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He who can, does; he who cannot teaches.

George Bernard Shaw, Man & Super-
man (1903)

Those who can, do, those who can’t,
attend conferences.

Daily Telegraph 6th August, (1979)
Introduction

These are rough notes on symmetric functions and the symmetric group and are given purely as a guide.
I intend to outline some of the basic properties of symmetric functions as relevant to application to
problems in chemistry and physics. The partition of integers plays a key role and we shall first make
remarks on partitions in order to establish notation and then go on to consider the standard symmetric
functions, their definitions and their generators. This will lead to the important symmetric functions
known as S—functions so named in honour of Schur. Important properties to be discussed will be their
outer and inner multiplication and plethysm. At that stage we can start to look at specific applications.

Partitions
An ordered partition A of length p = £()), corresponds to an ordered set of p integers

A= (A, A0,..,4,) (1)
such that

AM>A,...22, 20 (2)

Unless otherwise stated we shall mean by a partition an ordered partition. Normally we shall omit trailing
ZEros.

The weight wy of a partition A will be defined as the sum of its parts.
wrx= =X+, +...+ X (3)
If | {| = n then A is said to be a partition of n. We shall denot the set of partitions A - n as P, and the

set of all partitions by P. Thus

Pa 2 {(4),(31),(2%),(217), (1)} (4)
Note that the number of repetitions of a given part is often indicated by a superscript m; where m; is
the number of parts of A that are equal to ¢ and will be referred to as the multiplicity of 7 in A.

Note that in writing Eq.(4) we have given the partitions in reverse lexicographic ordering This
ordering is such that for a pair of partitions (A, ) either A, = p or the first non-vanishing difference A; —;
1s positive.

Frames of Partitions

We may associate with any partition A a frame F* which consists of ¢()), left-adjusted rows of boxes
with the ¢ — th row containing A; boxes. Thus for P4 we have:-
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Conjugate Partitions

The conjugate of a partition A is a partition A’ whose diagram is the transpose of the diagram of
A. If X = A then the partition A is said to be self-conjugate. Thus

and

are conjugates while

is self-conjugate.
Skew Frames

Given two partitions A and g such that A O g implies that the frame F'* contains the frame F'* i.e. that
X > p; for all i > 1. The difference p = A — p forms a skew frame FA#. Thus, for example, the skew
frame F542/21 has the form |

Note that a skew frame may consist of disconnected pieces.

Frobenius Notation for Partitions

There is an alternative notation for partitions due to Frobenius. The diagonal of nodes in a Ferrers-
Sylvester diagram beginning at the top left-hand corner is called the leading diagonal. The number of
nodes in the leading diagonal is called the rank of the partition. If 7 is the rank of a partition then let a;
be the number of nodes to the right of the leading diagonal in the i—th row and let b; be the number of
nodes below the leading diagonal in the ¢—th column. The partition is then denoted by Frobenius as

ap, @z, ..., GQp
(bla bZa ] br) (33)

a; > as > ... > 4y
by > bs>...> b,

We note that

and
ap+as+...+a,+by+bs+...+b.+r=n

The partition conjugate to that of Eq.(3.3) is just
bla bZa ] br
(ala az, ..., ar) (5)

As an example consider the partitions (543?21) and (65421). Drawing their diagrams and marking
their leading diagonal we have

and .

from which we deduce the respective Frobenius designations

4 9 0 1 5 3 1
5 3 1 an 4 2 0



Young Tableaux

A Young tableau is an assignment of n numbers to the n cells of a frame F'* with A - n according to
some numbering sequence. A tableau is standard if the assignment of the numbers 1,2, ..., n is such that
the numbers are positively increasing from left to right in rows and down columns from top to bottom.
Thus for the partitions of the integer 4 we have the standard Young tableaux

214]

112]13]
4] 3]
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We notice in the above examples that the number of standard tableaux for conjugate partitions is the
same. Indeed the number of standard tableaux associated with a given frame F'* is the dimension f, of
an irreducible representation {A} of the symmetric group S,,.

Hook lengths and dimensions for S,

The hook length of a given box in a frame F'* is the length of the right-angled path in the frame with
that box as the upper left vertex. For example, the hook length of the marked box in

1s 8.

Theorem 1: To find the dimension of the representation of S,, corresponding to the frame F'*,

divide n! by the factorial of the hook length of each box in the first column of I'* and multiply by the
difference of each pair of such hook lengths.

Thus for the partition (54322 1) we have the hook lengths
10 |

|>—noocﬂc»oo

and hence a dimension

543221—18!2X4X5X7X9X2X3X5X7X1X3X5X2X4X2

18 - 10! x8!'x6!xbh!x3!Ix1!
= 10720710

It is not suggested that you check the above result by explicit enumeration!



Hook-length Product A
The irreps {A} of S, are indexed by the ordered partitions A = N. Tt is useful to define a hook-length

product
M = H hij (6)
(4,7)3A
where ¢ labels rows and j columns. Note that

giar = gias (7)

The Frame-Robinson-Thrall Formula

The §,, dimensional formula may be rewritten as
p=-t (8)
no HAA

which is the celebrated result of Frame, Robinson and Thrall.

Specialisation to Two-Row Irreps of C,

Consider a two-part partition (p,r). It is readily seen from the definition of H{A that

ey _ e+ ! 9)
p—r+1
Noting that n = p + r we may specialise Eq. (8) to
gy bz rr L iparad (10)
p+r+1 r

In quantum chemistry the Pauli exclusion principle restricts physically realisable irreps of &, to the
generic type {% + 5, % — S} where N and S are the total electron number and spin respectively. In that
case Eq. (10) becomes

f<N,s>:2]5:11 (gj;) (11)
which is sometimes called the Heisenberg formula.
Staircase Partitions
A partition of the form (p,p — 1,p—2,...,2,1) is termed a staircase partition. Such irreps have many

interesting properties.
Exercises

e Show that the p — th staircase partition is of weight

2
e Show that the hooklength product H? for the p — th staircase partition is
p—1
v = JJ@i+1yp (13)
i=0

e Show that the p = 18 staircase represention is of

353,630, 151,029, 664, 166,403, 885,519,184, 771,102,250, 561, 450, 895,264,176, 910
, 003,150, 360,627,549, 788, 542,182,043, 325, 740, 180, 684, 537,821, 357, 203,782, 730
, 400,746, 242,708,749, 607,205,510, 228, 035,502, 080

e How long would it take a supercomputer to check this result by explicit computation?



Notes on Symmetric functions and the Symmetric Group

"When a thing was new, people said, 'It is not true’. Later, when its truth became obvious, people
said, ’Anyhow, 1t is not important’ and when its importance could no longer be denied, people
said, "Anyway, it is not new’”. (William James, philosopher)

Determinanntal form of the S-function

The original definition of the S—function was in Jacobi’s determinantal form

sx = sa(@1, 22, .. 0n) = X0 (55)
as
where A is a partition of length <n and 6 =(n—1,n—2,..., 1, 0) with
arps = det(@ " )icij<n (56)

and

as = H (2 —xj) = det(x?_j) (57)

1<4,§<n
1s the Vandermonde determinant.

The Vandermonde determinant is an alternating or antisymmetric function. Even powers of the
Vandermonde determinant are symmetric functions. Jacobi’s definition of the S—function is equivalent to
the combinatorial definition given in Eq. (48) [cf Macdonald p23]. Both definitions have their respective
merits. We shall often write in place of s, just {A} and assume, unless otherwise stated that the number
of variables is unrestricted.

Non-standard S—functions

The S—functions are indexed by partitions. If the partitions are ordered then the S—function
is said to be standard. However, from Jacobi’s definition it is possible to have S—functions that are
non-standard in as much as the indexing partition is not in the standard ordered form. Such non-
standard S—functions may be transformed into a signed standard S—function or are null. The rules for
standardising non-standard S—functions are often referred to as modification rules.

It follows from consideration of the determinant given in Eq. (56) that the relevant modification
rules are:

MY=0  ifhp =X+l (584)
sy =X} =0 (58b)
{/\1,...,/\2',/\2'+1,...,/\p} = —{/\1,...,/\“_1 -1, A+ 1,...,/\p} (586)

Repeated application of the above three rules will reduce any non-standard S—function to either zero or
to a signed standard S—function. In the process of using the above rules trailing zero parts are omitted.

Slinkies and Modification Rules

In situations involving extensive use of modification rules and in particular when one is trying
to derive general formulae the use of slinkies can be very useful (KWY:King, Wybourne and Yang, J.
Phys. A: Math. Gen. 22, 4519 (1989)). (see also Chen, Garsia and Remmel, Contemp. Math. 34, 109
(1984)). A slinky of length ¢ is a diagram of ¢ circles joined by ¢ — 1 links. A slinky can be folded so
as to take the shape of a continuous boundary strip of a regular Young diagram, with each of the links
eithehorizontal or vertical and its circles forming part of the boundary of such a diagram. The sign of
the slinky is defined to be (—1)"~! where r is the number of rows occupied by the circles of the slinky,
so that » — 1 1s the number of vertical links of the slinky.

The modification rules for non-standard S—functions can be implemented in terms of folding
operations of the slinkies that make up the Young diagram as follows:

1. Draw the slinky diagram corresponding to the non-standard S—function {A1, A2, ..., Ay}

2. Successively, for ¢ = 1,2,...,p, while holding the starting positions of the slinkies fixed, fold
(if necessary) the ¢i—th slinky of length A; into the shape of the unique standard continuous
boundary strip such that the first ¢ rows of the resulting diagram constitute a regular Young



diagram. If this is not possible then {A} = 0. Otherwise we obtain, after folding the last slinky,
the regular Young diagram corresponding to some standard S—function {u}. The final result is
then {A} = (=1)"{u} where v is the total number of vertical links in the diagram.

We illustrate the application of the method of slinkies with two examples.

o N N o O O O O
. O

{4004} = {4211}

O A A A A O O O O O O
R O O O
O O O O O
O O O O
O O
O O O O O O O

60531070} = {64333210}

The principal application of the slinky method is to the expansion of symmetric generating
functions as a sum of S—functions. Thus, for example, one (KWY) can show that

[0+ i wit) = 32 (-1 {217)

where fr41 is the (r + 1)—th Fibonacci number.
Exercises
1. Using Eqgs. (58a-c) show that

{24} = —{3%}, {141} = —{321}, {3042} =0, {3043} = +{372}, {14-25-14} = —{332}



2. Extend the slinky algorithm to include the possibility of negative parts and then show that
{14 — 25 — 14} = —{332}.
3. Use the method of slinkies to show that

(60531070} = {643°21} and {61131090} = 0

General Remarks concerning S—functions

The S—functions are symmetric functions and form an integral basis for the ring of symmetric
functions and hence may be expressed in terms of the classical symmetric functions ey, hx, mx, fr.
Transition matrices can be defined for taking one from members of one basis to another. The transition
matrices can be expressed in terms of the Kostka matrix K, and the transposition matrix

0. otherwise

Jap = { LA = g (59)

The relevant transition matrices are tabulated in Macdonald (p56). These matrices all involve integers
only.

The elementary and homogeneous symmetric functions e,, and h,, are special cases of S—functions
, namely,

en = {17} hy, = {n} (60)

S—functions arise in many situations. In the next few lectures we shall explore some of their
properties that are relevant to applications in physics an chemistry. To proceed to these we must first
consider the Littlewood-Richardson rule and then discuss the role of S—functions in the character theory
of the symmetric group S(n) and the unitary group U(n).

Skew S—functions

The combinatorial definition given for S—functions in Eq.(48) is equally valid for skew tableaux and can
hence be used to define skew S—functions s/, (x) or {A/u}. Since the s)/,(x) are symmetric functions
they must be expressible in terms of S—functions s, () such that

Sx/u :Zcf;ys,, (61)

It may be shown that the coefficients cf;v are necessarily non-negative integers and symmetric with respect
o
The Littlewood-Richardson rule

The product of two S—functions can be written as a sum of S—functions, viz.

to ¢ and v. The coefficients ¢}, are commonly referred to as Littlewood-Richardson coefficients.

Sp.8y = CZVS)\ (62)
A

The Littlewood-Richardson coefficients cf;,, in Egs. (61) and (62) are identical, though the summations
are of course different. In both cases |u|+ |v| = |A|. A rule for evaluating the coefficients ¢}, was given
by Littlewood and Richardson in 1934 and has played a major role in all subsequent developments. The
rule may be stated in various ways. We shall state it first in terms of semistandard tableaux and then
also give the rule for evaluating the product given in Eq.(62) which is commonly referred to as the outer
multiplication of S—functions. In each statement the concepts of a row-word and of a lattice permutation

1s used.

"Fred!” cried Mr Swiveller, tapping his nose, ’a word to the wise is sufficient for them - we may
be good and happy without riches, Fred.’
Charles Dickens Old Curiosity Shop (1841).

Definition 1 A word

Let T be a tableau. From T we derive a row-word or sequence w(T) by reading the symbols in
T from right to left (i.e. as in Arabic or Hebrew) in successive rows starting at the top row and
proceeding to the bottom row



Thus for the tableau

O | DN [—=

[ o ]—

we have the word w(7T) = 322113322446578 and for the skew tableau

1]1]1]
1
[1]2
we have the word w(T) = 11122121.
Definition 2 A lattice permutation
A word w = ayay...ay in the symbols 1,2,...,n is sard to be a lattice permutation if for

1<r <N and1<i<n-—1, the number of occurrences of the symbol i in a1as...a, is not less
than the number of occurrences of 1 + 1.

Thus the word w(T) = 322113322446578 is clearly not a lattice permutation whereas the word w(7) =
11122121 is a lattice permutation. The word w(T) = 12122111 is not a lattice permutation since the
sub-word 12122 has more twos than ones.

Theorem 1 The value of the coefficient cf;,, 1s equal to the number of semistandard tableaur T of shape
FME and content v such that w(T) is a lattice permutation.

By content v we mean that each tableau 7' contains vy ones, vy twos, etc.

Example

Let us evaluate the coefficient cg’éﬁ{zl}. We first draw the frame F1{542/21},

Into this frame we must inject the content of {431} i.e. 4 ones, 3 twos and 1 three in such a way that we
have a lattice permutation. We find two such numberings

1]

—_

1[1]1] 1
1]2]2 21212
[2]3 [1]3

and hence C}Zgﬁ{zl} = 2. Note that in the evaluation we had a choice, we could have, and indeed more

simply, evaluated 6}2?51431}' In that case we would have drawn the frame F1542/431} o get

Note that in this case the three boxes are disjoint. This skew frame 1s to be numbered with two ones and
one 2 leading to the two tableaux

1] 1]

verifying the previous result. Theorem 1 gives a direct method for evaluating the Littlewood-Richardson
coefficients. These coefficients can be used to evaluate both skews and products. It is sometimes useful
to state a procedure for directly evaluating products.

Theorem 2 to evaluate the S—function product {u}.{v}




1. Draw the frame F'* and place v1 ones in the first row, vo twos in the second row etc until the
frame 1is filled with integers.

2. Draw the frame F” and inject positive integers to form a semustandard tableau such that the
word formed by reading from right to left starting at the top row of the first frame and moving
downwards along successive rows to the bottom row and then continuing through the second frame
s a lattice permutation.

3. Repeat the above process until no further words can be constructed.

4. Each word corresponds to an S—function {A} where Ay is the number of ones, Ay the number of
twos elc.

As an example consider the S—function product {21} -{21}.
Step 1 gives the tableau

1]

1
2]
Steps 2 and 3 lead to the eight numbered frames

1] [ala] [af2] [1]2) [113] [1]3] [2]3] [2]3]
2 B3 2] 3 2 4 3 4

Step 4 then lead to the eight words

112112 112113 112212 112213
112312 112314 112323 112324

from which we conclude that
{21} {21} = {42} + {417} + {37} + 2{321} + {31°} + {2°} + {271%}

I have made only one non-mathematical discovery in my life, the discovery of the exclusion
principle; and that was what I was given the Nobel prize for! (Wolfgang Pauli, 1956)

Dear Professor,

I must have a serious word with you today. Are you acquainted with a certain Mr. Schrodinger,
who in the year 1922 (Zeits. fur Phys.,12) described a ’bemerkenswerte Eigenschaft der Quan-
tebahnen’? Are you acquainted with this man? What! You affirm that you know him very well,
that you were even present when he did this work and that you were his accomplice in it? That
1s absolutely unheard of. ......

With hearty greetings, I am

Yours very faithfully

Fritz London

(Letter from F. London to E. Schrédinger 10 December 1926)
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"My association with Erwin Schrodinger was not a close one, although I spent the summer of
1927 in Zurich, with the stated purpose of working under his supervision. In fact, I spent most
of my tume in my room, trying to solve the Schrodinger equation for a system consisting of two
helium atoms. I did not have much success, except that, as was mentioned later by John C.
Slater, I formulated a determinant of the several spin-orbital functions of the individual electrons
as a way of ensuring that the wave function is antisymmetric. This was a device that Slater made
much use of in discussing the electronic structure of atoms and also of molecules in 1929 and

1931.”. (Linus Pauling, 1956)
Relationship to the unitary group
We have explored various symmetric functions indexed by partitions and defined on sets of variables.
The variables can admit many interpretations. In some instances we may choose a set of variables
1,¢,4% ...,q" (cf. Farmer, King and Wybourne, J. Phys. A: Math. Gen. 21, 3979 (1988).) or we could
even use a set of matrices. The link between S—functions and the character theory of groups is such
that, if A is a partition with £(A) < N and the eigenvalues of a group element, g, of the unitary group
Un are given by z; = exp(i¢;) for j = 1,2,..., N then the S—function

{A}={AA2.. . An} = sa(x)
= sa(exp(igy) exp(iga) ... exp(idn)) (63)

is nothing other than the character of ¢ in the irreducible representation of Uy conventionally designated
by {A}.

The Littlewood-Richardson rule gives the resolution of the Kronecker product {u} x {v} of Ux

< {wt= Y )0 (64)

[M=1pl+|v]

as

where the c%ﬁ.{y} are the usual Littlewood-Richardson coefficients. Equation (64) must be modified for

partitions A involving more than N parts. Here the modification rule is very simple. We simply discard
all partitions involving more than N parts. We shall return to the unitary groups later

Reduced notation for the symmetric group

The irreps of the symmetric group S(IV) are uniquely labelled by the partitions A F N, there being as
many irreps of S(N) as there are partitions of N. Consider the following Kronecker products in S(N)

{21} # {21} = {3} + {21} + {1%}
{31} + {31} = {4} + {31} + {2°} + {217}
{41} {41} = {5} + {41} + {32} + {317}
It is apparent that the result stabilises at N = 4 and in general we could write
{N =L} {N = 1,1} = {N, 0} + {N — 1,1} + {N — 2,2} + {N — 2,17} (65)

The above result would hold for all N provide we apply the modification rules, Eq. (58), to any non-
standard S—functions. Thus

{21} * {21} = {3} + {21} + {12} + {1%}
= {31+ {213 + {1%}
since {12} = —{12} = 0.
Equation (65) could be rewritten as
<I>#<1>=<0>+<1>+<2>4+<1*> (66)

The above equation is an example of the use of reduced notation (cf. Scharf, Thibon and Wybourne, J.
Phys. A: Math. Gen. 26, 7461 (1993) (STW), Butler and King, J. Math. Phys. 14, 1176 (1973)(BK)
and references therein.) which makes use of the fact that the symmetric group is a subgroup of the
general linear group GI(N). In the reduced notation the irrep label {A} = {A1, A2, ..., A} in S(NV) is



11

replaced by < A >=<A9,..., A, >. Given any irrep < g > in reduced notation it can be converted back
into a standard irrep of S(INV) by prefixing it with a part N —|u|. For example, an irrep < 21 > in reduced
notation corresponds in S(6) t0 {321} or {921} in S(12). If N — |u| > py then the irrep {N — |p], u}
is assuredly a standard irrep of S(N). However, if N — |u| < g1 then the resulting irrep {N — |u|, pu} is
non-standard and must be converted into standard form using Eq. (58).

Reduced Kronecker products for S(N)
BK have, following Littlewood, given the reduced Kronecker product as
<A>w<p>= Y < (A8 - (ud/{aHyh) - (B« i) > (67)
By

where the - signifies ordinary Littlewood-Richardson multiplication of the relevant S—function.

Exercises
1 Show that < 21 > % < 31 > evaluates as
< 6> + <52> + <517> +4 <51 > +3<5> + <43 >
+ 2< 421 > +6< 42> + <413 > +6<41? > + 10 < 41 > +5<4>
+ <31 > +3<3> + <322> + <3217 > +8< 321 > +11<32>
+4<313> +12<312> 4+ 13<31> +5<3> +2<28> +3<2%1% >
+9<2%1 > +8<2?> + <21%> +6<213> +11<212>  +9<21>
+3<2> + <15> +3<1t> +4<13> +3<1?2> + <1>

2 Use the above result to deduce that for S(5) {221} % {221} evaluates as
{5} + {41} + {32} + {317} + {2°1} + {213}

3 Show that in S(8) {521} % {431} evaluates as

{71} + 3{62} + 3{61%} + 4{53} + 9{521} + 4{51%}
+ 2{4%} + 9{431} + 7{42%} + 10{4217%} + 3{41%} + 5{3%2}
+ 6{3%17} + 7{32%1} + 5{321%} + {31%} + {24} + 2{2%12}
+ {2217}

Kronecker products for two-row partitions

In quantum chemistry the Pauli exclusion principle restricts interest to irreps of S(V) indexed by par-
titions into at most two parts. In terms of reduced notation two-row shapes become one-row shapes via
the equivalence

IN =k bk} {N -0l =<k >*<{> (68)
From Eq. (67) we are led directly to

k £
<k>x<t>=>"> <{k—p}-{t-p}-{p—q}>

¢=0 p=0

=Y, <A> (69)
A

The possible shapes for A are severely constrained. The number of rows cannot exceed three. The
multiplicity to be associated with a given shape A can be readily determined by drawing the shape and
then filling the cells, in accordance with the Littlewood-Richardson rule, with say & — p circles o, £ — p
stars * and p — ¢ diamonds ¢, where

k+l—p4+qg=XA+Aa,... (70)

Repeated cells will be marked with dots - . Consider the shape characterised by the one-row (m), the
only case relevant to quantum chemistry. A typical filling is shown below:

[olol-[-[-Tolsls[-[-T-Txlolo]-[-]-[o]
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From which we can deduced that <72 is the number of partitions of k + £ — m into two parts (p, q)

<k><e>
with p > ¢ and £ > p leading to
1
c§?>><z> = §(£ —k+m+2) for k>m (71la)
1
c§?>><z> = 5(16‘ +{l—m+2) for m>k (71b)

and the coefficient symmetry

<m> _ L2k—-m>
Cib><t> = Cch><t> (72)

Exercises
Show that

<A>*x<b6>= <10 >4+ <I9>42<8>H2<T>4H3<6>+2<h >
+2<4>4+<I>+<2>

and hence for S(12)
{84} % {67} = {10 2} + {84} + {67}
Check that the above result is dimensionally correct.

The Murnaghan-Nakayama rule for S(N) characters

It is not my intention to give anymore than hints at methods of calculating the characters of S(N) a
subject well covered in the books of James and Kerber, Littlewood, Murnaghan, Macdonald, Robinson
and Sagan but rather to indicate those specialisations that are of immediate application in quantum
chemistry. The Murnaghan-Nakayama rule is of particular value in starting practical calculations. The
key concept is that of the removal of rim hooks or continuous boundary strips from a Young frame. A rim
hook 1s a continuous strip of cells along the boundary of the Young frame which when removed leaves a
standard Young frame. The length of the strip is the total number of cells in the rim hook. We associate
a sign with a given rim hook. If the rim hook involves v cells in the vertical direction then the sign of
the rim hook is

sgn = (—1)"71 (73)
As an example consider the Young frame associated with the partition (543321)

Let us now mark the three permissible continuous boundary hooks of length 6 as below

In each case the 6-hook involves four rows and hence the number of vertical cells is v = 4 and hence the
sign is sgn = —1.
The Murnaghan-Nakayama Algorithm The characteristic X&{;\)} for S(N), where {A} is the irrep and (p)
the class may be determined by

1. Draw the Young frame for the partition A.

2. Set ¢ = 1. Set sgn = +1.

3. While p; <> 0 do begin



4. Remove a rim hook of length p; in all possible ways that leave a standard Young frame. If this
is not possible for any of the Young frames then X&{;\)} = 0 and the algorithm is terminated.

5. A sign sgn = sgn * newsign is to be associated with each new Young frame created in 3. with
newsign being the sign of the rim hook being removed.

6. Set i =i+ 1

7. End

8. The characteristic X&{;\)} is equal to the sum of the signed units at the termination of the loop.

NB. The result is independent of the order of the removal of the rim hooks.

{543321}
(864)

First remove a rim hook of length 8 from the Young frame as shown below

Example of y

In each case the sign of the 8—hook is positive.

Now remove the 6—hook from each of the above two frames to give

ololo]o] ole]
Sle|e SOle|e
ole olole
o|® Sle|e

o O Cle

. o]

Again each 6—hook has a positive sign. Now remove a 4—hook from each frame to give

olo] ole]

L L L ted
L]

e @ |® O

L L Lo (o i
L AL el

[ofe]e oo Jo

[eJefo oo o

The sign of each 6—hook is negative and hence each of the frames yields an overall negative sign and

hence
(543321} _ _
(864) -

The characteristics X&{j\\%

The characteristics X&{j\\% constitute an important special case. By the Murnaghan-Nakayama rule there
is just a single rim-hook of length N to be removed. The only possibility for a non-zero characteristic is
if the frame of the partition A is a single hook of the form (a1®) with N = a + b. The characteristic is

thus either null or £1. Precisely

N { (-1t ifA=(a+1,1%)
() 0 otherwise

The power sum symmetric functions and S(N) characters

The character table of S(N) is the transition matrix M (p, s) that expresses power sum symmetric func-
tions p, as a linear combination of S—functions s, with |p| = |A\| = N. Thus

Po= D X8 (74)
A

13
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We have the important special case

n—1

P = Z (—1)b5a+171b (75)

a,b=0
atbti=n

Recalling that the power sum symmetric functions are multiplicative we can use Eq. (75) to
compute all the characteristics associated with a given class by simple application of the Littlewood-
Richardson rule. As an example consider the characteristics for the class (31) of S(4). From Eq. (75) we
have

ps = {3} — {21} + {17}
p1 = {1}

and hence

ps1 = ({3} — {21} + {1°}) - ({1})
= {4} = {2} + {11}

showing immediately that the only non-zero characteristics associated with the class (31) are
2 4
X5 = +1, X5 = —1, Xz = +1

Exercises
1. Generalize the power sum symmetric function to

n—1

pa(g;t) = Z (=1)%¢"saq1,10(2) (76)

a,b=0
atbti=n

and show that

par(g ) = {4} + (¢° = D31} — ¢{2°} = (¢ = D{217} + {1}

and for ¢ = 1 the S(4) result is recovered. This takes one into Hecke algebras. ([KW1]King and
Wybourne, J. Phys. A: Math. Gen. 23, 1.1193(1990); [KW2]J. Math, Phys. 33, 4 (1992).).

2. Construct a g—dependent character table for N = 3 and compare it with the corresponding table
for S(3). See [KW1].

"It did, Mr Widdershins, until quantum mechanics came along. Now everything’s atoms. Reality
15 a fuzzy business, Mr Widdershins. I see with my eyes, which are a collection of whirling
atoms, through the light, which is a collection of whirling atoms. What do I see? [ see you
Mr Widdershins, who are also a collection of whirling atoms. And in all this intermingling of
atoms who s to know where anything starts and anything stops. It’s an atomic soup we’re in,
Mr Widdershins. And all these quantum limbo states only collapse into one concrete reality when
there is a human observer”

Pauline Melville, The Girl with the Celestial Limb (1991)
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You have nothing to do but mention the quantum theory, and people will take your voice for the
voice of science, and believe anything

George Bernard Shaw, Geneva (1938)
Murnaghan’s algorithm

It is possible to produce a modification of the Murnaghan-Nakayama method to produce a systematic
method for calculating characteristics X;\ of S(N). The basic idea is to choose a part p; of p and subtract
it from A; of A to produce a newlist of S—functions of weight N — p;

14
newlist = {M,..., N —pi, .., A} (77)
j=1

Now make newlist standard by applying the S—function modification rules. Next repeat the process
successively until all the parts of p have been used. The resulting final list will involve just the S—function
{0} and its coefficient is the desired characteristic.

As an example consider the calculation of the characteristic y331 for S(5). We first subtract 2 from each
part of {311} and apply the modification rules to produce
{311} — {111} + {3 - 11} + {31 -1}

={111} — {3}

Now repeat the process to produce
{11} = {3} = {—111} + {1 - 11} + {11 -1} — {1}

= -2{1}

Now subtract the last part 1 of {221} to finally give

311 _
X221 = —2

This process can be readily programmed to produce a fast evaluation of arbitrary characteristics. How-
ever, it is not a suitable method for yielding formulae.

The Dimensional Formula in Reduced Notation for S(n)
One has the well-known Robinson-Frame-Thrall result
!
IRV 78
F0 = (79)

where Hy is the product of the hook lengths of F*. We can obtain a corresponding result for {A} =
{n —m,p1,..., ¢y} by considering the hook lengths for the first row of F'* and cancelling these factors
with terms in n! to give in reduced notation

1

' r
<pu> _ L+ n. . o .
fn - Hu (n—m-i-?“)'llj[l(n m /’LZ+Z) (79)

This may be put in a form analogous to Eq. (78) by defining p; = 0 for i > r to yield

m

g5 = Tl =m—pit (50)

Boi=1
The advantage of Eqs (78) and (79) is that they lead directly to formulas for the dimensions as an explicit
function of n.

15
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Thus for a two-part partition (n — m, m) we readily obtain the general result

(n—2m+1)
<m> _ I (n mT) 81
I ml(n —m+ 1)! (81)
and hence typically
nn—1(n—-2)(n—-7
PSR U U )

which is valid for all n > 0. For n = 3,4,5,6 we have
FE =1, 5 = 28, 5 = o5, S5 = 5
which corresponds to

{_1a4} = _{3}a {0a4} = _{3a 1}a {1a4} = _{3a2}a {2a4} = _{3a3}

Note that the characteristic x7. is just the dimension of the irrep {A} of S(n) and hence in reduced
notation

ft2 =Xt (82)

Raising Operators in S(N)
Before continuing with the characters of S(N) we make an important diversion. The S-functions sy can
be related to the homogeneous symmetric functions iy by writing

$x = |hxi—it] (83)
Thus, for example,
hs hy hs
s321 = |h1 ko h3
0 1 m
= hso1 — haz — hg11 + hsy (84)

where we note that h_;, =0, hg = 1.

Let us introduce a raising operator R;; such that acting on a partition (A) we have
Rij(/\1,~~~,/\i,~~~,/\j,~~~,/\p) = (/\1,...,/\Z'+1,...,/\]' — 1,...,/\p) (85)
We can then rewrite Eq. (83) in the form
sy = H(l — Ryj)ha (86)
i<j
Thus
sg21 = (1 — R12)(1 — Ri3)(1 — Ras)hsa (87)

We have successively

(1 = Rag)hsa1 = hsa1 — has

(1 = Ry3)[ha21 — has] = haa1 — haz — has

(1 = Ry2)[ha21 — has — haz] = hao1 — hag — has — ha11 + haz + hs1

8321 = hao1 — hag — ha11 + ks (88)
in agreement with Eq. (84). Note that no modification rules are applied until the action of all the

raising operators have been applied though trailing zeros may be dropped and partitions whose last part
is negative.

We can define an inverse raising operator as

H(l—RZ’]’)_l IH(1+Rij+RZZj+~~~) (89)

i<y i<y



We then have the inverse transformation

h)\IH(l—l—RZ']'—I—R?j—I—...)S)\ (90)
i<
Thus
hsst = (14 Ria+ Ris+ .. )(1+ Ris+ Rig+ .. )(1 + Ras+ R3s+ .. )31 (91)

We have successively

$321 —S321 + S33
$321 1 8§33 —8321 + 533 + Sa2
$321 + S33 + S4a2 —S321 + $33 + S42 + S411 + Ss01 + S6—11 + Sa2 + S51 + S + S51 + S
— 8321 + 833 + S411 + 2542 + 2551 + S6 (92)
where we have used s501 = 0, sg_11 = —sg. Recall that hy is a multiplicative symmetric function and
hence hszs1 = hshohy and furthermore h,, = s, and hence by the Littlewood-Richardson rule
hasy = 838281
= $321 + 533 + S411 + 2542 + 2551 + 56 (93)
in agreement with Eq. (92).
A Reduced Notation Determinantal Form

Let us return to the determinantal expansion of sy in terms of hy as in Eq. (83). We can rewrite,
anticipating reduced notation,

SX = Sn—m,u1,p2,... (94)
The determinantal form then becomes

hn—m hn—m+1 hn—m+2

th—l hul hN1+1
Smempz = |huyo huyo1 B, (95)
The above determinant can be expanded about the first row as a sum of determinants to give
hn—m hn—m+1 hn—m+2
hul—l hul hu1+1 hul hu1+1 hul—l hul
L P T e R I . +... (96)
The determinant introduced in Eq. (83) readily extends to skew S—functions to give
Sufp = [Pui—pi—itsl (97)
Comparing Eq. (96) with Eq. (97) allows us to rewrite Eq. (95) as
Sn—m,p1,p2,... = Z(_l)rsn—m-l'?“ “Su/ir (98)
r=0
The dimension fT(Ls"'sﬂ) of the S—function product s, - sz evaluated in S(n) where n = |a| x |5] is given
by
T(Ls&'sﬂ) — (|OZ| + |6|)!fsaf8ﬂ (99)

|aef!] B!
Putting k = m — r in Eq. (98) and equating dimensions on both sides yields the identity

m

e e DD e Vi (Z) poulsunas (100)

k=0
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General Results on Characters of S(n)
Let us write the cycle structure of a class («) of S(n) as

(a) = (172%™ ... .n%) (101)
A characteristic for S(n) is then written as

A1 e, )
X(a) = X(1e1292.0)

The Murnaghan algorithm is then essentially
{2 _ {122, —k,...}
Xa) = ZX(1"12"2...k"k—1...) (102)

with the S—function modification rules being used as required.

We can readily arrive at a number of general results for the characters of S(n). Considering the decom-
position S(m +n) — S(m) x S(n) we have

Xor = DXyt (103)
wEn
where ¢ - m and 7 F n.
Suppose (1) = (n) then Eq. (103) becomes
Xon = D X2 EXA (104)
wEn

But we earlier noted that
Xt = { (~1)" ifp=(at1,1%)
" 0 otherwise

and hence Eq. (103) becomes

n—1
D DR (104)
afti1n
The case of n = 1 specialises to
Xor = x5! (105)
Clearly if the class in S(m 4 n) is (¢1™) then we have by repeated application of Eq. (104) that
o= (105)

where the skew with {1} is repeated n times. But

{1y => i (106)

pbn
allowing us to rewrite Eq. (105) as
Xoin = Y FHG (107)
pbn
and of course
Xt = fiM (108)

Note the occurrence of the dimension formula in several of the above results. This suggests that further
progress might be made in terms of the reduced notation and the reduced dimension formula. That will
be the subject of the next lecture.

I hope that posterity will judge me kindly, not only as to the things which I have explained, but
also to those which I have intentionally omitted so as to leave to others the pleasure of discovery
René Descartes (1596 - 1650) La Geometrie



