
1Notes on Symmetric functions and the Symmetric GroupB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandHe who can, does; he who cannot teaches.George Bernard Shaw, Man & Super-man (1903)Those who can, do, those who can't,attend conferences.Daily Telegraph 6th August, (1979)IntroductionThese are rough notes on symmetric functions and the symmetric group and are given purely as a guide.I intend to outline some of the basic properties of symmetric functions as relevant to application toproblems in chemistry and physics. The partition of integers plays a key role and we shall �rst makeremarks on partitions in order to establish notation and then go on to consider the standard symmetricfunctions, their de�nitions and their generators. This will lead to the important symmetric functionsknown as S�functions so named in honour of Schur. Important properties to be discussed will be theirouter and inner multiplication and plethysm. At that stage we can start to look at speci�c applications.PartitionsAn ordered partition � of length p = `(�); corresponds to an ordered set of p integers� = (�1; �2; : : : ; �p) (1)such that �1 � �2; : : :� �p � 0 (2)Unless otherwise stated we shall mean by a partition an ordered partition. Normally we shall omit trailingzeros. The weight !� of a partition � will be de�ned as the sum of its parts.!� = j lj = �1 + �2;+ : : :+ �p (3)If j lj = n then � is said to be a partition of n. We shall denot the set of partitions � ` n as Pn and theset of all partitions by P. Thus P4 � f(4); (31); (22); (212); (14)g (4)Note that the number of repetitions of a given part is often indicated by a superscript mi where mi isthe number of parts of � that are equal to i and will be referred to as the multiplicity of i in �.Note that in writing Eq.(4) we have given the partitions in reverse lexicographic ordering Thisordering is such that for a pair of partitions (�; �) either �;� � or the �rst non-vanishing di�erence �i��iis positive.Frames of PartitionsWe may associate with any partition � a frame F� which consists of `(�); left-adjusted rows of boxeswith the i � th row containing �i boxes. Thus for P4 we have:-



2 Conjugate PartitionsThe conjugate of a partition � is a partition �0 whose diagram is the transpose of the diagram of�. If �0 � � then the partition � is said to be self-conjugate. Thusandare conjugates whileis self-conjugate.Skew FramesGiven two partitions � and � such that � � � implies that the frame F � contains the frame F �, i.e. that�i � �i for all i � 1. The di�erence � = � � � forms a skew frame F �=�. Thus, for example, the skewframe F 542=21 has the formNote that a skew frame may consist of disconnected pieces.Frobenius Notation for PartitionsThere is an alternative notation for partitions due to Frobenius. The diagonal of nodes in a Ferrers-Sylvester diagram beginning at the top left-hand corner is called the leading diagonal. The number ofnodes in the leading diagonal is called the rank of the partition. If r is the rank of a partition then let aibe the number of nodes to the right of the leading diagonal in the i�th row and let bi be the number ofnodes below the leading diagonal in the i�th column. The partition is then denoted by Frobenius as� a1; a2; : : : ; arb1; b2; : : : ; br � (3:3)We note that a1 > a2 > : : : > arb1 > b2 > : : : > brand a1 + a2 + : : :+ ar + b1 + b2 + : : :+ br + r = nThe partition conjugate to that of Eq.(3.3) is just� b1; b2; : : : ; bra1; a2; : : : ; ar � (5)As an example consider the partitions (5 4 32 2 1) and (6 5 4 2 1). Drawing their diagrams and markingtheir leading diagonal we have� � � and � � �from which we deduce the respective Frobenius designations�4 2 05 3 1� and �5 3 14 2 0�



3Young TableauxA Young tableau is an assignment of n numbers to the n cells of a frame F� with � ` n according tosome numbering sequence. A tableau is standard if the assignment of the numbers 1; 2; : : : ; n is such thatthe numbers are positively increasing from left to right in rows and down columns from top to bottom.Thus for the partitions of the integer 4 we have the standard Young tableaux1 2 3 41 2 34 1 2 43 1 3 421 23 4 1 32 41 234 1 324 1 4231234We notice in the above examples that the number of standard tableaux for conjugate partitions is thesame. Indeed the number of standard tableaux associated with a given frame F� is the dimension f�n ofan irreducible representation f�g of the symmetric group Sn.Hook lengths and dimensions for SnThe hook length of a given box in a frame F� is the length of the right-angled path in the frame withthat box as the upper left vertex. For example, the hook length of the marked box in� � � �����is 8. Theorem 1: To �nd the dimension of the representation of Sn corresponding to the frame F �,divide n ! by the factorial of the hook length of each box in the �rst column of F � and multiply by thedi�erence of each pair of such hook lengths.Thus for the partition (5 4 32 2 1) we have the hook lengths1086531and hence a dimensionf54322118 = 18 !2� 4� 5� 7� 9� 2� 3� 5� 7� 1� 3� 5� 2� 4� 210 !� 8 !� 6 !� 5 !� 3 !� 1 != 10720710It is not suggested that you check the above result by explicit enumeration!



4 Hook-length Product Hf�gThe irreps f�g of Sn are indexed by the ordered partitions � ` N . It is useful to de�ne a hook-lengthproduct Hf�g = Y(i;j)3�hij (6)where i labels rows and j columns. Note thatHf�g = Hf�0g (7)The Frame-Robinson-Thrall FormulaThe Sn dimensional formula may be rewritten asf�n = n !Hf�g (8)which is the celebrated result of Frame, Robinson and Thrall.Specialisation to Two-Row Irreps of CnConsider a two-part partition (p; r). It is readily seen from the de�nition of Hf�g thatHfp;rg = r! (p + 1)!p� r + 1 (9)Noting that n = p + r we may specialise Eq. (8) toffp;rg = p� r + 1p + r + 1 �p + r + 1r � (10)In quantum chemistry the Pauli exclusion principle restricts physically realisable irreps of Sn to thegeneric type fN2 +S; N2 �Sg where N and S are the total electron number and spin respectively. In thatcase Eq. (10) becomes f (N;S) = 2S + 1N + 1 � N + 1N2 � S � (11)which is sometimes called the Heisenberg formula.Staircase PartitionsA partition of the form (p; p � 1; p� 2; : : : ; 2; 1) is termed a staircase partition. Such irreps have manyinteresting properties.Exercises� Show that the p � th staircase partition is of weightp(p + 1)2 (12)� Show that the hooklength product Hp for the p� th staircase partition isHp = p�1Yi=0(2i + 1)p�i (13)� Show that the p = 18 staircase represention is of353; 630; 151; 029; 664;166;403; 885; 519;184;771; 102;250;561; 450; 895;264;176; 910; 003; 150; 360;627;549; 788; 542;182;043; 325;740;180; 684; 537;821;357; 203;782;730; 400; 746; 242;708;749; 607; 205;510;228; 035;502;080� How long would it take a supercomputer to check this result by explicit computation?



5Notes on Symmetric functions and the Symmetric Group"When a thing was new, people said, 'It is not true'. Later, when its truth became obvious, peoplesaid, 'Anyhow, it is not important' and when its importance could no longer be denied, peoplesaid, 'Anyway, it is not new'". (William James, philosopher)Determinanntal form of the S-functionThe original de�nition of the S�function was in Jacobi's determinantal forms� = s�(x1; x2; : : : ; xn) = a�+�a� (55)where � is a partition of length � n and � = (n � 1; n� 2; : : : ; 1; 0) witha�+� = det(x�j+n�ji )1�i;j�n (56)and a� = Y1�i;j�n(xi � xj) = det(xn�ji ) (57)is the Vandermonde determinant.The Vandermonde determinant is an alternating or antisymmetric function. Even powers of theVandermonde determinant are symmetric functions. Jacobi's de�nition of the S�function is equivalent tothe combinatorial de�nition given in Eq. (48) [cf Macdonald p23]. Both de�nitions have their respectivemerits. We shall often write in place of s� just f�g and assume, unless otherwise stated that the numberof variables is unrestricted.Non-standard S�functionsThe S�functions are indexed by partitions. If the partitions are ordered then the S�functionis said to be standard. However, from Jacobi's de�nition it is possible to have S�functions that arenon-standard in as much as the indexing partition is not in the standard ordered form. Such non-standard S�functions may be transformed into a signed standard S�function or are null. The rules forstandardising non-standard S�functions are often referred to as modi�cation rules.It follows from consideration of the determinant given in Eq. (56) that the relevant modi�cationrules are: f�g = 0 if �i+1 = �i + 1 (58a)f�1; �2; : : : ;��pg = 0 (58b)f�1; : : : ; �i; �i+1; : : : ; �pg = �f�1; : : : ; �i+1 � 1; �i + 1; : : : ; �pg (58c)Repeated application of the above three rules will reduce any non-standard S�function to either zero orto a signed standard S�function. In the process of using the above rules trailing zero parts are omitted.Slinkies and Modi�cation RulesIn situations involving extensive use of modi�cation rules and in particular when one is tryingto derive general formulae the use of slinkies can be very useful (KWY:King, Wybourne and Yang, J.Phys. A: Math. Gen. 22, 4519 (1989)). (see also Chen, Garsia and Remmel, Contemp. Math. 34, 109(1984)). A slinky of length q is a diagram of q circles joined by q � 1 links. A slinky can be folded soas to take the shape of a continuous boundary strip of a regular Young diagram, with each of the linkseithehorizontal or vertical and its circles forming part of the boundary of such a diagram. The sign ofthe slinky is de�ned to be (�1)r�1 where r is the number of rows occupied by the circles of the slinky,so that r � 1 is the number of vertical links of the slinky.The modi�cation rules for non-standard S�functions can be implemented in terms of foldingoperations of the slinkies that make up the Young diagram as follows:1. Draw the slinky diagram corresponding to the non-standard S�function f�1; �2; : : : ; �pg.2. Successively, for i = 1; 2; : : :; p, while holding the starting positions of the slinkies �xed, fold(if necessary) the i�th slinky of length �i into the shape of the unique standard continuousboundary strip such that the �rst i rows of the resulting diagram constitute a regular Young



6 diagram. If this is not possible then f�g = 0. Otherwise we obtain, after folding the last slinky,the regular Young diagram corresponding to some standard S�function f�g. The �nal result isthen f�g = (�1)vf�g where v is the total number of vertical links in the diagram.We illustrate the application of the method of slinkies with two examples.   ��        f4004g ) f4211g     �      �      �
               �f60531070g ) f64333210gThe principal application of the slinky method is to the expansion of symmetric generatingfunctions as a sum of S�functions. Thus, for example, one (KWY) can show thatYi (1 + xi � xi2) = 1Xq;r=0(�1)qfr+1f2q1rgwhere fr+1 is the (r + 1)�th Fibonacci number.Exercises1. Using Eqs. (58a-c) show thatf24g = �f32g; f141g = �f321g; f3042g = 0; f3043g = +f322g; f14�25�14g = �f332g



72. Extend the slinky algorithm to include the possibility of negative parts and then show thatf14� 25� 14g = �f332g.3. Use the method of slinkies to show thatf60531070g = f643321g and f61131090g= 0General Remarks concerning S�functionsThe S�functions are symmetric functions and form an integral basis for the ring of symmetricfunctions and hence may be expressed in terms of the classical symmetric functions e�; h�; m�; f�.Transition matrices can be de�ned for taking one from members of one basis to another. The transitionmatrices can be expressed in terms of the Kostka matrix K�� and the transposition matrixJ�� = � 1; if~� = �;0: otherwise (59)The relevant transition matrices are tabulated in Macdonald (p56). These matrices all involve integersonly. The elementary and homogeneous symmetric functions en and hn are special cases of S�functions, namely, en � f1ng hn � fng (60)S�functions arise in many situations. In the next few lectures we shall explore some of theirproperties that are relevant to applications in physics an chemistry. To proceed to these we must �rstconsider the Littlewood-Richardson rule and then discuss the role of S�functions in the character theoryof the symmetric group S(n) and the unitary group U (n).Skew S�functionsThe combinatorial de�nition given for S�functions in Eq.(48) is equally valid for skew tableaux and canhence be used to de�ne skew S�functions s�=�(x) or f�=�g. Since the s�=�(x) are symmetric functionsthey must be expressible in terms of S�functions s� (x) such thats�=� =X� c���s� (61)It may be shown that the coe�cients c��� are necessarily non-negative integers and symmetric with respectto � and �. The coe�cients c��� are commonly referred to as Littlewood-Richardson coe�cients.The Littlewood-Richardson ruleThe product of two S�functions can be written as a sum of S�functions, viz.s�:s� =X� c���s� (62)The Littlewood-Richardson coe�cients c��� in Eqs. (61) and (62) are identical, though the summationsare of course di�erent. In both cases j�j+ j�j = j�j. A rule for evaluating the coe�cients c��� was givenby Littlewood and Richardson in 1934 and has played a major role in all subsequent developments. Therule may be stated in various ways. We shall state it �rst in terms of semistandard tableaux and thenalso give the rule for evaluating the product given in Eq.(62) which is commonly referred to as the outermultiplication of S�functions. In each statement the concepts of a row-word and of a lattice permutationis used. 'Fred!' cried Mr Swiveller, tapping his nose, 'a word to the wise is su�cient for them - we maybe good and happy without riches, Fred.'Charles Dickens Old Curiosity Shop (1841).De�nition 1 A wordLet T be a tableau. From T we derive a row-word or sequence w(T ) by reading the symbols inT from right to left (i.e. as in Arabic or Hebrew) in successive rows starting at the top row andproceeding to the bottom row



8 Thus for the tableau 1 1 2 2 32 2 3 34 45 678we have the word w(T ) = 322113322446578 and for the skew tableau1 1 11 2 21 2we have the word w(T ) = 11122121.De�nition 2 A lattice permutationA word w = a1a2 : : :aN in the symbols 1; 2; : : : ; n is said to be a lattice permutation if for1 � r � N and 1 � i � n� 1, the number of occurrences of the symbol i in a1a2 : : :ar is not lessthan the number of occurrences of i + 1.Thus the word w(T ) = 322113322446578 is clearly not a lattice permutation whereas the word w(T ) =11122121 is a lattice permutation. The word w(T ) = 12122111 is not a lattice permutation since thesub-word 12122 has more twos than ones.Theorem 1 The value of the coe�cient c��� is equal to the number of semistandard tableaux T of shapeF�=� and content � such that w(T ) is a lattice permutation.By content � we mean that each tableau T contains �1 ones, �2 twos, etc.ExampleLet us evaluate the coe�cient cf542gf431gf21g. We �rst draw the frame F f542=21g.Into this frame we must inject the content of f431g i.e. 4 ones, 3 twos and 1 three in such a way that wehave a lattice permutation. We �nd two such numberings1 1 11 2 22 3 1 1 12 2 21 3and hence cf542gf431gf21g = 2. Note that in the evaluation we had a choice, we could have, and indeed moresimply, evaluated cf542gf21gf431g. In that case we would have drawn the frame F f542=431g to getNote that in this case the three boxes are disjoint. This skew frame is to be numbered with two ones andone 2 leading to the two tableaux 112 121verifying the previous result. Theorem 1 gives a direct method for evaluating the Littlewood-Richardsoncoe�cients. These coe�cients can be used to evaluate both skews and products. It is sometimes usefulto state a procedure for directly evaluating products.Theorem 2 to evaluate the S�function product f�g:f�g



91. Draw the frame F� and place �1 ones in the �rst row, �2 twos in the second row etc until theframe is �lled with integers.2. Draw the frame F � and inject positive integers to form a semistandard tableau such that theword formed by reading from right to left starting at the top row of the �rst frame and movingdownwards along successive rows to the bottom row and then continuing through the second frameis a lattice permutation.3. Repeat the above process until no further words can be constructed.4. Each word corresponds to an S�function f�g where �1 is the number of ones, �2 the number oftwos etc.As an example consider the S�function product f21g � f21g.Step 1 gives the tableau 1 12Steps 2 and 3 lead to the eight numbered frames1 12 1 13 1 22 1 23 1 32 1 34 2 33 2 34Step 4 then lead to the eight words112112 112113 112212 112213112312 112314 112323 112324from which we conclude thatf21g:f21g= f42g+ f412g+ f32g+ 2f321g+ f313g+ f23g+ f2212gI have made only one non-mathematical discovery in my life, the discovery of the exclusionprinciple; and that was what I was given the Nobel prize for! (Wolfgang Pauli, 1956)Dear Professor,I must have a serious word with you today. Are you acquainted with a certain Mr. Schr�odinger,who in the year 1922 (Zeits. fur Phys.,12) described a 'bemerkenswerte Eigenschaft der Quan-tebahnen'? Are you acquainted with this man? What! You a�rm that you know him very well,that you were even present when he did this work and that you were his accomplice in it? Thatis absolutely unheard of. ......With hearty greetings, I amYours very faithfullyFritz London(Letter from F. London to E. Schr�odinger 10 December 1926)



10 Notes on Symmetric functions and the Symmetric Group"My association with Erwin Schr�odinger was not a close one, although I spent the summer of1927 in Z�urich, with the stated purpose of working under his supervision. In fact, I spent mostof my time in my room, trying to solve the Schr�odinger equation for a system consisting of twohelium atoms. I did not have much success, except that, as was mentioned later by John C.Slater, I formulated a determinant of the several spin-orbital functions of the individual electronsas a way of ensuring that the wave function is antisymmetric. This was a device that Slater mademuch use of in discussing the electronic structure of atoms and also of molecules in 1929 and1931.". (Linus Pauling, 1956)Relationship to the unitary groupWe have explored various symmetric functions indexed by partitions and de�ned on sets of variables.The variables can admit many interpretations. In some instances we may choose a set of variables1; q; q2; : : : ; qn (cf. Farmer, King and Wybourne, J. Phys. A: Math. Gen. 21, 3979 (1988).) or we couldeven use a set of matrices. The link between S�functions and the character theory of groups is suchthat, if � is a partition with `(�) � N and the eigenvalues of a group element, g, of the unitary groupUN are given by xj = exp(i�j) for j = 1; 2; : : : ; N then the S�functionf�g = f�1�2 : : :�Ng = s�(x)= s�(exp(i�1) exp(i�2) : : : exp(i�N )) (63)is nothing other than the character of g in the irreducible representation of UN conventionally designatedby f�g. The Littlewood-Richardson rule gives the resolution of the Kronecker product f�g � f�g of UNas f�g � f�g = Xj�j=j�j+j�j cf�gf�g:f�gf�g (64)where the cf�gf�g:f�g are the usual Littlewood-Richardson coe�cients. Equation (64) must be modi�ed forpartitions � involving more than N parts. Here the modi�cation rule is very simple. We simply discardall partitions involving more than N parts. We shall return to the unitary groups laterReduced notation for the symmetric groupThe irreps of the symmetric group S(N ) are uniquely labelled by the partitions � ` N , there being asmany irreps of S(N ) as there are partitions of N . Consider the following Kronecker products in S(N )f21g � f21g = f3g+ f21g+ f13gf31g � f31g = f4g+ f31g+ f22g+ f212gf41g � f41g = f5g+ f41g+ f32g+ f312gIt is apparent that the result stabilises at N = 4 and in general we could writefN � 1; 1g � fN � 1; 1g = fN; 0g+ fN � 1; 1g+ fN � 2; 2g+ fN � 2; 12g (65)The above result would hold for all N provide we apply the modi�cation rules, Eq. (58), to any non-standard S�functions. Thus f21g � f21g = f3g+ f21g+ f12g+ f13g= f3g+ f21g+ f13gsince f12g = �f12g = 0.Equation (65) could be rewritten as< 1 > � < 1 >=< 0 > + < 1 > + < 2 > + < 12 > (66)The above equation is an example of the use of reduced notation (cf. Scharf, Thibon and Wybourne, J.Phys. A: Math. Gen. 26, 7461 (1993) (STW), Butler and King, J. Math. Phys. 14, 1176 (1973)(BK)and references therein.) which makes use of the fact that the symmetric group is a subgroup of thegeneral linear group Gl(N ). In the reduced notation the irrep label f�g = f�1; �2; : : : ; �pg in S(N ) is



11replaced by < � >=< �2; : : : ; �p >. Given any irrep < � > in reduced notation it can be converted backinto a standard irrep of S(N ) by pre�xing it with a part N�j�j. For example, an irrep < 21 > in reducednotation corresponds in S(6) t0 f321g or f921g in S(12). If N � j�j � �1 then the irrep fN � j�j; �gis assuredly a standard irrep of S(N ). However, if N � j�j < �1 then the resulting irrep fN � j�j; �g isnon-standard and must be converted into standard form using Eq. (58).Reduced Kronecker products for S(N )BK have, following Littlewood, given the reduced Kronecker product as< � > � < � >= X�;�; < (f�g=f�gf�g) � (f�g=f�gfg) � (f�g � fg) > (67)where the � signi�es ordinary Littlewood-Richardson multiplication of the relevant S�function.Exercises1 Show that < 21 > � < 31 > evaluates as< 6 > + < 52 > + < 512 > + 4 < 51 > + 3 < 5 > + < 43 >+ 2 < 421 > + 6 < 42 > + < 413 > + 6 < 412 > + 10 < 41 > + 5 < 4 >+ < 321 > + 3 < 32 > + < 322 > + < 3212 > + 8 < 321 > + 11 < 32 >+ 4 < 313 > + 12 < 312 > + 13 < 31 > + 5 < 3 > + 2 < 23 > + 3 < 2212 >+ 9 < 221 > + 8 < 22 > + < 214 > + 6 < 213 > + 11 < 212 > + 9 < 21 >+ 3 < 2 > + < 15 > + 3 < 14 > + 4 < 13 > + 3 < 12 > + < 1 >2 Use the above result to deduce that for S(5) f221g � f221g evaluates asf5g + f41g + f32g + f312g + f221g + f213g3 Show that in S(8) f521g � f431g evaluates asf71g + 3f62g + 3f612g + 4f53g + 9f521g + 4f513g+ 2f42g + 9f431g + 7f422g + 10f4212g + 3f414g + 5f322g+ 6f3212g + 7f3221g + 5f3213g + f315g + f24g + 2f2312g+ f2214gKronecker products for two-row partitionsIn quantum chemistry the Pauli exclusion principle restricts interest to irreps of S(N ) indexed by par-titions into at most two parts. In terms of reduced notation two-row shapes become one-row shapes viathe equivalence fN � k; kg � fN � `; `g �< k > � < ` > (68)From Eq. (67) we are led directly to< k > � < ` > = kXq=0X̀p=0 < fk� pg � f`� pg � fp� qg >=X� c��� < � > (69)The possible shapes for � are severely constrained. The number of rows cannot exceed three. Themultiplicity to be associated with a given shape � can be readily determined by drawing the shape andthen �lling the cells, in accordance with the Littlewood-Richardson rule, with say k � p circles �, ` � pstars � and p� q diamonds �, where k + `� p + q = �1 + �2; : : : (70)Repeated cells will be marked with dots � . Consider the shape characterised by the one-row (m), theonly case relevant to quantum chemistry. A typical �lling is shown below:� � � � � � � � � � � � � � � � � �



12 From which we can deduced that c<m><k><`> is the number of partitions of k + ` �m into two parts (p; q)with p � q and ` � p leading toc<m><k><`> = 12(` � k + m + 2) for k > m (71a)c<m><k><`> = 12(k + ` �m + 2) for m � k (71b)and the coe�cient symmetry c<m><k><`> = c<2k�m><k><`> (72)ExercisesShow that < 4 > � < 6 >= < 10 > + < 9 > +2 < 8 > +2 < 7 > +3 < 6 > +2 < 5 >+ 2 < 4 > + < 3 > + < 2 >and hence for S(12) f84g � f62g = f10 2g+ f84g+ f62gCheck that the above result is dimensionally correct.The Murnaghan-Nakayama rule for S(N ) charactersIt is not my intention to give anymore than hints at methods of calculating the characters of S(N ) asubject well covered in the books of James and Kerber, Littlewood, Murnaghan, Macdonald, Robinsonand Sagan but rather to indicate those specialisations that are of immediate application in quantumchemistry. The Murnaghan-Nakayama rule is of particular value in starting practical calculations. Thekey concept is that of the removal of rim hooks or continuous boundary strips from a Young frame. A rimhook is a continuous strip of cells along the boundary of the Young frame which when removed leaves astandard Young frame. The length of the strip is the total number of cells in the rim hook. We associatea sign with a given rim hook. If the rim hook involves v cells in the vertical direction then the sign ofthe rim hook is sgn = (�1)v�1 (73)As an example consider the Young frame associated with the partition (543321)Let us now mark the three permissible continuous boundary hooks of length 6 as below�� �� �� � ��� �� � �� ���In each case the 6-hook involves four rows and hence the number of vertical cells is v = 4 and hence thesign is sgn = �1.The Murnaghan-Nakayama Algorithm The characteristic �f�g(�) for S(N ), where f�g is the irrep and (�)the class may be determined by1. Draw the Young frame for the partition �.2. Set i = 1. Set sgn = +1.3. While �i <> 0 do begin



134. Remove a rim hook of length �i in all possible ways that leave a standard Young frame. If thisis not possible for any of the Young frames then �f�g(�) = 0 and the algorithm is terminated.5. A sign sgn = sgn � newsign is to be associated with each new Young frame created in 3. withnewsign being the sign of the rim hook being removed.6. Set i = i + 17. End8. The characteristic �f�g(�) is equal to the sum of the signed units at the termination of the loop.NB. The result is independent of the order of the removal of the rim hooks.Example of �f543321g(864)First remove a rim hook of length 8 from the Young frame as shown below� ��� �� �� � �� ��� ��In each case the sign of the 8�hook is positive.Now remove the 6�hook from each of the above two frames to give� � � �� � �� �� �� �� � �� � �� � �� � �� ��Again each 6�hook has a positive sign. Now remove a 4�hook from each frame to give� � � � �� � � �� � �� � �� �� � � � � �� � � �� � �� � �� ��The sign of each 6�hook is negative and hence each of the frames yields an overall negative sign andhence �f543321g(864) = �2The characteristics �f�g(N)The characteristics �f�g(N) constitute an important special case. By the Murnaghan-Nakayama rule thereis just a single rim-hook of length N to be removed. The only possibility for a non-zero characteristic isif the frame of the partition � is a single hook of the form (a1b) with N = a + b. The characteristic isthus either null or �1. Precisely �f�g(N) = � (�1)b if � = (a + 1; 1b)0 otherwiseThe power sum symmetric functions and S(N ) charactersThe character table of S(N ) is the transition matrix M (p; s) that expresses power sum symmetric func-tions p� as a linear combination of S�functions s� with j�j = j�j = N . Thusp� =X� ���s� (74)



14 We have the important special case pn = n�1Xa;b=0a+b+1=n (�1)bsa+1;1b (75)Recalling that the power sum symmetric functions are multiplicative we can use Eq. (75) tocompute all the characteristics associated with a given class by simple application of the Littlewood-Richardson rule. As an example consider the characteristics for the class (31) of S(4). From Eq. (75) wehave p3 = f3g � f21g+ f13gp1 = f1gand hence p31 = (f3g � f21g+ f13g) � (f1g)= f4g � f22g+ f14gshowing immediately that the only non-zero characteristics associated with the class (31) are�431 = +1; �2231 = �1; �1431 = +1Exercises1. Generalize the power sum symmetric function topn(q; t) = n�1Xa;b=0a+b+1=n (�1)qqasa+1;1b(x) (76)and show that p31(q;x) = q2f4g+ (q2 � 1)f31g � qf22g � (q � 1)f212g+ f14gand for q = 1 the S(4) result is recovered. This takes one into Hecke algebras. ([KW1]King andWybourne, J. Phys. A: Math. Gen. 23, L1193(1990); [KW2]J. Math, Phys. 33, 4 (1992).).2. Construct a q�dependent character table for N = 3 and compare it with the corresponding tablefor S(3). See [KW1]."It did, Mr Widdershins, until quantum mechanics came along. Now everything's atoms. Realityis a fuzzy business, Mr Widdershins. I see with my eyes, which are a collection of whirlingatoms, through the light, which is a collection of whirling atoms. What do I see? I see youMr Widdershins, who are also a collection of whirling atoms. And in all this intermingling ofatoms who is to know where anything starts and anything stops. It's an atomic soup we're in,Mr Widdershins. And all these quantum limbo states only collapse into one concrete reality whenthere is a human observer"Pauline Melville, The Girl with the Celestial Limb (1991)



15Notes on Symmetric functions and the Symmetric GroupB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandYou have nothing to do but mention the quantum theory, and people will take your voice for thevoice of science, and believe anythingGeorge Bernard Shaw, Geneva (1938)Murnaghan's algorithmIt is possible to produce a modi�cation of the Murnaghan-Nakayama method to produce a systematicmethod for calculating characteristics ��� of S(N ). The basic idea is to choose a part �i of � and subtractit from �j of � to produce a newlist of S�functions of weight N � �inewlist = pXj=1f�1; : : : ; �j � �i; : : : ; �pg (77)Now make newlist standard by applying the S�function modi�cation rules. Next repeat the processsuccessively until all the parts of � have been used. The resulting �nal list will involve just the S�functionf0g and its coe�cient is the desired characteristic.As an example consider the calculation of the characteristic �311221 for S(5). We �rst subtract 2 from eachpart of f311g and apply the modi�cation rules to producef311g ! f111g+ f3� 11g+ f31� 1g= f111g � f3gNow repeat the process to producef111g � f3g ! f�111g+ f1� 11g+ f11� 1g � f1g= �2f1gNow subtract the last part 1 of f221g to �nally give�311221 = �2This process can be readily programmed to produce a fast evaluation of arbitrary characteristics. How-ever, it is not a suitable method for yielding formulae.The Dimensional Formula in Reduced Notation for S(n)One has the well-known Robinson-Frame-Thrall resultff�g = n!H� (78)where H� is the product of the hook lengths of F �. We can obtain a corresponding result for f�g =fn �m;�1; : : : ; �rg by considering the hook lengths for the �rst row of F� and cancelling these factorswith terms in n! to give in reduced notationf<�>n = 1H� n!(n �m + r)! rYi=1(n �m � �i + i) (79)This may be put in a form analogous to Eq. (78) by de�ning �i = 0 for i > r to yieldf<�>n = 1H� mYi=1(n �m � �i + i) (80)The advantage of Eqs (78) and (79) is that they lead directly to formulas for the dimensions as an explicitfunction of n.



16 Thus for a two-part partition (n�m;m) we readily obtain the general resultf<m>n = n!(n� 2m + 1)m!(n�m + 1)! (81)and hence typically f<4>n = n(n� 1)(n � 2)(n� 7)24 (82)which is valid for all n � 0. For n = 3; 4; 5; 6 we havef<4>3 = �1; f<4>4 = �3; f<4>5 = �5; f<4>6 = �5which corresponds tof�1; 4g = �f3g; f0; 4g = �f3; 1g; f1; 4g = �f3; 2g; f2; 4g = �f3; 3gNote that the characteristic ��1n is just the dimension of the irrep f�g of S(n) and hence in reducednotation f<�>n = ��1n (82)Raising Operators in S(N )Before continuing with the characters of S(N ) we make an important diversion. The S-functions s� canbe related to the homogeneous symmetric functions h� by writings� = jh�i�i+j j (83)Thus, for example, s321 = ������h3 h4 h5h1 h2 h30 1 h1 ������= h321 � h33 � h411 + h51 (84)where we note that h�k = 0; h0 = 1.Let us introduce a raising operator Rij such that acting on a partition (�) we haveRij(�1; : : : ; �i; : : : ; �j; : : : ; �p) = (�1; : : : ; �i + 1; : : : ; �j � 1; : : : ; �p) (85)We can then rewrite Eq. (83) in the form s� =Yi<j(1�Rij)h� (86)Thus s321 = (1�R12)(1� R13)(1 �R23)h321 (87)We have successively(1� R23)h321 = h321� h33(1� R13)[h321 � h33] = h321 � h33 � h42(1� R12)[h321 � h33 � h42] = h321 � h33 � h42 � h411 + h42 + h51s321 = h321 � h33 � h411 + h51 (88)in agreement with Eq. (84). Note that no modi�cation rules are applied until the action of all theraising operators have been applied though trailing zeros may be dropped and partitions whose last partis negative.We can de�ne an inverse raising operator asYi<j(1� Rij)�1 =Yi<j(1 + Rij + R2ij + : : :) (89)



17We then have the inverse transformationh� =Yi<j(1 + Rij + R2ij + : : :)s� (90)Thus h321 = (1 + R12 + R212 + : : :)(1 + R13 + R213 + : : :)(1 + R23 + R223 + : : :)s321 (91)We have successively s321 !s321 + s33s321 + s33 !s321 + s33 + s42s321 + s33 + s42 !s321 + s33 + s42 + s411 + s501 + s6�11 + s42 + s51 + s6 + s51 + s6!s321 + s33 + s411 + 2s42 + 2s51 + s6 (92)where we have used s501 = 0; s6�11 = �s6. Recall that h� is a multiplicative symmetric function andhence h321 = h3h2h1 and furthermore hn = sn and hence by the Littlewood-Richardson ruleh321 = s3 � s2 � s1= s321 + s33 + s411 + 2s42 + 2s51 + s6 (93)in agreement with Eq. (92).A Reduced Notation Determinantal FormLet us return to the determinantal expansion of s� in terms of h� as in Eq. (83). We can rewrite,anticipating reduced notation, s� = sn�m;�1 ;�2;::: (94)The determinantal form then becomessn�m;�1;�2;::: = �������� hn�m hn�m+1 hn�m+2 : : :h�1�1 h�1 h�1+1 : : :h�2�2 h�2�1 h�2 : : :... ... ... ... �������� (95)The above determinant can be expanded about the �rst row as a sum of determinants to give�������� hn�m hn�m+1 hn�m+2 : : :h�1�1 h�1 h�1+1 : : :h�2�2 h�2�1 h�2 : : :... ... ... ... �������� = hn�m �����h�1 h�1+1 : : :... ... ... ������ hn�m+1 �����h�1�1 h�1 : : :... ... : : : �����+ : : : (96)The determinant introduced in Eq. (83) readily extends to skew S�functions to gives�=� = jh�i��i�i+j j (97)Comparing Eq. (96) with Eq. (97) allows us to rewrite Eq. (95) assn�m;�1 ;�2;::: = mXr=0(�1)rsn�m+r � s�=1r (98)The dimension f (s��s�)n of the S�function product s� � s� evaluated in S(n) where n = j�j � j�j is givenby f (s��s�)n = (j�j+ j�j)!j�j!j�j! fs�fs� (99)Putting k = m � r in Eq. (98) and equating dimensions on both sides yields the identityf� = f<�>n = mXk=0(�1)m�k �nk� fs�=s1m�n (100)



18 General Results on Characters of S(n)Let us write the cycle structure of a class (�) of S(n) as(�) = (1�12�2 : : : k�k : : : n�n) (101)A characteristic for S(n) is then written as�f�g(�) = �f�1;�2;:::g(1�12�2 :::)The Murnaghan algorithm is then essentially�f�g(�) =Xi �f�1;�2;:::;�i�k;:::g(1�12�2 :::k�k�1 :::) (102)with the S�function modi�cation rules being used as required.We can readily arrive at a number of general results for the characters of S(n). Considering the decom-position S(m + n) ! S(m) � S(n) we have���� =X�`n��=�� ��� (103)where � ` m and � ` n.Suppose (� ) = (n) then Eq. (103) becomes���n = X�`n��=�� ��n (104)But we earlier noted that ��n = � (�1)b if � = (a + 1; 1b)0 otherwiseand hence Eq. (103) becomes ���n = n�1Xa;b=0a+b+1=n (�1)b��=a+1;1b� (104)The case of n = 1 specialises to ���1 = ��=1� (105)Clearly if the class in S(m + n) is (�1n) then we have by repeated application of Eq. (104) that���1n = ��=1=1:::=1� (105)where the skew with f1g is repeated n times. Butf1g�n = X�`n ff�gn f�g (106)allowing us to rewrite Eq. (105) as ���1n = X�`n ff�gn ��=�� (107)and of course ��1n = ff�gn (108)Note the occurrence of the dimension formula in several of the above results. This suggests that furtherprogress might be made in terms of the reduced notation and the reduced dimension formula. That willbe the subject of the next lecture.I hope that posterity will judge me kindly, not only as to the things which I have explained, butalso to those which I have intentionally omitted so as to leave to others the pleasure of discoveryRen�e Descartes (1596 - 1650) La Geometrie


