
Recent developments concerning non-compact groupsand their propertiesBrian G WybourneInstytut Fizyki, UMKToru�n, PolandAnd yet the mystery of mysteries is to view machinesmaking machines; a spectacle that �lls the mindwith curious, and even awful, speculation.| Benjamin Disraeli:Coningsby (1844)ABSTRACTThe non-compact group Sp(2n;<) plays an important role in symplectic many-body problems in physics such as arise in harmonic oscillator based models of nucleiand quantum dots while the non-compact group U (p; q) is relevant to Coulombtype problems. Few applications are known in the case of the non-compact groupSO�(2n). The non-trivial unitary irreducible representations of these groups are allof in�nite dimension. We summarise recent work on the tensor products, plethysmsand branching rules associated with these groups and relationships between thesenon-compact groups.1. IntroductionThe study of non-compact groups and their relationship to physics has a longhistory. In Buchheim's papers[1-4] of the 1880's on the theory of screws and wrenches,and in Study's work in 1903 on the electric dynamo[5] we recognise some of theproperties of the Lorentz group while in Cunningham's[6] analysis of the symmetryproperties of the source free Maxwell equations and in Bateman's[7] studies of optics wesee the entrance of the conformal groups. The physicists interest in Lie groups largelysprings from the early work of Weyl[8] and van der Waerden[9] and Yamanouchi[10-12].The initial interest was in the compact Lie groups especially in the pioneering work ofGiulio Racah[13,14] which was rapidly taken up by the nuclear physicists[15,16] andonly much later by the atomic spectroscopists[17].Physicist's interest in non-compact groups largely arose from the seminal papers ofWigner[18] and Bargmann[19] on the Lorentz group and Pauli's review[20]. Pauli[21]had early noticed the role of the compact Lie group SO(4) as the degeneracy group ofthe H-atom. The existence of SU (3) as the degeneracy group of the isotropic three-dimensional harmonic oscillator was used by Elliott[22] in his SU (3) nuclei model.These Lie groups, or more correctly, Lie algebras, allowed one to ladder betweenthe states associated with a given degenerate level but not between states belongingto di�erent degenerate levels. This de�ciency is overcome when one enlarges theLie description of the system to include operators that ladder between di�erent setsof degenerate states. In the case of the H-atom the dynamical group is the non-compact group SO(4; 2) � SU (2; 2) group[23] and in the case of the isotropic harmonicoscillator the non-compact symplectic Sp(6;<) group[24].Here I propose to consider three classes of non-compact groups - Sp(2n;<); U (p; q)and SO�(2n). The �rst two groups are relevant to many-particle harmonic oscillatorand Coulomb problems respectively. The group SO�(2n) leaves invariant the form�z1z�n+1 + zn+1z�1 � � � � � znz�2n + z2nz�nThe application of SO�(2n) to physical problems appears to be obscure but as weshall see it is intimately related to the other two classes of groups all of which havean appropriate metaplectic group Mp(N ) as their covering group.1



My task is made easier by following upon Prof. R. C. King's presentation wheremuch of the basic theory was outlined and will not be repeated here.The sagacious reader who is capable of readingbetween these lines what does not stand writtenin them, but is nevertheless implied, will be able toform some conception| Goethe2. Discrete harmonic series representationsThe non-compact semisimple Lie groups are characterized by �nite non-unitaryand in�nite dimensional unitary irreducible representations. Of the latter, we shallrestrict ourselves to the so-called discrete harmonic series of irreducible representationswhere the weights are bounded from below but not from above. The groups Sp(2n;<)and O(k) form a dual pair with respect to the metaplectic group Mp(2nk) such thatthe basic irreducible representation ~� under Sp(2nk;<)! Sp(2n;<)�O(k) branchesas[25-27] ~�!X� h12k(�)i � [�] (2:1)where the summation is over all � such that�01 + �02 � k and �01 � nLikewise, for the dual pair SO�(2n); Sp(2k) we have[28]~�!X� [k(�)]� h�i (2:2)where the summation is over all � such that�01 � min(n; k)Finally, we have the dual pair U (p; q); U (k) with[26,29]~�!X�;� fk(��;�)g � f��;�g (2:3)where the summation is carried out over all pairs of partitions (�) and (�) for whichthe conjugate partitions (� 0) and (�0) satisfy the constraints�01 + � 01 � k; �01 � p and �01 � qN.B. The reduction in all three cases is multiplicity free.Under Mp(2n)! Sp(2n;<) we have[25,27]~�! h12(0)i + h12 (1)i (2:4)with h12 (0)i and h12 (1)i being termed the fundamental irreducible representations ofSp(2n;<).Under Mp(2n)! SO�(2n) we have[28]~�! 1Xm=0[1(m)] (2:5)2



It is convenient to designate the in�nite set of fundamental irreducible representationsof SO�(2n) as H = 1Xm=0Hm = 1Xm=0[1(m)] (2:6)and write H = H+ +H� withH+ = 1Xk=0 [1(2k)] and H� = 1Xk=0 [1(2k + 1)]: (2:7)Finally, under Mp(2p+ 2q)! U (p; q) we have[25,30]~�! H = H0 + 1Xm=1(Hm +H�m) (2:8)where H0 = f1(�0; 0)g (2:9a)Hm = f1(�0;m)g m = 1; 2; : : : (2:9b)H�m = f1( �m; 0)g m = 1; 2; : : : (2:9c)3. What do we need to know?Among the requirements that we need in order to make practical calculations wemay list:1. Group-subgroup decompositions.2. Tensor product decompositions.3. Resolution of symmetrised tensor products (plethysms).4. Relationship between the various group-subgroup chains.5. Resolution of tensor products of �nite non-unitary with in�nite discrete unitaryrepresentations.6. Complete classi�cation of all representations.7. Calculation of matrix elements.While there has been considerable progress in recent years on all the above topicsI shall only touch on some of them. Topic 5 is the subject of Toumazet's contributionto this volume.4. Branching rules for non-compact Lie groupsDecompositions to maximal compact subgroups involve an in�nite set ofirreducible representations of the subgroup. Thus under Sp(2n;<) ! U (n) wehave[25-27] h12k(�)i ! " k2 � ff�sg[k]N �DNgN (4:1)where N = min(n; k).Likewise, under So�(2n)! U (n) we have[28][k(�)]! "k � ff�sgh2kiN �BNgN (4:2)with N = min(n; 2k).Similar results can be obtained for U (p; q)! U (q)� U (p)[26,31].3



In each case the results involve in�nite series of special Schur functions (S-functions), certain signed sequences of S-functions[25] whose products are evaluatedusing the Littlewood-Richardson rule. Explicit calculations are usually quite tediousand best left to computer implementations[31].5. Symmetrised tensor productsMethods of computing tensor products of discrete series harmonic irreduciblerepresentations are now well established[25-30] and capable of computation upto a user de�ned cuto�[31]. While such tensor products can be useful inpractical applications of greater interest is the resolution of symmetrised tensorproducts or plethysms[27,28,30-34]. Physical applications required the construction ofsymmetrised states and in the case of non-compact groups that requires the resolutionof symmetrised products of in�nite dimensional irreducible representations . Clearly inmost cases this will involve incomplete resolutions involving a �nite set of irreduciblerepresentations . However, a few complete resolutions have been achieved[34]. Inparticular the second powers of the basic irreducible representations of Sp(2n;<) havebeen fully resolved to giveh12(0)i 
 f2g = 1Xi=0h1(4i)i (5:1)h12(0)i 
 f12g = 1Xi=0h1(2 + 4i)i (5:2)h12(1)i 
 f2g = 1Xi=0h1(2 + 4i)i (5:3)h12(1)i 
 f12g = h1(12)i + 1Xi=1h1(4i)i (5:4)Eq. (5.2) and (5.3) imply h12 (0)i 
 f12g � h12 (1)i 
 f2g (5:5)which implies the S�function identityM+ 
 f12g � M� 
 f2g (5:6)where M+ and M� are respectively the in�nite S�function series involving one-partpartitions corresponding to even and odd integers respectively.Even more remarkable is the resulth12(0)i 
 f212g � h12 (0)i 
 f31g (5:7)Detailed proofs of the above results have been given elsewhere[27,35].6. Physical implications of the plethysm identities for Sp(2n;<)The plethysm identities given by (5.5) and (5.7) imply simple, and seeminglyhitherto unnoticed, relationships between particular states for two or four particlesin an isotropic three-dimensional harmonic oscillator potential. For a single fermionsuch as an electron we have the energy level diagram given below.4



n ` U (3)... ... ... ...4 s; d; g f4g3 p; f f3g2 s; d f2g1 p f1g0 s f0gFig. 1 Energy levels of a single particle in an isotropic three-dimensional harmonicoscillator potential.For convenience we �x the groundstate energy as zero. Then successive levels have anenergy (in appropriate units) En = n (6:1)Consider now two non-iteracting particles. Their energies are additive and henceif orbitals with n = n1 and n = n2 are singly occupied then the energy isEn1;n2 = n1 + n2 (6:2)The identity (5.5) then implies that there is a one-to-one mapping between the two-particle spin triplet states (S = 1) formed from orbitals of even parity with the two-particle spin singlet states (S = 0) formed from orbitals of odd parity. Thus forn1 + n2 = 2 we obtain the two sets of states 3SD and 1SD while for n1 + n2 = 4 weobtain the two sets of states 3SPD2FG and 1SPD2FG and so on.In the case of four non-interacting nucleons in an isotropic three-dimensionalharmonic oscillator potential the identity observed in (5.7) implies that the the statesarising from the left-hand-side of (5.7) are associated with the Wigner isospin-spinSU (4) super-multiplet f31g and those of the right-hand-side with the Wigner super-multiplet f212g. The equivalence in (5.7) thus relates the U (3) orbital states involvingthe occupation of four even parity orbitals with those involving the occupation of fourodd parity orbitals. Thus in the four-nucleon con�guration (0s)2(1s + 0d)2 we havethe U (3)� SU (4) multiplet f31g� f31g while in the four-nucleon con�guration (0p)4we have the U (3)� SU (4) multiplet f31g � f212g.7. Relationships between irreducible representationsRelationships between the di�erent non-compact groups and their irreduciblerepresentations may be established by starting, in the �rst case, starting with themetaplectic group Mp(4nk) we may relate the decompositions involving the non-compact subgroups SO�(2n) and Sp(2n;<) by means of the commutative diagram[28]SO�(2n)� Sp(2k)  ���� Mp(4nk) ����! Sp(2n;R)�O(2k)????y ????yU (n)� Sp(2k) U (n)� O(2k)????y ????yU (n)� SO(2k) ����!  ���� U (n) � SO(2k) (7:1)5



The terminal group in each case is U (n) � SO(2k). Taking into account thelabels used to distinguish mutually associate pairs of irreducible representations ofSp(2n<)[27], the decomposition of the metaplectic irreducible representation ~� ofMp(4nk) proceeds as indicated below:P�[k(�)]� h�i  ���� ~� ����! P�hk(�)i � [�]????y ????yP�[k(�)]U(n) � h�i P�hk(�)iU(n) � [�]????y ????yP�[k(�)]U(n) � [�=AD] ����!  ���� P��hk(�+ (1� ��01k)��)iU(n) � [�](7:2)where the symbols [� � �]U(n) and h� � �iU(n) signify restriction from SO�(2n) andSp(2n;<), respectively, to U (n), while the skew products of �withA andD correspondto passing from Sp(2k) up to U (2k) and then down to SO(2k). It should be notedthat at the level of U (n) � SO(2k) the summations over both � and � are restrictedso that these partitions have no more than P parts with P = min(k; n).Since[36] AD =W = 1Xr=0 rXs=0 (�1)sfr; sg with r � s even, (7:3)it follows that on comparing the terms of the form � � � � [�] we have[k(� �W )]U(n) = hk(�)iU(n) + �1� ��01k�hk(��)iU(n): (7:4)As special cases of this with k = 1 and � = (0) and (1), we obtain:�H+�U(n) = [1(M+)]U(n) = h1(0)iU(n) + h1(0�)iU(n); (7:5a)�H��U(n) = [1(M�)]U(n) = h1(1)iU(n): (7:5b)This gives us an alternative method of computing powers of the basic harmonicrepresentation H of SO�(2n) and its constituents H+ and H�. Since H = H++H� itfollows from (7.5) that the U (n) content of the harmonic representation H of SO�(2n)coincides with that of the representation S of Sp(2n;<), whereS = h1(0)i+ h1(0�)i + h1(1)i: (7:6)The same must be true of both their powers and plethysms. Examples of theapplication of such a method is given elsewhere[28].The groups U (p; q) and Sp(2n;<) may be similarly related, in this case via themetaplectic group Mp(2(p+ q)k) via the commutative diagram belowU (p; q)� U (k)  ���� Mp(2(p+ q)k) ����! Sp(2n;<)� O(k)????y ????yU (p; q)� O(k) U (p+ q)�O(k)????y ????yU (p)� U (q)� O(k) ����!  ���� U (p) � U (q) �O(k) (7:7)6



It is not di�cult to see from the diagram that in terms of their U (p) � U (q)decompositions h12(0)i � H+ and h12(1)i � H� (7:8)Recalling that h12 (0)i 
 f12g � h12 (1)i 
 f2g (7:9)leading immediately to the non-trivial plethysm identity for U (p; q)H+ 
 f12g � H� 
 f2g (7:10)and likewise that H+ 
 f212g = H� 
 f31g (7:11)8. U (2; 2) plethysms and two-electron systemsAs noted earlier, the group U (2; 2) can give a description of the states of a one-electron hydrogenic atom. Thus one �ndsU (2; 2)!U (2)� U (2)! SU (2) � SU (2) � SO(4) (8:1a)f1(�0; 0)g ! 1Xj=0f�jg � fjg ! 1Xj=0fjg � fjg � 1Xn=1[n� 1; 0] (8:1b)where Dim[n�1; 0] = n2 and n may be identi�ed with the principal quantum numberof the hydrogenic orbitals as below:-n = 1 2 3 4 : : :n2 = 1 4 9 16 : : :` = s s; p s; p; d s; p; d; f : : : (8:2)the second power of the fundamental irreducible representation f1(�0; 0)g may be fullyresolved as[30] f1(�0; 0)g 
 f2g = 1Xk=0f2(2k; 2k)g (8:3a)f1(�0; 0)g 
 f12g = 1Xk=0f2(2k + 1; 2k + 1)g (8:3b)These plethysms give a full description of the in�nite sets of discrete states that arepossible for two non-interacting electrons in a central Coulomb �eld. Eq.(8.3a) isassociated with the spin singlet states (S = 0 and (8.3b) with the spin triplet states(S = 1). One obtains an in�nite set of in�nite towers of states of well-de�ned spin.Branching the U (2; 2) irreducible representations according to (8.1a) leads to theobservation that the groundstate 1S arises from the f2(�0; 0)g irreducible representationas the �rst state in an in�nite tower while the �rst triplet states 3SP arise from thef2(�1; 1)g irreducible representation as the �rst triplet states in another in�nite tower.At least at this stage we know the complete sets of relevant irreducible representations.9. Concluding remarksWe can now calculate branching rules, tensor products and plethysms forthe harmonic discrete series of representations of the non-compact Lie groups7
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