1,...0)
[Hi, Fo) = i B,
[Eas Egl = Nap Eayp

[Eo, E_,] = o' H; (11.28)
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11.9 Labelling Representations and Weights

where the F, are the analogues of the ladder operators J. of 50;.

Just as in SO; we distinguish the components of a representation by the eigen-
values of J, for a Lie group we may label the components of a representation
by the eigenvalues of the ¢ self-commuting operators #;. For any compact Lie
algebra the highest weight vector is unique and hence can be used to specify
the representation. Consider for example, the group U(3) which has three self-
commuting operators H;. Suppose we wish to determine the representation
of U(3) whose components are the annihilation « and creation operators af, we
have

[Hi,al] =60l and  [H;a;] = —6;q; (11.29)
Thus the components of «' give rise to the set of weight vectors (100),(010), (001).
The highest weight vector is (100) and hence we can label the representation
as {100} of U(3). Likewise, the components of « give rise to the weight vectors
(=100), (0 — 10),(00 — 1). We say that a weight vector w is higher than a weight
vector v’ if the first component of their difference w — «’ is positive. Thus the
highest weight for « is (00 — 1) and the representation of U/(3) spanned by the
components of « may be labelled as {00 — 1} which is contragredient to {100}.

m Exercises

11.1 Noting Eqn(11.22) show that the nine operators 7;; are associated with
the nine weight vectors (000), (000), (000), (1-10), (10-1), (01-1), (-110),
(-101), (0-11).

11.2 Determine the highest weight vector in the above set of weight vectors.

11.3 Repeat the above analysis for a two-dimensional isotropic harmonic os-

cillator and show that the relevant symmetry group is U(2).
m 11.10 Rotational Symmetry and the Isotropic Harmonic Oscillator
The harmonic oscillator Hamiltonian, Eqn. (11.1), commutes with all the
components of the angular momentum operator
L = rep = iaxal (11.30)

and hence H is rotationally invariant. The components of I form under com-
mutation the Lie algebra associated with the group SO(3). Noting the definition
of the operators 7;;, Eqn.(11.21), and Eqn. (11.30) we have

Ly = —i(Tys —T32), Ly=—i(Ts1 — Tvs), Ls=—i(Tis —To1) (11.31)



We may choose L3 as the generator of the group 50(2) and hence for the three-

dimensional isotropic harmonic oscillator we have the group structure
U(3) D SU(3) D SO(3) D SO(2) (11.32)

It is convenient to label the oscillator states in a basis [n¢m) where n=10,1,2,....

From Lecture 10 we have
n=2x+/( with z2=0,1,2,... (11.33)
and hence the values of ¢ associated with a given value of »n are
£=1,3,5,....n n odd
=0,2,4,...,n n  even (11.34)

and thus for a given » there is a set of “+n+2)_fo]d degenerate states [n¢m). This
is precisely the dimension of the symmetric representation of U/(3) designated
by the partition {»,0,0} and hence the statement that the group U(3) is the

degeneracy group of the three-dimensional isotropic harmonic oscillator.

n=>5 p, f, h
n=4 s,d, g
n=3 pf
n=2 s, d
n=1 p
n=20 5

The first six levels of the isotropic harmonic oscillator

In the preceding we have developed the theory for a single particle in a har-
monic oscillator potential. This particle could equally well be a nucleon as in
nuclear physics or an electron in a quantum dot. The degeneracies are exactly
the same as is the form of the energy spectrum. To proceed further requires
we develop a many-particle model for particles interacting in a harmonic os-
cillator potential. To that end we may seek to develop a dynamical group which

is the subject of the next lecture.
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12.1 A Hamiltonian for Quantum Dots

The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

Ah, he thought, the truth bursting on him
suddenly, nobody grows up. FEveryone car-
ries around all the selves that they have ever
been, intact, waiting to be activated in mo-
ments of pain, of fear, of danger. FEvery-
thing is retrievable, every shock, every hurt.
But perhaps it becomes a duty to abandon
the stock of time that carries within oneself,
to discard it in favour of the present, so that
one’s embrace may be turned outwards to the
world in which one has made one’s home
(page 210

— Anita Brookner, Latecomers

m  Lecture 12
m 12.1 A Hamiltonian for Quantum Dots

Experimentally the electrons of a quantum dot are contained in a parabolic
potential and hence we expect a close relationship with a many-electron system
subject to a harmonic oscillator potential. The interaction potential V(r;,r;)
between particles i and j moving in a two-dimensional confining potential in
the x—y plane is taken to saturate at small particle separations and to decrease
quadratically with increasing separation. In free space we would expect the
interaction between two electrons to vary as |r; — r;|~!. In a quantum dot the
form of V(r;, r;) is modified by the presence of image charges. The wavefunctions
of the electrons confined in the quantum dots have a small but finite extent
in the :—direction perpendicular to the » —y plane. This results in a smearing
of the electron charges along the :—direction. As a result the interparticle
repulsion tends to saturate at small distances. This suggests choosing the
interaction as

Vi(ri,ry) =2Vy — %m*mm — ;| (12.1)
where m* is the electron effective mass and V;, and Q are positive parameters.

Consider an N-electron quantum dot each with a charge —e, a g—factor g¢*,

spatial coordinates r; and spin components s,; along the »—axis. Suppose there



is a magnetic field B along the »—axis. The spatial part of the Hamiltonian

can be written as

1 eAZ'
Hopose = e 3 [+ ] ¥ mwszwivﬂ,m (12.2)

K3

and the spin part as
Hoypin = —g"ppBY_ 5. (12.3)
where the momentum and vector potential associated with the i —th electron
are given by
Pi = (Peis Py i) A= (Asi, Ay ) (12.4)
and yup is the Bohr magneton.

The eigenstates of 7 will involve the product of the spatial and spin eigenstates
obtained from H,,.is and H,,,,. The total spin projection S; = 3;s.; will be
a good quantum number. Choosing a circular gauge A, = B(-y;/2,2;/2,0) Eqn.
(12.2) becomes

Hpace = ﬁ ZpZ + m wi(B Z |2 + Z [QVO —gm QZ|7~Z,7~]|2] Z (12.5)

g 1<j {
where w(B) =w? +w?/4 and w, = eB/m*c.
m 12.2 Note on Commutators and Second-quantisation
In much that follows we will need to be able to manipulate bosonic annihilation

(a;) and creation operators (a!). The basic bosonic commutation relations are

laa] =0, [al,al]=0, [ar,al] = 8, (12.6)

2 J

These can be used to simplify expressions. As an example, consider the anti-
commutator {al a;} = ala; + ¢;a] and let us evaluate the commutator [{a! a;}, ar]-

Expanding out we have
[afaj + aja], ai] = [aa;, ar] + [ajaf, ] (12.7)
Expanding out the first commutator we have
[a;raj,ak] = a;rajak — aka;raj (12.8)

To simplify this commutator we want to try to rearrange the first term on

the right-hand-side to cancel the second term. Using the first commutator in
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12.2 Note on Commutators and Second-quantisation

Eqgno. (12.6) we can rearrange the first term as
alajar, — alaga; (12.9)
and hence the right-hand-side of Eqn. (12.9) becomes
alajap — apala; — alaya; — apala;
= [af, ax]a;

= _[aka a;[]aj

= —biraj

m  Exercise
Show that if
Tij = %{az, a;}
then
(15, Trs] = 65 Tis — 0i s Trj

m 12.3 The Degeneracy Group for Mesoscopic Systems

In this lecture we enlarge the concept of a degeneracy group to a dynamical
group. The degeneracy group for the isotropic harmonic oscillator was found
to be sU(3). Each irreducible representation {100} is spanned by a set of “+1(+2)
eigenstates of the Hamiltonian and associated with the same energy eigenvalue
E, of the harmonic oscillator. There is one weight vector for every eigenstate.
The algebra of the degeneracy group contains a set of operators that allow
us to start from any eigenstate and ladder through the entire set of degen-
erate eigenstates associated with a given degenerate eigenvalue. Thus the
angular momentum ladder operators 7, take us from one |«LM) eigenstate to
another |aLM + 1) but leaving L fixed. The operators L,,L; that generate the
angular momentum group SO; but cannot take us from states belonging to
one irreducible representation of SO; to another. To do that we must use the
operators contained in the degeneracy algebra that lie outside of those of the
angular momentum algebra. In addition the algebra of the degeneracy group
contains operators that allow us to ladder between states of a given SU(3) mul-
tiplet changing both . and M quantum numbers but not n. These additional
operators reflect the fact that the isotropic harmonic oscillator has, like the

H—-atom, symmetry higher that just rotational symmetry.



m 12.4 A Dynamical Group

We seek a dynamical group that contains the degeneracy group as a subgroup

and has the energy eigenstates belonging to a single irreducible representa-

tion. Such a group contains among its generators operators that allow one to

ladder between different irreducible representations of the degeneracy group.

The degeneracy group contains an infinite set of finite dimensional unitary

irreducible representations and hence the dynamical group must necessarily

be a non-compact group with infinite dimensional unitary irreducible repre-

sentations . We now construct the dynamical group for mesoscopic quantum

systems.

m 12.5 The Dynamical Group for Mesoscopic Quantum Systems

1.

Assume the Hamiltonian of the N—particle system is a function of coor-

dinate and momentum operators of the individual particles.

. Designate the coordinates of the r—th particle by z,; with »r=1,... ¥ and

the momentum by p,; with i=1,... d.

. The associated operators X,; and P,; obey the usual Heisenberg commu-

tation relations (We choose units such that 7 =1)

[Xriaij] = 0; [Xria Psy] = iérséija [Pria Psy] =0 (1210)

. The (2Nd)? bilinear operators

{XriijaXristaPriijaPrist} (1211)

close under commutation. However, only

(2Nd+ 1)Nd of these operators are independent since

PriXyj = Xoj Pri — 6,565 (12.12)

. Consider the (2Nd+ 1)Nd independent operators

1 1
Qrisj = §{Xriaij}7 Vrisj = §{Xriapsj}a
1
Krisj = 5{Pri, Poj} (12.13)
They close under commutation on the non-

compact Lie algebra Sp(2Nd, R) which we can take as the dynamical alge-

bra of our mesoscopic N— electron system.

m 12.6 Subalgebras of the Dynamical Algebra
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84  12.7 Identification of the Sp(2, R) Subgroup

1. We can construct subalgebras of Sp(2Nd,R by forming subsets of the
defining generators that close under commutation. Thus, for example,
the V’s close under commutation forming the elements of the GL(Nd, R)

algebra.

2. Contracting on particle or spatial indices can yield further Lie subalge-

bras. Thus the two sets of operators (summing on repeated indices)
Qij = X0 Xoj, Ly = Xoi Py — Xo5 Py,
Kij = Py Py
T = %(anrj + X Pri + Pri Xoj + Pri Xoi) (12.14)
and

Qrs :XriXsia Lys :XriPsi_XsiPTia

Kys = Py Py
1
Trs = §(X7‘ZPSZ + X Py + Py Xy + Psini) (1215)

close under commutation and separately generate the Lie algebras Sp(2d, R)

and Sp(2N, R).

3. The above two algebras do not commute but the subsets {7;;} and {L,,}

do separately close under commutation with
[Lij, Lyt) = i(Lix6j1 — Litbjr + Linbit + Likbit — Ljibix)
[Lrs; Ltu] = i(LM(Ssu - Lru 6st + Lstéru - Lsuért) (1216)

and form the generators of the subalgebras O(d) and O(n).

4. Continuing we are led to the following possible Lie subalgebras of Sp(2Nd, R):-

Sp(2, R) x O(Nd) D Sp(2, R) x O(N) x O(d)

S U(1) x O(N) x O(d) (12.17)

Sp(2N, R) x O(d) D U(N) x O(d) D U(1) x O(N) x O(d) (12.18)
Sp(2d) x O(N) D U(d) x O(N) D U(1) x O(d) x O(N) (12.19)
U(Nd) D U(N) x U(d) D U(1) x O(N) x O(d) (12.20)

Note the separation of the spatial and particle dependencies.

m 12.7 Identification of the Sp(2, k) Subgroup



Let us introduce three operators defined by
Q=X Xpi, T=Xp P+ FPuiXpi, K=P;Py (12.21)
and having the non-zero commutation relations
[Q, K] =2iT, [Q,T]=4iQ, [K,T]=—4iK (12.21)

These commutation relations are those of a three element Lie algebra. Let
us first decide if the algebra is compact or non-compact. This we may do by

calculating the metric tensor

gij = CirCy (12.22)

where the ¢!, are the structure constants of the Lie algebra. Noting Eqn.

(12.21) we have

Lo =2 & =4i, K. =_4 12.23
QK QT KT

Recall that the structure constants are antisymmetric. We now find for the

diagonal elements of the metric tensor

90Q = 9yxx =10

917 = FocFq + hr ik = —4i x —4i +4i x 4i = —32 (12.24)
In addition we have the off-diagonal elements
JQK = 9KQ = COrchq + chorchr = 4i x —2i+2i x —4i = 16 (12.25)
and thus the complete metric tensor is represented by the matrix

Q K T

viil= k| 16 o 0 (12.26)

We can produce a diagonal metric tensor by putting

1

A = —(Q+ K) (12.27)

S

2

to give the Lie algebra as

[Ag, T) = 4iAz, [Ap, A_] = %T (12.28)
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12.8 Back to the Quantum Dot Hamiltonian

and the metric tensor as

A [ -16 0 0
lgi]]= 4_ | o 416 0 (12.29)
T 0 0 —32
We first note that the metric tensor has det|g;;| 4 and hence we can conclude
that the Lie algebra is semisimple. Furthermore the metric tensor is indefinite
as required for the algebra to correspond to be non-compact. and hence our
Lie algebra is necessarily

SO(2,1) ~ Sp(2, R) (12.30)

m 12.8 Back to the Quantum Dot Hamiltonian

We can express terms in the Hamiltonian of an isotropic harmonic oscillator

mw2

1
H,=—PFP,;P;+ —X,; Xy 12.31
2m + 2 ( )

in terms of the group generators of Sp(2, R) by noting that
1 1

5= PriPri = 5K (12.31)
and
mTszM»XM» = m;ZQ (12.32)
to give
o, = ﬁ[( + m;ZQ (12.33)

Now consider our earlier Hamiltonian

Hipace = 2m Zpl + m wo Z |7~Z|2 + Z |:2V0 — —m Qz|rl’r]|2:| We ZLZJ' (12.5)

g 1<j

We can write the electron-electron interaction term for an N—electron quan-

tum dot as

m?
leading to
1 mQ eB
Hs ace — o K ¢ _1 1% e rs 12.34
. 2m (N 0 -|- ZQ ( )
with
Q2=+ (L no (12.35)
u 2me

The significance of these results is that the first three terms in Eqno. (12.34)

have been expressed in terms of the generators of Sp(2,R) (K,Q) and O(d) (Li2)



and the last term in terms of generators of the group Sp(2N,R). A practi-
cal calculation then involves the evaluation of matrix elements of the group

generators in a harmonic oscillator basis.
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13.1 Introduction

The Application of Symmetry Concepts
to
Physical Problems Il

B. G. Wybourne

I prefer the open landscape under a clear sky
with its depth of perspective, where the wealth
of sharply defined nearby details gradually

fades away towards the horizon.

— H. Weyl, Classical Groups 1938
m Lecture 13
m 13.1 Introduction

Today is the last lecture in this semester and I propose to first review where
we have travelled this semester and outline where we will travel in the next
semester. Our journey through symmetry physics is a journey without end.
In this semester we have been looking at some of the tools required to exploit
symmetry in physical problems. In the subject of finite groups we looked
in some detail at the symmetric group leading into the theory of symmetric
functions indexed by partitions of integers. The introduction of the pictorial
representation of partitions in terms of Young frames led to the numbering
of frames and a combinatorial definition of the Schur functions and the re-
markable Littlewood-Richardson rule for multiplying Schur functions. These
functions provided a link between the finite symmetric groups and the unitary
groups, the Schur functions being the characters of the representations of the

unitary group.

The representations and characters of the symmetric group, and other
finite groups introduced the idea of the Kronecker product and its resolution
into its irreducible components. The octahedral group 0, isomorphic to the
symmetric group S; introduced the idea of broken symmetry and branching
rules. Thus the symmetry of the sphere was broken down to the symmetry of
the octahedron. The Wigner-Eckart theorem introduced the idea of coupling

coefficients that contain completely the dependence of matrix elements on the



components of irreducible representations and the reduced matriz elements that
are totally independent of the components of the irreducible representations
appearing in the matrix elements. This is a powerful theorem that leads to

practical results, a subject to be explored in more detail next semester.

The Lie algebras were defined and some of their properties explored. In
particular we looked at their expression in terms of infinitesimal transforma-
tion operators introducing us to Lie groups. We looked at examples of both
compact and non-compact Lie algebras with particular emphasis on the algebras
associated with so(3) and so(2,1). Unitary representations in the former were
found to be finite dimensional and in the latter infinite dimensional. This led
us to the idea of spectrum generating Lie algebras and thence to degener-
acy and dynamical groups culminating in and introduction to quantum dot

applications.
m 13.2 The Continuing Journey

To proceed further and to be able to get into practical applications we
need to develop our subject further. Firstly we must be able to recognise
particular varieties of Lie algebras. This requires that we make a systematic
classification of the Lie algebras casting them into a standard form. We then
need to look at the systematic description of the representations of Lie algebras
and how one reduces from an algebra to a subalgebra in terms of branching
rules. We can then return to the Wigner-Eckart theorem and introduce tensor
operators which are the key to practical calculations. It is only then that we

can expect to make applications to physical problems.
m 13.3 The standard form of a Lie algebra

It is important to be able to transform a Lie algebra into some standard
and recognisable form. To that end we seek a standard form for the com-
mutators of the elements, X,, of a semisimple Lie algebra. Suppose 4 is an

arbitrary linear combination of the X, such that

A=a"X, (13.1)
Let X be another linear combination such that

X =X, (13.2)

and

[A, X]=pX (13.3)
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13.3 The standard form of a Lie algebra

This is the form of an eigenvalue equation with eigenvalue p and eigenvector
X. In detail

a’b’e;, Xy = pb" X; (13.4)
The linear independence of X, requires that

(a*cp, —pdy)b” =0 (13.5)
and hence

det |a*c], — pé;| =0 (13.6)
For a lie algebra having r elements Eqno. (13.6) cannot have more than r
roots. If A is chosen so that Eqno. (13.6) has the maximum number of
distinct roots then Cartan has shown that for semisimple Lie algebras only
p =0 is degenerate. If the degeneracy is ¢-fold then ¢ is called the rank of the

semisimple Lie algebra.

The roots corresponding to p = 0 will be associated with ¢ linearly
independent eigenvectors H; spanning an ¢-dimensional subspace of the r-

dimensional root vector space. Thus
[A, H] =0 (i=1,...0) (13.7)

The eigenvectors F, associated with the remaining r — ¢ distinct roots
will span a (r — ¢)-dimensional subspace of the r-dimensional root vector space
and thus

[A, Eo] = aEq (13.8)

Since A commutes with 7, we may write
A=)H; (13.9)
Different Lie algebras are characterised by different root structures so we
need to examine the properties of root vectors. to that end consider the
commutator
[A,[H;, Fo] = [A, HE,) — [A, E.H,)

=[A,H|E,+ H;[A E,] — [A, E,JH; — E4[A, H)

= a[Hi, Ea] (13.10)
Thus if F, is an eigenvector associated with the eigenvalue o there must be

¢ eigenvectors [H;, E,] belonging to the same eigenvalue. But the « are non-

degenerate and hence the eigenvectors £, must each be proportional to FE,



implying that
[Hi, Eo] = i Eq (13.11)
and hence that
¢l = ;6] (13.12)
Noting Eqnos.(13.8), (13.9) and (13.11) we have
a=Na; (i=1,...,0) (13.13)

and hence the o; may be regarded as the covariant components of a vector «

in an (-dimensional space.

Consider the Jacobi identity
(A, [Ea, Epl] + [Fa, [Ep, Al + [E5, [A, Eal] (13.14)
Use of Eqno. (13.8) then gives
[A, [Ea, Epll = (o + B)[Eu, Ep] (13.15)

showing that the eigenvector [E,, £ is associated with the root o+ g if o+ 3 is

non-vanishing. If o« = —g then [E,, 3] must be a linear combination of the #;
[Bay B-o] = ¢y _ i (13.16)
with ¢, =0if 7 4+ 3. If « + 3 is a non-vanishing root then

[Eas Egl = Nap Eayp

= ¢ Eayp (13.17)

We now establish an important property of roots:
Theorem 13.1
For every non-vanishing root a of a semisimple Lie algebra there is a root —a
Proof

Recall the metric tensor

Jar = ehcl (1318)

CanCrpu
The summation over x and p is restricted by Eqno. (13.12) and (13.16) and

hence

a+t
Jar = ozn Toz +coz a Tu + Z ’ §+ﬁ7 (1319)
o
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13.4 The Standard Cartan-Weyl Form

But it follows from Eqgno. (13.12) and (13.16) that each term can only exist

if = —« and hence
Gor =0 if r /LOZ (1320)

Thus if —a is not a root then det |g,,| = 0 and Cartan’s criterion for a semisimple

Lie algebra is not satisfied.
m 13.4 The Standard Cartan-Weyl Form

We are free to normalise the £, of Eqno. (13.8) so that
Joea =1 (13.21)
We can order our basis so that

ik

Jab = Dol 0 (13.21)

0 1
1 0

For a semisimple Lie algebra det |9, 0. Noting Eqno. (13.11) and (13.12) we

have

gik = Y ey = Y ooy (13.22)

(a4

and hence g; may be used as a metric tensor for the ¢-dimensional space

spanned by the vectors a.

Recalling the antisymmetric tensor
Copuv = ga)\cf;y (1323)
and

Cor =9 Cuor (13.24)

oT T

we have



since
Cka—a = Chafr—a and go_o=1
and hence
[Eo, E_o] = o' H; (13.26)
with the o' being the contravariant components of the root vector a.
We can now write out the standard Cartan-Weyl form of a semisimple
algebra as
[Hi, Hi]=0 (i,j=1,...0 (13.27a)
[H;, Eo) = i Eo(13.270)
[Ba B3] = NopFags  (if ) o+ 5 0)(13.270)
(B, E_.] = o' H;(13.27d)
Note that Eqno(13.27a) amounts to constructing from the elements m 13.5
Example of so;

The Lie algebra of the rotation group, SOs;, may be defined in terms of the

standard commutation relation
[Li, L;] = iciji L (13.28)
Or in terms of the ladder operators ., +iL, as
[Ls,L+]=+Ly, [Ly,L_]=2Ls (13.29)
To place the algebra in the Cartan-Weyl form we choose

H =1Ls, FEi=-—Ls (13.30)

Sl -

to give

[Hy,H,]=0, [Hy, E<]=+E [Ey E_]=H (13.31)

To proceed to the classification of the semisimple Lie Algebras we need
to first consider some further properties of root vectors and then develop a
graphical representation of root vectors to finally a complete classification in

terms of Coxeter-Dynkin diagrams, but that must await future lectures.
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