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Why Sp(2n, R)?

Physics Motivation - Sp(2n, R) is the dynamical
group of the n—dimensional isotropic harmonic os-
cillator.

The infinite-dimensional fundamental unitary ir-
reps < s;(0) > and < s;(1) > are of particular sig-
nificance as they are spanned by the infinite set of
single particle states of even and odd parity respec-
tively.

For N —particle systems we need to resolve sym-
metrised N—th powers of the two fundamental ir-
reps. i.e, Plethysms s)(< s;(0) >) and s)(< s;(1) >)
where A\ - N.

Arbitrary positive discrete harmonic series irreps
of Sp(2n, R) will be labelled as < %;()\) > or equiva-
lently as < sk;(A) > where k and s are respectively
the integer and residue parts of %



The Sp(2n, R) — U(n) Decomposition

e Under the restriction Sp(2n, R) — U(n) a given irrep
of Sp(2n, R) decomposes into an infinite set of finite
dimensional irreps of the unitary group U(n). In
the case of the two fundamental irreps of Sp(2n, R)
we have

(< 5(0) > — My (1)
(< 5;(1) > — eF M (2)

where M, and M_ are the even and odd weight
S—functions {m} appearing in the infinite series

M=) {m} (3)

e Notice that the expansion is essentially stable with
respect to n.



e In general one has
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<5i(A) >—e* {{AIy - Dillw (4)

where N = min(n, k), D is the infinite S—function
series
D=) {8 (5)
5

where the ¢ are partitions involving only even parts.
The subscript N means that all terms involving
partitions into more than N parts are to be dis-
carded. The first - indicates a product in U(n) and
the second - a product in U(N).

o {)\,}* is a signed sequence of terms +{p} such that
+{p} is equivalent to {A} under the modification
rules of the orthogonal group O(k).

e Notice that Eq. (4) is stable for n > k. Sometimes
it is prematurely stable for smaller values of n.



e Example, the terms to weight 16 for the decom-
position of the irrep < s1;(21) > of Sp(6,R) to U(3)

are:-

{s1;21}

+ {sl1;41}
+ {s1;51%}
+ {s1;54}
+ {s1;61}
+ {s1;641}
+ {s1;654}
+ {s1;73%}

+ 2{s1;753}

+ {s1;81}
+ {s1;841}
+ {s1;861}

+ 2{s1;931}
+ 2{s1;951}
+ {s1;10 3}
+ {s1;11 1%}
+ {s1;12 1}
+ {s1;13 2} + {s1;14 1}

+ {s1;31%}
+ {s1;421}
+ {s1;52}
+ {s1;542}
+ {s1;621}
+ {s1;643}
+ {s1;71%}
+ {s1;74}
+ {s1;76}
+ {s1;821}
+ {s1;843}
+ {s1;87}
+ {s1;93%}
+ {s1;96}

+ {s1;32}
+ {s1;43}

+ 2{s1;531}

+ {s1;5%1}
+ {s1;63}
+ {s1;65}
+ {s1;72}
+ {s1;742}
+ {s1;762}
+ {s1;83}
+ {s1;85}
+ {s1;91%}
+ {s1;94}

+ {s1;3%1}
+ {s1;432)
+ {s1;53%}
+ {s1;5%3}
+ {s1;632}
+ {s1;652}
+ 2{s1; 731}
+ 2{s1; 751}
+ {s1;7%1}
+ {s1;832}
+ {s1;852}
+ {s1;92}
+ {s1;942}

+ {s1;10 1} 4 {s1;10 21}
+ {s1;10 32} + {s1;10 41} + {s1;10 5}
+ {s1;11 2}  + 2{s1;11 31} + {s1;11 4}
+ {s1;12 21} + {s1;12 3} + {s1;13 1%}



Plethysms in Sp(2n, R)

e We are primarily interested in plethysms of the
form {A\}(< s;(0) >) and {A\}(< s;(1) >). These
plethysms involve infinite sets of Sp(2n, R) irreps.
No general procedure seems to be known. We can
evaluate the terms, up to a given weight by first
decomposing the Sp(2n,R) into U(n) irreps, per-
forming the plethysm at the U(n) level and then
inverting to get irreps of Sp(2n, R). This has been
done for all A - 4 and in some cases to A - 6. Re-
markably, one finds that generally

{2}(< s;(0 Z<1 0 + 44)
{12}(< 5;(0 Z<1 2 + 4i)
{2}(< s;(1 Z<1 2 + 4i)

(12} (< ;1) >) =< 1;(1%) > +Z < 1;(4+47) >

This result implies that the following S—function
identity must hold

{17} (M) = {2} (M=) (6)

as indeed may be shown to be the case.



e In precisely the same manner one finds

{1}(Ly) = {23(L-) (7)

where L, and L_ are respectively the positive and
neagative terms of the series

L= (-n"{1"} (8)

Still further identities arise for the infinite
S—function series defined by

Ay = Li({1%}) By = M+ ({1%})
Cyr = Li({2}) Dy = My ({2}) (9)

Use of the associativity property of plethysms leads

directly to
{1"}(24) = {2}(2-) (10)
for 7 = A,B,C,D. Furthermore,

(2% (2)=2Z, and {1°}(2)=Z7_ (11)

These identities appear to be unknown.



An Unusual S—function Identity

¢ The study of plethysms within the group Sp(2n, R)
leads to still further identities involving infinite se-
ries of S—functions. The observation that

PIP)(<5(0)>) = BlY(< (1) >)  (12)
leads to the remarkable S—function identity
{21)(M,) = {31}(M-) (13)
which generalises to
(o} ({17} (M) = {o}({2}(M_)) (14)

Again these identities extend to the series 7 de-
fined earlier.



Stability of Kronecker Products and Plethysms

e A given plethysm, Kronecker product or decompo-
sition will be said to be stable if at the stable value
of n = n, there is a one-to-one mapping between
the resultant list of irreps obtained at the stable
value n, and those obtained for all values of n > n,.

e The Sp(2n, R) Kronecker product

S(A) > X < g(u) >=< (k;ﬁ)({)\s}k Av YD) igen >

(15)
is certainly stable for all n > (k+/¢). We say certainly
because in some cases premature stability may occur
for values of n < (k+ ¢).

e One observes that the third-order plethysms for
the two fundamental irreps stabilise at n = 3 which
is consistent with the stabilisation of the products
< 5(0) > x < 1;(p) > and < s;(1) > x < 1;(p) >
at n = 3 and for similar reasons stabilisation of
the N—th order plethysms must occur at n = N as
observed, Again, premature stabilisation for indi-
vidual plethysms may occur for n < N. Thus for
N = 3 all the plethysms stabilise at n = 2 except
for {1°}(< s;(1) >) which stabilises at n = 3. Stabil-
isation for arbitrary N occurs at n = N — 1 except
for {1V }(< s;(1) >) which stabilises at n = N.



Plethysm Conjugacy?
e Below we give two short examples of plethysms
with terms kept to weight 10

14}(< 5(0) >) =

< 2;(0) > + < 2;(4) > + < 2;(4%) >
+ < 2;(6) > + < 2;(62) > + < 2;(73) >
+ 2<2;(8) > + < 2;(91) > + <2;(10 ) >
(1)< (1) >) =

< 2;(1%) > + < 2;(41%) > + < 2;(4%) >
+ < 2;(61%) > + < 2;(62) > + < 2;(73) >
+2<2;(81%) >  + <2;(91) >

e Looking at the above results one cannot be but
struck by the apparent simple mapping between
them. Indeed looking at much more extensive tab-
ulations one observes that the terms in
{A}(< s;(0) >) are simply related to those in
{A}(< s;(1) >) by a one-to-one mapping subject to
the following simple rules:-

A2 (0) — (1%)

A3 (0) —(1°)  (a) = (al)  (al) — (a)

A4 (0)— (1*)  (a) = (al?)  (al?) — (a)

A5 (0) = (1°)  (a) = (al®)  (al®) — (a)
(ab) — (abl) (abl) — (ab)

A6 0= (1% (a)—(al) (al*) - (a)
(ab) — (ab1?) (abl?) — (ab)

10



Concluding Remarks
e The study of plethysms for the non-compact group
Sp(2n, R) throws up many surprises that could be
of interest to combinatorialists. As the group is
associated with infinite dimensional irreps it is not
surprising that infinite series of S—functions arise.

e The subject is wide open and barely explored. The
conjugacy relations just noticed hint at further
structure to be discovered.

e Tables of the relevant plethysms are located at
http://www.phys.uni.torun.pl/~bgw/
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