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What an imperfect world it would be if every

symmetry was perfect
Abstract

A lecture for students of quantum mechanics on the role of symmetry in physics
with a particular emphasis on examples. The consequences of changes of scale
as 1t affects the dimensions of animals is outlined. The relationship of symmetry
considerations to selection rules and the observation of forbidden transitions is

discussed.

m Introduction

Symmetry plays a major role in modern physics and in this lecture I propose start by
giving some examples of symmetries and mention their relevance to the familiar conser-
vation laws. Considerations of scaling lead to a simple discussion of why dinosaurs had
small heads. I shall then give a brief discussion of angular momentum selection rules and
the way symmetry considerations lead to selection rules. Methods of breaking symmetry
selection rules in atomic are reviewed and the distinction between rotations through 2x
and 47 illustrated by some demonstration experiments. After consideration of forbid-
den transitions in gaseous nebulae, induced by nuclear magnetic moment interactions we

conclude by considering the breaking of selection rules in crystals containing trivalent



holmium ions by a similar process.
m Examples of Symmetry

Symmetry and invariance are closely related. Symmetries are usually associated with an
operation on a system that transforms it into itself in such a manner that the system after
the transformation is indistinguishable from its initial state. If the symmetry is perfect,
which is rarely the case, then it should be experimentally impossible to distinguish any
change in the system after carrying out the symmetry transformation. A simple example
is the case of a square lying on a plane surface. If the square is rotated through an angle
of 902 about its centre it should be indistinguishable from the original unrotated square.
If that is the case then the square is said to be symmetric with respect to a rotation
through a finite angle of 90° about its centre. The properties of the square are said to be
invariant with respect to such a rotation. In picturing such a transformation it is useful
to attach the integers 1,2,3,4 to the vertices of the original square and to display the

rotated square displaced from the original square as below

1 2 4 1
=
4 3 3 2
rotation

Note that our rotation could be regarded as equivalent to a permutation of the vertices of
the square such that 1 — 2,2 - 3,3 — 4,4 — 1. It is not difficult to see that there are eight
distinct permutations that leave our square invariant and each of these permutations can
be associated with either a rotation about the centre of the square or a reflection about

the diagonals or bisectors of the square. This gives an example of a finite symmetry



characterized by a finite number of symmetry operations which form the elements of a
finite group.
Our square is also symmetric with respect to an inversion through its centre. In that case

the inversion symmetry is equivalent to a rotation through 180° about the centre as seen

below
1 2 3 4
—
4 3 2 1
inversion

The Platonic solids, the cube, octahedron, dodecahedron and icosahedron all posssess a

centre of inversion which, however, can not be made equivalent to any set of rotations.

We could decorate our square and still leave a square that has the full symmetry of the

plain square as shown, for example, below

The figure below clearly no longer possesses the symmetry of the plain square as clearly




it does not go into itself under a simple rotation of 90° about its centre.

However, we could extend our symmetry by introducing a more complicated transforma-
tion - first carry out the rotation and then a counterchange operation that turns black

into white and white into black.

This two step process is illustrated below.

rotation counterchange

This is an example of a black and white symmetry beautifully outlined in four articles
published by H.J. Woods in the British Journal of the Textile Institute in the early 1930’s,
the counterchange operation arising naturally in the production of textiles. These Black
and White groups are commonly referred to as Shubnikov groups though it is clear that
Woods work preceded that of Shubnikov. It was Landau who supplied the interpretation
in the physics of magnetism by regarding the counterchange operation as the equivalent
of flipping a spin.

Permutational symmetry is important in considering the interchange of identical objects.
A diatomic molecule with each atom being of the same isotope will exhibit permutational
symmetry - interchange of the two atoms leaves the molecule in position indistinguishable
from its former position. If the two atoms involve different isotopes then the permutational

invariance is broken.

The preceding examples all involve finite symmetry transformations. Other examples can



involve continuous transformations. Thus a blank coin will exhibit cylindrical symmetry
with respect to any rotation about an axis perpendicular to its centre. A sphere devoid
of any markings and perfectly regular may be rotated into itself by any rotation about
any axis that passes through its centre. An atom sitting in free space exhibits spherical
symmetry. Since there is no preferred direction in space there is no preferred direction to
align the angular momentum of the atom with the result that the 27 4+ 1 states |JM) are
degenerate. Break the spherical symmetry by placing the atom in a magnetic field which
destroys the spherical symmetry locally and the degeneracy is lifted as in the Zeeman

effect.
m Continuous and Discrete Symmetries

The above examples of symmetries may be divided into two classes, continuous and dis-
crete. Discrete symmetries such as reflections, inversions, permutations and finite rota-
tions are associated with multiplicative quantum numbers whereas continuous symmetries
are associated with additive quantum numbers such as, for example, angular momentum

addition.
m Changes of Scale

There is a class of transformations that amount to simply a change of scale as seen for
example in the Russian 1Rb and 100Rb coins. (After 1 January 1995 it will be possible
to substitute Polish coins for this example!). The circular shape of the coins is preserved
but there size is increased. This is an example of a dilation though some may refer to it
as an inflation. In the period of gold coinage the size of the coin often accurately reflected

its value.

The concept of scale and changes of scale plays an important role in physics and the failure
to appreciate this concept can lead to catastrophic consequences. It has been known since

Greek times, at least, that the area, A,, enclosed by a circle of radius r is given by



while the surface area, A, .., Was
42
Asphere = dxr

The volume, V.., of a sphere of radius r was known to be

4
_ 3
Vsphere — gﬂ'?“

From the above three elementary results can follow profound conclusions.

It is a familiar observation that small animals maintain a much higher activity
than large animals and must metabolise food more rapidly than larger animals. Let us
with the usual physicists licence model an animal as a sphere. Consider a small sphere
and a large sphere both at a temperature 7. The total heat content of a sphere will
be proportional to the cube of its radius while the heat radiated from a sphere will be

proportional to its surface area and hence to the square of its radius. Thus

Heat lost by sphere
Heat content of sphere

=3 =

X

Thus the ratio depends on the inverse of the radius of the sphere. The larger the
sphere the smaller is the ratio. This leads us to expect that small animals will lose heat, in
relationship to their size, faster than large animals and hence will need to metabolise food
more rapidly than large animals as observed. By the same reasoning we expect babies to
be more susceptible to temperature changes than adults which is why they are provided

with better insulating clothes than adults. Now to
m Why do Dinosaurs have small heads?

Let us model a small dinosaur by small sphere (the head) connected by a cylindrical rod
(the neck) to a larger sphere (the body). What happens if the dinosaur grows and each
characteristic radius is simply scaled? The head and body would grow as the cube of the
radii but the strength of the neck will be proportional to its cross-sectional area consider
muscles and hence as the square of its radius. Thus if the head grows in proportion to the

body of the dinosaur it will rapidly outgrow the strength of its neck. Such a characteristic



can be seen in most animals. The head of the infant relative to its body is significantly

larger than for the adult animal.

It was Galileo who first pointed out that scaling lead to limits of the size of animals.
In the case of whales the head scales and there is no neck. There the bouyancy of the
water overcomes the force of gravity experienced by the land dwelling animals and of

course whales become helpless out of water.
m Lessons from Scaling

Failure to appreciate the significance of scaling effects has been the source of re-
peated industrial problems and failures. A pilot plant is designed and found to work and
then it has been simply scaled for industrial production and often found not to work.
When we change the scale of objects often new properties arise that are not noted on the

small scale.

Gravitational forces are extremely weak, indeed the weakest of all known forces.
In describing the properties of a small object they can be wholly neglected but for large

objects such as the sun or in super novae they can become overwhelming.

A cubic cm of 239 Py weighs about 19grams and can be safely carried in the pocket if
enclosed in a plastic bag. A 400 cubic centimeter sphere, of diameter about 9¢cm becomes

a fearsome object.
m Symmetry, Conservation Laws and Impossible Experiments

The existence of a symmetry is always tentative and experiments are required to determine
the limits of applicability of a given symmetry. No symmetry can be considered as a
perfect symmetry. The object of much of fundamental physics is the establishment of the
limits of particular symmetries and where a symmetry is broken to explain the nature of
the symmetry breaking mechanism. One cannot overemphasize the connection between
symmetry and experiment. In 1905 Emmy Noether made the remarkable observation the

conservation laws in physics are associated with particular symmetries. Thus conservation



of linear momentum was associated with invariance with respect to spatial translations,
angular momentum with spatial rotations etc. Parity conservation was associated with
the equivalence of the mirror image of an interaction and the real interaction. Every
symmetry can be considered as a statement that a certain experiment is impossible. If
the experiment is possible then the symmetry must at least be broken. Thus for the parity
conservation the impossible experiment would be to detect a difference between the mirror
image of a real process and the process itself. If you could detect such a difference then
the symmetry is broken and parity is not conserved. Indeed, Madame Wu succeeded in
1956 in making a g—decay experiment that showed an asymmetry with respect to parity
and hence parity conservation was broken by weak interactions. Still more subtle was the

demonstration, in 1964 by Fitch and Cronin, of C'P violation for K mesons .
m Symmetry and Selection Rules

The existence of a symmetry usually implies that certain processes are not possible. If they
were possible then the symmetry would be broken. Part of the application of symmetry
considerations is to determine selection rules and to determine the conditions under which
these selection rules are broken. Thus in the case of transition matrix elements those that
satisfy the selection rules are said to correspond to allowed transitions and those that
violate the selection rules are termed forbidden transitions. In the case of electric dipole

transitions in atoms there are the well-known angular momentum selection rules
AS=0 AL=0,41 AJ=0+1

and in each case NOT 0 « 0. These selection rules arise directly from the fact that the
electric dipole operator is spin-independent and transforms like a vector with repect to
the group of angular rotations SO3;. The electric dipole operator has odd parity so can

only connect states of opposite parity.

As a consequence of the above selection rules we would expect electric dipole transitions
involving 'Sy —3 Py to be strongly forbidden. Nevertheless such transitions are observed

in gaseous nebulae. The selection rules on the quantum numbers S and L can be broken



by the spin-orbit interaction but it cannot break the NOT J =0 «— J = 0 selection rule.
m Resolution of the 1S, =32 Py Puzzle

To understand the origin of these seemingly highly forbidden transitions we need to first
ask 7What is the total angular momentum of an atom?”. The quantum number J rep-
resents the total electronic angular momentum of the atom. But the atom has a nucleus
that also has a total nuclear angular momentum I so that the total angular momentum

of the atom F is

F=1+J

I will be an integer (or half-integer) if the number of protons plus neutrons is even (or odd)
while J will be an integer (or half-integer) if the number of electrons is even (or odd). If J
is an integer and I is a half-integer then F will be a half-integer. If 7 > 1 then the nucleus
may possess a nuclear magnetic moment that can couple to the electronic moments leading
to a mixing of states of different electronic angular momentum J leading to a breakdown
of the AJ =0 NOT 0 — 0 selection rule as occurs for example in the transition array

associated with the 3s? «— 3s3p transition array.
m Integer and Half-Integer Angular Momenta
The basic particles of the universe can be divided into two distinct classes

Fermions which have half-integer spin such as the electron, nucleon, neutrinos
quarks etc all of which follow Fermi-Dirac statistics and involve antisymmetric

states,

Bosons which have integer spin such as the mesons, photon, gluons, graviton etc

all of which follow Bose-Einstein statistics and involve symmetric states.

Bosons and fermions behave differently under particle interchange or a rotation through

27,
m Examples of 2r and 47 Rotations

Our intutitive expectation is that if we rotate a system through 2 or if we circumnavigate
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a system once we will return to the initial state. I now give you three demonstrations

where the niave expectation does not hold.
The Mobius Strip

We can readily make ourselves a Mobius strip by taking a longish narrow strip of paper
and rotating one end through 180° and then bringing the two ends together and sticking
them together with glue. Now place a reference mark on the strip and from that mark
draw a line along the middle of the strip continuing until you return to the reference mark.

You will note that in doing this you have traversed the strip twicel.
Cup and Saucer

Place a cup on a saucer and hold it in the palm of your hand. Now turn the cup and
saucer by rotating your hand through 2z. This leaves your hand twisted. To return to
the original untwisted configuration rotate through a further 2z. To do that you will need
to move your hand over your head to complete the total rotation through 47 and return
to the original position. This is more dramatic if the cup is partially filled with water -
this makes the cup more stable though your students are likely to find the failure of the

experiment memorable.
Rotation of a Triangle

Make an equilateral triangle with distinguishable sides. Make a hole in each vertex and
attach to each hole a differently coloured tape, e.g. red, green and blue. Attach the loose
ends to fixed points. Now rotate the triangle through 27 by turning it over twice so as
to develop a twist in two of the tapes. At this stage it is impossible to undo the twist
without reversing the rotation or cutting the tapes. Now rotate the triangle through a
further 27 so that the two twisted tapes are further twisted. I now assert that the twist
can be removed while keeping the triangle in a fixed position and not untying any of the
tapes. Indeed the twists incurred by any rotation through an even multiple of 27 may be
undone but not for odd multiples of 27. An illustration of the relevant steps in undoing

the twist is shown in the Appendix.
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m Forbidden Transitions in Crystals

Nuclear hyperfine interaction in crystal fields can lead to a breakdown in the usual selec-
tion rules for transitions among Stark levels in crystals containing Ho*t. The existence
of such a possibility was given by the author over three decades ago. Recently very high-
resolution spectroscopic studies in Moscow have supplied a rich source of experimental
information. The analysis of these spectra gives an interesting display of the interplay of
point groups and their double groups and of crystal field and nuclear hyperfine interac-

tions.

Forbidden transitions were observed in paramagnetic resonance studies of holmium salts in
the late 1950’s and a complicated mechanism based on the Jahn-Teller effect invoked. The
alternative possibility of interaction between different crystal field levels via the nuclear
magnetic moment was suggested by the author. Hyperfine structure was observed in the
optical spectra of salts containing Pr3*t and Ho?t in the early sixties but at relatively
low resolution. Subsequent technological developments culimnating in the Fast Fourier
Transform spectrometers in the mid-eighties led to resolutions of 0.0lem=! permitting
for the first time detailed observation of complete fully resolved patterns together with
accurate intensities for single crystals of LiY Fy : Ho?t were made in Moscow by Popova
and her associates .

z
2

Holmium occurs in nature as a single stable isotope with nuclear angular momentum 7 =
and being a deformed nucleus has both a nuclear magnetic dipole moment and an electric
quadrupole moment. The dominant hyperfine structure comes from the interaction of the
nuclear magnetic moment with the electron spin and orbital magnetic moments. In the
particular case of LiYFy : Ho®*t the Ho3t ion substitutes into a site whose point group
symmetry is Sy (not to be confused with the symmetric group which is also designated as
Sa).

The low lying states of the Ho?t ion occur in the 4f'0 electron configuration and hence

the number of electrons is even and the angular momentum J will be integral. Since the
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nuclear angular momentum is half-integer the total angular momentum F will be half-
integer. As a consequence, just as in the case of the gaseous nebulae it is possible for the
nuclear magnetic moment to mix states of different 7 making possible the observation of
"forbidden transitions”. The presence of the nuclear hyperfine interaction changes the
electric dipole selection rules.
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