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Why Sp(2n;R)?� Physics Motivation - Sp(2n;R) is the dynamicalgroup of the n�dimensional isotropic harmonic os-cillator.� The in�nite-dimensional fundamental unitary ir-reps < s; (0) > and < s; (1) > are of particular sig-ni�cance as they are spanned by the in�nite set ofsingle particle states of even and odd parity respec-tively.� For N�particle systems we need to resolve sym-metrised N�th powers of the two fundamental ir-reps. i.e, Plethysms s�(< s; (0) >) and s�(< s; (1) >)where � ` N .� Arbitrary positive discrete harmonic series irrepsof Sp(2n;R) will be labelled as < k2 ; (�) > or equiva-lently as < s�; (�) > where � and s are respectivelythe integer and residue parts of k2 .
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The Sp(2n;R)! U(n) Decomposition� Under the restriction Sp(2n;R)! U(n) a given irrepof Sp(2n;R) decomposes into an in�nite set of �nitedimensional irreps of the unitary group U(n). Inthe case of the two fundamental irreps of Sp(2n;R)we have (< s; (0) >! " 12M+ (1)(< s; (1) >! " 12M� (2)where M+ and M� are the even and odd weightS�functions fmg appearing in the in�nite seriesM = 1Xm=0fmg (3)� Notice that the expansion is essentially stable withrespect to n.
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� In general one has< k2 ; (�) >! " k2 � ff�sgkN �DNggN (4)where N = min(n; k), D is the in�nite S�functionseries D =X� f�g (5)where the � are partitions involving only even parts.The subscript N means that all terms involvingpartitions into more than N parts are to be dis-carded. The �rst � indicates a product in U(n) andthe second � a product in U(N).� f�sgk is a signed sequence of terms �f�g such that�f�g is equivalent to f�g under the modi�cationrules of the orthogonal group O(k).� Notice that Eq. (4) is stable for n � k. Sometimesit is prematurely stable for smaller values of n.
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� Example, the terms to weight 16 for the decom-position of the irrep < s1; (21) > of Sp(6; R) to U(3)are:-fs1; 21g + fs1; 312g + fs1; 32g + fs1; 321g+ fs1; 41g + fs1; 421g + fs1; 43g + fs1; 432g+ fs1; 512g + fs1; 52g + 2fs1; 531g + fs1; 532g+ fs1; 54g + fs1; 542g + fs1; 521g + fs1; 523g+ fs1; 61g + fs1; 621g + fs1; 63g + fs1; 632g+ fs1; 641g + fs1; 643g + fs1; 65g + fs1; 652g+ fs1; 654g + fs1; 712g + fs1; 72g + 2fs1; 731g+ fs1; 732g + fs1; 74g + fs1; 742g + 2fs1; 751g+ 2fs1; 753g + fs1; 76g + fs1; 762g + fs1; 721g+ fs1; 81g + fs1; 821g + fs1; 83g + fs1; 832g+ fs1; 841g + fs1; 843g + fs1; 85g + fs1; 852g+ fs1; 861g + fs1; 87g + fs1; 912g + fs1; 92g+ 2fs1; 931g + fs1; 932g + fs1; 94g + fs1; 942g+ 2fs1; 951g + fs1; 96g + fs1; 10 1g + fs1; 10 21g+ fs1; 10 3g + fs1; 10 32g + fs1; 10 41g + fs1; 10 5g+ fs1; 11 12g + fs1; 11 2g + 2fs1; 11 31g + fs1; 11 4g+ fs1; 12 1g + fs1; 12 21g + fs1; 12 3g + fs1; 13 12g+ fs1; 13 2g + fs1; 14 1g
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Plethysms in Sp(2n;R)� We are primarily interested in plethysms of theform f�g(< s; (0) >) and f�g(< s; (1) >). Theseplethysms involve in�nite sets of Sp(2n;R) irreps.No general procedure seems to be known. We canevaluate the terms, up to a given weight by �rstdecomposing the Sp(2n;R) into U(n) irreps, per-forming the plethysm at the U(n) level and theninverting to get irreps of Sp(2n;R). This has beendone for all � ` 4 and in some cases to � ` 6. Re-markably, one �nds that generallyf2g(< s; (0) >) = 1Xi=0 < 1; (0 + 4i) >f12g(< s; (0) >) = 1Xi=0 < 1; (2 + 4i) >f2g(< s; (1) >) = 1Xi=0 < 1; (2 + 4i) >f12g(< s; (1) >) =< 1; (12) > + 1Xi=0 < 1; (4 + 4i) >This result implies that the following S�functionidentity must holdf12g(M+) � f2g(M�) (6)as indeed may be shown to be the case.6



� In precisely the same manner one �ndsf12g(L+) � f2g(L�) (7)where L+ and L� are respectively the positive andneagative terms of the seriesL = 1Xm=0(�1)mf1mg (8)Still further identities arise for the in�niteS�function series de�ned byA� = L�(f12g) B� =M�(f12g)C� = L�(f2g) D� =M�(f2g) (9)Use of the associativity property of plethysms leadsdirectly to f12g(Z+) � f2g(Z�) (10)for Z = A;B;C;D. Furthermore,f2g(Z) = ZZ+ and f12g(Z) = ZZ� (11)These identities appear to be unknown.
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An Unusual S�function Identity� The study of plethysms within the group Sp(2n;R)leads to still further identities involving in�nite se-ries of S�functions. The observation thatf212g(< s; (0) >) � f31g(< s; (1) >) (12)leads to the remarkable S�function identityf212g(M+) � f31g(M�) (13)which generalises tof�g(f12g(M+)) � f�g(f2g(M�)) (14)Again these identities extend to the series Z de-�ned earlier.
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Stability of Kronecker Products and Plethysms� A given plethysm, Kronecker product or decompo-sition will be said to be stable if at the stable valueof n = ns there is a one-to-one mapping betweenthe resultant list of irreps obtained at the stablevalue ns and those obtained for all values of n > ns.� The Sp(2n;R) Kronecker product< k2 (�) > � < 2̀ (�) >=< (k + `)2 (f�sgk � f�sg` �D)gk+`;n >(15)is certainly stable for all n � (k+`). We say certainlybecause in some cases premature stability may occurfor values of n < (k + `).� One observes that the third-order plethysms forthe two fundamental irreps stabilise at n = 3 whichis consistent with the stabilisation of the products< s; (0) > � < 1; (�) > and < s; (1) > � < 1; (�) >at n = 3 and for similar reasons stabilisation ofthe N�th order plethysms must occur at n = N asobserved, Again, premature stabilisation for indi-vidual plethysms may occur for n < N . Thus forN = 3 all the plethysms stabilise at n = 2 exceptfor f13g(< s; (1) >) which stabilises at n = 3. Stabil-isation for arbitrary N occurs at n = N � 1 exceptfor f1Ng(< s; (1) >) which stabilises at n = N .9



Plethysm Conjugacy?� Below we give two short examples of plethysmswith terms kept to weight 10f4g(< s; (0) >) =< 2; (0) > + < 2; (4) > + < 2; (42) >+ < 2; (6) > + < 2; (62) > + < 2; (73) >+ 2 < 2; (8) > + < 2; (91) > + < 2; (10 ) >f14g(< s; (1) >) =< 2; (14) > + < 2; (412) > + < 2; (42) >+ < 2; (612) > + < 2; (62) > + < 2; (73) >+ 2 < 2; (812) > + < 2; (91) >� Looking at the above results one cannot be butstruck by the apparent simple mapping betweenthem. Indeed looking at much more extensive tab-ulations one observes that the terms inf�g(< s; (0) >) are simply related to those inf~�g(< s; (1) >) by a one-to-one mapping subject tothe following simple rules:-� ` 2 (0)! (12)� ` 3 (0)! (13) (a)! (a1) (a1)! (a)� ` 4 (0)! (14) (a)! (a12) (a12)! (a)� ` 5 (0)! (15) (a)! (a13) (a13)! (a)(ab)! (ab1) (ab1)! (ab)� ` 6 (0)! (16) (a)! (a14) (a14)! (a)(ab)! (ab12) (ab12)! (ab)10



Concluding Remarks� The study of plethysms for the non-compact groupSp(2n;R) throws up many surprises that could beof interest to combinatorialists. As the group isassociated with in�nite dimensional irreps it is notsurprising that in�nite series of S�functions arise.� The subject is wide open and barely explored. Theconjugacy relations just noticed hint at furtherstructure to be discovered.� Tables of the relevant plethysms are located athttp://www.phys.uni.torun.pl/�bgw/AcknowledgementsThis work has been supported by a grant from the Pol-ish KBN. All calculations were made using SCHUR.
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