
1Recent Extensions and Developments in SCHURB.G.WybourneInstytut Fizyki, Uniwersytet Miko laja Kopernikaul. Grudzi�adzka 5/787-100 Toru�nPoland(e-mail:bgw@phys.uni.torun.pl)The sublime and the ridiculous are often so nearlyrelated, that it is di�cult to class them sepa-rately. One step above the sublime makes theridiculous, and one step above the ridiculousmakes the sublime again|Thomas Paine. 1737-1809ABSTRACTThe programme SCHUR is an interactive C package for computing properties of Lie groups andsymmetric functions. We illustrate a number of examples where the use of SCHUR has led to a severalinteresting conjectures and to their ultimate establishment as hitherto unknown theorems. A number ofexamples related to the non-compact group Sp(2n;R) and its subgroups are discussed. The potential ofSCHUR as a self-teaching tool is briey considered.1. IntroductionThe range of problems requiring a detailed knowledge of the properties of Liegroups, compact and non-compact, is well illustrated by the group-subgroup structurerelevant to N particles in a d�dimensional isotropic harmonic oscillator shown in Fig. 1.The practical implementation of such a structure requires a knowledge of a host of group-subgroup decompositions (or branching rules), Kronecker products and plethysms for bothcompact and non-compact Lie groups as well as properties such as the dimensions andCasimir operator eigenvalues of of irreducible representations . The non-trivial unitaryirreducible representations of non-compact Lie group Sp(2Nd;R) are in�nite dimensional



2 and hence one must be able to determine properties up to a user chosen cuto�. Indetermining the permutational symmetry of states one also needs to know decompositionssuch as O(N)) S(N) where S(N) is the �nite symmetric group acting on N particles. Thislatter problem requires a knowledge of so-called inner plethysms which in turn requires aknowledge of symmetric functions such as the Schur functions (S�functions for brevity).Symmetric functions �nd many applications in chemistry and physics quite apart fromtheir intrinsic interest in mathematics.Practioners �nd that whereas in simple cases it is possible to proceed with handcalculations they rapidly achieve a state of mental exhaustion and doubts as to whethertheir results are error free. The algorithms for carrying out calculations are often verycomplex and frequently beyond the applicators knowledge. In making practical calcula-tions, while understanding the basic physics of a given problem, the practioner should notrequire a simultaneous detailed knowledge of the mathematics behind the calculations.The objective of SCHUR1has been to supply results with the complex algorithmsfortunately hidden from view with the user able to obtain speci�c results and to be ableto use these results in a fully interactive manner, e�ectively using SCHUR as a scratchpad. The development of SCHUR has occurred over many years and has been drivenby response to speci�c research problems and in the need to make available to students atool for learning about Lie groups by student creation of examples of practical examples.In what follows I will �rst outline the tools included in SCHUR for carrying out1 The SCHUR package is available as a compiled C code for UNIX and DOS oper-ating systems for IBM PC compatibles and work stations such as SUN, Hewlett-Packardand Silicon Graphics. The distribution is through S. Christensen, PO Box 16175, ChapelHill, NC 27516 USA. Email: steve@smc.vnet.net . Additional details are available on theWEB at http://smc.vnet.net/Christensen.html and at the authors WEB site athttp://www.phys.torun.pl/�bgw which contains downloadable versions of some of thepapers referenced below as well as further examples of the use of SCHUR.



3the computations required to analyse group-subgroup structures such as displayed in Fig.1 and then show how SCHUR has led to various conjectures that in turn have led to newtheorems. Finally I will briey discuss the use of SCHUR as a self-instructing teachingtool.2. Labelling irreducible representations of Lie GroupsThe basic object in SCHUR is the partition of an integer into integers. Theirreducible representations of the compact Lie groups[1-3], and certain of the unitaryirreducible representations of the non-compact Lie groups such as Sp(2n;R)[4,5], maybe uniquely by certain constrained partitions of integers, as for tensor representations,or as half-integers for spinor representations. Such a notation is familiar to physicistsin the use of Young tableaux in describing tensors. The standard and spin irreduciblerepresentations of the symmetric group may be similarly labelled. These labels are encasedin brackets according to the particular type of group being considered: curly brackets f; gfor U(n); U(p; q); SU(n); S(n); angular brackets <;> for Sp(2n); Sp(2n;R); square brackets[; ] for O(n); SO(n); SO�(2n); curved brackets for the exceptional groups G2; F4; E6; E7; E8.SCHUR automatically chooses the brackets appropriate to the set groups. SCHUR issigni�cantly di�erent from programmes involving weight space constructions and Dynkindiagrams though SCHUR will give translations of partition labels into Dynkin labelsand vice versa.In certain calculations non-standard partition labels may arise. SCHUR will auto-matically apply modi�cation rules[1,6] to yield either signed standard labelled irreduciblerepresentations or null results as appropriate as may be seen in the following SCHURfragment



4 DP>->gr6u4so5sp6e8spr6osp5,6Groups are U(4) * SO(5) * Sp(6) * E(8) * Sp(6,R) * OSp(5/6)DP>->[21*s1^4*321*21^7*s1;21*431]{21}[s;1^4]<321>(21^7 )<s1;(21)>[431>DP>->std last- {21}[s;1^2 ]<321>(21^7 )<s1;(21)>[431>DP>where the input is distinguished by an arrow � >. Note that the SO(5) irreducible repre-sentation labelled [s; 14] is non-standard and in the �nal line of output has been convertedinto the standard irreducible representation [s; 12] with a negative sign.3. Properties of irreducible representationsIn practical applications one often needs to know the dimension of an irreduciblerepresentationor a list of irreducible representations. Thus for the staircase partition ofweight 153 of S(153) we have the SCHUR fragmentREP>->gr s153Group is S(153)REP>->conv_s wt-153 ser 153,t{17 16 15 14 13 12 11 10 987654321}REP>->dim lastdimension=12671579865747532750746781433923532863503681425492319766502534309569506267082851033603780185621899415810345794014793141889217331200REP>where in the second line of input we obtained the relevant partition from the t series ofstaircase S�functions.The eigenvalues of the Casimir invariants are useful in the study of model Hamil-tonians[7,8]. SCHUR can present a number of properties upon invoking the command<<prop>> as shown below:-REP>->gr e8Group is E(8)REP>->prop42<dynkin label>(00000020)dimension=4881384 60*2nd-casimir=2002nd-dynkin=65610



5In the case of the group Sp(2n;R) the non-trivial unitary irreducible representations areof in�nite dimension and just the eigenvalue of the second-order Casimir operator isevaluated. ThusREP>->gr spr8Group is Sp(8,R)REP>->prop s1;214*2nd-casimir=300REP>where for Sp(2n;R) we haveC2(< k2; (�) >) = nXi=1 �i(�i � 2i) + (k + 2n + 2)(nk + 4!�)4 (1)The eigenvalues of higher order Casimir invariants may be evaluated for the compact Liegroups.4. Kronecker products of irreducible representationsSCHUR readily handles Kronecker products for the compact Lie groups. Thenon-compact groups Sp(2n;R) require special consideration since the non-trivial unitaryirreducible representations are all of in�nite dimension and results must be truncated toa �nite cuto�. Consider the two fundamental irreducible representations < s; (0) > and< s; (1) > where s = 12 . SCHUR readily yields the terms of the three possible Kroneckerproducts for Sp(6; R), to weight 15, asREP>p s;0,s;0<1;(14 )> + <1;(12 )> + <1;(10 )> + <1;(8)> + <1;(6)> + <1;(4)>+ <1;(2)> + <1;(0)>REP>p s;0,s;1<1;(15 )> + <1;(13 )> + <1;(11 )> + <1;(9)> + <1;(7)> + <1;(5)>+ <1;(3)> + <1;(1)>REP>p s;1,s;1<1;(14 )> + <1;(12 )> + <1;(10 )> + <1;(8)> + <1;(6)> + <1;(4)>+ <1;(2)> + <1;(1^2 )>REP>The above results lead to the conjecture that< s; (0) > � < s; (0) > = 1Xi=0 < 1; (2i) > (2a)



6 < s; (0) > � < s; (1) > = 1Xi=0 < 1; (2i + 1) > (2b)< s; (1) > � < s; (1) > =< 1; (12) > + 1Xi=0 < 1; (2i) > (2c)Examination of Sp(2n;R) for n > 3 shows the result to continue to hold. Such results implythe existence of certain S�function identities which play an essential part in proving theconjectures which we shall not give here[9]. This gives us our �rst example of the way inwhich SCHUR can uncover, hitherto unknown, general results.As a further example, consider the group SU(4) whose adjoint irreducible repre-sentation is f212g. Suppose f�g is a real irreducible representation of SU(4). We canask ourselves "How many times does the adjoint irreducible representation occur in theKronecker square of f�g?". Consider the following results from SCHUR:-REP>gr su4Group is SU(4)REP>p22,22{4^2 } + {431} + {42^2 } + {2^2 } + {21^2 } + {0}REP>p211,211{42^2 } + {3^2 2} + {31} + {2^2 } + 2{21^2 } + {0}REP>p321,321{642} + {63^2 } + {5^2 2} + 2{543} + {53}+ 2{521} + {4^3 } + {4^2 } + 4{431} + 3{42^2 }+ {4} + 3{3^2 2} + 3{31} + 2{2^2 } + 3{21^2 } + {0}REP>Note that in the above three products the SU(4) irreducible representation f212g occurswith multiplicities 1, 2, and 3 respectively. Is it a coincidence that those numbers corre-spond to the number of distinct steps in the Young diagrams of the partitions associatedwith the partitions (22); (212); (321) respectively? For SU(5) the adjoint irreducible rep-resentation is f213g and using SCHUR we �nd that f4321g � 4f213g. This leads us toconject that the number of times the square of a real irreducible representation f�g ofSU(n) contains the adjoint irreducible representation is equal to the number of distinctsteps in the Young diagram of the partition (�). Formal proofs of this conjecture are givenelsewhere[10,11]. The original inspiration came from use of SCHUR.



75. Symmetrized Kronecker powersPlethysms for the classical compact Lie groups and the exceptional group G2 canbe evaluated in SCHUR. SCHUR can also resolve Kronecker powers of irreduciblerepresentations ofSp(2n;R) into their symmetrized components which amounts to evaluating plethysms.Again such resolutions are given up to a user de�ned limit. Thus we �nd for the twofundamental irreducible representations of Sp(6; R) to weight 15REP>pl s;0,2<1;(12 )> + <1;(8)> + <1;(4)> + <1;(0)>REP>pl s;0,11<1;(14 )> + <1;(10 )> + <1;(6)> + <1;(2)>REP>pl s;1,2<1;(14 )> + <1;(10 )> + <1;(6)> + <1;(2)>REP>pl s;1,11<1;(12 )> + <1;(8)> + <1;(4)> + <1;(1^2 )>REP>The above results suggest that for general Sp(2n;R) we have< s; (0) > 
f2g = 1Xi=0 < 1; (4i) > (3a)< s; (0) > 
f12g= 1Xi=0 < 1; (4i + 2) > (3b)< s; (1) > 
f2g = 1Xi=0 < 1; (4i + 2) > (3c)< s; (1) > 
f12g=< 1; (12) > + 1Xi=0 < 1; (4i + 4) > (3d)Notice that the irreducible representations contained in Eq. (3b) and (3c) are identicaland implies the existence of hitherto unknown S�function identities[9].Plethysms can play an important role in establishing selection rules. We alludedto the problem of determining the number of times the adjoint irreducible representationof a Lie group can occur in the Kronecker square of a real irreducible representation. Thenatural extension is to ask "How many times does the adjoint irreducible representationoccur in each of the symmetrized Kronecker power of a real irreducible representation".



8 This question has been answered elsewhere[10,11].6. Group-subgroup decompositionsFigure 1 displays a very rich group-subgroup structure. To be of practical useone must be able to make group-subgroup decompositions for every group-subgroup pairdisplayed in Fig. 1. Recent extensions of SCHUR make it possible to determine allsuch decompositions in a systematic and self-consistent manner. In the case of the groupbeing a non-compact group the decompositions are determined up to a user de�ned limit.If the group is compact then the decomposition is complete. Most of the relevant cal-culations are well beyond the possibilities of hand calculations. Nearly 60 generic typesof group-subgroup decompositions are available in SCHUR. By way of example we givethe following Sp(12; R) ) Sp(4; R) � O(3) decomposition for the fundamental irreduciblerepresentation < s; (0) > of Sp(12; R) where terms to weight 12 have been evaluated:-DP>->gr spr12DP>->br38,4,3gr1[s;0]Groups are Sp(4,R) * O(3)<s1;(12 )>[12 ] + <s1;(11 1)>[11 ]# + <s1;(10 )>[10 ] + <s1;(91)>[9]#+ <s1;(8)>[8] + <s1;(71)>[7]# + <s1;(6)>[6] + <s1;(51)>[5]#+ <s1;(4)>[4] + <s1;(31)>[3]# + <s1;(2)>[2] + <s1;(1^2 )>[1]#+ <s1;(0)>[0]DP>The hash sign # is used to distinguish associated irreducible representations of O(3).7. The O(n)) S(n) decompositions and inner plethysmsThe O(n) ) S(n) decompositions play an important role in determining the spinstates that arise in symplectic models of nuclei and mesoscopic systems such as quantumdots[12-15]. The relevant branching rule can be succinctly written for tensor irreduciblerepresentations [�] of O(n) as[16] [�])< 1 > 
f�=Gg (4)where G =X" (�1) (!"�r)2 f"g



9The term, < 1 > 
f�=Gg, is an example of a reduced inner plethysm[17]. Such objects defydescription here, su�ce to say that SCHUR automatically evalutes Eq. (4) and reducedinner plethysms of the generic type < 1 > 
f�g and can systematically build up the moregeneral reduced inner plethysms < � > 
f�g. As an example we obtain the result for< 21 > 
f21g as< 71 > + 2 < 7 > + < 621 > + 5 < 62 > + 5 < 612 > + 17 < 61 >+ 14 < 6 > + < 54 > + 2 < 531 > + 9 < 53 > + < 522 > + 2 < 5212 >+ 20 < 521 > + 45 < 52 > + < 514 > + 10 < 513 > + 47 < 512 > + 81 < 51 >+ 45 < 5 > + < 421 > + 5 < 42 > + 3 < 432 > + 3 < 4312 > + 25 < 431 >+ 47 < 43 > + 3 < 4221 > + 20 < 422 > + 2 < 4213 > + 30 < 4212 > + 118 < 421 >+ 149 < 42 > + 10 < 414 > + 64 < 413 > + 163 < 412 > + 185 < 41 > + 78 < 4 >+ 3 < 3221 > + 16 < 322 > + < 3213 > + 20 < 3212 > + 73 < 321 > + 82 < 32 >+ < 323 > + 2 < 32212 > + 25 < 3221 > + 73 < 322 > + < 3214 > + 20 < 3213 >+ 118 < 3212 >+ 270 < 321 > + 235 < 32 > + 5 < 315 > + 47 < 314 > + 163 < 313 >+ 280 < 312 > + 240 < 31 > + 83 < 3 > + < 241 > + 5 < 24 > + 9 < 2312 >+ 47 < 231 > + 82 < 23 > + 5 < 2214 > + 45 < 2213 > + 149 < 2212 >+ 235 < 221 >+ 162 < 22 > + < 216 > + 17 < 215 > + 81 < 214 > + 185 < 213 > + 240 < 212 >+ 173 < 21 > + 55 < 2 > + 2 < 17 > + 14 < 16 > + 45 < 15 > + 78 < 14 >+ 83 < 13 > + 55 < 12 > + 19 < 1 > + 2 < 0 >where SCHUR's ability to produce TEX output has been exploited. Inspecting the aboveresult one is immediately struck by the observation that the complete set of partitions isself-associated as may be veri�ed by the SCHUR fragmentSFN>->sets1lastSFN>->sub sv1,conj sv1zeroSFN>Furthermore, the partition (21) is a staircase partition. Could it be thatif < � > 
f�g=< H >, where (�) and (�) are staircase partitions, then H is self-associated?



10 If we try < 21 > 
f321g we �nd the conjecture holds! This motivates us to see if theconjecture can be proved, as indeed it can[17]. This is but another of many examples ofthe application of SCHUR being used to establish a conjecture and leading to a hithertounknown theorem.8. SCHUR as a teaching toolThe above results have emphasized the use of SCHUR as a research tool. Itcan also be useful as a teaching tool in the areas of group theory and in the theoryof symmetric groups. Here one can exploit the interactive nature of SCHUR to allowthe student to develop simple examples, such as computing the dimensions of simpleirreducible representations of S(n), drawing a Young frame, constructing the hook lengthgraph of a Young frame, computing Kronecker products in U(n) etc. A large array of help�les can be brought to screen describing every command with examples of its use.9. Concluding remarksIn the preceding I have tried to illustrate a few applications of SCHUR. Manyother applications such as, to Riemann tensor polynomials[18], automorphisms of SO(8)and the electronic f�shell[19], expansion of powers of the Vandermonde determinant inS�functions[20], or the various aspects of the exceptional Lie groups in atomic physics[21,22], have been omitted for reasons of space-time and are left to you to explore in theliterature.AcknowledgementThis work has been supported by Polish KBN Grant 18/p3/94/07.
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