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And yet the mystery of mysteries is to view machines
making machines; a spectacle that fills the mind
with curious, and even awful, speculation.
— Benjamin Disraeli: Coningsby (1844)
ABSTRACT

The non-compact group Sp(2n,R) plays an important role in symplectic many-
body problems in physics such as arise in harmonic oscillator based models of nuclei
and quantum dots while the non-compact group U(p,¢) is relevant to Coulomb
type problems. Few applications are known in the case of the non-compact group
SO*(2n). The non-trivial unitary irreducible representations of these groups are all
of infinite dimension. We summarise recent work on the tensor products, plethysms
and branching rules associated with these groups and relationships between these
non-compact groups.

1. Introduction

The study of non-compact groups and their relationship to physics has a long
history. In Buchheim’s papers[1-4] of the 1880’s on the theory of screws and wrenches,
and in Study’s work in 1903 on the electric dynamo[5] we recognise some of the
properties of the Lorentz group while in Cunningham’s[6] analysis of the symmetry
properties of the source free Maxwell equations and in Bateman’s[7] studies of optics we
see the entrance of the conformal groups. The physicists interest in Lie groups largely
springs from the early work of Weyl[8] and van der Waerden[9] and Yamanouchi[10-12].
The initial interest was in the compact Lie groups especially in the pioneering work of
Giulio Racah[13,14] which was rapidly taken up by the nuclear physicists[15,16] and
only much later by the atomic spectroscopists[17].

Physicist’s interest in non-compact groups largely arose from the seminal papers of
Wigner[18] and Bargmann[19] on the Lorentz group and Pauli’s review[20]. Pauli[21]
had early noticed the role of the compact Lie group SO(4) as the degeneracy group of
the H-atom. The existence of SU(3) as the degeneracy group of the isotropic three-
dimensional harmonic oscillator was used by Elliott[22] in his SU(3) nuclei model.
These Lie groups, or more correctly, Lie algebras, allowed one to ladder between
the states associated with a given degenerate level but not between states belonging
to different degenerate levels. This deficiency is overcome when one enlarges the
Lie description of the system to include operators that ladder between different sets
of degenerate states. In the case of the H-atom the dynamical group is the non-
compact group SO(4,2) ~ SU(2,2) group[23] and in the case of the isotropic harmonic
oscillator the non-compact symplectic Sp(6, R) group[24].

Here T propose to consider three classes of non-compact groups - Sp(2n, %), U(p, q)
and SO*(2n). The first two groups are relevant to many-particle harmonic oscillator
and Coulomb problems respectively. The group SO*(2n) leaves invariant the form

* * * *
—Z1Zp41 t Fn41%] — 00— ZnZay t+ Zan 2,

The application of SO*(2n) to physical problems appears to be obscure but as we
shall see it is intimately related to the other two classes of groups all of which have
an appropriate metaplectic group Mp(N) as their covering group.
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My task is made easier by following upon Prof. R. C. King’s presentation where
much of the basic theory was outlined and will not be repeated here.
The sagacious reader who is capable of reading
between these lines what does not stand written
in them, but is nevertheless implied, will be able to
form some conception
— Goethe
2. Discrete harmonic series representations
The non-compact semisimple Lie groups are characterized by finite non-unitary
and infinite dimensional unitary irreducible representations. Of the latter, we shall
restrict ourselves to the so-called discrete harmonic series of irreducible representations
where the weights are bounded from below but not from above. The groups Sp(2n, })
and O(k) form a dual pair with respect to the metaplectic group Mp(2nk) such that
the basic irreducible representation A under Sp(2nk,R) — Sp(2n,R) x O(k) branches
as[25-27)

A= (3RO < N (2.1)
I\
where the summation is over all A such that
M +A <k and X <n

Likewise, for the dual pair SO*(2n), Sp(2k) we have[28]

A= TR x (A) (2.2)

where the summation is over all A such that
Al < min(n, k)
Finally, we have the dual pair U(p, ¢), U(k) with[26,29]
A= {k(r )} x v} (2.3)
v,

where the summation is carried out over all pairs of partitions (p) and (v) for which
the conjugate partitions (v') and (p') satisfy the constraints

py+vi <k, pi<p and v{<gq

N.B. The reduction in all three cases is multiplicity free.

Under Mp(2n) — Sp(2n,R) we have[25,27]

A= (5(0) +{(z(1) (2.4)

with (£(0)) and ($(1)) being termed the fundamental irreducible representations of
Sp(2n,R).
Under Mp(2n) — SO*(2n) we have[28]

A= [1(m)] (2.5)

m=0

[\]



It is convenient to designate the infinite set of fundamental irreducible representations

of SO*(2n) as . .
H=> Hy=>_ [l(m)] (2.6)

m=0 m=0
and write H = Hy + H_ with
Hy =) [L(2k)] and H_ = [1(2k+1)]. (2.7)
k=0 k=0

Finally, under Mp(2p + 2¢q) — U(p, ¢) we have[25,30]

A—H=Hy+ > (Hn+H_p) (2.8)
where
Hy ={1(0;0)} (2.9a)
Hy = {100;m)} m=12 .. (2.9b)
H_pm={1(m;0)} m=1,2,... (2.9¢)

3. What do we need to know?
Among the requirements that we need in order to make practical calculations we
may list:
1. Group-subgroup decompositions.
Tensor product decompositions.
Resolution of symmetrised tensor products (plethysms).
Relationship between the various group-subgroup chains.
Resolution of tensor products of finite non-unitary with infinite discrete unitary
representations.
6. Complete classification of all representations.
7. Calculation of matrix elements.
While there has been considerable progress in recent years on all the above topics
I shall only touch on some of them. Topic 5 is the subject of Toumazet’s contribution
to this volume.
4. Branching rules for non-compact Lie groups
Decompositions to maximal compact subgroups involve an infinite set of
irreducible representations of the subgroup. Thus under Sp(2n,R) — U(n) we
have[25-27]

QU = W N

(Lk(V) — 5 - (AR Dy (4.1)

where N = min(n, k).
Likewise, under So*(2n) — U(n) we have[28]

k()] — e* LGN By (4.2)

with N = min(n, 2k).
Similar results can be obtained for U(p, ¢) — U(q) x U(p)[26,31].
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In each case the results involve infinite series of special Schur functions (S-
functions), certain signed sequences of S-functions[25] whose products are evaluated
using the Littlewood-Richardson rule. Explicit calculations are usually quite tedious
and best left to computer implementations[31].

5. Symmetrised tensor products

Methods of computing tensor products of discrete series harmonic irreducible
representations are now well established[25-30] and capable of computation up
to a user defined cutoff[31].  While such tensor products can be useful in
practical applications of greater interest is the resolution of symmetrised tensor
products or plethysms[27,28,30-34]. Physical applications required the construction of
symmetrised states and in the case of non-compact groups that requires the resolution
of symmetrised products of infinite dimensional irreducible representations . Clearly in
most cases this will involve incomplete resolutions involving a finite set of irreducible
representations . However, a few complete resolutions have been achieved[34]. In
particular the second powers of the basic irreducible representations of Sp(2n,R) have
been fully resolved to give

(300) @ {2} = Z(1(4i)> (5.1)
(3(0)) @ {1*} = Z(1(2+4i)> (5.2)
(z(1) @ {2} = Z(1(2+4i)> (5.3)

(3(1) @ {1*} = (1(1%)) + 2(1(41'» (5.4)
Eq. (5.2) and (5.3) imply
(3(0) @ {1°} = (3(1) @ {2} (5.5)
which implies the S—function identity
My @ {12y = M_ o {2} (5.6)

where My and M_ are respectively the infinite S—function series involving one-part
partitions corresponding to even and odd integers respectively.
Even more remarkable is the result

(3(0)) @ {217} = (3(0)) @ {31} (5.7)

Detailed proofs of the above results have been given elsewhere[27,35].
6. Physical implications of the plethysm identities for Sp(2n,R)

The plethysm identities given by (5.5) and (5.7) imply simple, and seemingly
hitherto unnoticed, relationships between particular states for two or four particles
in an isotropic three-dimensional harmonic oscillator potential. For a single fermion
such as an electron we have the energy level diagram given below.
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3 v, S {3}
2 sd {2}
1 p {1}
0 s {0}

Fig. 1 Energy levels of a single particle in an isotropic three-dimensional harmonic
oscillator potential.
For convenience we fix the groundstate energy as zero. Then successive levels have an
energy (in appropriate units)
En=n (6.1)
Consider now two non-iteracting particles. Their energies are additive and hence
if orbitals with n = ny and n = ny are singly occupied then the energy is

Enl,n2 =ny + ng (62)

The identity (5.5) then implies that there is a one-to-one mapping between the two-
particle spin triplet states (S = 1) formed from orbitals of even parity with the two-
particle spin singlet states (S = 0) formed from orbitals of odd parity. Thus for
ny + ny = 2 we obtain the two sets of states 2SD and 1.SD while for ny 4+ ny = 4 we
obtain the two sets of states 3SPDs F G and ' SPD>FG and so on.

In the case of four non-interacting nucleons in an isotropic three-dimensional
harmonic oscillator potential the identity observed in (5.7) implies that the the states
arising from the left-hand-side of (5.7) are associated with the Wigner isospin-spin
SU(4) super-multiplet {31} and those of the right-hand-side with the Wigner super-
multiplet {212}, The equivalence in (5.7) thus relates the U/(3) orbital states involving
the occupation of four even parity orbitals with those involving the occupation of four
odd parity orbitals. Thus in the four-nucleon configuration (0s)?(1s + 0d)? we have
the U(3) x SU(4) multiplet {31} x {31} while in the four-nucleon configuration (0p)*
we have the U(3) x SU(4) multiplet {31} x {217}.

7. Relationships between irreducible representations

Relationships between the different non-compact groups and their irreducible
representations may be established by starting, in the first case, starting with the
metaplectic group Mp(4nk) we may relate the decompositions involving the non-
compact subgroups SO*(2n) and Sp(2n, R) by means of the commutative diagram|[28]

SO*(2n) x Sp(2k) ——— Mp(4nk) —— Sp(2n, R) x O(2k)

U(n) x Sp(2k) U(n) x O(2k)

U(n) x SO(2k) ——— ——  U(n) x SO(2k)



The terminal group in each case is U(n) x SO(2k). Taking into account the
labels used to distinguish mutually associate pairs of irreducible representations of
Sp(2nR)[27], the decomposition of the metaplectic irreducible representation A of
Mp(4nk) proceeds as indicated below:

2ok lk (k)] x (k) — A — 2a(k(A) x [A]
2k lk(K)]u(ny % (k) 2o lk(N))un) x [A]
klk(B)]u) x [//AD]  —— —— R+ (1= 63 0)A )iy x [A]

(7.2)
where the symbols [-- ]y and (- -)yn) signify restriction from SO*(2n) and
Sp(2n,R), respectively, to U(n), while the skew products of £ with A and D correspond
to passing from Sp(2k) up to U(2k) and then down to SO(2k). Tt should be noted
that at the level of U(n) x SO(2k) the summations over both & and A are restricted
so that these partitions have no more than P parts with P = min(k, n).

Since[36]

AD=W = i ZT: (=1)*{r,s} with r — s even, (7.3)
it follows that on comparing tlrlgot;rils of the form - - - x [A] we have
(kA - W)]o(ny = (RN un) + (1= 0xr2) ((A")) U (n)- (7.4)
As special cases of this with £ = 1 and A = (0) and (1), we obtain:
(H+)U(n) = [LMP)]vn) = (L)) vy + (L0 ) vn); (7.5a)
(=) gy = Oy = (1) (7.55)

This gives us an alternative method of computing powers of the basic harmonic
representation H of SO*(2n) and its constituents Hy and H_. Since H = Hy + H_ it
follows from (7.5) that the U(n) content of the harmonic representation H of SO*(2n)
coincides with that of the representation S of Sp(2n,R), where

S = (1(0)) + (1(07)) + {1(1)). (7.6)
The same must be true of both their powers and plethysms. Examples of the
application of such a method is given elsewhere[28].
The groups U(p,q) and Sp(2n,R) may be similarly related, in this case via the
metaplectic group Mp(2(p + ¢)k) via the commutative diagram below
Ulp,a) xU(k)  —— Mp2(p+ k) ——  Sp(2n,R) x O(k)

U(p,q) x O(k) Up+ q[ <O (7.1
Up) x Ulq) x O(k) —— —— U(p) x U(q) x O(k)



It is not difficult to see from the diagram that in terms of their U(p) x U(q)
decompositions

(L(0) ~ Hy and (3(1)) ~ H_ (7.8)

Recalling that
(3(0) @ {1°} = (3(1) @ {2} (7.9)

leading immediately to the non-trivial plethysm identity for U(p, ¢)
Hyo{1?}=H_®{2} (7.10)

and likewise that

H, ®{21*} = H_ ® {31} (7.11)

8. U(2,2) plethysms and two-electron systems
As noted earlier, the group U(2,2) can give a description of the states of a one-
electron hydrogenic atom. Thus one finds

U(2,2) —U(2) x U(2) — SU(2) x SU(2) ~ SO(4) (8.1a)
100} =Y G < =2 < b~ 2l -100 (31)

where Dim[n—1,0] = n? and n may be identified with the principal quantum number
of the hydrogenic orbitals as below:-

n= 1 2 3 4
n? = 1 4 9 16
= s s, p s, p,d s,p,d, f o (8.2)

the second power of the fundamental irreducible representation {1(0;0)} may be fully
resolved as[30]

{10;00} @ {2} = S {2(2F; 2} (8.30)

k=0

{1(0;0)} @ {17} = i{?(?k—l—l;?k—l—l)} (8.3b)
k=0

These plethysms give a full description of the infinite sets of discrete states that are
possible for two non-interacting electrons in a central Coulomb field. FEq.(8.3a) is
associated with the spin singlet states (S = 0 and (8.3b) with the spin triplet states
(S = 1). One obtains an infinite set of infinite towers of states of well-defined spin.
Branching the U(2,2) irreducible representations according to (8.1a) leads to the
observation that the groundstate 1.5 arises from the {2(0; 0)} irreducible representation
as the first state in an infinite tower while the first triplet states 3SP arise from the
{2(1; 1)} irreducible representation as the first triplet states in another infinite tower.
At least at this stage we know the complete sets of relevant irreducible representations

9. Concluding remarks
We can now calculate branching rules, tensor products and plethysms for

the harmonic discrete series of representations of the non-compact Lie groups
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Sp(2n,R), SO*(2n) and U(p, ¢). In the process many new insights into properties of
irreducible representations have been obtained. A complete understanding of tensor
products of finite with infinite representations has yet to be obtained though the
preliminary results of Toumazet are encouraging. We have limited our attention to the
discrete harmonic series of irreducible representations and clearly future work should
consider the continuous irreducible representations and indeed the whole diversity of
irreducible representations of these groups. Applications will also require the efficient
evaluation of Clebsch-Gordan coefficients and matrix elements[37,38].
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