
1 Symmetries, Selection RulesandWhy Dinosaurs had Small HeadsB. G. WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPolandWhat an imperfect world it would be if everysymmetry was perfectAbstractA lecture for students of quantum mechanics on the role of symmetry in physicswith a particular emphasis on examples. The consequences of changes of scaleas it a�ects the dimensions of animals is outlined. The relationship of symmetryconsiderations to selection rules and the observation of forbidden transitions isdiscussed.IntroductionSymmetry plays a major role in modern physics and in this lecture I propose start bygiving some examples of symmetries and mention their relevance to the familiar conser-vation laws. Considerations of scaling lead to a simple discussion of why dinosaurs hadsmall heads. I shall then give a brief discussion of angular momentum selection rules andthe way symmetry considerations lead to selection rules. Methods of breaking symmetryselection rules in atomic are reviewed and the distinction between rotations through 2�and 4� illustrated by some demonstration experiments. After consideration of forbid-den transitions in gaseous nebulae, induced by nuclear magnetic moment interactions weconclude by considering the breaking of selection rules in crystals containing trivalent



2 holmium ions by a similar process.Examples of SymmetrySymmetry and invariance are closely related. Symmetries are usually associated with anoperation on a system that transforms it into itself in such a manner that the system afterthe transformation is indistinguishable from its initial state. If the symmetry is perfect,which is rarely the case, then it should be experimentally impossible to distinguish anychange in the system after carrying out the symmetry transformation. A simple exampleis the case of a square lying on a plane surface. If the square is rotated through an angleof 90o about its centre it should be indistinguishable from the original unrotated square.If that is the case then the square is said to be symmetric with respect to a rotationthrough a �nite angle of 90o about its centre. The properties of the square are said to beinvariant with respect to such a rotation. In picturing such a transformation it is usefulto attach the integers 1;2;3;4 to the vertices of the original square and to display therotated square displaced from the original square as below1 2
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3 2rotationNote that our rotation could be regarded as equivalent to a permutation of the vertices ofthe square such that 1 ! 2;2 ! 3;3 ! 4;4 ! 1. It is not di�cult to see that there are eightdistinct permutations that leave our square invariant and each of these permutations canbe associated with either a rotation about the centre of the square or a re
ection aboutthe diagonals or bisectors of the square. This gives an example of a �nite symmetry



3 characterized by a �nite number of symmetry operations which form the elements of a�nite group.Our square is also symmetric with respect to an inversion through its centre. In that casethe inversion symmetry is equivalent to a rotation through 180o about the centre as seenbelow 1 2
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2 1inversionThe Platonic solids, the cube, octahedron, dodecahedron and icosahedron all posssess acentre of inversion which, however, can not be made equivalent to any set of rotations.We could decorate our square and still leave a square that has the full symmetry of theplain square as shown, for example, below
The �gure below clearly no longer possesses the symmetry of the plain square as clearly



4 it does not go into itself under a simple rotation of 90o about its centre.
However, we could extend our symmetry by introducing a more complicated transforma-tion - �rst carry out the rotation and then a counterchange operation that turns blackinto white and white into black.This two step process is illustrated below.=) =)rotation counterchangeThis is an example of a black and white symmetry beautifully outlined in four articlespublished by H.J. Woods in the British Journal of the Textile Institute in the early 1930's,the counterchange operation arising naturally in the production of textiles. These Blackand White groups are commonly referred to as Shubnikov groups though it is clear thatWoods work preceded that of Shubnikov. It was Landau who supplied the interpretationin the physics of magnetism by regarding the counterchange operation as the equivalentof 
ipping a spin.Permutational symmetry is important in considering the interchange of identical objects.A diatomic molecule with each atom being of the same isotope will exhibit permutationalsymmetry - interchange of the two atoms leaves the molecule in position indistinguishablefrom its former position. If the two atoms involve di�erent isotopes then the permutationalinvariance is broken.The preceding examples all involve �nite symmetry transformations. Other examples can



5 involve continuous transformations. Thus a blank coin will exhibit cylindrical symmetrywith respect to any rotation about an axis perpendicular to its centre. A sphere devoidof any markings and perfectly regular may be rotated into itself by any rotation aboutany axis that passes through its centre. An atom sitting in free space exhibits sphericalsymmetry. Since there is no preferred direction in space there is no preferred direction toalign the angular momentum of the atom with the result that the 2J + 1 states jJM i aredegenerate. Break the spherical symmetry by placing the atom in a magnetic �eld whichdestroys the spherical symmetry locally and the degeneracy is lifted as in the Zeemane�ect.Continuous and Discrete SymmetriesThe above examples of symmetries may be divided into two classes, continuous and dis-crete. Discrete symmetries such as re
ections, inversions, permutations and �nite rota-tions are associated with multiplicative quantum numbers whereas continuous symmetriesare associated with additive quantum numbers such as, for example, angular momentumaddition.Changes of ScaleThere is a class of transformations that amount to simply a change of scale as seen forexample in the Russian 1Rb and 100Rb coins. (After 1 January 1995 it will be possibleto substitute Polish coins for this example!). The circular shape of the coins is preservedbut there size is increased. This is an example of a dilation though some may refer to itas an in
ation. In the period of gold coinage the size of the coin often accurately re
ectedits value.The concept of scale and changes of scale plays an important role in physics and the failureto appreciate this concept can lead to catastrophic consequences. It has been known sinceGreek times, at least, that the area, A�, enclosed by a circle of radius r is given byA� = �r2



6 while the surface area, Asphere, was Asphere = 4�r2The volume, Vsphere, of a sphere of radius r was known to beVsphere = 43�r3From the above three elementary results can follow profound conclusions.It is a familiar observation that small animals maintain a much higher activitythan large animals and must metabolise food more rapidly than larger animals. Let uswith the usual physicists licence model an animal as a sphere. Consider a small sphereand a large sphere both at a temperature T . The total heat content of a sphere willbe proportional to the cube of its radius while the heat radiated from a sphere will beproportional to its surface area and hence to the square of its radius. ThusHeat lost by sphereHeat content of sphere / 1rThus the ratio depends on the inverse of the radius of the sphere. The larger thesphere the smaller is the ratio. This leads us to expect that small animals will lose heat, inrelationship to their size, faster than large animals and hence will need to metabolise foodmore rapidly than large animals as observed. By the same reasoning we expect babies tobe more susceptible to temperature changes than adults which is why they are providedwith better insulating clothes than adults. Now toWhy do Dinosaurs have small heads?Let us model a small dinosaur by small sphere (the head) connected by a cylindrical rod(the neck) to a larger sphere (the body). What happens if the dinosaur grows and eachcharacteristic radius is simply scaled? The head and body would grow as the cube of theradii but the strength of the neck will be proportional to its cross-sectional area considermuscles and hence as the square of its radius. Thus if the head grows in proportion to thebody of the dinosaur it will rapidly outgrow the strength of its neck. Such a characteristic



7 can be seen in most animals. The head of the infant relative to its body is signi�cantlylarger than for the adult animal.It was Galileo who �rst pointed out that scaling lead to limits of the size of animals.In the case of whales the head scales and there is no neck. There the bouyancy of thewater overcomes the force of gravity experienced by the land dwelling animals and ofcourse whales become helpless out of water.Lessons from ScalingFailure to appreciate the signi�cance of scaling e�ects has been the source of re-peated industrial problems and failures. A pilot plant is designed and found to work andthen it has been simply scaled for industrial production and often found not to work.When we change the scale of objects often new properties arise that are not noted on thesmall scale.Gravitational forces are extremely weak, indeed the weakest of all known forces.In describing the properties of a small object they can be wholly neglected but for largeobjects such as the sun or in super novae they can become overwhelming.A cubic cm of 239Pu weighs about 19grams and can be safely carried in the pocket ifenclosed in a plastic bag. A 400 cubic centimeter sphere, of diameter about 9cm becomesa fearsome object.Symmetry, Conservation Laws and Impossible ExperimentsThe existence of a symmetry is always tentative and experiments are required to determinethe limits of applicability of a given symmetry. No symmetry can be considered as aperfect symmetry. The object of much of fundamental physics is the establishment of thelimits of particular symmetries and where a symmetry is broken to explain the nature ofthe symmetry breaking mechanism. One cannot overemphasize the connection betweensymmetry and experiment. In 1905 Emmy N�oether made the remarkable observation theconservation laws in physics are associated with particular symmetries. Thus conservation



8 of linear momentum was associated with invariance with respect to spatial translations,angular momentum with spatial rotations etc. Parity conservation was associated withthe equivalence of the mirror image of an interaction and the real interaction. Everysymmetry can be considered as a statement that a certain experiment is impossible. Ifthe experiment is possible then the symmetry must at least be broken. Thus for the parityconservation the impossible experiment would be to detect a di�erence between the mirrorimage of a real process and the process itself. If you could detect such a di�erence thenthe symmetry is broken and parity is not conserved. Indeed, Madame Wu succeeded in1956 in making a ��decay experiment that showed an asymmetry with respect to parityand hence parity conservation was broken by weak interactions. Still more subtle was thedemonstration, in 1964 by Fitch and Cronin, of CP violation for K mesons .Symmetry and Selection RulesThe existence of a symmetry usually implies that certain processes are not possible. If theywere possible then the symmetry would be broken. Part of the application of symmetryconsiderations is to determine selection rules and to determine the conditions under whichthese selection rules are broken. Thus in the case of transition matrix elements those thatsatisfy the selection rules are said to correspond to allowed transitions and those thatviolate the selection rules are termed forbidden transitions. In the case of electric dipoletransitions in atoms there are the well-known angular momentum selection rules�S = 0 �L = 0;�1 �J = 0;�1and in each case NOT 0 $ 0. These selection rules arise directly from the fact that theelectric dipole operator is spin-independent and transforms like a vector with repect tothe group of angular rotations SO3. The electric dipole operator has odd parity so canonly connect states of opposite parity.As a consequence of the above selection rules we would expect electric dipole transitionsinvolving 1S0 $3 P0 to be strongly forbidden. Nevertheless such transitions are observedin gaseous nebulae. The selection rules on the quantum numbers S and L can be broken



9 by the spin-orbit interaction but it cannot break the NOT J = 0 $ J = 0 selection rule.Resolution of the 1S0 $3 P0 PuzzleTo understand the origin of these seemingly highly forbidden transitions we need to �rstask "What is the total angular momentum of an atom?". The quantum number J rep-resents the total electronic angular momentum of the atom. But the atom has a nucleusthat also has a total nuclear angular momentum I so that the total angular momentumof the atom F is F= I+ JI will be an integer (or half-integer) if the number of protons plus neutrons is even (or odd)while J will be an integer (or half-integer) if the number of electrons is even (or odd). If Jis an integer and I is a half-integer then F will be a half-integer. If I � 12 then the nucleusmay possess a nuclear magnetic moment that can couple to the electronic moments leadingto a mixing of states of di�erent electronic angular momentum J leading to a breakdownof the �J = 0 NOT 0 $ 0 selection rule as occurs for example in the transition arrayassociated with the 3s2 $ 3s3p transition array.Integer and Half-Integer Angular MomentaThe basic particles of the universe can be divided into two distinct classesFermions which have half-integer spin such as the electron, nucleon, neutrinosquarks etc all of which follow Fermi-Dirac statistics and involve antisymmetricstates,Bosons which have integer spin such as the mesons, photon, gluons, graviton etcall of which follow Bose-Einstein statistics and involve symmetric states.Bosons and fermions behave di�erently under particle interchange or a rotation through2�.Examples of 2� and 4� RotationsOur intutitive expectation is that if we rotate a system through 2� or if we circumnavigate



10 a system once we will return to the initial state. I now give you three demonstrationswhere the niave expectation does not hold.The M�obius StripWe can readily make ourselves a M�obius strip by taking a longish narrow strip of paperand rotating one end through 180o and then bringing the two ends together and stickingthem together with glue. Now place a reference mark on the strip and from that markdraw a line along the middle of the strip continuing until you return to the reference mark.You will note that in doing this you have traversed the strip twice!.Cup and SaucerPlace a cup on a saucer and hold it in the palm of your hand. Now turn the cup andsaucer by rotating your hand through 2�. This leaves your hand twisted. To return tothe original untwisted con�guration rotate through a further 2�. To do that you will needto move your hand over your head to complete the total rotation through 4� and returnto the original position. This is more dramatic if the cup is partially �lled with water -this makes the cup more stable though your students are likely to �nd the failure of theexperiment memorable.Rotation of a TriangleMake an equilateral triangle with distinguishable sides. Make a hole in each vertex andattach to each hole a di�erently coloured tape, e.g. red, green and blue. Attach the looseends to �xed points. Now rotate the triangle through 2� by turning it over twice so asto develop a twist in two of the tapes. At this stage it is impossible to undo the twistwithout reversing the rotation or cutting the tapes. Now rotate the triangle through afurther 2� so that the two twisted tapes are further twisted. I now assert that the twistcan be removed while keeping the triangle in a �xed position and not untying any of thetapes. Indeed the twists incurred by any rotation through an even multiple of 2� may beundone but not for odd multiples of 2�. An illustration of the relevant steps in undoingthe twist is shown in the Appendix.



11 Forbidden Transitions in CrystalsNuclear hyper�ne interaction in crystal �elds can lead to a breakdown in the usual selec-tion rules for transitions among Stark levels in crystals containing Ho3+. The existenceof such a possibility was given by the author over three decades ago. Recently very high-resolution spectroscopic studies in Moscow have supplied a rich source of experimentalinformation. The analysis of these spectra gives an interesting display of the interplay ofpoint groups and their double groups and of crystal �eld and nuclear hyper�ne interac-tions.Forbidden transitions were observed in paramagnetic resonance studies of holmium salts inthe late 1950's and a complicated mechanism based on the Jahn-Teller e�ect invoked. Thealternative possibility of interaction between di�erent crystal �eld levels via the nuclearmagnetic moment was suggested by the author. Hyper�ne structure was observed in theoptical spectra of salts containing Pr3+ and Ho3+ in the early sixties but at relativelylow resolution. Subsequent technological developments culimnating in the Fast FourierTransform spectrometers in the mid-eighties led to resolutions of 0:01cm�1 permittingfor the �rst time detailed observation of complete fully resolved patterns together withaccurate intensities for single crystals of LiY F4 : Ho3+ were made in Moscow by Popovaand her associates .Holmium occurs in nature as a single stable isotope with nuclear angular momentum I = 72and being a deformed nucleus has both a nuclear magnetic dipole moment and an electricquadrupole moment. The dominant hyper�ne structure comes from the interaction of thenuclear magnetic moment with the electron spin and orbital magnetic moments. In theparticular case of LiY F4 : Ho3+ the Ho3+ ion substitutes into a site whose point groupsymmetry is S4 (not to be confused with the symmetric group which is also designated asS4).The low lying states of the Ho3+ ion occur in the 4f10 electron con�guration and hencethe number of electrons is even and the angular momentum J will be integral. Since the



12 nuclear angular momentum is half-integer the total angular momentum F will be half-integer. As a consequence, just as in the case of the gaseous nebulae it is possible for thenuclear magnetic moment to mix states of di�erent J making possible the observation of"forbidden transitions". The presence of the nuclear hyper�ne interaction changes theelectric dipole selection rules. AcknowledgementsIt is a pleasure to thank Prof. Ku�zma and his assistants for the opportunity to participatein a stimulating and well organised meeting. The liveliness of the students was particularlyappreciated. My work has been supported by Polish KBN Grant 18/p3/94/07.


