
1 1.1 Nature of the Problem The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneThe only questions worth asking are theunanswerable ones| John Ciardi Saturday Review-World (1973)
Lecture 11.1 Nature of the ProblemIn this semester I want us to use the knowledge gained in earlier lectures to analyse a particular problem insolid state physics, namely the interpretation of nuclear hyper�ne structure in a crystalline environment.The speci�c system we shall analyse will be the high resolution optical spectrum of a LiY F4 : Hocrystal. Extensive experimental work has been done on this system by M. N. Popova and her associatesin the Institute of Spectroscopy, in the Russian Academy of Sciences, Troitsk, Moscow. The chief paperscontaining the data are:-1. N. I. Agladze and M. N. Popova, Hyper�ne Structure in Optical Spectra of LiY F4 : Ho, Sol. St.Comm. 55 1097-1100(1985)2. N. I. Agladze, E. A. Vinogradov and M. N. Popova,Manifestation of quadrupole hyper�ne inter-action and of interlevel interaction in the optical spectrum of the LiY F4 : Ho crystal Sov. Phys.JETP 64 716-720 (1986)3. N. I. Agladze etal, Isotope Structure in Optical Spectra of LiY F4 : Ho3+ Phys. Rev. Lett. 66477-480 (1991)4. N. I. Adgladze etal, Study of isotope composition in crystals by high resolution spectroscopy ofmonoisotope impurity JETP 76 1110-1113 (1993)5. N. I. Agladze etal, Isotope e�ects in the lattice structure and vibrational and optical spectra of6Li7xLi1�xY F4 : Ho crystals JETP 77 1021-1033 (1993)Holmiumoccurs in nature as a single stable isotope, 16567 Ho, with a groundstate nuclear angular momentumof I = 72 . The trivalent ion, Ho3+ substitutes for the Y 3+ ion at sites of tetragonal symmetry (S4 pointgroup) in LiY F4 crystals. The Holmium nucleus interacts with the electrons via the nuclear magneticdipole and electric quadrupole moments. For a holmium ion in free space the total angular momentumF is the vector sum of the nuclear angular momentum I and the electron angular momentum J and is aconserved quantity. The coupling of the angular momentum isF = J+ I (1:1)with F = J + I; J + I � 1; : : : ; jJ � I j (1:2)and as a result for those states with J � I we obtain (2I + 1) hyper�ne sublevels associated with each



2 1.1 Nature of the Problemlevel of the atom with electronic angular momentum J and for states with I > J 2J + 1 sublevels. Thusfor an electronic state with J = 8 and a nucleus with angular momentum I = 72 we would expect ahyper�ne pattern for a free ion to be like belowIn free space the total angular momentumF is a conserved quantity but the electronic angular momentumJ need not be. For a nucleus with I = 0 the electronic angular momentum J remains a conserved quantityas there is then no coupling between the nuclear and electronic moments.Placing the ion in a crystalline environment changes things considerably. Ignoring the hyper�ne inter-action for the moment, the electronic angular momentum J and its projection MJ are no longer goodquantum numbers. The 2J + 1-fold degeneracy of the free ion levels is lifted and the levels are seen tosplit due to the electric �elds in the crystalline environment. The number of sub-levels (Stark levels) andtheir residual degeneracies are determined from a knowledge of the appropriate SO(3) ! G branchingrules where G is the point group symmetry of the ion site in the crystal, in our case S4. The varioussub-levels can be labelled by the irreducible representations of the group G.Including the interaction of the nuclear moments with the electronic moments leads to the appearance ofhyper�ne structure superimposed on the Stark sub-levels. The quantum numbers F andMF are no longerconserved. The multitude of hyper�ne sub-levels will have degeneracies appropriate to the irreduciblerepresentations of the group G. If J is an integer and I a half-integer then the irreducible representationswill be appropriate to the spin or double group of G. This further means that selection rules deducedfor transitions between Stark sub-levels neglecting the hyper�ne interaction will be di�erent from thosededuced by there inclusion.The problem we shall tackle in this course will be to understand the experimental data relating to theobservations given in the �ve papers referenced earlier. We would like to understand the splittings of thehyper�ne structure and the relative intensities of transitions. To that end we will follow a de�nite planof action - solving problems as they arise.1.2 Outline of the proposed plan of actionMy approach to the problem will involve the following steps:-A. The zero-order problemB. The spectroscopic terms for Ho3+C. Properties of the Hund's rule groundstateD. Calculation of the Stark splittingsE. Calculation of hyper�ne interactionsF. Calculation of intensities of transitions1.3 The zero-order problemOnly in very special cases can we write down a Hamiltonian for a system and solve the quantum equationsexactly. Examples of these special cases include one-electron hydrogenic atoms. Note even when we say"an exact solution" we really mean an exact solution of a model system. For any real system our solutionscan only be approximate. In some cases the solutions may apply to a system, such as, for example, arelativistic hydrogen atom with astonishing precision while for a rare earth atom with � 60 electrons wecannot expect to attain anything like the same precision.For an N�electron atom we may write the Hamiltonian, H, asH = NXi=1 �p2i � Ze2ri + �(ri)(s � l)i�+Xi>j e2rij + : : : (1:3)The �rst term represents the kinetic energy of the electrons, the second the Coulomb attraction between



3 1.5 Electron Con�gurationsthe positively charge nucleus of atomic number Z and the i�th electron, the third the spin-orbit coupling,and the fourth term the Coulomb repulsion between pairs of electrons. The : : : are there to remind usthat there may be many other terms such as internal, or external, magnetic or electric �elds, hyper�neinteractions coupling the nuclear magnetic or electric quadrupole moments to the electrons, crystal �eldsand a multitude of relativistic e�ects etc. Furthermore, we are assuming, for the moment that the nucleusis an in�nitely massive point object which means that we ignore mass isotope e�ects and �nite nuclearsize e�ects.Given the above Hamiltonian we wish to solve the eigenvalue equationH	 = E	 (1:4)This deceptively simple equation is incapable of exact solution, or even near exact solution for nearly allatoms. We seek to solve a simpler problem and then proceed to use perturbation theory.1.4 Central Field approximationIn order to simplify our problem let us assume each electron moves independently of the other electronsin a spherically averaged central �eld potential �U(ri)=e with a zero-order Hamiltonian, H0,H0 = NXi=1 � p2i2m + U(ri)� (1:5)with H0 =Xi ��Ze2ri �U(ri)�+Xi>j e2rij +Xi �(ri)(s � l)i + : : : (1:6)To proceed we �rst solve the much simpler central �eld equationH0	0 = E0	0 (1:7)This equation can be separated using a set of functions  (�i) such that	0 = NYi=1 i(�i) and E0 = NXi=1 "i(�i) (1:8)leading to equations of the general form� p22m + U (r)� (�) = "(�) (�) (1:9)This equation may be separated in spherical coordinates (r; �; �) by writing (�) = Rn`(r)Y`m` (�; �)r (1:10)with the usual de�nition of the spherical harmonics asY`m` (�; �) = (�1)m`s2`+ 1)(l �m`)!4�(`+m`)! Pm`` (cos�) expim`� (1:11)with Pm`` (z) = (1� z2)m`22``! d`+m`dz`+m` (z2 � 1)` (1:12)Whereas the radial function Rn`(r) depends explicitly upon the central �eld potential U(r) the angularpart Y`m` (�; �) is exactly the same as that for a hydrogenic atom. Each electron carries a spin s = 12with spin projection ms = �12 and hence we should augment the orbital eigenfunctions of Eq.(1-8) witha two-component spinor �(s;ms) to give a complete spin-orbital eigenfunction (�) = Rn`(r)Y`m` (�; �)r �(s;ms) (1:13)where now � � (n`m`sms) (1:14)



4 1.5 Electron Con�gurationsdescribes a set of �ve quantum numbers associated with the state of a particular electron in the central�eld approximation (for the moment we suspend discussion of the identity of electrons).1.5 Electron Con�gurationsNote that the one-electron energies "n` depend only on the quantum number pair n` and hence thesequence of quantum numbers n1`1; n2`2; : : : ; nN`N (1:15)de�ne an electron con�guration. Within the central �eld approximation the states associated with thesame sequence of n` quantum numbers, and hence electron con�guration, are degenerate in energy.Di�erent electron con�gurations have di�erent energy eigenvalues. As is usual in designating a particularelectron con�guration we will normally suppress the quantum numbers associated with closed shells andwill thus often refer to con�gurations giving just such as are necessary for clarity e.g. 3dx ( the 3dtransition ions) or 4fx (the lanthanide ions) with multiple occupation of an orbital being indicated by asuperscript.1.6 Single Con�guration ApproximationThe lowest energy con�guration is the ground con�guration. In neutral atoms there are often severalelectron con�gurations competing for lowest energy. Thus in the neutral 3d transition metal atoms the3dN , 3dN�14s and 3dN�24s2 are usually energetically close and strongly interacting. In that case we havecon�guration mixing occurring. A similar situation arises in the neutral lanthanides. As the ionisationof atoms increases the low lying electron con�gurations tend to become energetically separated from oneanother and the lowest states of the ion may be well characterised by those of a single con�guration. Thusthe low lying states of the doubly charged transition ions are well characterised by a single 3dN (N =1; 2; : : : ; 10) con�guration and those of the triply ionised lanthanides by a single 4fN (N = 1; 2; : : : ; 14).In much of our work we shall assume a single con�guration approximation though, as we shall see later,there are important phenomena such as intensities of transitions in solid state materials where such anassumption must abandoned.1.7 Madelung's rules and the lanthanidesAccording to Madelung the electron orbitals associated with the ground con�guration are �lled in orderof increasing n+ ` and for a given value of n+ ` in order of decreasing ` as indicated below.n+ ` orbitals n` orbital degeneracy total no. electrons1 1s 2 22 2s 2 43 2p; 3s 8 124 3p; 4s 8 205 3d; 4p; 5s 18 386 4d; 5p; 6s 18 567 4f; 5d; 6p; 7s 32 88Madelung's rules give a surprisingly accurate account of the broad features of the chemical periodic table.The lanthanides cover the elements from Z = 57 to 71 corresponding to the elements57 58 59 60 61 62 63 64 65 66 67 68 69 70 71La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb LuIn solid state physics we usually encounter the lanthanides in the trivalent state and compared with theneutral lanthanide atoms have given up three electrons. Maria Goeppert-Mayer studied the behaviour ofthe 4f�orbitals as a function of atomic number in terms of the Fermi wavefunction approximation andobserved that the 4f�orbitals exhibited a strong contraction with the result that the charge density ofthe 4f�orbitals was concentrated inside the �lled 5p66s2 shell. This lanthanide contraction results in the4f�orbitals being largely shielded from external �elds and hence their interaction with the environmentis signi�cantly reduced compared with that for the transition elements associated with the �lling ofd�orbitals. For the trivalent lanthanide ions we are led to the electron con�gurations 4fN with N = 0



5 1.8 Classi�cation of the states of the 4fN con�gurationsto 14, apart from closed shells, as indicated belowLanthanide Electron Con�gurationLanthanum 4f0Cerium 4f1Praseodymium 4f2Neodymium 4f3Promethium 4f4Samarium 4f5Europium 4f6Gadolinium 4f7Terbium 4f8Dysprosium 4f9Holmium 4f10Erbium 4f11Thulium 4f12Ytterbium 4f13Lutecium 4f14NB. The element Promethium has no stable isotopes and is a man-made element. Holmium is associatedwith the 4f10 con�guration.1.8 Classi�cation of the states of the 4fN con�gurationsTo proceed further it is necessary to determine the possible SL terms associated with a given 4fNcon�guration. We �rst note that an orbital ` has 4` + 2 msm` states and they can be taken as a basisfor spanning the vector irreducible representation f1g of the unitary group in 4` + 2 dimensions, i.e.for the f�orbital the group U14. The states of an N�equivalent electron con�guration must be totallyantisymmetric and span the representation f1Ng of U4`+2. The number of possible SLMSML states forthe con�guration `N will be just the dimension of the irreducible representation f1Ng of U4`+2. Thisnumber is just the binomial coe�cient� 4`+ 2N � = 4` + 2!N !4`+ 2� N ! (1:16)We note that the binomial coe�cient is symmetric with respect to N ! 4` + 2 � N which leads to theconclusion that the number of SLMSML states for the con�gurations `N and `4`+2�N for N � 2` + 1.Furthermore, we may show that the SL terms that arise in the con�gurations `N and `4`+2�N areidentical. Figuratively speaking, this amounts to saying that SL terms associated with N holes in a shellof equivalent electrons are the same as for N electrons. Thus the SL terms for the ground con�gurationof triply ionised promethium (4f4) and holmium (4f10) are identical and hence it su�ces to enumeratejust the SL terms associated with N = 1 to N = 2`+ 1. We shall refer to the special case of N = 2`+ 1as the half-�lled shell and is associated with distinctive properties not shared by the other con�gurationsof the given shell.A deeper classi�cation of the states of the f�shell follows by consideration of the subgroup structure of thegroup U14 and the branching rules for the decomposition of the antisymmetric irreducible representationsf1Ng under restriction to the transformations of these subgroups. The spin and orbital spaces canbe split by considering the subgroup U14 � SU2 � SU7 where we regard the spin states as spanningirreducible representations of the special unitary group SU2 and the orbital states as spanning irreduciblerepresentations of the special unitary group SU7. Recall that for a single f�orbital there are two spinstates and seven orbital states.Algorithms for the various group-subgroup branching rules required have been developed in the referencesgiven below:-6. B. G. Wybourne, Symmetry Principles in Atomic Spectroscopy, New York: Wiley, (1970)7. R. C. King, Branching rules for the classical Lie groups using tensor and spinor methods, J.Phys. A: Math. Gen. 8, 429-449 (1975)



6 1.8 Classi�cation of the states of the 4fN con�gurations8. G. R. E. Black, R. C. King and B. G. Wybourne, Kronecker produst for compact semisimple Liegroups, J. Phys. A: Math. Gen. 16, 1555-1589 (1983)9. G. R. E. Black and B. G. Wybourne, Branching rules and even-dimensional rotation groups, J.Phys. A: Math. Gen. 16, 2405-2421 (1983)and have been implemented in SCHUR. A complete list of the branching rules available in SCHUR isgiven in Table 1.1 as shown on page 160 of the SCHUR User's Manual where complete instructions aregiven for using SCHUR. The branching rule we want is for U14 ) SU2 � SU7. We do not �nd this rulelisted in Table 1.1 but we do see Rule No. 9 for Umn ) Um � Un.The following sequence of commands in SCHUR will produce the desiredresults:DP>)gr u14Group is U(14)DP>)br9,2,7gr1[1^]Groups are U(2)*U(7)f4gf1^4g+ f31gf21^2g+ f2^2gf2^2gDP>)gr2su2su7Groups are SU(2) �SU(7))std lastDP>f4gf1^4g+ f2gf21^2g+ f0gf2^2gDP> Recall that the irreducible representations of Un involve partitions in up to n parts. These irre-ducible representations remain irreducible upon restriction to SUn except that irreducible representationsinvolving n parts become equivalent to irreducible representations of SUn involving at most n � 1 partssuch that f�1; �2; : : : ; �ng � f�1 � �n; �2 � �n; : : : ; 0g (1:17)Thus under U2 )SU2 we have f22g � f0g; f31g � f2gFurthermore, the irreducible representations of SU2 are locally isomorphic to those of SO3 so thatfag � [a2] (1:18)The irreducible representations of SO3 are termed tensor irreducible representations if a is even orspin irreducible representations if a is odd. The angular momentum associated with a SO3 irreduciblerepresentation [S] is just S where S is an integer or half-integer. The entire branching rule for U14)SO3 � SU7 can be accomplished in SCHUR by writing and running the following function where asusual input is indicated by an arrow � >



7 1.8 Classi�cation of the states of the 4fN con�gurationsTable 1.1 The branching rule table.Rule No. Group Subgroup1 : Un ) On2 : Un ) Spn3 : Un R Un�14 : On ) Sn5 : On ) Sn+16 : Un ) SO37 : SOn ) SO3 (n odd)8 : Spn ) SO3 (n even)9 : Umn ) Um � Un10 : SOm+n ) SOm � SOn11 : SOn ) U1 � SUk n = 2k12 : Spn ) U1 � SUk n = 2k13 : Spn ) SU2 � SOk n = 2k14 : Sm+n ) Sm � Sn15 : SO4 ) SU2 � SU216 : SUm+n ) U1 � SUm � SUn17 : SUm=n ) U1 � SUm � SUn18 : SUm+n=p+q ) U1 � SUm=p � SUn=q19 : Umn+pq=mq+np ) Um=p � Un=q20 : OSpm=n ) Om � Spn21 : On ) Un22 : Spn ) Un (n even)23 : SO7 ) G224 : SO7 ) SO325 : G2 ) SU326 : G2 ) SO327 : G2 ) SO728 : F4 ) SO929 : E6 ) SU2 � SU630 : E6 ) U1 � SO1031 : E6 ) G232 : E7 ) SU833 : E7 ) U1 �E634 : E8 ) SU935 : E8 ) SO1636 : E8 ) SU2 �E737 : E8 ) SU3 �E638 : SU27 ) E639 : SU56 ) E740 : SU248 ) E841 : Omn ) Om � On42 : Sn ) An



8 1.9 Hund's rules and the ground state of Ho3+DP>->setfn1->gr u14->enter rv1->dim[rv1]->br9,2,7gr1[rv1]->gr2su2su7->std last->auto gr1so3,last->stopDP>->fn1Group is U(14)->1^4Dimension = 1001Groups are U(2) * U(7)Groups are SU(2) * SU(7)Groups are SO(3) * SU(7)[2]{1^4 } + [1]{21^2 } + [0]{2^2 }In this case we have run the decomposition relevant to the f4 con�guration. The irreduciblerepresentations of SO3 give us the spin, S, of the states. Recall that the spin multiplicity is 2S +1. Theirreducible representations of SU7 are associated with the orbital states.Exercise1 Use SCHUR to calculate the decomposition U14 )SO3 � SU7 for each of the irreducible repre-sentations f1Ng for N = 0; 1; : : : ; 7.To pursue the classi�cation of the orbital states it is necessary to look further at the subgroups of SU7.The special unitary group SU7 can be restricted to rotations in seven dimensions, that is the subgroupSO7. We might then think that the classi�cation might be complete if we now restrict SO7 )SO3.Remarkably there is a group that �ts between SO7 and SO3, namely the exceptional group, G2. Thisleads to a richer classi�cation and the orbital states are described by the group chainSU7 � SO7 � G2 � SO3 (1:19)as shown in Tables 1.2 to 1.5 given at the end of these notes.Exercises2. Use SCHUR to verify some of the entries in Tables 1.2 to 1.5.3. Use SCHUR to construct a function that will give the number of terms associated with a givenJ for any fN con�guration. Hint: you will need to make use of the command ContractGroupsdescribed on page 134 of the manual.1.9 Hund's rules and the ground state of Ho3+Table 1.2 gives the SL terms associated with the con�guration f4. Precisely the same SL terms occur inthe f10 con�guration. States of total angular momentum J may be found by noting the familar angularmomentum addition rule J = L + S; L + S � 1; : : : ; jL� Sj (1:20)The next problem is to determine the SLJ quantum numbers associated with the ground state of Ho3+.Here we may use the Hund's rules as follows:-1. Select the SL terms associated with the highest spin S. i.e. S = 2 and the terms 5SDFGI.2. From the terms found in 1. select the term of highest L i.e. L = 6 corresponding to 5I.



9 1.9 Hund's rules and the ground state of Ho3+3. If N � 2`+ 1 choose the smallest value of J while for N � 2`+ 2 choose the largest value of J .Thus we deduce that the groundstate for the free ion, Ho3+, isHo3+ 4f10 5I8in agreement with experiment. The �ve spectroscopic terms5I4; 5I5; 5I6; 5I7; 5I8form the ground multiplet of Ho3+ and the next problem we must tackle is to calculate the spin-orbitsplitting in the ground multiplet, the subject of our next lecture.



10 Table 1.2 LS multiplets of the fN con�gurations for N = 1to4Table 1.2 LS multiplets of the fN (N = 1 to 4) con�gurations# of states U14 SUS2 � SUL7 SO7 G2 2S+1L1 f0g f0g � f0g [000] (00) 1S14 f1g f1g � f1g [100] (10) 2F45 f12g f2g � f12g [110] (11) 3PH(10) 3Ff0g � f2g [200] (20) 1DGI[000] (00) S364 f13g f3g � f13g [111] (20) 4DGI(10) 4F(00) 4Sf1g � f21g [210] (21) 2DFGHKL(20) 2DGI(11) 2PH[100] (10) 2F1001 f14g f4g � f14g [111] (20) 5DGI(10) 5F(00) 5Sf2g � f211g [211] (30) 3PFGHIKM(21) 3DFGHKL(20) 3DGI(11) 3PH(10) 3Ff0g � f22g [220] (22) 1SDGHILN(21) 1DFGHKL(20) 1DGI[200] (20) 1DGI[000] (00) 1S



11 Table 1.3 LS multiplets of the f5 con�gurationTable 1.3 LS multiplets of the f5 con�guration# of states U14 SUS2 � SUL7 SO7 G2 2S+1L2002 f15g f5g � f15g [110] (11) 6PH(10) 6Ff3g � f213g [211] (30) 4PFGHIKM(21) 4DFGHKL(20) 4DGI(11) 4PH(10) 4F[111] (20) 4DGI(10) 4F(00) 4Sf1g � f221g [221] (31) 2PDFFGHHIIKKLMNO(30) 2PFGHIKM(21) 2DFGHKL(20) 2DGI(11) 2PH(10) 2F[210] (21) 2DFGHIKL(20) 2DGI(11) 2PH[100] (10) 2F



12 Table 1.4 LS multiplets of the f6 con�gurationTable 1.4 LS multiplets of the f6 con�guration# of states U14 SUS2 � SUL7 SO7 G2 2S+1L3003 f16g f6g � f16g [100] (10) 7Ff4g � f214g [210] (21) 5DFGHIKL(20) 5DGI(11) 5PH[111] (20) 5DGI(10) 5F(00) 5Sf2g � f2212g [221] (31) 3PDFFGHHIIKKLMNO(30) 3PFGHIKM(21) 3DFGHKL(20) 3DGI(11) 3PH(10) 3F[211] (30) 3PFGHIKM(21) 3DFGHKL(20) 3DGI(11) 3PH(10) 3F[110] (11) 3PH(10) 3Ff0g � f23g [222] (40) 1SDFGGHIIKLLMNQ(30) 1PFGHIKM(20) 1DGI(10) 1F(00) 1S[220] (22) 1SDGHILN(21) 1DFGHKL(20) 1DGI[200] (20) 1DGI[000] (00) 1S



13 Table 1.5 LS multiplets of the f7 con�gurationTable 1.5 LS multiplets of the f7 con�guration# of states U14 SUS2 � SUL7 SO7 G2 2S+1L3432 f17g f7g � f17g [000] (00) 8Sf5g � f215g [200] (20) 6DGI[110] (11) 6PH(10) 6Ff3g � f2213g [220] (22) 4SDGHILN(21) 4DFGHKL(20) 4DGI[211] (30) 4PFGHIKM(21) 4DFGHKL(20) 4DGI(11) 4PH(10) 4F[111] (20) 4DGI(10) 4F(00) 4Sf1g � f231g [222] (40) 2SDFGGHIIKLLMNQ(30) 2PFGHIKM(20) 2DGI(10) 2F(00) 2S[221] (31) 2PDFFGHHIIKKLMNO(30) 2PFGHIKM(21) 2DFGHKL(20) 2DGI(11) 2PH(10) 2F[210] (21) 2DFGHIKL(20) 2DGI(11) 2PH[100] (10) 2F



15 2.1 Introduction Table 1.8 Total angular momenta for 52N1 72N2 with N1 +N2 = 4N1; N2 SOJ30, 4 [0] + 2[2] + 2[4] + [5] + [6] + [8]1, 3 [0] + 3[1] + 4[2] + 5[3] + 5[4] + 5[5] + 4[6] + 3[7] + 2[8] + [9] + [10 ]2, 2 3[0] + 2[1] + 7[2] + 5[3] + 8[4] + 5[5] + 6[6] + 3[7] + 3[8] + [9] + [10 ]3, 1 2[1] + 3[2] + 3[3] + 3[4] + 3[5] + 2[6] + [7] + [8]4, 0 [0] + [2] + [4]The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneThe scientist does not study nature because it is use-ful to do so He studies it because he takes plea-sure in it, and he takes pleasure in it because it isbeautiful| Henri Poincar�e
Lecture 22.1 IntroductionIn our previous lecture we stated the problem and as a �rst step established our zero-order Hamiltonian,gave a group-theoretical account of the states of the f�shell and determined the ground state for thetrivalent holmium ion. Our next step is to give an account of the free ion levels of Ho3+ and speci�callyto compute the energies of the levels of the 5I multiplet for the 4f10 con�guration. To that end weprimarily need to compute the relevant electrostatic and spin-orbit matrix elements, construct the energymatrices for the J = 4::8 states of 4f10 and then diagonalise them to obtain the energy eigenvalues. Thecorresponding eigenvectors will then allow us to express the eigenfunctions for each level as particularlinear combinations of the zero-order eigenfunctions.2.2 The zero-order state labellingWe have determined the 2S+1L multiplets in terms of the group-subgroup chainU14 � SUS2 � fSU7 � SO7 � G2 � SOL3 g (2:1)This means that a given zero-order basis state in fN could be fully speci�ed by the labellingjWU�SLJM i (2:2)Where we have suppressed the U14 label as been common to the complete set of states of a given fNcon�guration. In addition we suppress the SU7 label since as noted earlier specifying, for a given N thespin S uniquely �xes the corresponding SU7 label. W stands for the partition label [�] of the group SO7



16 2.1 Introductionand U for the partition label (u1u2) of the group G2. The label � is reserved to distinguish those pairsof L irreducible representations of SO3 that occur twice in the G2 ) SO3 decomposition. The totalangular momentum J is found by addition of the spin S and orbital L angular momenta. Finally, Mis the projection of J on the chosen z�axis. For a free ion, in the absence of external �elds, we maysuppress the M quantum number.



17 2.3 The Coulomb interaction2.3 The Coulomb interactionThe two-particle Coulomb interaction HC = e2 Xi<j�N 1rij (2:3)commutes with the angular momentum operators S2; L2; J2; Jz and hence its matrix elements in thejSLJM i basis is diagonal in the quantum numbers S; L; J;M and are independent of JM . If the term2S+1L occurs in the fN con�guration x times then the electrostatic matrix will be of rank x. Thecalculation of the matrix elements of HC starts with the expansion1rij = 1qr2i + r2j � 2rirj cos!=Xk rk<rk+1> Pk(cos!) (2:4)where r< is the lesser of fri; rjg and r> the greater. The spherical harmonic addition theorem givesPk(cos !) = 4�2k + 1Xq Y �kq(�i; �i)Ykq(�j ; �j)=Xq (�1)q(C(k)�q )i(C(k)q )j= (C(k)i �C(k)j ) (2:6)where C(k)q = � 4�2k + 1�12 Y �kq(�; �) (2:7)and HC = e2Xk rk<rk+1> (C(k)i �C(k)j ) (2:8)For full details see:-2.1 G. Racah, Theory of Complex Spectra IV, Phys. Rev. 76, 1352 (1949).2.2 B. R. Judd, Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill (1963).The calculation of the matrix elements of HC involves the product of purely angular terms and radialintegrals. The latter are commonly termed Slater radial integrals and for equivalent electrons n`F (k) = e2 1Z0 1Z0 rk<rk+1> [Rn`(ri)Rn`(rj)]2 dridrj (2:9)The values of k are restricted by the symmetry of the angular matrix elements to the even integersk = 0; 2; : : :; 2` . To avoid the appearance of fractions it is usual to make the replacements (for thef�shell) F0 = F (0); F2 = F (2)225 ; F4 = F (4)1089 ; F6 = 25F (6)184041 (2:10)Thence the matrix elements of the Coulomb interaction are of the form:-f0F0 + f2F2 + f4F4 + f6F6 (2:11)where the fk are purely angular matrix elements.2.4 The Racah Ek ParametersThe terms in Eq.(2.11) take no advantage of the group structure used to classify the states of the f�shell.Racah suggested that Eq.(2.11) should be transformed in such a way as to yield operators that had well



18 2.5 Spin-orbit interaction matrix elementsde�ned transformation properties with respect to the groups used in the state classi�cation scheme. Inparticular he chose the following linear combinations of the Slater radial integrals:-E0 = F0 � 10F2 � 33F4 � 286F6E1 = 70F2 + 231F4+ 2002F69E2 = F2 � 3F4 + 7F69E3 = 5F2 + 6F4 � 91F63 (2:12)with the analogue of Eq.(2.11) becominge0E0 + e1E1 + e2E2 + e3E3 (2:13)The angular operators ek k = 0; 1; 2; 3 transformed under SO7 � G2 � SO3 as [000](00)0, [000](00)0,[400](40)0 and [220](22)0 respectively. The eigenvalues of e0 all evaluated to 12N (N � 1) for a givenfN con�guration and hence may be ignored if we are only interested in relative term energies. Racahgave systematic tables of quantities required to calculate the ek making use of the general Wigner-Eckarttheorem.Edith Reilly has tabulated the necessary matrix elements for the f4 con�guration. An independentcalculation for all the fN con�gurations has been made by Nielson and Koster.2.3 E. F. Reilly, Phys. Rev. 91, 876 (1953).2.4 C. W. Nielson and G. F. Koster, Spectroscopic Coe�cients for the pn, dn and fn Con�gurations,Cambridge, Mass: The M. I. T. Press (1963).For the purposes of these lectures the electrostatic matrix elements for the f4 con�guration have beenentered into a MAPLE procedure to be discussed later.The Racah approach gives an interesting insight into terms of maximum spin multiplicity in the fNcon�gurations. The contribution to the electrostatic energy of these terms of e0E0 + e1E1 is the same,while that of e2E2 is null. Thus the energy spacings of terms of maximum spin multiplcity are expressiblein terms of just E3. Indeed for these termshfN N+1Lje3jfN N+1Li = 36G(G2)(u1u2) � 32L(L + 1) (2:14)where G(G2)(u1u2) = u21 + u22 + u1u2 + 5u1 + 4u212 (2:15)is the eigenvalue of the Casimir operator for the relevant irreducible representation (u1u2) of the excep-tional group G2. Throughout these notes we use Racah's notation (u1u2) notation for labelling irreduciblerepresentations of G2. SCHUR uses the labelling (a; b) based upon the SU3 subgroup of G2. The SCHURlabels are related to the Racah labels by the correspondance(a; b)SCHURRightarrow(a� b; b)RACAH (2:16)Exercise2.1 Determine the relative spacings of the terms of maximum multiplicity for the f4 con�gurationdue to the Coulomb interaction.2.5 Spin-orbit interaction matrix elementsThe spin-orbit interaction term Hsoin the Hamiltonian is of the formHso = NXi=1 �n`(r)(s � `)i (2:17)and commuteswith the operators J2 and Jz and hence is diagonal in JM and independent ofM . However,it does not commute with S2 or L2 and hence there can be non-zero matrix elements among states with�S;�L = 0; �1 (2:18)



19 2.6 Checking the spin-orbit matricesThe spin-orbit interaction matrices for a given J will be of rank equal to the number number of SL termsyielding that value of J . This means that in f4 the matrices for J = 4::8 will be of ranks 19; 14; 13; 7;7respectively. The matrix elements of Hso may be calculated in the same basis as for HC using the groupclassi�ed states. These have been calculated by Crozier and Runciman while Nielson and Koster havegiven tables of reduced matrix elements from which the spin-orbit matrices may be derived.2.5 M. H. Crozier and W. A. Runciman, J. Chem. Phys. 35, 1392 (1962);The methods of calculating the matrix elements of the spin-orbit interaction for the f�shell are wellcovered in Judd's book. As with the Coulombmatrices, the spin-orbit matrices are necessarily symmetric.2.6 Checking the spin-orbit matricesIt is always important to have checking procedures to ensure that matrix elements have beencorrectly computed and entered. In the case of the spin-orbit interaction a good check is to diagonalisethe matrix for a given J and see if the resulting eigenvalues are those appropriate to jj�coupling wherethe spin-orbit interaction is necessarily diagonal. For a single electron j = ` + s and we haves � ` = 12[j(j + 1)� `(` + 1)� s(s + 1)] (2:19)Within a jj�coupled con�guration jN the spin-orbit term is multiplied by N . As noted on page 14 thestates of the fN con�guration in jj�coupling derive from those of the sub-con�gurations 52N17=2N2 whereN1 + N2 = N . The total angular momentum states J for such con�gurations with N = 4 were given inTable 1.8. For f 52 Eq. (2.19) evaluates to �2 and for f7=2 to 32 and hence the spin-orbit interaction forany state of the sub-con�guration 52N1 72N2 must be32N2 � 2N1 (2:20)For example inspection of Table 1.8 shows that if we have correctly calculated the 7 � 7 spin-orbitinteraction matrix for J = 8 then diagonalisation of the matrix, with the spin-orbit interaction couplingconstant �n` = 1 should yield the followin eigenvalues, with multiplicities bracketed,�8(1); �92(2); �1(3); 52(1) (2:21)2.7 Ordering of Zero-order States for f4In setting up the energy matrices it is essential to specify carefully the ordering of the zero-orderbasis states for each value of J and to ensure that the matrices for the electrostatic and spin-orbit matricesfollow the same order and that the phase choices for both are compatible. Here we will follow the orderingused by Crozier and Runciman as given in Table 2.1.2.8 Spin-orbit Interaction in the 5I multipletJudd (p82) has shown that within a multiplet 2S+1L the matrix elements of the spin-orbit interactioncan be written as S � L = �2 [J(J + 1)� L(L + 1)� S(S + 1)] (2:22)where � is a constant appropriate to the given multiplet. For a multiplet of maximum multiplicity in a`N con�guration he �nds � = � 12S (2:23)where the + sign is taken for N � 2` and the � sign for N � 2` + 2. Thus for Ho3+ we have for the 5Imultiplet S �L = �J(J + 1)8 � 6 (2:23)and hence if LS�coupling holds in the 5I multiplet we would expectEJ �EJ+1 = J + 14 �4f (2:24)



20 Table 2.1 Ordering of the Zero-order States in f4 Con�gurationsJ = 4 J = 5 J = 6 J = 7 J = 8[111](20)5D [111](10)5F [111](20)5G [111](20)5I [111](20)5I[111](10)5F [111](20)5G [211](11)3H [211](20)3I [211](21)3K[211](10)3F [211](20)3G [211](21)3H [211](30)3I [211](30)3K[211](21)3F [211](21)3G [211](30)3H [211](21)3K [211](21)3L[211](30)3F [211](30)3G [110](11)3H [211](30)3K [220](21)1L[110](10)3F [211](11)3H [111](20)5I [220](21)1K [220](22)1L[111](20)5G [211](21)3H [211](20)3I [211](21)3L [211](30)3M[211](20)3G [211](30)3H [211](30)3I[211](21)3G [110](11)3H [220](20)1I[211](30)3G [220](21)1H [220](22)1I[220](20)1G [220](22)1H [200](20)1I[220](21)1G [111](20)5I [211](21)3K[220](22)1G [211](20)3I [211](30)3K[200](20)1G [211](30)3I[211](11)3H[211](21)3H[211](30)3H[110](11)3H[111](20)5I Table 2.1 Ordering of the Zero-order States in f4 Con�gurationsand hence EJ �EJ+1J + 1 = �4f4 (2:25)which gives us a test of the validity of LS�coupling in the ground multiplet of Ho3+. Rajnak and Krupke2.6 K. Rajnak and W. F. Krupke, Energy levels of Ho3+ in LaCl3, J. Chem. Phys. 46, 3532 (1967).give the average positions of the 5IJ levels in cm�1 as5I8 1085I7 51555I6 86575I5 112195I4 13284Noting Eq.(2.25) we �nd5I7�5I815 3365I6�5I713 2695I5�5I611 2335I4�5I59 229The lack of constancy in the second column shows clearly that there is a breakdown of LS�couplingwhich we may fully include only by diagonalising the complete combined electrostatic and spin-orbitmatrices.2.9 Intermediate Coupling in Ho3+The complete construction of the energy matrices may be made into a set of MAPLE proceduresusing the electrostatic and spin-orbit matrices calculated, for example, by Reilly, and by Crozier andRunciman. The sections relevant to the J = 8 states are given in the verbatim printout below:-



24 3.1 Introduction2.10 Some MAPLE procedures2.11 Running the MAPLE esof4 FileThe MAPLE code is available on a diskette as a single �le esof4 and may be read into a MAPLE sessionby entering in MAPLE the command read`eso4`;. Be sure to use backquotes (`) and note that all MAPLEcommands end with a semicolon (;). HELP may be brought to the screen by issuing the command ?esof4;.As a starter try to run the two examples given in the HELP �le. Use the eigenvectors produced in thesecond example to write the ground state of Ho3+ as a linear combination of the zero-order states givenin Table 2.1.Exercises to be completed for the next lectureTake the parameters used in Example 2 and compute the energies of the �ve levels of the 5I multipletand their associated eigenvectors. Draw up a table of the calculated energies and the expansion of thefree ion states as linear combinations of the zero order states keeping all expansion coe�cients � 0:1.Leave a column in your table to insert the experimental energies which will be given at the next lecture.These results will play an important role in the subsequent lectures.The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneA good scientist is a person with original ideas. Agood engineer is a person who makes a design thatworks, and prides himself on doing so with as feworiginal ideas as possible| Freeman Dyson, New Yorker Magazine, August20, 1979, p54
Lecture 33.1 IntroductionIn this lecture I shall �rst discuss the results of the intermediate coupling calculation for Ho3+ started inthe previous lecture and then start on the question of calculating the e�ect of the crystal �eld on the "freeion" levels. This will require some review of the properties of angular momentum coupling coe�cientsand tensor operators - essential both for the calculation of crystal �eld and hyper�ne perturbations.3.2 Intermediate Coupling in Ho3+The e�ect of diagonalizing the energy matrices for the J = 4; ::; 8 is to yield a set of energy eigenvaluesand their associated eigenvectors. Thus the eigenstate jEJi associated with the energy eigenvalue EJ isobtained as a linear combination of the zero-order states given in Table 2.1. ThusjEJM i = X�SLa�SLJ j�SLJM i (3:1)



25 3.1 IntroductionSince the coe�cients of the expansion are independent of M we will usually suppress the M quantumnumber. The � stands for any other labels required to distinguish states that occur with the same SL.In the case of our exercise it su�ces, when necessary, to give just the G2 irreducible representation label(u1u2) in Racah's notation. The normalised expansion coe�cients are necessarily between 0 and 1 andthe sum of their squares equal to unity. The square of a given coe�cient is a measure of the signi�canceof that particular zero-order state. If a coe�cient is very close to unity then the state is very close toLS-coupling and a single zero-order state dominates. We shall choose to limit our attention to thosezero-order states whose coe�cients are � 0:1 and thus contribute 1% or more to the eigenfunction. Therelevant expansion coe�cients for the �ve lowest states of Ho3+ are given in Table 3.1 along with thecalculated and experimental averaged energy levels for LiY F4 : Ho3+.



26 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.J Ecalc Eexpt Eigenvector8 0 0 0:9665j5I8i+ 0:1189j(20)3K8i � 0:2221j(30)3K8i7 5097 5152 0:9853j5I7i � 0:1462j(30)3K7i6 8672 8671 0:9772j5I6i+ 0:1352j(30)3H6i5 11281 11242 0:9549j5I5i � 0:1377j(21)3H5i + 0:1944j(30)3H5i � 0:1067j(11)3H5i4 13350 13188 0:9495j5I4i � 0:1620j(21)3H4i + 0:2247j(30)3H4i � 0:1186j(11)3H4i3.3 Tensor operators in generalConsider a simple compact group G having elements g. Let Ug denote a unitary, not necessarily irre-ducible, representation of G on a Hilbert space H. The various unitary representations will be distin-guished, when necessary, by writing Ug(�) or for brevity just as (�). Let j�� > be basis vectors of therepresentation (�), where � labels individual basis vectors.Let the complete set of basis vectors j�� > span the in�nite Hilbert space H in which the linear operatorRg (or just R) corresponding to the element g of G is represented by the block-diagonal matrix j <��jRj��0 > j. An individual matrix element will be designated as < ��jRj��0 >. The e�ect of the linearoperator R acting on a basis vector j�� > will be to produce a linear combination of those basis vectorsthat span the representation (�), that isRj�� >=X�0 < ��0jRj�� > j��0 > (3:4)The set T(�) of [�] linearly independent operators T (��) is said to form a tensor operator under thegroup G belonging to the representation (�) of G if under the operations of the group it transformsaccording to the representation (�) i.e., ifRT (��)R�1 =< ��0jRj�� > T (��0) (3:5)A tensor operator T(�) will be said to be irreducible, reducible or equivalent if the group representation(�) is correspondingly irreducible, reducible or equivalent.For an in�nitesimal transformation in G R = 1 + �a�X� (3:6)where �a� are the in�nitesimal parameters and X� the corresponding in�nitesimal operators. Keepingterms to �rst order in the �a�, [X�; T (��)] =X�0 < ��0jX�j�� > T (��0) (3:7)and from Eq.(3.5) X� j�� >=X�0 < ��0jX� j�� > j��0 > (3:8)3.5 Tensor operators for SO3For the group SO3 the in�nitesimal operators are Jz; J� and in an angular momentum basis thatdiagonalises J2 and Jz JzjJM > = M jJM > (3:9a)J�jJM > =pJ(J + 1)�M (M � 1)jJM � 1 > (3:9b)which is the SO3 equivalent of Eq.(3.5).If T(k) is an irreducible tensor operator in SO3 transforming as the irreducible representation D(k) ofSO3 it follows from Eq.(3.7) that the (2k+1) components T (kq) where q = �k;�k+1; : : : ; k�1; k mustsatisfy the commutation relations[Jz; T (kq)] = qT (kq) (3:10a)[J�; T (kq)] =pk(k + 1)� q(q � 1)T (k; q� 1) (3:10b)



27 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.which we will take as the de�ning relations for irreducible tensor operators for SO3. The tensor operatorT(k) will be said to be of rank k.3.6 Coupling coe�cientsIf j�1�1 > and j�2�2 > are two basis vectors of (�1) and (�2), respectively, then the reduction of theKronecker product is accomplished by the coupling coe�cients< �1�1�2�2j�1�2;��12�12 >where j��12�12 >= X�1;�2 < �1�1�2�2j�1�2;��12�12 > j�1�1 > j�2�2 > (3:11)with � being a multiplicity symbol to distinguish repeated irreducible representations. In the case of SO3the coupling coe�cients are just the usual Clebsch-Gordan coe�cients.The inverse transformation can be written asj�1�1 > j�2�2 >= X�;�12;�12 < ��12�12j�1�2 >� j�1�2;��12�12 > (3:12)Since the transformations are unitary, we have the orthogonality relationsX�1;�2 < ��12�12j�1�2 >�< �1�2j�0�012�012 > = ���0��12�012��12�012 (3:13a)X�;�1;�2 < �1�2j��12�12 >�< ��12�12j�01�02 > = ��1�01��2�02 (3:13b)3.7 The Wigner-Eckart theorem in generalIt is the Wigner-Eckart theorem that makes group theoretical calculations quantitative. Consider a tensoroperator T (��) acting on a basis state j�2�2 >. ThenT (��)j�2�2 >= X�;�1;�1 < ��1�1j���2�2 >� jT (�)�2;��1�1 > (3:14)The matrix elements of T (��) are given by< �1�1jT (��)j�2�2 >=X� < ��1�1j���2�2 >�< �1�1jT (�)j�2;��1�1 > (3:15)Consider the transformation j��1�1 >=X� < ��1�1j��1�1 > j��1�1 > (3:16)Suppose that X� is an arbitrary in�nitesimal operator of the group G and thatj��1�1 + � >=X� < ��1�1 + �j��1�1 + � > j��1�1 + � > (3:17)For � 6= 0 j��1�1 + � > = X�j��1�1 >< �1�1 + �jX�j�1�1 >=X� < ��1�1j��1�1 > j��1�1 + � > (3:18)Comparison with Eq.(3.17) gives< ��1�1 + �j��1�1 + � >=< ��1�1j��1�1 > (3:19)for all � 6= 0, and hence the coe�cients < ��1�1j��1�1 > must be independent of the component �1.



28 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.Making use of Eq.(3.15) gives the Wigner-Eckart theorem as< �1�1jT (��)j�2�2 >=X� < ��1�1j��2 >�< ��1kT (�)k�2 > (3:20)where we have written < ��1kT (�)k�2 > in the place of < �1�1jT (�)j�2;��1�1 >, since the latteris independent of �1. The double-barred matrix elements are independent of the weights of �i of therepresentations (�i) and are referred to as reduced matrix elements. The entire dependence of the matrixelement on the weights of the bra and ket representations together with the component of the tensoroperator T(�) is encased in the coupling coe�cients < ��1�1j��2 >�. Inverting Eq.(3.20) gives< ��1kT (�)k�2 >= X�1;�2 < ��2j��1�1jT (��)j�2�2 > (3:21)Ultimately the calculation of matrix elements comes down to the evaluation of coupling coe�cients andreduced matrix elements. The Wigner-Eckart theorem may be generalised to apply successively to everygroup-subgroup along a chain of nested groups.3.8 Selection rulesThe Wigner-Eckart theorem leads directly to selection rules which follow from the requirements for thevanishing of the coupling coe�cients. The coupling coe�cient in Eq.(3.20) will vanish unless the weightsof the bra, ket and tensor operator component satisfy the relation�+ �2 = �1 (3:22)The coupling coe�cient will vanish unless the triple Kronecker product��1 � �� �2 � 0 (3:23)where here 0 is the identity representation of G. We will write c(�1;�;�2) for the number of times theidentity representation occurs in the triple Kronecker product. This number gives the number of termsthat occur in Eq. (3.20).3.9 The Wigner-Eckart theorem for SO3The group SO3 is multiplicity free and the Wigner-Eckart theorem in this case simpli�es to just< �1j1m1jT (k)q j�2j2m2 >= Cj1kj2m1qm2 < �1j1kT (k)k�2j2 > (3:24)where Cj1kj2m1qm2 is the usual Clebsch-Gordan coe�cient. In terms of the 3jm�symbol we have< �1j1m1jT (k)q j�2j2m2 >= (�1)j1�m1 � j1 k j2�m1 q m2� < �1j1kT (k)k�2j2 > (3:25)The matrix elements of T (k)q vanish unlessm1 = q +m2 (3:26)while the reduced matrix element will vanish unlessj1 + j2 � k � jj1 � j2j (3:27)3.10 The Clebsch-Gordan coe�cientsThe Clebsch-Gordan coe�cient < j1m1j2m2jj1j2jm > represents the elements of a unitary transfor-mation that couples the uncoupled states jj1m1 > jj2m2 > to produce the coupled states jj1j2jm >.i.e., jj1j2jm >= Xm1;m2 < j1m1j2m2jj1j2jm > jj1m1 > jj2m2 > (3:28)Such transformations arise, for example in relating basis states in the jSMSLML > scheme to the coupledbasis states jSLJM > where M = MS +ML. Thus,jSLJM >= XMS;ML < MSMLjSLJM > jSMSLML > (3:29)



29 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.Note that we shall often abbreviate the Clebsch-Gordan coe�cient < j1m1j2m2jj1j2jm > to just <m1m2jj1j2jm >. The Clebsch-Gordan coe�cients may be expressed precisely as< m1m2jj1j2jm >= �m1+m2;m�s (2j + 1)(j1 + j2 � j)! (j1 �m1)! (j2 �m2)! (j +m)! (j �m)!(j1 + j2 + j + 1)! (j + j1 � j2)! (j � j1 + j2)! (j1 +m1)! (j2 +m2)!�Xz (�1)j1�m1�z (j1 +m1 + z)! (j + j2 �m1 � z)!z! (j �m � z)! (j1 �m1 � z)! (j2 � j +m1 + z)! (3:30)While Clebsch-Gordan coe�cients possesses considerable symmetry a more symmetrical object was de-�ned by Wigner and is now commonly known as the 3jm�symbol.3.11 The 3jm�symbolThe 3jm�symbol is related to the Clebsch-Gordan coe�cient by� j1 j2 j3m1 m2 m3� = (�1)j1�j2�m3< m1m2jj1j2j3 �m3 >p(2j3 + 1) (3:31)The 3jm�symbol is invariant with respect to an even permutation of its columns while for odd permu-tations of its columns is multiplied by a phase factor equal to the sum of the arguments in its top row.i.e., � j1 j2 j3m1 m2 m3� = (�1)j1+j2+j3 � j2 j1 j3m2 m1 m3� (3:32)Furthermore, changing the sign of all three lower arguments results also in multiplication by a phasefactor equal to the sum of the arguments in its top row. i.e.,� j1 j2 j3m1 m2 m3� = (�1)j1+j2+j3 � j1 j2 j3�m1 �m2 �m3� (3:33)A 3jm�symbol having all its m quantum numbers zero will be null unless j1 + j2 + j3 is even. Likewiseany 3jm�symbol having two identical columns will vanish unless j1 + j2 + j3 is even.The unitarity property of the Clebsch-Gordan coe�cients lead directly to the orthonormality conditionsfor the 3jm�symbolsXj3;m3(2j3 + 1)� j1 j2 j3m1 m2 m3�� j1 j2 j3m01 m02 m3� = �m1 ;m01�m2 ;m02 (3:34a)Xm1 ;m2� j1 j2 j3m1 m2 m3�� j1 j2 j03m1 m2 m03� = �j3;j03�m3 ;m03p(2j3 + 1) (3:34b)3.12 Computing 3jm�symbolsThe 3jm�symbols may be variously expressed starting with the result given for the Clesch-Gordanformula given in Eq. (3.30). Extensive tables exist such as those of Rotenbrg, Bivins, Metropolis andWooten, "The 3�j and 6�j Symbols" Technology Press, Mass. (1959). The di�culty with implementingformulas based upon Eq.(3.30) is the summation term which often leads to large intermediate numbersthat over
ow. Roothan(private communication 1990) has noted that the 3jm�symbol formula can beusefully written in the form� a b c� � 
� =q�( b+c��2 ; c+a��2 ; a+b+�+�2 )�( b+c+�2 ; c+a+�2 ; a+b����2 )�Xz (�1)a+b+���+z �a+ b� cz �� c + a� ba� �� z�� b+ c � ab+ � � z� (3:35)where �(abc)�1 = �a+ b+ cb+ c� a�� 2ac+ a� b� (a+ b+ c+ 1) (3:36)



30 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.The binomial coe�cients in Eq. (3.35) are �rst computed as integers in a Pascal's triangle and then readfrom the table as required and thus the awkward summation may be calculated as a sum of reals whichmay be rounded to produce an exact integer. The � terms are rapidly calculated using prime numberarithmetic to produce integers and the resulting symbol outputted as a squared number expressed inprime number notation with a phase factor. With 32-bit words almost the entire tables of Rotenbergetal may be rapidly reproduced. With a 64-bit word such as on SUN machines the entire table and muchmore can be generated without over
ow. Packages such as MapleV the entire calculation can be carriedout using the exact arithmetic routines.3.13 Reduced matrix elements of angular momentum operatorsThe angular momentum J is a rank 1 tensor operator J(1) with the z� component Jz corresponding tothe tensor operator component J (1)0 . Application of the Wigner-Eckart theorem as in Eq.(3.25) gives< �jmjJ (1)0 j�0j0m0 >= (�1)j�m� j 1 j0�m 0 m0� < �jkJ (1)k�0j0 > (3:37)However, from the elementary quantum theory of angular momentum we have< �jmjJzj�0j0m0 >= ��;�0�j;j0�m;m0m (3:38)The matrix element is independent of all other quantum numbers � and diagonal in the angular momen-tum j. Comparison of Eqs. (3.37) and (3.38) then leads to< jmjJ (1)0 jjm > = m= (�1)j�m � j 1 j�m 0 m� < jkJ (1)kj > (7:11)The 3jm�symbol may be explicitly evaluated to give(�1)j�m� j 1 j�m 0 m� = mpj(j + 1)(2j + 1)from which we immediately deduce the important reduced matrix element< jkJ (1)kj >= pj(j + 1)(2j + 1) (3:39)In deriving Eq.(3.39) we have made no assumptions as to the nature of the angular momentum and ourresult holds equally well for spin or orbital angular momentum operators.3.14 The 6j�symbolThe 3jm�symbol arose in the problem of coupling two angular momentum states to produce a coupledstate. In the case of coupling three angular momenta, say j1; j2; j3, to produce a total angular mo-mentum state jjm > di�erent orders of coupling the three angular momenta can be considered. Bothj(j1j2)j12; j3; jm > and jj1; (j2j3)j23; jm > represent distinct coupling procedures. The two couplingschemes are linked by a unitary transformation such thatjj1; (j2j3)j23; jm >=Xj12 < (j1j2)j12; j3; jmjj1; (j2j3)j23; jm > j(j1j2)j12; j3; jm > (3:40)Acting on both sides with j+ shows that the transformation coe�cients are independent of m.The 6j�symbol is de�ned by the relation< (j1j2)j12; j3; jmjj1; (j2j3)j23; jm >=(�1)j1+j2+j3+jp(2j12 + 1)(2j23 + 1)� j1 j2 j12j3 j j23� (3:41)The 6j�symbol may be evaluated by �rst expressing it as a sum over a triple product of 3jm�symbolsand then using the fact that the 6j�symbol is independent of m to produce a sum involving a singlevariable to �nally yield� a b cd e f � =



31 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.p�(abc)�(aef)�(dbf)�(dec)�Xz (�1)z(z + 1)!� [(z � a� b� c)!(z � a� e� f)!(z � d� b� f)!(z � d� e � c)!� (a+ b+ d+ e � z)!(b+ c+ e+ f � z)!(a+ c+ d+ f � z)!]�1 (3:42)The 6j�symbol vanishes unless the four triangular conditions portrayed below are satis�ed.8<: �. . . . . .� �9=;8<: � . . . � . . . �9=;8<: �. . .� . . . � 9=;8<: � . . . � . . . �9=; (3:43)where for example a+ b � c � ja� bj.The 6j�symbol is invariant with respect to any interchange of columns and also with respect to the inter-change of the upper and lower arguments of any two columns.The 6j�symbols satisfy the orthogonalitycondition Xj12 (2j12 + 1)(2j23 + 1)� j3 j j12j1 j2 j23�� j3 j j12j1 j2 j023�= �j23;j023 (3:44)Roothan(private communication 1990) has given the computationally convenient form for calculating6j�symbols� a b cd e f �=p�(abc)�(dbf)�(dec)�(aef)�Xz (�1)z � z + 1z � a� b� c�� b+ c� az � a� e � f �� c + a� bz � d� b� f �� a+ b� az � d� e� c� (3:45)3.15 The 9j�symbolThe 6j�symbol arose in discussing the coupling of three angular momentum. Clearly more complexnj�symbols will arise for couplings involving more than three angular momentum. The 9j�symbol maybe de�ned as < (j1j2)j12; (j3j4)j34; jj(j1j3)j13; (j2j4)j24; j >=p(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)8<: j1 j2 j12j3 j4 j34j13 j24 j 9=; (3:46)The 9j�symbol may be expressed in terms of 6j�symbols as8<: a b cd e fg h i 9=;=Xz (�1)2z[z]� a d gh i z�� b e hd z f �� c f iz a b� (3:47)The 9j�symbol is left invariant with respect to any even permutation of its rows or columns or atransposition of rows and columns. Under an odd permutation of rows or columns the symbol is invariant



32 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.but for a phase factor equal to the sum of its arguments. If one argument of the 9j�symbol is zero thesymbol collapses to a single 6j�symbol viz.8<: a b cd e fg h 09=; = �c;f �g;h (�1)b+d+f+gp(2c+ 1)(2g + 1) � a b ce d g� (3:48)3.16 Coupled tensor operatorsWe have noted the close connection between the transformation properties of tensor operators and angularmomentumstates. Consider two tensor operators T(k1 andU(k2 . We can de�ne a coupled tensor operatorX(k1k2;K) via Xk1k2;KQ = Xq1;q2 T (k1)q1 U (k2)q2 < k1q1k2q2jk1k2;KQ > (3:49)Explicit evaluation of the Clebsch-Gordan coe�cient for the case of K = 0 leads to[T(k)U(k)]00 = (�1)kp(2k + 1)Xq (�1)�qT (k)q U (k)�q (3:50)The scalar product of two tensor operators is de�ned as(T(k) �U(k)) =Xq (�1)qT (k)q U (k)�q (3:51)It follows from Eqs.(3.49) and (3.51) that[T(k)U(k)]00 = (�1)kp(2k + 1)(T(k) �U(k)) (3:52)3.17 Matrix elements of tensor operatorsHenceforth we shall often write simply X(K) rather than X(k1k2;K) for a coupled tensor operator. Itfollows immediatedly from the Wigner-Eckart theorem that< �j1j2JM jX(K)Q j�0j01j02J 0M 0 >= (�1)J�M � J K J 0�M Q M � < �j1j2JkX(K)k�0j01j02J 0 > (3:53)Our problem is now to evaluate the reduced matrix element in Eq.(3.53). Basically this is done by anuncoupling of the bra and ket states and of the tensor operator followed by appropriate recouplings andsummations. For the details I refer you to the books of Judd and of Edmonds.If T(k) and U(k) act separately on parts 1 and 2 of a system such as in spin and orbit spaces or ondi�erent particles, or sets of particles, then we obtain the result< �j1j2JkX(K)k�0j01j02J 0 > =X�" < �j1kT (k1)k�"j01 >< �"j2kU (k2)k�0j02 >�p(2J + 1)(2K + 1)(2J 0 + 1)8<: j1 j01 k1j2 j02 k2J J 0 K9=; (3:54)We can specialise the above result for K = 0 to obtain the scalar product as< �j1j2JMk(T(k) �U(k))k�0j01j02J 0M 0 >= �J;J 0�M;M 0(�1)j01+j2+J � j01 j02 Jj2 j1 k ��X�" < �j1kT (k)k�"j01 >< �"j2kU (k)k�0j02 > (3:55)



33 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.The action of an operator T(k) acting on part 1 of a system can be found by putting k2 = 0 in Eq.(3.54)to yield < �j1j2JkT (k)k�0j01j02J 0 > = �j2;j02(�1)j1+j2+J 0+kp(2J + 1)(2J 0 + 1)� J k J 0j01 j2 j1 �� < �j1kT (k)k�0j01 > (3:56)while the action on part 2 is found by putting k1 = 0 in Eq.(3.54) to yield< �j1j2JkU (k)k�0j01j02J 0 > = �j1;j01(�1)j1+j02+J+kp(2J + 1)(2J 0 + 1)� J k J 0j02 j1 j2 �� < �j2kU (k)k�0j02 > (3:57)A weaker result applicable to both cases where the operators act either on di�erent parts of a system orindeed the same system may be derived to give< �JkX(K)k�0J 0 > = (�1)J+K+J 0p(2K + 1) X�";J"� k2 K k1J J" J 0 �� < �JkT (k1)k�"J" >< �"J"kU (k2)k�0J 0 > (3:58)The results given by Eqs. (3.53) to (3.58) form the basis for all subsequent applications of the theory oftensor operators.3.18 Spherical harmonics as tensor operatorsThe spherical harmonics Ykq(�; �) play a key role in many atomic and crystal �eld calculations. Thespherical harmonics transform under the action of the generators of SO3 just like the angular momentumstates jkq >. Rather than using the spherical harmonics themselves it is usual to use tensor operatorsC(k) whose 2k + 1 components C(k)q are related to the spherical harmonics asC(k)q =r 4�2k+ 1Ykq(�; �) = (�1)qs(k � q)!(k + q)!P qk (cos �) exp iq� (3:59)where the P qk (cos �) are the usual Legendr�e polynomials.The reduced matrix elements of C(k) may be calculated by choosing to evaluate the matrix element ofthe component C(k)0 in an `s�basis between states with m` = 0 as done, for example, by Judd to give< `kC(k)k`0 >= (�1)`p(2`+ 1)(2`0 + 1)� ` k `00 0 0 � (3:60)The 3jm�symbol vanishes unless `+`0+k is even. The corresponding result for a jj�basis can be foundby use of Eq. (7.30) followed by Eq. (7.33) to give< s`jkC(k)ks`0j0 >= (�1)j� 12p(2j + 1)(2j0 + 1)� j k j0�12 0 12 � (3:61)where necessarily ` + `0 + k is even.3.19 The njsymbol MAPLE �leIt is useful to be able to calculate the values of the various 3nj�symbols. This we accomplish in MAPLEby writing a batch of procedures which I have placed in a �le "njsymbol" which includes necessary HELP�les. These may be used as a basis for calculating quantities that require 3nj�symbols. The relevantcode is given verbatim below:with(linalg):########################################################################test checks that the triangular condition on the three integers or ##half-integers a, b, c is satisfied. ########################################################################



34 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.test:=proc(a,b,c)local result,result1,result2;if (evalb(a+b>=c) and evalb(c>=abs(a-b)))then result:=true else result:=false;fi;end:########################################################################threej evaluates 3jm-symbols. ########################################################################threej:=proc(j1,j2,j3,m1,m2,m3)local xmin,xmax,x,fact,sumx,result;if test(j1,j2,j3) and (m1+m2+m3 =0) thenphase:=(-1)^(j1-j2-m3);fact:=sqrt(((j1+j2-j3)!*(j1-m1)!*(j2-m2)!*(j3+m3)!*(j3-m3)!)/((j1+j2+j3+1)!*(j3+j1-j2)!*(j3+j2-j1)!*(j1+m1)!*(j2+m2)!));xmin:=max(0,j3-j2-m1);xmax:=min(j3+m3,j1-m1,j3+j2-m1);sumx:=0;for x from xmin to xmax dosumx:=sumx + ((-1)^(j1-m1-x))*((j1+m1+x)!*(j3+j2-m1-x)!)/(x!*(j3+m3-x)!*(j1-m1-x)!*(j2-j3+m1+x)!);od;result:=simplify(phase*fact*sumx) else result:=0;fi;end:############################################################################ck evaluates the reduced matrix element <a//C^(k)//b> ############################################################################ck:=proc(a,b,k)local result;result:=simplify((-1)^a*sqrt((2*a+1)*(2*b+1))*threej(a,k,b,0,0,0));end:############################################################################triad evaluates the triangular portion of the formulae for 6j-symbols ############################################################################triad:=proc(a,b,c)local triang;triang:=sqrt((((a+b-c)!*(a-b+c)!*(b+c-a)!)/(a+b+c+1)!));end:############################################################################sixj evaluates a 6j-symbol. ############################################################################sixj:=proc(a,b,c,d,e,f)



35 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.local trif,sumj,zmin,zmax,z,result;if (test(a,b,c) and test(d,b,f) and test(d,e,c) and test(a,e,f))thentrif:=simplify(triad(a,b,c)*triad(a,e,f)*triad(d,b,f)*triad(d,e,c));zmin:=max(a+b+c,a+e+f,d+b+f,d+e+c);zmax:=min(a+b+d+e,b+c+e+f,c+a+f+d);sumj:=0;for z from zmin to zmax dosumj:=sumj + (((-1)^z*(z+1)!)/((z-a-b-c)!*(z-a-e-f)!*(z-d-b-f)!*(z-d-e-c)!*(a+b+d+e-z)!*(b+c+e+f-z)!*(c+a+f+d-z)!));od;result:=simplify(trif*sumj) else result:=0;fi;end:############################################################################ninej evaluates a 9j-symbol ############################################################################ninej:=proc(a,b,c,d,e,f,h,i,j)local x,xmin,xmax,result;if (test(a,d,h) and test(i,j,h) and test(b,e,i) and test(d,e,f) andtest(c,f,j) and test(c,a,b))then xmax:=min(a+j,i+d,b+f);xmin:=max(abs(a-j),abs(i-d),abs(b-f));result:=0;for x from xmin to xmax doresult:=result + ((-1)^(2*x))*(2*x + 1)*sixj(a,d,h,i,j,x)*sixj(b,e,i,d,x,f)*sixj(c,f,j,x,a,b);od;result:=simplify(result)else result:=0;fi;end:############################################################################`help/text/njsymbol`:=TEXT(`HELP for njsymbol`,`This package contains procedures for calculating 3jm-, 6j- and 9j-symbols`,`in rational form.The result appears as a fraction times square root factors.`,`The square root factors can be combined into a single square root using the`,`the MAPLE command combine("). The procedures can be used for inclusion in `,`other MAPLE programmes requiring the use of njsymbols.`,`The three procedures are as follows:-`,``,



36 Table 3.1 Energy levels and eigenvectors for the 5I multiplet in LiY F4 : Ho3+.`threej(j1,j2,j3,m1,m2,m3):-`,``,` This procedure evaluates the value of a 3jm-symbol involving the three`,` angular momenta j1, j2, j3 and their projections m1, m2, m3. The arguments`,` are entered as integers or half-integers as appropriate. The triangular`,` rules are automatically checked and if not satisfied the symbol is`,` evaluated to 0.`,``,`sixj(a,b,c,d,e,f):-`,``,` This procedure evaluates the value of a 6j-symbol involving the six`,` angular momenta a, b, c, d, e, f. The arguments are entered as integers or`,` half-integers as appropriate.The triangular rules are automatically checked`,` and if not satisfied the symbol is evaluated to 0.`,``,`ninej(a,b,c,d,e,f,h,i):-`,``,` This procedure evaluates the value of a 9j-symbol involving the nine`,` angular momenta a, b, c, d, e, f, g, h, i. The arguments are entered as`,` integers or half-integers as appropriate. The triangular rules are`,` automatically checked and if not satisfied the symbol is evaluated to 0.`,``,`EXAMPLES:-`,``,`1. threej(3/2,3/2,3,1/2,1/2,-1);`,``,`2. sixj(3/2,3/2,3,1/2,7/2,2);`,``,`3. ninej(3/2,3/2,3,1/2,7/2,3,2,2,2);`):#########################################################################3.20 Concluding RemarksWe are now at a stage to be able to consider the calculation of the in
uence of the crystal �eld of S4symmetry on the Ho3+ which we take up in the next lecture.



38 4.1 Introduction The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneIt does not follow that beauty is experienced only inthe context of great ideas and by great minds. Thisis no more true than that the jobs of creativity arerestricted to a fortunate few. They are accessibleto each one of us provided we are attuned to theperception of strangeness in the proportion and theconformity of the parts to one another and to thewhole.| S. Chandrasekhar, Physics Today, July , 1979,p30
Lecture 44.1 IntroductionIn this lecture I want to discuss the e�ect of the crystal �eld environment of the Ho3+ ion in LiY F4crystals. We will �rst consider give the eigenvectors that result from the free ion calculation for the lowlying members of the 5I multiplet and then consider the point syymetry group S4 (not to be confusedwith the symmetric group!) and the qualitative predictions of the e�ect on the ground multiplet andthen introduce the quantitative calculation of the crystal �eld e�ects.4.2 The free ion eigenvectorsThe free ion eigenvectors for all members of the ground multiplet of Ho3+ may be obtained using theMAPLE commands given below:-read`esof4`;A:=mateval(energymatrix(8,20747,6608,28.79,608,0,0,0,-2163));evalf(Eigenvals(A,V8));j8:=array(sparse,1..7);for i from 1 to 7 do j8[i]:=V8[i,1] od;A:=mateval(energymatrix(7,20747,6608,28.79,608,0,0,0,-2163));evalf(Eigenvals(A,V7));j7:=array(sparse,1..7);for i from 1 to 7 do j7[i]:=V7[i,1] od;A:=mateval(energymatrix(6,20747,6608,28.79,608,0,0,0,-2163));evalf(Eigenvals(A,V6));



39 4.2 The free ion eigenvectorsj6:=array(sparse,1..13);for i from 1 to 13 do j6[i]:=V6[i,1] od;A:=mateval(energymatrix(5,20747,6608,28.79,608,0,0,0,-2163));evalf(Eigenvals(A,V5));j5:=array(sparse,1..14);for i from 1 to 14 do j5[i]:=V5[i,1];od;A:=mateval(energymatrix(4,20747,6608,28.79,608,0,0,0,-2163));evalf(Eigenvals(A,V4));j4:=array(sparse,1..19);for i from 1 to 19 do j4[i]:=V4[i,1]; od;print(j8);print(j7);print(j6);print(j5);print(j4);The concluding print statements yield the eigenvectors as:-� print(j8);[ -.9665441654, -.1188757869, .2221011067, .03257435612, -.01103118111,-.03326906193, .006512896685 ]� print(j7);[ .9853358400, .03046183244, -.03222569090, .07338324177, -.1461563716,-.005621307008, -.01919580035 ]� print(j6);[ .03111632461, -.01500275490, .08435166391, -.1351660676, .08192995026,-.9772280457, -.04595511259, .04540558570, .00949562729, .01921220624,.00793919455, -.03324327705, .07702916177 ]� print(j5);[ .07174607879, .002987768121, -.03081364786, -.08131102394, .04553081666,-.02002957949, .1377250118, -.1944477670, .1067334993, -.03002479292,-.0113928741, -.9548891015, -.04740056952, .03933096028 ]� print(j4);[ .003910968075, .01497113905, .006091052124, -.005552323510, .01595987535,-.005157397553, .003031891189, -.008909474397, -.05163280146,.02712445094, .01144861646, -.01592152155, -.04752158162, -.02954926223,-.003176349314, .1620348430, -.2247133842, .1185679116, -.9495184108 ]Note that the components of the eigenvectors are listed in the same sequence as the zero-order stateslisted in Table 2.1. We shall be making use of the above eigenvectors later in the course.4.3 The Point Symmetry Group S4Ho3+ substitutes for the Y 3+ in LiY F4 at sites of tetragonal symmetry described by the point group S4,not to be confused with the symmetric group on four objects! Since the ionic radii of Ho3+ and Y 3+ arealmost the same there is little, if any, lattice distortion. Extensive information on the group S4 is givenin:- 4.1 G.F.Koster, J.O.Dimmock, R.G.Wheeler and H.Statz, Properties of the Thirty-Two PointGroups, M.I.T. Press (1963).



40 4.3 The Point Symmetry Group S4The group S4 is a cyclic group isomorphic to C4, consisting of the identity, E, the rotation-re
ectionS4 = IC�14 , a two-fold rotation C2 and the inverse operator S�14 = IC4. All rotations are taken aboutthe z�axis. The character table is given below:-E �E S�14 �S�14 C2 �C2 S4 �S4�1 1 1 1 1 1 1 1 1�2 1 1 �1 �1 1 1 �1 �1�3 1 1 i i �1 �1 �i �i�4 1 1 �i �i �1 �1 i i�5 1 �1 ! �! i �i �!3 !�6 1 �1 �!3 !3 �i i ! �!3�7 1 �1 �! ! i �i !3 !�8 1 �1 !3 �!3 �i i �! !3Table 4.1 The Character Table for the S4 Point Groupwith ! = exp(�i4 ). Note that �1 and �2 are real one-dimensional representations whereas the remainingrepresentations form complex pairs (�3;�4), (�5;�6), (�7;�8) and hence in the absence of magnetic �eldsare associated with doubly degenerate states. The last four representations are associated with the doublegroup of S4 and hence with half-integer angular momentum.4.4 Kronecker Products in S4The Kronecker products for S4 may be easily established from the character table to yield the resultsgiven in Table 4.2 below:- �1 �2 �3 �4 �5 �6 �7 �8�1 �1 �2 �3 �4 �5 �6 �7 �8�2 �2 �1 �4 �3 �7 �8 �5 �6�3 �3 �4 �2 �1 �8 �5 �6 �7�4 �4 �3 �1 �2 �6 �7 �8 �5�5 �5 �7 �8 �6 �3 �1 �4 �2�6 �6 �8 �5 �7 �1 �4 �2 �3�7 �7 �5 �6 �8 �4 �2 �3 �1�8 �8 �6 �7 �5 �2 �3 �1 �4Table 4.2 Kronecker Products for the Point Group S4



41 4.5 The O3 ) S4 Branching rules4.5 The O3 ) S4 Branching rulesThe degeneracies of the states of a given J in a crystal �eld of S4 symmetry is determined by the O3 ) S4branching rules where O3 is the full orthogonal group since the point group S4 includes re
ections andhence improper rotations. The irreducible representations of O3 are labelled with a + or � superscriptto distinguish those irreducible representations that are even under inversion (+) from those that are odd(-). Thus the results are given in Table 4.3 for integer and half-integer values of J . The decompositionsof the D�j irreducible representations of O3 may be obtained from those of D+j by multiplication by�2. Note that since the spin irreducible representations of S4 are all two-dimensional the for half-integerangular momentum the levels in a crystal with point group symmetry S4 must necessarily remain two-folddegenerate. An external magnetic �eld is required to lift this residual Kramer's degeneracy.In the case of Ho3+ in LiY F4 the electronic angular momentum J is an integer and the Stark electric�eld degeneracies follow from the appropriate O3 ) S4 branching rules. Adding the half-integer angularmomentum of the Ho nucleus results in states of total angular momentum F which is half-integer andhence the degeneracies are always two-fold. The hyper�ne interaction will also change selection rules, aswe shall see later.D+J S4 D�J S4D+0 �1 D�0 �2D+1 �1 + �3 + �4 D�1 �2 + �3 + �4D+2 �1 + 2�2 + �3 + �4 D�2 2�1 + �2 + �3 + �4D+3 �1 + 2�2 + 2�3 + 2�4 D�3 2�1 + �2 + 2�3 + 2�4D+4 3�1 + 2�2 + 2�3 + 2�4 D�4 2�1 + 3�2 + 2�3 + 2�4D+5 3�1 + 2�2 + 3�3 + 3�4 D�5 2�1 + 3�2 + 3�3 + 3�4D+6 3�1 + 4�2 + 3�3 + 3�4 D�6 4�1 + 3�2 + 3�3 + 3�4D+7 3�1 + 4�2 + 4�3 + 4�4 D�7 4�1 + 3�2 + 4�3 + 4�4D+8 5�1 + 4�2 + 4�3 + 4�4 D�8 4�1 + 5�2 + 4�3 + 4�4D+1=2 �5 + �6 D�1=2 �7 + �8D+3=2 �5 + �6 + �7 + �8 D�3=2 �5 + �6 + �7 + �8D+5=2 �5 + �6 + 2�7 + 2�8 D�5=2 2�5 + 2�6 + �7 + �8D+7=2 2�5 + 2�6 + 2�7 + 2�8 D�7=2 2�5 + 2�6 + 2�7 + 2�8D+9=2 3�5 + 3�6 + 2�7 + 2�8 D�9=2 2�5 + 2�6 + 3�7 + 3�8D+11=2 3�5 + 3�6 + 3�7 + 3�8 D�11=2 3�5 + 3�6 + 3�7 + 3�8D+13=2 3�5 + 3�6 + 4�7 + 4�8 D�13=2 4�5 + 4�6 + 3�7 + 3�8D+15=2 4�5 + 4�6 + 4�7 + 4�8 D�15=2 4�5 + 4�6 + 4�7 + 4�8D+17=2 5�5 + 5�6 + 4�7 + 4�8 D�17=2 4�5 + 4�6 + 5�7 + 5�8D+19=2 5�5 + 5�6 + 5�7 + 5�8 D�19=2 5�5 + 5�6 + 5�7 + 5�8D+21=2 5�5 + 5�6 + 6�7 + 6�8 D�21=2 6�5 + 6�6 + 5�7 + 5�8D+23=2 6�5 + 6�6 + 6�7 + 6�8 D�23=2 6�5 + 6�6 + 6�7 + 6�8Table 4.3 Branching Rules for O3 ) S44.6 The D2d SymmetryThe point group D2d contains S4 as a subgroup and hence exists as an approximate symmetry fordescribing Ho3+ in LiY F4 crystals. D2d is isomorphic to the group D4 and consists of the operations ofD2 and in addition has the operations S4 and S�14 about one of the two-fold axes of rotation about thez�axis, as well as two re
ections �d through perpendicular planes containing the axis of S4 and whichbisect the angles between the two rotations of D2 about the axes x and y, C20. The character table,Kronecker products, and O3 ) D2d decompositions are given in Koster etal. We shall refer to these later.4.7 The Crystal Field ExpansionWe now must look at the e�ect of perturbing the "free ion" Ho3+ by a crystal �eld with point symmetry



42 4.7 The Crystal Field ExpansionS4. As usual the crystal �eld potential is expanded as an in�nite series of spherical tensors C(k)q withassociated coe�cients Bkq to give V (r; �; �) =Xk;q Bkq (r)C(k)q (�; �) (4:1)In future we will omit the spherical coordinates (r; �; �). The Hermiticity of the potential forces the axialexpansion coe�cients Bk0 to be real whereas the non-axial coe�cients (q 6 0) may be complex. The in�niteseries may be truncated by introducing various degrees of approximation. Between states of the sameparity the triangular selection rules on the reduced matrix elements of C(k) restrict the tensor ranks kto even integers and between states of opposite parity to odd integers. The values of k may be furtherrestricted if we assume that the states of interest are limited to a single N�electron con�guration `N . Inthat case not only must k be an even integer, it is bounded by2` � k � 0 (4:2)Thus for fN con�gurations we are restricted to the valuesk = 0; 2; 4; 6 (4:3)Since the matrix elements of C(0)0 are constant over all the states of a con�guration the term with k = 0is usually omitted from consideration.The possible values of q are restricted by two requirements. The �rst being simply that k � jqj and thesecond that the potential be invariant with respect to all the symmetry operations of the relevant pointgroup. Thus the S4 symmetry forces the potential to be invariant with respect to four-fold rotationsabout a z�axis and hence restricting q to the valuesq = 0;�4 (4:4)The invariance with respect to the symmetry operations of the point group amounts to the requirementthat the potential transform as the identity irreducible representation �1 of the point group G. Thenumber of independent expansion coe�cients Bkq for a given value of k is just the number of times �1occurs in the decomposition O3 ) G of the O3 irreducible representation D+k which from Table 4.3 we�nd is 1 for k = 2 and 3 for both k = 4 and k = 6. This may be compared with the higher symmetrygroup D2d where �1 occurs once for k = 2 and twice for each of k = 4 and k = 6. Thus in D2d the crystal�eld expansion for the states of fN con�gurations will be:-D2d : V = B20C(2)0 + B40C(4)0 + B44(C(4)�4 +C(4)4 ) +B60C(6)0 +B64(C(6)�4 + C(6)4 ) (4:5)The potential is Hermitian with the expansion coe�cients Bkq all real.The lower symmetry of the point group S4 manifests itself in the need for an extra expansion coe�cientfor each of the non-axial terms. This can be realised by taking the non-axial terms as complex ratherthan real. Thus for S4 the crystal �eld potential becomes:-S4 : V = B20C(2)0 + B40C(4)0 +B4�4C(4)�4 +B60C(6)0 +B6�4C(6)�4 (4:6)where Bk�q = Bkq � iAkq (4:7)with Bkq and Akq are both real. Thus the S4 crystal �eld is associated with seven independent crystal �eldparameters whereas D2d has �ve independent parameters. Note we now say parameters as along withmost work we will treat the expansion coe�cients as parameters to be determined from the experimentaldata rather than from some ab initio calculation. Before �tting the parameters to data we must calculatethe angular matrix elements of the C(k)q tensor operator components. This we will normally do in thecustomary angular momentum basis.



43 4.9 Intermediate Coupling Reduced Matrix Elements4.8 Calculation of the Matrix elements of C(k)qIt follows from the Wigner-Eckart theorem that the M and q dependence of the matrix elements of C(k)qis entirely cased in a single 3j�symbol viz.h�JM jC(k)q j�0J 0M 0i = (�1)J�M � J k J 0�M q M 0� h�J jjC(k)jj�0J 0i (4:8)The selection rules for the 3j�symbol to be non-vanishing force the triad (J; k; J 0) to satisfy the triangularcondition J + J 0 � k � jJ � J 0j (4:9a)and that M �M 0 = q (4:9b)The reduced matrix elements in Eq. (4.8) may be evaluated in, an j�SLJi basis obtained from the earlier"free ion" calculation using the tensor operator algebra to giveh�SLJ jjC(k)jj�0SL0J 0i = (�1)S+L0+J+kp(2J + 1)(2J + 1)� J k J 0L0 S L � h�SLjjC(k)jj�0SL0i (4:10)Notice that the matrix elements are diagonal in the spin quantum number S1. However, there may beo�-diagonal elements in L and J . The latter leads to so-called J�mixing. For most of our study we shallneglect J�mixing and assume that the signi�cant matrix elements of interest are diagonal in J . Sinceour "free ion" eigenvectors involve non-trivial admixtures of states of di�erent L we shall at times need toconsider matrix elements o�-diagonal in L and more often, in the auxilliary quantum numbers designatedby �. The doubly reduced matrix elements in Eq. (4.10) may be directly taken from the tables of Nielsonand Koster. They give the matrix elements for the unit tensor operators U (k) and multiplication by thereduced matrix elements hf jjC(k)jjfi gives us the desired matrix elements. Nielson and Koster list thematrix elements for f4 and to obtain them for f10 we must multiply by �1.4.9 Intermediate Coupling Reduced Matrix ElementsThe "free ion" calculation yields an eigenvector expansion for the state j�Ji (We suppress M quantumnumbers here) of j�Ji = X�SLa�SLJ j�SLJi (4:11)Remembering that the matrix elements of the crystal �eld are diagonal in spin S we obtain the reducedmatrix elements of the unit tensor operator, U (k), corrected for intermediate coupling ash�J jjU (k)jj�0J 0i = X�SL X�0SL0 a�SLJa��0SL0J 0h�SLJ jjU (k)jj�0SL0J 0i (4:12)Let us carry out the calculation for k = 2 for the "free ion" groundstate of Ho3+ in detail. From Table3.1 we have the eigenvector expansionj�J = 8i = 0:9665j5I8i+ 0:1189j(21)3K8i � 0:2221j(30)3K8i (4:13)From page 74 of the tables of Nielson and Koster and multiplying by �1 to obtain results for f10 we havethe required doubly reduced matrix elements of U (2) ash5IkU (2)k5Ii = +r1366h(21)3KkU (2)k(21)3Ki = � 114r2212h(21)3KkU (2)k(30)3Ki = �97r 213h(30)3KkU (2)k(30)3Ki = �5r 2221 (4:14)1 NB. This is only strictly true if we ignore relativistic e�ects. See: B. G. Wybourne, Use of Relativistic WaveFunctions in Crystal Field Theory, J. Chem. Phys., 43, 4506-7 (1965).



44 4.10 Additional Reduced Matrix ElementsThe next step is to multiply these matrix elements to produce the singly reduced matrix elements fromEq. (4.10). This may be readily calculated using our MAPLE package "njsymbol" described in lecturethree and the following extra MAPLE code:-#############################################################################redmatrix is a single reduced matrix element produced from the doubly ##reduced matrix element rm. #############################################################################read`esof4`;read`njsymbol`;redmatrix:=proc(S,L1,J1,L2,J2,k,rm)local result;result:=combine(simplify((-1)^(S + L2 + J1 + k)*sqrt((2*J1 + 1)*(2*J2 + 1))/*sixj(J1,k,J2,L2,S,L1)*ck(3,3,k)*rm));end:############################################################################We �nally tabulate our singly reduced matrix elements as a 3� 3 matrix to giveA = 0B@ 5I8 (21)3K8 (30)3K85I8 �p9690150 0 0(21)3K8 0 13p96901200 3p570150(30)3K8 0 3p570150 7p96901020 1CAWe can input Eq.(4.13) into MAPLE as a column vector,V , and carry out the multiplication AV followedby the dotproduct of the resultant with V to �nally yield the single numberh�J = 8kC(2)k�J = 8i = �0:6024 (4:15a)which may be compared with the LS�coupling value ofh5I8kC(2)k5I8i = �0:6563 (4:15b)Exercises1. Complete the above calculation for k = 4; 6.2. Repeat the calculation for the other levels of the 5I multiplet.In the next lecture we will use the results of the above exercises to calculate the crystal �eld splittingsin the ground multiplet of Ho3+ in LiY F4 crystals. We append the necessary doubly reduced matrixelements required in the exercises.4.10 Additional Reduced Matrix ElementsThe following doubly reduced matrix elements have been extracted from the tables of Nielson and Koster.Remembering that Professors often make mistakes you should check the entries.



45 4.10 Additional Reduced Matrix ElementsMatrixElement k = 2 k = 4 k = 6h5IkU (k)k5Ii +q1366 �p44233 + 511q32321h(21)3KkU (k)k(20)3Ki � 114q2212 � 1462q161526 � 4143q32307h(21)3KkU (k)k(30)3Ki �97q 213 �115231q9526 � 1143p1330h(30)3KkU (k)k(30)3Ki �5q 2221 � 233q323013 + 9143q190119h(21)3HkU (k)k(21)3Hi �15q14314 �116q 191 �1113q1735h(21)3HkU (k)k(30)3Hi �3115q1139 �196q 168 � 139q1703h(21)3HkU (k)k(11)3Hi � 445p11 �59p2 +49q3465h(30)3HkU (k)k(30)3Hi �8930q 11182 �539q 191 +2968q1735h(30)3HkU (k)k(11)3Hi �2915q1142 +2q 121 �13q119195h(11)3HkU (k)k(11)3Hi �15q14314 +25q137 +q1735



46 4.11 The MAPLE commands for the intermediate coupling calculation4.11 The MAPLE commands for the intermediate coupling calculationThe following is a list of MAPLE commands to calculate the intermediate coupling calculations:-#Calculation of intermediate coupling matrix elements for J = 8read`redmat`;#Intermediate coupling eigenvector VV:=array(1..3);V[1]:=0.9665;V[2]:=0.1189;V[3]:=-0.2221;#Initialise A matrixS:=array(sparse,1..3,1..3);A:=array(symmetric,1..3,1..3);copyinto(S,A,1,1);#Evaluate matrix elements of A in the LS-basis for k = 2A[1,1]:=redmatrix(2,6,8,6,8,2,sqrt(13/66));A[2,2]:=redmatrix(1,7,8,7,8,2,-sqrt(221/2)/14);A[2,3]:=redmatrix(1,7,8,7,8,2,-9*sqrt(2/13)/7);A[3,3]:=redmatrix(1,7,8,7,8,2,-5*sqrt(2/221));B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 4A[1,1]:=redmatrix(2,6,8,6,8,4,-sqrt(442)/33);A[2,2]:=redmatrix(1,7,8,7,8,4,-sqrt(1615/26)/462);A[2,3]:=redmatrix(1,7,8,7,8,4,-115*sqrt(95/26)/231);A[3,3]:=redmatrix(1,7,8,7,8,4,-2*sqrt(3230/13)/33);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 6A[1,1]:=redmatrix(2,6,8,6,8,6,5*sqrt(323/21)/11);A[2,2]:=redmatrix(1,7,8,7,8,6,-4*sqrt(3230/7)/143);A[2,3]:=redmatrix(1,7,8,7,8,6,-sqrt(1330)/143);A[3,3]:=redmatrix(1,7,8,7,8,6,9*sqrt(190/119)/143);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#End of J = 8 calculation#Calculation of intermediate coupling matrix elements for J = 7read`redmat`;



47 4.11 The MAPLE commands for the intermediate coupling calculation#Intermediate coupling eigenvector VV:=array(1..2);V[1]:=0.9853;V[2]:=-0.1462;#Initialise A matrixS:=array(sparse,1..2,1..2);A:=array(symmetric,1..2,1..2);copyinto(S,A,1,1);#Evaluate matrix elements of A in the LS-basis for k = 2A[1,1]:=redmatrix(2,6,7,6,7,2,sqrt(13/66));A[2,2]:=redmatrix(1,7,7,7,7,2,-5*sqrt(2/221));B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 4A[1,1]:=redmatrix(2,6,7,6,7,4,-sqrt(442)/33);A[2,2]:=redmatrix(1,7,7,7,7,4,-115*sqrt(95/26)/231);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 6A[1,1]:=redmatrix(2,6,7,6,7,6,5*sqrt(323/21)/11);A[2,2]:=redmatrix(1,7,7,7,7,6,-sqrt(1330)/143);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#End of J = 7 calculation#Calculation of intermediate coupling matrix elements for J = 6read`redmat`;#Intermediate coupling eigenvector VV:=array(1..2);V[1]:=0.9772;V[2]:=0.1352;#Initialise A matrixS:=array(sparse,1..2,1..2);A:=array(symmetric,1..2,1..2);copyinto(S,A,1,1);#Evaluate matrix elements of A in the LS-basis for k = 2A[1,1]:=redmatrix(2,6,6,6,6,2,sqrt(13/66));A[2,2]:=redmatrix(1,7,6,7,6,2,-89*sqrt(11/182)/30);



48 4.11 The MAPLE commands for the intermediate coupling calculationB:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 4A[1,1]:=redmatrix(2,6,6,6,6,4,-sqrt(442)/33);A[2,2]:=redmatrix(1,5,6,5,6,4,-53*sqrt(1/91)/9);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 6A[1,1]:=redmatrix(2,6,6,6,6,6,5*sqrt(323/21)/11);A[2,2]:=redmatrix(1,5,6,5,6,6,-sqrt(170/3)/39);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#End of J = 6 intermediate coupling calculation.#Calculation of intermediate coupling matrix elements for J = 5read`redmat`;#Intermediate coupling eigenvector VV:=array(1..4);V[1]:=0.9549;V[2]:=-0.1377;V[3]:=0.1944;V[4]:=-0.1067;#Initialise A matrixS:=array(sparse,1..4,1..4);A:=array(symmetric,1..4,1..4);copyinto(S,A,1,1);#Evaluate matrix elements of A in the LS-basis for k = 2A[1,1]:=redmatrix(2,6,5,6,5,2,sqrt(13/66));A[2,2]:=redmatrix(1,5,5,5,5,2,-sqrt(143/14)/5);A[2,3]:=redmatrix(1,5,5,5,5,2,-31*sqrt(11/39)/15);A[2,4]:=redmatrix(1,5,5,5,5,2,-4*sqrt(11)/45);A[3,3]:=redmatrix(1,5,5,5,5,2,-89*sqrt(11/182)/30);A[3,4]:=redmatrix(1,5,5,5,5,2,-29*sqrt(11/42)/15);A[4,4]:=redmatrix(1,5,5,5,5,2,-sqrt(143/14)/5);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);



49 4.11 The MAPLE commands for the intermediate coupling calculation#Evaluate matrix elements of A in the LS-basis for k = 4A[1,1]:=redmatrix(2,6,5,6,5,4,-sqrt(442)/33);A[2,2]:=redmatrix(1,5,5,5,5,4,-11*sqrt(1/91)/6);A[2,3]:=redmatrix(1,5,5,5,5,4,-19*sqrt(1/68)/6);A[2,4]:=redmatrix(1,5,5,5,5,4,-5*sqrt(2)/9);A[3,3]:=redmatrix(1,5,5,5,5,4,-53*sqrt(1/91)/9);A[3,4]:=redmatrix(1,5,5,5,5,4,2*sqrt(1/21));A[4,4]:=redmatrix(1,5,5,5,5,4,2*sqrt(13/7)/5);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 6A[1,1]:=redmatrix(2,6,5,6,5,6,5*sqrt(323/21)/11);A[2,2]:=redmatrix(1,5,5,5,5,6,-11*sqrt(17/35)/13);A[2,3]:=redmatrix(1,5,5,5,5,6,-sqrt(170/3)/39);A[2,4]:=redmatrix(1,5,5,5,5,6,4*sqrt(34/65)/9);A[3,3]:=redmatrix(1,5,5,5,5,6,29*sqrt(17/35)/68);A[3,4]:=redmatrix(1,5,5,5,5,6,-sqrt(119/195)/3);A[4,4]:=redmatrix(1,5,5,5,5,6,sqrt(17/35));B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#End of J = 5 intermediate coupling calculation#Calculation of intermediate coupling matrix elements for J = 4read`redmat`;#Intermediate coupling eigenvector VV:=array(1..4);V[1]:=0.9495;V[2]:=-0.1620;V[3]:=0.2247;V[4]:=-0.1186;#Initialise A matrixS:=array(sparse,1..4,1..4);A:=array(symmetric,1..4,1..4);copyinto(S,A,1,1);#Evaluate matrix elements of A in the LS-basis for k = 2A[1,1]:=redmatrix(2,6,4,6,4,2,sqrt(13/66));A[2,2]:=redmatrix(1,5,4,5,4,2,-sqrt(143/14)/5);A[2,3]:=redmatrix(1,5,4,5,4,2,-31*sqrt(11/39)/15);A[2,4]:=redmatrix(1,5,4,5,4,2,-4*sqrt(11)/45);A[3,3]:=redmatrix(1,5,4,5,4,2,-89*sqrt(11/182)/30);



50 4.11 The MAPLE commands for the intermediate coupling calculationA[3,4]:=redmatrix(1,5,4,5,4,2,-29*sqrt(11/42)/15);A[4,4]:=redmatrix(1,5,4,5,4,2,-sqrt(143/14)/5);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 4A[1,1]:=redmatrix(2,6,4,6,4,4,-sqrt(442)/33);A[2,2]:=redmatrix(1,5,4,5,4,4,-11*sqrt(1/91)/6);A[2,3]:=redmatrix(1,5,4,5,4,4,-19*sqrt(1/68)/6);A[2,4]:=redmatrix(1,5,4,5,4,4,-5*sqrt(2)/9);A[3,3]:=redmatrix(1,5,4,5,4,4,-53*sqrt(1/91)/9);A[3,4]:=redmatrix(1,5,4,5,4,4,2*sqrt(1/21));A[4,4]:=redmatrix(1,5,4,5,4,4,2*sqrt(13/7)/5);B:=mateval(A);print(B);multiply(B,V);dotprod(",V);#Evaluate matrix elements of A in the LS-basis for k = 6A[1,1]:=redmatrix(2,6,4,6,4,6,5*sqrt(323/21)/11);A[2,2]:=redmatrix(1,5,4,5,4,6,-11*sqrt(17/35)/13);A[2,3]:=redmatrix(1,5,4,5,4,6,-sqrt(170/3)/39);A[2,4]:=redmatrix(1,5,4,5,4,6,4*sqrt(34/65)/9);A[3,3]:=redmatrix(1,5,4,5,4,6,29*sqrt(17/35)/68);A[3,4]:=redmatrix(1,5,4,5,4,6,-sqrt(119/195)/3);A[4,4]:=redmatrix(1,5,4,5,4,6,sqrt(17/35));B:=mateval(A);print(B);multiply(B,V);dotprod(",V);The above commands have been added to the diskette of MAPLE code for this lecture course.



51 4.12 Intermediate Coupling corrected Reduced Matrix Elements4.12 Intermediate Coupling corrected Reduced Matrix ElementsWe list in the table below the intermediate coupling corrected matrix elements of the reduced matrixelements computed by the MAPLE code. The uncorrected matrix elements are in each case given imme-diately below each corrected matrix element.MatrixElement k = 2 k = 4 k = 6h5I8kC(k)k5I8i �0:6024 �0:6317 �1:6039�0:6563 �0:6797 �1:7061h5I7kC(k)k5I7i �0:5231 �0:4112 �0:2285�0:5524 �0:4042 �0:2399h5I6kC(k)k5I6i �0:4445 �0:2615 +0:3000�0:4775 �0:2614 +0:3105h5I5kC(k)k5I5i �0:4643 �0:2533 +0:2549�0:4428 �0:2437 +0:2957h5I4kC(k)k5I4i �0:4775 �0:4139 �0:7252�0:4505 �0:4103 �0:7679



52 5.1 Introduction The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneThe creative principle resides in mathematics. Ina certain sense, therefore, I hold it true that purethought can grasp reality, as ancients dreamed| A. EinsteinContinental people do not seem to be in the least in-terested to form a physical idea as a basis of theory.They are quite content to explain everything on acertain assumption and do not bother their headsabout the real cause of a thing. I must say that theEnglish point of view is much more physical andmuch to be preferred| E. R. RutherfordLecture 55.1 IntroductionIn the previous lecture we outlined the crystal �eld expansion for S4 symmetry and calculated theintermediate coupling corrections to give the reduced matrix elements h�JkC(k)k�Ji tabulated in Table4.12. We must now use these to develop the calculation of the crystal �eld perturbation of the Ho3+"free-ion" levels.5.2 Crystal Field Matrix ElementsWe saw in the previous lecture that the crystal �eld potential for S4 point symmetry acting on f�electronscan be written as S4 : V = B20C(2)0 + B40C(4)0 +B4�4C(4)�4 +B6�4C(6)�4 (4:6)where Bk�q = Bkq � iAkq (4:7)and both Bkq and Akq are real. In practice we can perform a rotation of the x and y axes about the z�axisto eliminate the imaginary part of either B4�4 or B6�4. Most workers choose B4�4 to be real.Recall the Wigner-Eckart theorem and writeh�JM jC(k)q j�0J 0M 0i = (�1)J�M � J k J 0�M q M 0� h�JkC(k)k�0J 0i (4:8)For the present we shall only consider states within a given J�manifold, i.e. we shall ignore J�mixing.The reduced matrix elements can be taken from Table 4.12 to be corrected for intermediate coupling.Hermiticity conditions allow us to writeh�JM jV j�JM i = h�J �M jV j�J �M i (5:1)and h�JM jV j�JM 0i = h�JM 0jV j�JM i� (5:2)5.3 Basis States and Crystal Field SplittingsA state of total angular momentum J is associated with (2J + 1) basis states jJM i. In general thenumber of crystal �eld levels will be less than (2J + 1). Thus, for example, we have from Table 4.3 thata J = 8 level splits in S4 point symmetry asD+8 ) 5�1 + 4�2 + 4(�3 + �4) (5:3)



53 5.4 Example of the Ground Level of Ho3+Remembering that the two irreducible representations �3 and �4 are complex conjugates and henceremain degenerate in an electric �eld, we obtain 13 sublevels. This means that in an appropriate basisthat re
ects the S4 point symmetry the rank 17crystal �eld energy matrix will break into a rank 5 matrixinvolving 5 �1 states, a rank 4 matrix involving 4 �2 states and two rank 4 matrices associated with the�3 and �4 states.The o�-diagonal crystal �eld matrix elements will vanish unlessM 0 = M � 4 (5:4)Thus for J = 8 the following jJM i basis states are coupled by the crystal �eld potential:� = 0 :j80i; j8� 4i; j8� 8i (5:5a)� = �1 :j8� 1i; j8� 3i; j8� 5i; j8� 7i (5:5b)� = 2 :j82i; j8� 2i; j86ij8� 6i (5:5c)where we have introduced the crystal quantum numbers �. It can be readily seen that these correspondto the S4 point symmetry group labels as� = 0 : �1; � = �1 : �3;4; � = 2 : �2 (5:6)It is useful to introduce, for the � = 0; 2 states the symmetric and antisymmetric linear combinationsjJM i� = 1p2(jJM i � jJ �M i) (5:7)We then have that hJM jV jJM 0i++ =< JM jV jJM 0i��; real (5:8a)hJM jV jJM 0i+� = hJM 0jV jJM i��+; imaginary (5:8b)5.4 Example of the Ground Level of Ho3+It is instructive to focus attention on the 5I8 level ofHo3+ in a S4 point symmetry environment. Individualmatrix elements, corrected for intermediate coupling may be computed using the following MAPLE codein the �le "vs4"######################################################################Calculates crystal field matrix elements for S4-point symmetry with##intermediate coupling correction within a given J-manifold. ######################################################################read`njsymbol`;read`icrm`;ic();vs4:=proc(J,M1,M2,k,q)local result;result:=(-1)^(J-M1)*threej(J,k,J,-M1,q,M2)*icrm[9-J,k/2];end:crystal:=proc(J,M1,M2)local result;result:=simplify(B20*vs4(J,M1,M2,2,0) + B40*vs4(J,M1,M2,4,0) + B60*vs4(J,M1,M2,6,0)+ (B44 + I*A44)*vs4(J,M1,M2,4,4) + (B44 - I*A44)*vs4(J,M1,M2,4,-4)+ (B64 + I*A64)*vs4(J,M1,M2,6,4) + (B64 - I*A64)*vs4(J,M1,M2,6,-4));end:where the �le "icrm" contains the intermediate coupling reduced matrix elements



54 5.4 Example of the Ground Level of Ho3+##############################################################################Array of intermediate coupling corrected matrix elements for the ground ##multiplet of Ho^3+. The first index i of the array corresponds to J = 9 - i##while the second index j corresponds to k = 2j. ##############################################################################ic:=proc()icrm:=array(1..5,1..3);icrm[1,1]:=-0.6024;icrm[1,2]:=-0.6317;icrm[1,3]:=-1.6039;icrm[2,1]:=-0.5231;icrm[2,2]:=-0.4112;icrm[2,3]:=-0.2285;icrm[3,1]:=-0.4445;icrm[3,2]:=-0.2615;icrm[3,3]:=0.3000;icrm[4,1]:=-0.4643;icrm[4,2]:=-0.2533;icrm[4,3]:=0.2549;icrm[5,1]:=-0.4775;icrm[5,2]:=-0.4139;icrm[5,3]:=-0.7252;print();end:#########################################################################The complete crystal �eld matrices for � = 0; 1; 2 are computed using the MAPLE �les "crystal.8","crystal.u81" and "crystal.u82" given below:#########################################################################Calculation of crystal field matrix for the mu=0 states. Digits set at##5 for five figure accuracy. #########################################################################read`vs4`;Digits:=5;S:=array(sparse,1..5,1..5);S[1,1]:=crystal(8,0,0);S[1,2]:=evalf((crystal(8,0,4) + crystal(8,0,-4))/sqrt(2));S[1,4]:=evalf((crystal(8,0,4) - crystal(8,0,-4))/sqrt(2));S[2,1]:=S[1,2];S[2,2]:=evalf((crystal(8,4,4) + crystal(8,-4,-4))/2);S[2,3]:=evalf((crystal(8,4,8) + crystal(8,-4,-8))/2);S[2,5]:=evalf((crystal(8,4,8) - crystal(8,-4,-8))/2);S[3,2]:=S[2,3];S[3,3]:=evalf((crystal(8,8,8) + crystal(8,-8,-8))/2);S[3,4]:=evalf((crystal(8,8,4) - crystal(8,-8,-4))/2);



55 5.4 Example of the Ground Level of Ho3+S[4,1]:=-S[1,4];S[4,3]:=-S[3,4];S[4,4]:=S[2,2];S[4,5]:=S[3,2];S[5,2]:=-S[2,5];S[5,4]:=S[2,3];S[5,5]:=S[3,3];print(S);#########################################################################Calculation of crystal field matrix for the mu=1 states. Digits set at##5 for five figure accuracy. #########################################################################read`vs4`;Digits:=5;C:=array(sparse,1..4,1..4);C[1,1]:=crystal(8,1,1);C[1,2]:=crystal(8,1,-3);C[1,3]:=crystal(8,1,5);C[2,1]:=evalc(conjugate(C[1,2]));C[2,2]:=crystal(8,-3,-3);C[2,4]:=crystal(8,-3,-7);C[3,1]:=evalc(conjugate(C[1,3]));C[3,3]:=crystal(8,5,5);C[4,2]:=evalc(conjugate(C[2,4]));C[4,4]:=crystal(8,-7,-7);print(C);#########################################################################Calculation of crystal field matrix for the mu=2 states. Digits set at##5 for five figure accuracy. #########################################################################read`vs4`;Digits:=5;B:=array(sparse,1..4,1..4);B[1,1]:=evalf((crystal(8,2,2)+crystal(8,2,-2)+crystal(8,-2,2)+crystal(8,-2,-2))/2);B[1,2]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);B[1,3]:=evalf((crystal(8,2,2)-crystal(8,2,-2)+crystal(8,-2,2)-crystal(8,-2,-2))/2);B[1,4]:=evalf((crystal(8,2,6)-crystal(8,-2,-6))/2);B[2,1]:=B[1,2];B[2,2]:=evalf((crystal(8,6,6)+crystal(8,-6,-6))/2);B[2,3]:=evalf((crystal(8,6,2)-crystal(8,-6,-2))/2);B[2,4]:=0;



56 5.4 Example of the Ground Level of Ho3+B[3,1]:=-B[1,3];B[3,2]:=-B[2,3];B[3,3]:=evalf((crystal(8,2,2)-crystal(8,2,-2)-crystal(8,-2,2)+crystal(8,-2,-2))/2);B[3,4]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);B[4,1]:=-B[1,4];B[4,2]:=0;B[4,3]:=B[3,4];B[4,4]:=B[2,2];print(B);Running the above �les leads to the crystal �eld matricesj80i j84i+ j88i+ j84i� j88i�+:073435B20 �:10224B44 0 +:10224iA44 0h80j �:058492B40 +:059290B64 �:059290iA64+:12642B60�:10224B44 +:024478B20 �:016569B44 0 +:016569iA44+h84j +:059290B64 +:038994B40 �:14415B64 +:14415iA64�:13485B600 �:016569B44 �:12240B20 �:016569iA44 0+h88j �:14415B64 �:084486B40 �:14415iA64�:10956B60�:10224iA44 0 +:016569iA44 +:024478B20 �:016569B44�h84j +:059290iA64 +:14415iA64 +:038994B40 �:14415B64�:13485B600 �:016569iA44 0 �:016569B44 �:12240B20�h88j �:14415iA64 �:14415B64 �:084486B40�:10956B60Table 5.1 Crystal �eld matrix for the � = 0 states.



57 5.4 Example of the Ground Level of Ho3+j81i+ j8� 3i+ j85i� j8� 7i�+:070377B20 �:079194B44 �:061444B44 0h81j �:050370B40 �:079194iA44 +:061444iA44+:089551B60 +:11483B64 �:053452B64+:11483iA64 +:053452iA64�:079194B44 +:045897B20 0 �:032086B44h8� 3j +:11483B64 +:0048744B40 �:17679B64+:079194iA44 �:097976B60 �:032086iA44�:11483iA64 �:17679iA64�:061444B44 0 �:0030598B20 0h85j �:053452B64 +:063366B40�:061444iA44 �:068476B60�:053452iA640 �:032086B44 0 �:076496B20h8� 7j �:17679B64 +:021122B40+:032086iA44 +:17803B60+:17679iA64Table 5.2 Crystal �eld matrix for the � = 1 states.j82i+ j86i+ j82i� j86i�+:061196B20 �:047594B44 +:081566iA44 :047594iA44�:027622B40 �:13802B64 �:14192iA64 +:13802iA64+h82j �:0021070B60�:081566B44+:14192B64�:047594B44 �:036720B20 �:047594iA44 0�:13802B64 +:063366B40 �:13802iA64+h86j +:082174B60�:081566iA44 :047594iA44 :061196B20 �:047594B44+:14192iA64 +:13802iA64 �:027622B40 �:13802B64�h82j �:0021070B60+:081566B44�:14192B64�:047594iA44 0 �:047594B44 �:036720B20�:13802iA64 �:13802B64 +:063366B40�h86j +:082174B60Table 5.3 Crystal �eld matrix for the � = 2 states.



58 5.5 D2d and S4 Point Group Symmetry5.5 D2d and S4 Point Group SymmetryThe above matrices are Hermitian as required. It will be noted that with our choice of basis the imaginaryelements occur as o�-diagonal block matrices and indeed putting A44; A64 = 0 reduces the matrices to blockdiagonal form. Thus the rank 5 matrix for � = 0 splits into two submatrices of rank 3 and 2 and therank 4 matrix for � = 2 splits into two identical matrices of rank 2. The matrix for � = �1 remainsirreducible. This can be understood by recalling that the crystal �eld potential for D2d, Eq.(4.7), involvesonly real parameters and putting the imaginary parameters of the S4 potenital to zero leads to the highersymmetry of D2d symmetry. For a J = 8 level we have the O3 ) D2d decompositionD+8 ) 3�1 + 2�2 + 2�3 + 2�4 + 4�5 (5:9)Furthermore, under D2d ) S4 we have the compatibility table:D2d �1 �2 �3 �4 �5 �6 �7S4 �1 �1 �2 �2 �3 + �4 �5 + �6 �7 + �8Table 5.4 D2d : S4 Group Compatibility tableIn the case of the � = 0 matrix putting the imaginary part to zero leaves a rank 3 matrix involving3 symmetric basis states whereas the rank 2 matrix involves 2 antisymmetric basis states. Under D2dsymmetry the 3 symmetric states transform as �1 states while the 2 antisymmetric states transform as�2 states. The e�ect of including the imaginary terms is to lead to a coupling of the �ve basis states toyield states transforming under S4 as �1. This is consistent with S4 being a lower symmetry than D2d.Inspection of Eq.(5.9) and of Table 5.4 suggests that the number of crystal �eld levels in S4 and D2dfor J = 8 is in each case 13. In practice the � = 2 levels are two-fold degenerate in D2d whereas forS4 the � = 2 levels are non-degenerate, the degeneracy being lifted by the imaginary term. This is seenexperimentally with the � = 2 levels occurring at energies (in cm�1)� = 0 : 7; 23; 289; 315Here we have two pairs of levels and their comparatively small splittings is a measure of the strength ofthe imaginary term.Our next problem is to deduce a set of crystal �eld parameters that is consistent with the observed crystal�eld levels - the subject of our next lecture.Exercises5.1 Construct the crystal �eld matrices for the J = 4; 5; 6; 7 levels of the ground multiplet of Ho3+in LiY F4.5.2 Consider how you could determine the parameters of the crystal �elds to optimise the descriptionof the experimental levels.



59 6.1 Introduction The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneWhere in the Schr�dinger equation do you put thejoy of being alive?| E. P. WignerThe most important thing accomplished by the dis-covery of the radiation background in 1965 was toforce all of us to take seriously the idea that therewas an early universe| Steven Weinberg, The First Three MinutesLecture 66.1 IntroductionIn the last lecture we showed how to include the crystal �eld potential and to construct the relevantcrystal �eld matrices suitably corrected for intermediate coupling. In this lecture we diagonalise thematrices and make a comparison with experimental data. We shall �nd that while the splitting of theground level (J = 8) the higher members of the multiplet show signi�cant deviations from experiment,especially for the J = 5 and J = 4. We illustrate how the situation can be improved by allowing thecrystal �eld to couple the adjacent J levels, so-called J�mixing. Finally we view the eigenvectors of thelow-lying states and consider the Zeeman matrix elements for the two lowest states. We should then beready to consider the �nal perturbation coming from the nuclear hyper�ne interaction.6.2 Construction of the Crystal Field Matrix ElementsThe key to the calculation is our Maple �le "vs4" which calculates individual matrix elements diagonalin J but with correction for intermediate coupling using the coe�cients stored in the �le "icrm":-######################################################################Calculates crystal field matrix elements for S4-point symmetry with##intermediate coupling correction within a given J-manifold. ######################################################################read`njsymbol`;read`icrm`;ic();vs4:=proc(J,M1,M2,k,q)local result;result:=(-1)^(J-M1)*threej(J,k,J,-M1,q,M2)*icrm[9-J,k/2];end:crystal:=proc(J,M1,M2)local result;result:=simplify(B20*vs4(J,M1,M2,2,0) + B40*vs4(J,M1,M2,4,0)+ B60*vs4(J,M1,M2,6,0) + (B44 + I*A44)*vs4(J,M1,M2,4,4)+ (B44 - I*A44)*vs4(J,M1,M2,4,-4) + (B64 + I*A64)*vs4(J,M1,M2,6,4)+ (B64 - I*A64)*vs4(J,M1,M2,6,-4));end:The individual crystal �eld matrices are then computed using the crystal �eld parameters de�ned in theMaple �le "crystal.par". As an initial estimate we take those deduced in



60 6.2 Construction of the Crystal Field Matrix Elements6.1 N.Karayianus, D. E. Wortman and H. P. Jenssen, Analysis of the optical spectrum of Ho3+ inLiY F4, J. Phys. Chem. Solids, 37, 675-662 (1976).who made a least-squares �t to the experimental data known at that time and found (in cm�1)B20 = 410; B40 = �615; B60 = �27:9; B44 = 819; B64 = 677; A64 = �32:8 (6:1)More complete experimental data is given in Table IX in6.2 N. I. Agladze, M. N. Popova, M. A. Koreiba, B. Z. Malkin and V. R. Pekurovskii, Isotope e�ectsin the lattice structure and vibrational and optical spectra of 6Lix7Li1�xY F4 : Ho crystals, JETP77, 1021-1033 (1993).The relevant crystal �eld matrices are contained in the Maple �les crystal.J where J is the integervalue of the angular momentum of the level. We print below the �le "crystal.8"Digits:=5:read`vs4`:read`crystal.par`:##############################################################################Crystal field matrix for J = 8 with $\mu = 0$. ##############################################################################crystal.par();crystal80:=proc()S80:=array(sparse,1..5,1..5);S80[1,1]:=Eadd8+crystal(8,0,0);S80[1,2]:=evalf((crystal(8,0,4) + crystal(8,0,-4))/sqrt(2));S80[1,4]:=evalf((crystal(8,0,4) - crystal(8,0,-4))/sqrt(2));S80[2,1]:=S80[1,2];S80[2,2]:=evalf(Eadd8+(crystal(8,4,4) + crystal(8,-4,-4))/2);S80[2,3]:=evalf((crystal(8,4,8) + crystal(8,-4,-8))/2);S80[2,5]:=evalf((crystal(8,4,8) - crystal(8,-4,-8))/2);S80[3,2]:=S80[2,3];S80[3,3]:=evalf(Eadd8+(crystal(8,8,8) + crystal(8,-8,-8))/2);S80[3,4]:=evalf((crystal(8,8,4) - crystal(8,-8,-4))/2);S80[4,1]:=-S80[1,4];S80[4,3]:=-S80[3,4];S80[4,4]:=S80[2,2];S80[4,5]:=S80[3,2];S80[5,2]:=-S80[2,5];S80[5,4]:=S80[2,3];S80[5,5]:=S80[3,3];print();end:crystal80();print(`Eigenvalues for J=8 with mu=0`);evalf(Eigenvals(S80,V80));print(`Eigenvectors for J = 8 with mu=0`);print(V80);#############################################################################



61 6.2 Construction of the Crystal Field Matrix Elements#Crystal field matrix for J = 8 with $\mu = 1$. ##############################################################################crystal81:=proc()S81:=array(sparse,1..4,1..4);S81[1,1]:=Eadd8+crystal(8,1,1);S81[1,2]:=crystal(8,1,-3);S81[1,3]:=crystal(8,1,5);S81[2,1]:=evalc(conjugate(S81[1,2]));S81[2,2]:=Eadd8+crystal(8,-3,-3);S81[2,4]:=crystal(8,-3,-7);S81[3,1]:=evalc(conjugate(S81[1,3]));S81[3,3]:=Eadd8+crystal(8,5,5);S81[4,2]:=evalc(conjugate(S81[2,4]));S81[4,4]:=Eadd8+crystal(8,-7,-7);end:crystal81();print(`Eigenvalues for J=8 with mu=1`);evalf(Eigenvals(S81,V81));print(`Eigenvectors for J = 8 with mu=1`);print(V81);##############################################################################Crystal field matrix for J = 8 with $\mu = 2$. ##############################################################################crystal82:=proc()S82:=array(sparse,1..4,1..4);S82[1,1]:=evalf(Eadd8+(crystal(8,2,2)+crystal(8,2,-2)+crystal(8,-2,2)+crystal(8,-2,-2))/2);S82[1,2]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);S82[1,3]:=evalf((crystal(8,2,2)-crystal(8,2,-2)+crystal(8,-2,2)-crystal(8,-2,-2))/2);S82[1,4]:=evalf((crystal(8,2,6)-crystal(8,-2,-6))/2);S82[2,1]:=S82[1,2];S82[2,2]:=evalf(Eadd8+(crystal(8,6,6)+crystal(8,-6,-6))/2);S82[2,3]:=evalf((crystal(8,6,2)-crystal(8,-6,-2))/2);S82[2,4]:=0;S82[3,1]:=-S82[1,3];S82[3,2]:=-S82[2,3];S82[3,3]:=evalf(Eadd8+(crystal(8,2,2)-crystal(8,2,-2)-crystal(8,-2,2)+crystal(8,-2,-2))/2);S82[3,4]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);S82[4,1]:=-S82[1,4];S82[4,2]:=0;S82[4,3]:=S82[3,4];



62 6.3 Calculation of Crystal Field SublevelsS82[4,4]:=S82[2,2];print();end:crystal82();print(`Eigenvalues for J=8 with mu=2`);evalf(Eigenvals(S82,V82));print(`Eigenvectors for J = 8 with mu=2`);print(V82);####################################################################6.3 Calculation of Crystal Field SublevelsRunning the Maple �les "crystal.J" using the parameters given in Eq. (6.1) and setting the EaddJparameters so as to make the lowest crystal �eld level zero we obtain the results given in Table 6.1.Inspection of Table 6.1 shows that the agreement between the experimental and calculated values is verygood for the J = 8 and gets progressively worse as we move to higher levels. The levels for J = 5 andJ = 4 are particularly distorted. Several sublevels for J = 5 are calculated as too high whereas for J = 4the corresponding sublevels are too low. This suggests that the J = 4 and J = 5 states need to interactin such a way as to repel sublevels. This would be the case if there was J�mixing by the crystal �eldpotential.



63 Table 6.1 Comparison of Experimental and Calculated Stark LevelsJ � Expt Calc8 1 0 0(0cm�1) 2 7 72 23 260 48 460 56 521 72 760 217 2191 270 2720 276 2752 283 2810 290 2901 303 3042 315 3217 2 0 0(5152cm�1 1 3:4 60 10:5 182 11:0 111 32:4 320 53:8 471 75:5 822 80:3 892 138:7 1411 140:6 1450 140:8 1476 2 0 0(8671cm�1) 0 2:4 91 9:4 111 15:0 152 16:8 220 26:5 212 31:1 350 98:1 1001 112:8 1112 125:7 1215 1 0 0(11242cm�1) 0 5:6 11 8:4 162 12:4 10 14:0 70 59:4 921 88:4 1032 94:4 1494 0 0 0(13188cm�1) 1 81:5 762 133:0 1360 152:6 1272 162:7 1501 219 2080 351:5 342



64 6.4 J�Mixing by the Crystal Field Potential6.4 J�Mixing by the Crystal Field PotentialAs a partial example of the e�ects of J�mixing let us consider the matrix elements that couple the J = 4states to those of J = 5. Here we must choose Eadd4 and Eadd5 to include the free ion energies whichwe will however take as the experimental mean energies given in Table 6.1. We must also compute thematrix elements of the crystal �eld potential between the J = 4 and J = 5 states for each value of �.This may be done in Maple by generalising the �le "vs4" to the �le "vs4g" given below######################################################################Calculates crystal field matrix elements for S4-point symmetry with##intermediate coupling correction between two J-manifolds. ######################################################################read`njsymbol`;vs4g:=proc(J1,k,J2,M1,q,M2)local result;result:=(-1)^(J1-M1)*threej(J1,k,J2,-M1,q,M2)*icjmix[k/2];end:crystalg:=proc(J1,J2,M1,M2)local result;result:=simplify(B20*vs4g(J1,2,J2,M1,0,M2) + B40*vs4g(J1,4,J2,M1,0,M2)+ B60*vs4g(J1,6,J2,M1,0,M2) + (B44 + I*A44)*vs4g(J1,4,J2,M1,4,M2)+ (B44 - I*A44)*vs4g(J1,4,J2,M1,-4,M2) + (B64 + I*A64)*vs4g(J1,6,J2,M1,4,M2)+ (B64 - I*A64)*vs4g(J1,6,J2,M1,-4,M2));end:#######################################################################and then use our Maple �les "j45.mu" where mu is the integer � of the crystal quantum number.The case of "j45.0" is given below#########################################################################Crystal field matrix for mu = 0 states of J =4 and 5 combined. #########################################################################read`vs4`;read`icjm`;read`vs4g`;read`crystal.par`;Digits:=5;#########################################################################Crystal field matrix for J=4 with $\mu = 0$. #########################################################################crystal40:=proc()crystal.par();S40:=array(sparse,1..3,1..3);S40[1,1]:=Eadd4+crystal(4,0,0);S40[1,2]:=evalf((crystal(4,0,4) + crystal(4,0,-4))/sqrt(2));S40[1,3]:=evalf((crystal(4,0,4) - crystal(4,0,-4))/sqrt(2));S40[2,1]:=evalc(conjugate(S40[1,2]));S40[2,2]:=Eadd4+evalf((crystal(4,4,4) + crystal(4,-4,-4))/2);



65 6.4 J�Mixing by the Crystal Field PotentialS40[2,3]:=evalf((crystal(4,4,4) - crystal(4,-4,-4))/2);S40[3,1]:=evalc(conjugate(S40[1,3]));S40[3,2]:=evalc(conjugate(S40[2,3]));S40[3,3]:=S40[2,2];end:#########################################################################Crystal field matrix for J=5 with $\mu = 0$. #########################################################################crystal50:=proc()crystal.par();S50:=array(sparse,1..3,1..3);S50[1,1]:=Eadd5+crystal(5,0,0);S50[1,2]:=evalf((crystal(5,0,4) + crystal(5,0,-4))/sqrt(2));S50[1,3]:=evalf((crystal(5,0,4) - crystal(5,0,-4))/sqrt(2));S50[2,1]:=evalc(conjugate(S50[1,2]));S50[2,2]:=evalf(Eadd5+(crystal(5,4,4) + crystal(5,-4,-4))/2);S50[2,3]:=evalf((crystal(5,4,4) - crystal(5,-4,-4))/2);S50[3,1]:=evalc(conjugate(S50[1,3]));S50[3,2]:=evalc(conjugate(S50[2,3]));S50[3,3]:=S50[2,2];end:#########################################################################Matrix elements coupling J=4 to J=5 for mu=0. #########################################################################crystal45:=proc()crystal.par();icj();jmix:=array[1..3];jmix:=jmix45();S45:=array(sparse,1..6,1..6);S45[1,4]:=crystalg(4,5,0,0);S45[1,5]:=evalf((crystalg(4,5,0,4)+crystalg(4,5,0,-4))/sqrt(2));S45[1,6]:=evalf((crystalg(4,5,0,4)-crystalg(4,5,0,-4))/sqrt(2));S45[2,4]:=evalf((crystalg(4,5,4,0)+crystalg(4,5,-4,0))/sqrt(2));S45[2,5]:=evalf((crystalg(4,5,4,4)+crystalg(4,5,-4,-4))/2);S45[2,6]:=evalf((crystalg(4,5,4,4)-crystalg(4,5,-4,-4))/2);S45[3,4]:=evalf((crystalg(4,5,4,0)-crystalg(4,5,-4,0))/sqrt(2));S45[3,5]:=evalf((crystalg(4,5,4,4)-crystalg(4,5,-4,-4))/2);S45[3,6]:=evalf((crystalg(4,5,4,4)+crystalg(4,5,-4,-4))/2);S45[4,1]:=evalc(conjugate(S45[1,4]));S45[5,1]:=evalc(conjugate(S45[1,5]));S45[6,1]:=evalc(conjugate(S45[1,6]));S45[4,2]:=evalc(conjugate(S45[2,4]));



66 6.4 J�Mixing by the Crystal Field PotentialS45[5,2]:=evalc(conjugate(S45[2,5]));S45[6,2]:=evalc(conjugate(S45[2,6]));S45[4,3]:=evalc(conjugate(S45[3,4]));S45[5,3]:=evalc(conjugate(S45[3,5]));S45[6,3]:=evalc(conjugate(S45[3,6]));end:Ecalc:=proc()A0:=array(sparse,1..6,1..6);crystal40();crystal45();crystal50();copyinto(S45,A0,1,1);copyinto(S40,A0,1,1);copyinto(S50,A0,4,4);print(`Crystal Field Energy Matrix for mu = 0 for J = 4 and 5 combined`);print(A0);end:Ecalc();print(`Eigenvalues for mu = 0 for J = 4 and 5 combined`);evalf(Eigenvals(A0,V0));print(`Eigenvectors for mu = 0 for J = 4 and 5 combined`);print(V0);Running the above �le leads to the following crystal �eld energy matrix for the � = 0 states with J = 4and 5. The introduction of J�mixing has produced the additional matrix elements coupling the tworank 3 matrices for the states with J = 4 and 5. In particular note the rather large coupling between thej44i� and j50i states.0BBBBBB@ j40i j44i+ j44i� j50i j54i+ j54i�h40j 13402: �166:13 5:6261i 0 �1:2351i �48:192+h44j �166:13 13317: 0 8:6457i 0 �24:530�h44j �5:6261i 0 13317: 202:99 �24:530 0h50j 0 �8:6457i 202:99 11331: �17:549 �:83070i+h54j 1:2351i 0 �24:530 �17:549 11249: 0�h54j �48:192 �24:530 0 :83070i 0 11249: 1CCCCCCADiagonalisation of the complex Hermitian energy matrix yields the six eigenvalues as[13530:; 13187:;13337:;11312:; 11246:; 11242:]and the eigenvectors 0BBBBBB@Eigenvalue 13530 13187 13337 11312 11246 11242j40i :79449 :60677 :0031973 �:00019 :02341 :00077j44i+ �:60689 :79386 :03535 :00397 :01388 :00156j44i� �:01907i :03024i �:99419i �:10132i �:00176i �:00843ij50i :00062i �:00037i �:10147i :97399i :00528i :20293ij54i+ :00063i 0 :01240i �:20254i �:05059i :97763ij54i� �:01018 �:02523 �:00114 �:01559 :99835 :05524 1CCCCCCANotice that the eigenvectors indicate that there is signi�cant J�mixing for the eigenvalues 13337, 11312



67 6.5 Quenching of Angular Momentumand 11246. Furthermore, whereas without J�mixing the relative separations of the J = 4 states were0; 127; 342 with J�mixing they have become 0; 150; 343 comparing more favourably with the relativeexperimental separations of 0; 152:65; 351:5 - a substantial improvement. Likewise for the J = 4 stateswithout J�mixing the relative separations were 0; 6; 92, with J�mixing they became 0; 4; 66 comparingfavourably with the experimental values of 0; 8:4; 53:8. Some additional improvement could be expectedby extending the J�mixing calculation to include the J = 6 states and by �ne tuning the parameters.6.5 Quenching of Angular MomentumIn carrying out the above calculations we made use of symmetric and antisymmetric combinations ofangular momentum jJM i states. This resulted in combining states jJM i and jJ�M i in equal parts andhence to form states whose angular momentum was "quenched". Inspection of the eigenvectors showsthat indeed many of the states do occur with quenched angular momentum which has rami�cations fortheir magnetic behaviour and, as we shall see later, consequences for the magnetic nuclear hyper�nestructure.6.6 The Groundstate of LiY F4 : Ho3+We may summarise our information on the groundstate of LiY F4 : Ho3+ in terms of the followingeigenvalues and eigenvectors calculated using the Maple �le "crystal.8"Eigenvalues and eigenvectors for J = 8 with � = 00BBBB@Eigenvalue 45:9 218:6 290:1 51:6 274:6j80i :17575 :87070 �:45932 0 0j84i+ :73385 :19446 :64932 �:032543 :030424j88i+ :65532 �:45164 �:60543 �:00140 �:00151j84i� �:03273i �:00868i �:02897i �:72989i :68215ij88i� �:001356i :00093i :00125i �:68280i �:73056i1CCCCAEigenvalues and eigenvectors for J = 8 with � = 10BB@Eigenvalue 271:5 303:4 76:5 0j81i :81810 + :00046i :26792� :00011i :50101+ :07371i �:05078� :00008ij8� 3i �:20867 + :06104i :72162� :21129i :015696� :00222i :59736� :17382ij85i �:49134� :01021i �:13187� :00262i :84838+ :14242i �:034439� :00076ij8� 7i :19423� :065253i �:55716 + :18742i :057251� :010321i :74017� :24759i 1CCAEigenvalues and eigenvectors for J = 8 with � = 20BB@Eigenvalue 320:7 280:7 26:3 7:0j82i+ :84454 �:062284 :52961 �:048188j86i+ �:52791 :06899 :84164 �:08921j82i� :06672i :78857i :04192i :61000ij86i� �:05992i �:60792i :09559i :78589i 1CCANotice that angular momentum is completely quenched for the � = 0; 2 states but not for the � = �1states.6.7 The Diagonal Zeeman Matrix Elements for AtomsConsider a magnetic �eld Bz directed along the z�axis and a set of states j�SLJM > associated with aspectroscopic term 2S+1L. The presence of the magnetic �eld adds to the Hamiltonian a termHmag = �Bz�z = Bz�0[Lz + gsSz ] (6:2)where gs �= 2:0023. In terms of tensor operatorswe need to evaluate the matrix elements of the operator L(1)0 +gsS(1)0 . Consider �rst the diagonal matrixelements < �SLJM jL(1)0 + gsS(1)0 j�SLJM >



68 6.7 The Diagonal Zeeman Matrix Elements for AtomsApplication of the Wigner-Eckart theorem, Eq.(3.25), gives< �SLJM jL(1)0 + gsS(1)0 j�SLJM >= (�1)J�M � J 1 J�M 0 M � < �SLJkL(1) + gsS(1)k�SLJ >= MpJ(J + 1)(2J + 1) < �SLJkL(1) + gsS(1)k�SLJ > (6:3)Use of Eq.(3.56) gives< �SLJkgsS(1)k�SLJ >= gs(�1)S+L+J+1(2J + 1)� J 1 JS L S � < �SkS(1)k�S > (6:4a)Use of Eq.(3.57) gives < �SLJkL(1)k�SLJ >= (�1)S+L+J+1(2J + 1)� J 1 JL S L� < �LkL(1)k�L > (6:4b)The reduced matrix elements follow from Eq.(3.40) and the 6j�symbols may be evaluated explicitly usingEq.(3.42). Combining terms we �nally obtain< �SLJM jHmag j�SLJM >= Bz�0Mg(SLJ) (6:5)where g(SLJ) = 1 + (gs � 1)J(J + 1)� L(L + 1) + S(S + 1)2J(J + 1) (6:6)is the so-called Land�e g�factor. Eq.(6.5) shows that for a weak magnetic �eld with states of di�erent Jwell separated the magnetic �eld will produce splittings linearly dependent on the M quantum number.This is the so-called weak �eld Zeeman e�ect.For a J = 12 level we obtain the patternMJ12. . . "J = 12 g�0Bz. . . # �12Note that we have not only determined the number of sublevels (two) but also the magnitude ofsplitting. For a J = 1 level we obtain the patternMJ1.. . "J = 1 . . . 0.. . # �1In this case we obtain three sublevels. In general we obtain (2J + 1) sublevels. For a systemhaving an odd number of electrons we obtain an even number of sublevels while for an even number ofelectrons we obtain an odd number of sublevels.6.8 O�-diagonal Zeeman Matrix Elements for AtomsFor a magnetic �eld in the z�direction the M�quantum number remains a good quantum number. Thisis because we have preserved SO2 symmetry. However, Hmag does not preserve SO3 symmetry - we



69 6.8 O�-diagonal Zeeman Matrix Elements for Atomshave chosen a particular direction in 3�space. The total angular momentum J is no longer a goodquantum number. There exist matrix elements of Hmag coupling states with �J = �1. We �rst notethat Jz = Lz + Sz and hence Lz + gsSz = Jz + (gs� 1)Sz . But the matrix elements of Jz are diagonal inJ and hence to calculate the o�-diagonal matrix elements we need only calculate the o�-diagonal matrixelement of Sz as follows:< �SLJM jS(1)0 j�SLJ + 1M >= (�1)J�M � J 1 J + 1�M 0 M � < �SLJkS(1)k�SLJ + 1 > (6:7)Explicit evaluation of the 3j�symbol gives(�1)J�M � J 1 J + 1�M 0 M �= �2s (J +M + 1)(J �M + 1)(2J + 1)(2J + 2) (6:8)Evaluation of the reduced matrix element in Eq.(6.8) using Eq.(3.40) gives< �SLJkS(1)k�SLJ + 1 >= (�1)S+L+Jp(2J + 1)(2J + 3)� J 1 J + 1S L S � < SkS(1)kS >= �s (S + L + J + 2)(S + J + 1� L)(J + 1 + L� S)(S � J + L)4(J + 1) (6:9)Combining Eqs. (6.8) and (6.9) in Eq.(6.7) �nally yields< �SLJM jHmag j�SLJ + 1M >= Bz�0(gs � 1)p(J + 1)2 �M2)�s(S + L+ J + 2)(S + J + 1� L)(J + 1 + L � S)(S � J + L)4(J + 1)2(2J + 1)(2J + 3) (6:10)6.9 Zeeman E�ect in CrystalsIn a crystal it is useful to consider states constructed in a jJM i basis. For the moment we will restrictour attention to the case of the magnetic �eld Bz being parallel to the z�axis of the crystal. A statej�J�i with crystal quantum number � may be expanded as a linear combination of j�JM i states asj�J�i =XM a��JM j�JM i (6:11)The expansion coe�cients a��JM are just the eigenvector components obtained from the crystal �eldmatrix diagonalization.In D2d point group symmetry the angular momentum operator Lz + 2Sz transforms as the �2 repre-sentation and since �1 � �2 = �2 we can conclude that for D2d symmetry there can be no diagonalZeeman matrix elements for �1 states of D2d. The situation is di�erent for S4 point group symmetry asthen Lz + 2Sz transforms under S4 as �1 leading us to conclude that non-zero diagonal Zeeman matrixelements are possible for all values of �. However, we must also consider time reversal!Note that for the symmetric and antisymmetric linear combinations jJM i� we have�hJM jLz + 2Sz jJM i� = 0; �hJM jLz + 2SzjJM i� = Mg (6:12)



70 6.8 O�-diagonal Zeeman Matrix Elements for AtomsThe expectation value of Lz +2Sz for the two lowest levels for J = 8 may be readily calculated using theMaple �le "gcrystal" for the lowest � = 1 and � = 1 levels as given below##########################################################################Calculation of the Zeeman matrix element for the lowest $\mu = 1$ level##of $J = 8$ for $LiYF_4:Ho^{3+}. ##########################################################################with(linalg):g811:= proc()local A,V811,gm,result;V811:=array(1..4);gm:=array(sparse,1..4,1..4);V811[1]:=-0.5078 - 0.00008*I;V811[2]:=0.59736 - 0.17382*I;V811[3]:=-0.034439 - 0.00076*I;V811[4]:=0.74017 - 0.24759*I;gm[1,1]:=1;gm[2,2]:=-3;gm[3,3]:=5;gm[4,4]:=-7;A:=multiply(gm,V811);print(A);result:=dotprod(A,V811)*g;print(`Zeeman diagonal matrix element for the lowest J = 8 level with mu = 1`);print(result);end:g811();##########################################################################Calculation of the Zeeman matrix element for the lowest $\mu = 2$ level##of $J = 8$ for $LiYF_4:Ho^{3+}. ##########################################################################g822:= proc()local A,V822,gm,result;V822:=array(1..4);gm:=array(sparse,1..4,1..4);V822[1]:=-0.048188;V822[2]:=-0.08921;V822[3]:=0.61000*I;V822[4]:= 0.78589*I;gm[1,3]:=2;gm[2,4]:=6;gm[3,1]:=2;gm[4,2]:=6;multiply(gm,V822);result:=dotprod(",V822)*g;



71 6.8 O�-diagonal Zeeman Matrix Elements for Atomsprint(`Zeeman diagonal matrix element for the lowest J = 8 level with mu = 2`);print(result);end:g822();Recall that in lecture 3.1 we found the "free ion" Ho3+ ground state had a Land�e g�factor, correctedfor intermediate coupling, of g = 1:2416Running the �le "gcrystal" leads to the matrix element for the lowest � = �1 level, the ground state of�6:408and for the �rst excited state, with � = 2, of 0in units of the Bohr magneton �0. Time-reversal invariance gaurantees that the matrix elementsh�1jJzj�1i = h�2jJzj�2i = 0Note that in S4 only those levels with � = �1 will exhibit a Zeeman splitting. This gives an experimentalmethod of distinguishing � = �1 levels from levels with � = 0; 2.6.10 Electric dipole and Magnetic dipole selection rulesElectric dipole transitions involve the matrix elements of z for polarization parallel to the z�axis(��polarization) and for polarization perpendicular to the z�axis (��polarization) matrix elements ofx� iy. For S4 z transforms as the �2 representation and x� iy as �3; �4 leading to the electric dipoleselection rules 0BB@E:d �1 �2 �3 �4�1 � � � ��2 � � � ��3 � � � ��4 � � � � 1CCA (6:13)For magnetic dipole transitions we need the matrix elements of Jz for ��polarization and Jx � iJy for��polarization. For S4 Jz transforms as �1 and Jx� iJy as �3; Gamma4 leading to the magnetic dipoleselection rules 0BB@M:d �1 �2 �3 �4�1 � � � ��2 � � � ��3 � � � ��4 � � � � 1CCA (6:14)The experimental study of the polarization of transitions gives a further tool for determining the symmetryof the observed levels. Note that the electric dipole transitions are forced electric dipole transitions asthey nominally occur between states of the same parity. The crystal �eld potential expansion possessesodd rank terms that can mix states of opposite parity. Furthermore, the crystal �eld can mix states ofdi�erent J and L lifting the �J; �L = 0; �1 of the free ion while spin-orbit interaction can lead to abreakdown of the spin selection rule �S = 0. Magnetic dipole transitions are allowed between states ofthe same parity. In the free ion in pure LS�coupling we have the magnetic dipole selection rules�S; �L = 0; �J = 0; �1 (6:15)Again these selection rules can be broken by spin-orbit interaction and crystal �eld selection rules. Nev-ertheless, the selection rules of Eq. (6.13) and (6.14) are, in the absence of other interactions, rigorous.An interaction which can break those selection rules is the nuclear hyper�ne interaction that can weaklymix close-by crystal �eld levels. Nuclear hyper�ne interaction will be the subject of our next lecture.Exercise6.1 Extend Eq. (6.13) and (6.14) to include states transforming as �i where i = 5; : : : ; 8.



72 6.8 O�-diagonal Zeeman Matrix Elements for Atoms6.2 Extend the calculation of the intermediate coupling corrections for the reduced matrix elementsh�JkC(k)k�J 0i k = 2; 4; 6for J = 4; 5 and J 0.6.3 Complete the J�mixing calculation for the complete set of states with � = 0 and J = 4; 5; 6.



72 7.1 Introduction The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneI have carried out researches which will halt manysavants in theirs| �Evariste Galois |1830I hope we still have some bright twelve-year olds whoare interested in science. We must be careful notto discourage our twelve-year-olds by making themwaste the best years of their lives on preparing forexaminations| Freeman J. Dyson, In�nite in all Directions Pen-guin 1989Lecture 77.1 IntroductionWe now come, at last to our central subject - analysis of hyper�ne structure in crystal �elds. 165Hois distinguished from the other rare earths by possessing a large nuclear magnetic dipole and electricquadrupole moment. Having a nuclear spin I = 72 which couples to the electron angular momentumleads in the atom to the appearance in its atomic spectrum hyper�ne patterns of up to 8 closely placelines. The treatment in crystalline environments is somewhat di�erent as the electric �eld splittings arevery much greater than the hyper�ne splittings. This means that while basis states for the free atom arewell described by the quantum numbers IJFM such a scheme is wholly inappropriate in a crystal. Theappropriate basis then involves the quantum numbers JJzIIz . The existance of spin-orbit coupling mustalso be considered. In this lecture we �rst indicate how to calculate the matrix elements of the hyper�neinteraction in a JJzIIz basis and correct them for the e�ects of intermediate coupling. Much of todayslecture originates from7.1 B. G. Wybourne, Nuclear Moments and Intermediate Coupling, J. Chem. Phys. 37, 1807{1811(1962).Details of the relevant tensor operator formalism can be found in the notes of Lecture 3 and in7.2 B. R. Judd, Tensor Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill (1962).7.3 L.Armstrong, Jr. Theory of the Hyper�ne Structure of Free Atoms New York: Wiley-Interscience(1971).7.2 Matrix elements of the Magnetic Dipole Hyper�ne InteractionLet us de�ne a` = 2�2B(me=Mp)gIhr�3i (7:1)where �B is the Bohr magneton, gI the nuclear g factor and hr�3i the average inverse-cube radius of theelectron orbital `. Further, let Hm(i)(1) = a`[l(1)i �p10(s(1)xC(2))(1)i ]= a`[li �p10X(1)i ] (7:2)with H(1)m = nXi=1Hm(i)(1) (7:3)where the sum is over a group of equivalent electrons in the con�guration `n.The interaction of a nuclear magnetic moment with the orbital and spin moments of n electrons can be



73 7.2 Matrix elements of the Magnetic Dipole Hyper�ne Interactionwritten in the above tensor operator notation asHm = a`(H(1) � I(1)) (7:4)In the JIFM scheme the matrix elements of the nuclear magnetic hyper�ne operator Hm, diagonal inJ , may be evaluated as h�JIFM ja`(H(1) � I(1))j�0JIFM i (7:5)= a`(�1)J+I+F � J I FI J 1 � h�JkH(1)k�0JihIkI(1)kIi (7:6)= a` K2pJ(J + 1)(2J + 1) h�JkH(1)k�0Ji (7:7)where K = F (F + 1)� J(J + 1)� I(I + 1) (7:8)Exercises7.1 Use the work done in Lecture 3 to derive Eqs (7.5) to (7.7).7.2 Obtain the corresponding results for the matrix elements that are non-diagonal in J .Our principal problem now is to evaluate the matrix element in Eq. (7.7). Let us enlarge our statedescription to j�SLJi and allow for matrix elements non-diagonal in �SL. Then noting thatnXi=1 `(1)i = L(1) (7:9)we can show, as done earlier for the Zeeman e�ect, thatL = h�SLJkL(1)k�0S0L0JipJ(J + 1)(2J + 1) = ��;�0�S;S0�L;L0(2 � g) (7:10)where g is the usual Land�e g�factor for the electronic state. The correction for intermediate couplingfollows exactly as in Lecture 6. We simply replace g by its intermediate coupling value.The second part of the matrix elements of H(1) requires the evaluation of the operatorS = �p10h�SLJkPni (s(1)C(2))(1)k�0S0L0JipJ(J + 1)(2J + 1) (7:11)This may be evaluated using the results of Lecture 3 to giveS = (�1)`+1(2`+ 1)� ` ` 20 0 0�s30(2J + 1)J(J + 1) 8<:S S0 1L L0 2J J 19=; h�SLkV (12)k�0S0L0i (7:12)where the last matrix element involves the double tensor V (12) that acts in the spin and orbital spacesand whose one-electron reduced matrix elements satisfyh`kv(12)k`i =r32 (7:13)We shall consider these matrix elements later.The magnetic hyper�ne-structure constant A, as normally de�ned, is given byA = a`[L+ S] (7:14)Exercises7.3 Fill out the derivations of Eqs. (7.10) and (7.12).7.4 Generalise Eqs. (7.10) and (7.12) to give the matrix elements that are non-diagonal in J .



74 7.3 Nuclear magnetic hyper�ne matrix elements in the JJzIIz scheme7.3 Nuclear magnetic hyper�ne matrix elements in the JJzIIz schemeIn the JJzIIz scheme the diagonal elements are given by(�SLJJzIIz jHmj�0S0L0JJzIIz) = JzIzA (7:15)whereas the o�-diagonal matrix elements are given by(�SLJJzIIz jHmj�0S0L0JJz � 1IIz � 1) = 12A[(J � Jz)(J � Jz + 1)(I � Iz)(I � Iz + 1)] 12 (7:16)Exercise7.5 Sketch derivations of Eqs. (7.15) and (7.16).7.4 Nuclear electric quadrupole hyper�ne interactionsThe 165Ho nucleus is highly deformed and possesses an electric quadrupole moment Q. The matrixelements in the JIFM scheme are given by(�SLJIFM j nXi=1(C(2)i �Q(2))j�0S0L0JIFM )= e2Qhr�3i� 34K(K + 1)� I(I + 1)J(J + 1)2I(2I � 1)J(2J � 1) �s 8J(2J � 1)(2J + 3)(2J + 1)(2J + 1)(�1)`+1(2` + 1)� ` ` 20 0 0� (�SLJkU (2)k�0S0L0J)�SS0 (7:17)= b`XJ � 34K(K + 1)� I(I + 1)J(J + 1)2I(2I � 1)J(2J � 1) � (7:18)where b` = e2Qhr�3i (7:19)The electric quadrupole hyper�ne constant B, as normally de�ned, is given byB = b`XJ (7:20)The matrix elements of the unit tensor U (2) may be evaluated by �rst noting thath�SLJkU (2)k�0SL0Ji = (�1)S+L0+J (2J + 1)� J J 2L L0 S� h�SLkU (2)k�0SL0i (7:21)The doubly reduced matrix elements are listed by Nielson and Koster.Note that the matrix elements of the electric-quadrupole interaction are, unlike for the magnetic-dipoleinteraction, diagonal in spin. Furthermore, the matrix elements of the electric-quadrupole interaction forthe f10 con�guration are opposite in sign to those for f4 while the matrix elements of the magnetic-dipoleinteraction have the same sign for both con�gurations.In the JJzIIz scheme the matrix elements of the electric- quadrupole interaction are given by(�SLJJzIIzj nXi=1(C(2)i �Q(2))j�0SL0JJz � q; IIz � q)= (�1)J�Jz � J 2 J�Jz q Jz � q� (�1)I�Iz � I 2 I�Iz q Iz � q�b`XJ4 s(2I + 1)(I + 1)(2I + 3)(2J + 1)(J + 1)(2J + 3)I(2I � 1)J(2J � 1) (7:22)where q is limited to the values 0; �1; �2. In all cases the matrix elements in the JJzIIz scheme arediagonal in M = Jz + Iz .



75 7.5 The matrix elements of V (12)7.5 The matrix elements of V (12)Various tables of the matrix elements of V (12) exist in the literature and of varying reliability. Most ofthe matrix elements of V (12) may be obtained from the matrix elements of U (2) tabulated by Nielson andKoster by making use of the identityh`na�v1S1LkV (12)k`na�v1S01L0ih`nb�v2S2LkU (2)k`nb�v02S2L0i= (�1)v1+v2�(v2;v02)+1+(nb�na+v2�v1)=2r2S2 + 14 � 12(2` + 1� v1) 0 12(2` + 1� v1)12(2` + 1� na) 0 �12(2` + 1� na)�� 12 (2`+ 1� v2) 1 12 (2`+ 1� v02)12(2` + 1� nb) 0 �12(2` + 1� nb)� (7:23)with na 6 nb. Thus we �nd thathf44[111]U5LkV (12)kf44[111]U5L0i = �p304 hf33[111]U4LkU (2)kf33[111]U 04L0i (7:24)hf44[111]U5LkV (12)kf44[211]U 03L0i = �12p10hf53[111]U4LkU (2)kf55[211]U 04L0i (7:25)and hf44[211]U3LkV (12)kf44[211]U 03L0i = p62 hf55[211]U4LkU (2)kf55[211]U 04L0i (7:26)leading directly to the results given as a matrix below0BBBBBB@V (12) j5Ii j(21)3Hi j(30)3Hi j(21)3Ki j(30)3Kih5Ij �p71544 19p42162 �1112 �p10542 p178521h(21)3Hj 19p42162 5p3003702 p2861170 �4p130195 �10p221273h(30)3Hj �1112 p2861170 �17p30032340 �10p1365273 p23205546h(21)3Kj �p10542 �4p130195 �10p1365273 2p663273 46p39273h(30)3Kj p178521 �10p221273 p23205546 46p39273 113p6634641 1CCCCCCA (7:27)7.6 Matrix elements of the spin part of the magnetic-hyper�ne operatorWith the matrix elements of the double tensor V (12) established in Eq. (7.27) it is a simple matter tocomplete the calculation of the matrix elements of the spin part of the magnetic hyper�ne interactiongiven in Eq. (7.11) using the Maple code of the �le "mhfs" given below############################################################################Programme to calculate the spin part of the magnetic hyperfine structure.##Uses Eq.(7.12) and V is the reduced matrix element of the double tensor. #############################################################################read`njsymbol`;S:=proc(S1,L1,S2,L2,J,V)local result;result:=7*threej(3,3,2,0,0,0)*sqrt((30*(2*J + 1))/(J*(J + 1)))*ninej(S1,S2,1,L1,L2,2,J,J,1)*V;end:############################################################################Running the above code for J = 7 and J = 8 gives the relevant results given in Eqs. (7.28) and (7.29). 420S j5I7i j(30)3K7ih5I7j 1 19p11914h(30)3K7j 19p11914 11342 ! (7:28)



76 7.7 Intermediate Coupling Corrections for the spin part0B@60S j5I8i j(21)3K8 j(30)3K8ih5I8j 1 �p340 p512h(21)3K8j �p340 �13 �23p1751h(30)3K8j p512 �23p1751 �113102 1CA (7:29)7.7 Intermediate Coupling Corrections for the spin partUsing the eigenvectors for J = 8 and J = 7 states given in Table 3.1 leads to the intermediate couplingresults for the lowest two members of the 5I multipletS(5I8) = 160[�0:5700]; S(5I7) = 1420[�3:2369] (7:30)where the �rst part of the result is given as a fraction and the second part is the intermediate couplingcorrection factor. The latter factor would be unity for pure LS�coupling. Notice that the intermediatecoupling corrections for the spin part of the interaction can be quite large even for relatively smalldepartures from LS�coupling. However, in general the spin part is very much smaller than the orbitalpart.7.8 Intermediate Coupling Corrections for the orbital partAgain, using the eigenvectors for the J = 8 and J = 7 states given in Table 3.1 leads to theintermediatecoupling results for the two lowest members of the 5I multiplet asL(5I8) = 34[1:0082]; L(5I7) = 2328 [0:9964] (7:31)The corrections for small departures from LS�coupling make for quite small corrections compared withthose for the spin part of the magnetic hyper�ne interaction.7.9 Total Intermediate Coupling Corrections for Magnetic-Dipole HFSThe total intermediate coupling correction for the magnetic-dipole hyper�ne structure comes from com-bining Eqs. (7.10) and (7.12) to to form total magnetic hyper�ne interaction matrices and then trans-forming them to diagonal form with the appropriate intermediate coupling eigenvectors to yield[L+ S](5I8) = 2330[0:9735]; [L+ S](5I7) = 173210 [0:9591] (7:32)Here we see again that the total e�ect is quite small and comes primarily from the factor (2 � g).7.10 Intermediate Coupling Corrections for Electric-Quadrupole HFSThe intermediate coupling correction for the electric-quadrupole hyper�ne interaction is exactly the samefor the crystal �eld potential term with k = 2 and hence the factors are the same as found in column 2of Table 4.12.7.11 Concluding RemarksWe now have all the results necessary to discuss the hyper�ne structure in the two lowest levels of the 5Imultiplet. In the next lecture we shall discuss �rst some of the qualitative aspects of hyper�ne structurein crystal �eld and then commence the calculations speci�c to LiY F4 : Ho3+ crystals.



77 8.3 General features of Magnetic-Dipole HFS in CrystalsThe Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneThe universe is in�nite in all directions, not onlyabove us in the large but also below us in the small.If we start from the human scale of existence andexplore the content of the universe further and fur-ther, we �nally arrive, both in the large and in thesmall, at misty distances where �rst our senses andthen even our concepts fail us.|Emil Wiechert, K�onigsberg, 1896Lecture 88.1 IntroductionToday I propose to �rst make some qualitative remarks about hyper�ne structure in crystals and then tocommence some detailed calculations towards obtaining an understanding of the hyper�ne structure inthe two lowest levels of the ground multiplet of Ho3+ in the crystal �eld produced at the substitutionalsite in single crystals of LiY F4.8.2 The Experimental DataMost of the experimental data we shall be drawing upon comes from the references given in Lecture 1.Some of the relevant data is collected together in Table 8.1 belowJ Ee Ec Ehfse Ehfsc hJzie hJzic hgzie hgzic8 0 0 �0:147 �5:2 �5:09 13:0 12:67 3:4 6:0 0:082 2:75 2:47 6:49 5:832:4 32 �0:131 �4:39 �4:87 10:36 11:575:5 82 �0:08 �2:74 �2:81 6:48 6:6140:6 145 1:22 2:9Table 8.1 Comparison of Experimental and Calculated Levels for �34The experimental quantities are subscripted by an e and calculated quantities by a c. Ehfs is the meanspacing of the hyper�ne levels in units of cm�1. hgzi is the magnetic splitting factor for the level.8.3 General features of Magnetic-Dipole HFS in CrystalsThe inclusion of the crystal �eld produces Stark splittings that may be labelled by the ordinary irreduciblerepresentations of the point group S4. The irreducible representations �1; �2 are one-dimensional anddistinct whereas the �3; �4 are complex conjugates and in the absence of external magnetic �elds occur asdegenerate pairs, often designated as �34 levels. The various states in the crystal �elds can be convenientlydescribed in a jJJzi basis with the states involving various linear combinations of these basis states. Thematrix elements h�1jJzj�1i; h�2jJzj�2i; h�1jJzj�2i = 0 (8:1)The diagonal matrix elements of the magnetic-dipole hyper�ne interaction involve (cf. Eq. (7.15)) areproportional to those of the operator JzIz and hence must vanish within and between states involvingthe �1 and �2 states and thus these states cannot exhibit �rst-order magnetic hyper�ne structure. Thereis no such restriction for the �34 states and thus only those states can directly exhibit magnetic hyper�nestructure. The �rst order magnetic hyper�ne structure for the �34 states will consist of 2I + 1 = 8equispaced levels each two-fold degenerate which is consistent with the fact that the spin irreduciblerepresentations of the double group S4 are all two-dimensional. A typical �34 level schematically as



78 8.4 Electric-Quadrupole HFS in Crystals�7=2�5=2�3=2�1=2�1=2�3=2�5=2�7=2Schematic magnetic hyper�ne splitting for a �34The o�-diagonal matrix elements of the magnetic-dipole hyper�ne interaction, Eq. (7.16), couple statesdi�ering in Jz by one unit and hence can couple the �1 and �2 states to the �34 states in second-order.This can lead to the appearance of second-order hyper�ne levels in the �1 and �2 states. In that casetheir levels will not exhibit equispacing. This property helps in distinguishing �34 states from the �1;�2states.In the absence of hyper�ne interaction the crystal �eld levels exhibit the precise symmetries of the ordinaryirreducible representations of S4. However, since in Holmium the nuclear spin I = 72 is half-integer thehyper�ne levels must be classi�ed with respect to the spin irreducible representations of S4. This meansthat the crystal �eld quantum numbers � can be mixed by the hyper�ne interaction and cease to be goodquantum numbers breaking down the usual selection rules.8.4 Electric-Quadrupole HFS in CrystalsThe electric-quadrupole hyper�ne interaction in crystals is weaker than that of the magnetic-dipoleinteraction but still needs to be considered. The matrix elements were given in Eq. (7.22 ). The diagonalelements arise for q = 0 and may be specialised toh�SLJJzIIz j nXi=1(C(2)i �Q(2))j�0SL0JJzIIzi = b`XJ [3J2z � J(J + 1)][3I2z � I(I + 1)]4IJ(2J � 1)(2I � 1) (8:2)Thus the electric-quadrupole hyper�ne interaction, in �rst-order, di�ers markedly from that of themagnetic-dipole hyper�ne interaction producing sublevels that are quadratic, rather than linear, in Jz.This produces a complicationmaking it di�cult to distinguish non-linear second-order magnetic hyper�nestructure from �rst-order electric-quadrupole hyper�ne structure.8.5 Eigenvectors for J = 7 StatesThe eigenvectors for the J = 8 level of the ground multiplet were given in Lecture 6 x6.6. For ourcalculations we will also need the eigenvalues and eigenvectors for the states associated with the J = 7level of the ground multiplet. These can be found by running the Maple �le "crystal.7" to giveEigenvalues and eigenvectors for J = 7 with � = 00@Eigenvalue 147 18 47j70i :8806 �:47396 0j74i+ �:47396 �:88056 �:00192j74i� :00091I :001687I �1:0000I1AEigenvalues and eigenvectors for J = 7 with � = 10BB@Eigenvalue 145 82 6 32j71i :83546 :34796 :42302 :04504j7� 3i �:44200� :00703I :63594 + 0:01013I :28974 + :00500I :56219+ :00889Ij75i �:29616� :00340I �:26367� :00303I :84100 + :01079I �:36807� :00418Ij7� 7i :13779� :00173I �:63623 + :00798I :17245� :00193I :73915� :00936I 1CCA



79 8.6 Calculation of hJzi for J = 8 and J = 7Eigenvalues and eigenvectors for J = 7 with � = 20BB@Eigenvalue 81 0 141 11j72i+ �:84982 �:52688 :01064 �:00362j76i+ :52687 �:84972 :00329 :00972j72i� :00958I :00593I :94639I �:32263Ij76i� :00540I �:00873I �:32261I �:94649I1CCA8.6 Calculation of hJzi for J = 8 and J = 7The expectation values of Jz may be calculated in precisely the same manner as used to calculate theZeeman matrix element on page 70 of Lecture 6. Continuing in that way we obtain the entries given inthe seventh column of Table 8.1.The detailed calculation is shown in the following Maple session for J = 7:L:=array(sparse,1..4,1..4);L := array(sparse, 1 .. 4, 1 .. 4, [])L[1,1]:=1; L[1, 1] := 1L[2,2]:=-3; L[2, 2] := -3L[3,3]:=5; L[3, 3] := 5L[4,4]:=-7; L[4, 4] := -7v1:=array(1..4); v1 := array(1 .. 4, [])for i from 1 to 4 do v1[i]:=V71[1,i] od; -5v1[1] := .83546 - .25724*10 I-5v1[2] := .34796 + .51083*10 Iv1[3] := .42302 + .00057401I-5v1[4] := .045039 - .19382*10 Idotprod(multiply(L,v1),v1); -71.2153 + .21206*10 Iv2:=array(1..4); v2 := array(1 .. 4, [])for i from 1 to 4 do v2[i]:=V71[2,i] od;v2[1] := - .44200 - .0070321 Iv2[2] := .63594 + .010129 Iv2[3] := .28974 + .0050042 Iv2[4] := .56219 + .0088915 I



80 8.7 Calculation of the Magnetic Splitting Factors hgzidotprod(multiply(L,v2),v2); -6- 2.8112 - .75042*10 Iv3:=array(1..4); v3 := array(1 .. 4, [])for i from 1 to 4 do v3[i]:=V71[3,i] od;v3[1] := - .29616 - .0034002 Iv3[2] := - .26367 - .0030331 Iv3[3] := .84100 + .010799 Iv3[4] := - .36807 - .0041872 Idotprod(multiply(L,v3),v3); -62.4676 + .18910*10 Iv4:=array(1..4); v4 := array(1 .. 4, [])for i from 1 to 4 do v4[i]:=V71[4,i] od;v4[1] := .13779 - .0017311 Iv4[2] := - .63623 + .0079844 Iv4[3] := .17245 - .0019314 Iv4[4] := .73915 - .0093621 Idotprod(multiply(L,v4),v4); -6- 4.8719 - .45345*10 IThe matrix L is diagonal with elements Jz and the column vector vk is the eigenvector associatedwith the k�th eigenvalue. The eigenvector arrays V 71 were generated by �rst running the Maple �le"crystal.7". The imaginary part of the resultant in each case is rounded to zero to give the �nal valuesof hJzi.8.7 Calculation of the Magnetic Splitting Factors hgziThe magnetic splitting factors hgzi may be readily calculated by noting thathgzi = 2jhJzijgIC (8:3)where gIC is the intermediate coupling corrected "free ion" Land�e g�factor, in our caseg8 = 1:242; g7 = 1:177 (8:4)Use of these values in Eq. (8.3) together with the calculated values of hJzi give the entries in column 9of Table 8.1.8.8 The Magnetic Hyper�ne Structure Constant AThe magnetic hyper�ne structure constant was de�ned in Eq. (7.14) asA = a`[L+ S] (7:14)It follows from Eq. (7.15) that in a crystal the average spacing between successive hyper�ne levels, Ehfswill be Ehfs = hJziA (8:5)This means that if the hyper�ne structure is purely magnetic-dipole in character and if there is nohyper�ne interaction with other Stark levels the hyper�ne pattern should consist of eight equally spacedsublevels. Departures from this equality indicates either second-order magnetic dipole e�ects and/orelectric-quadrupole interactions. As noted earlier, the �34 Stark levels can show �rst-order magnetic-dipole splittings whereas the �1; �2 Stark levels can only show second-order magnetic-dipole hyper�ne



81 8.9 Selection Rules and Hyper�ne Structurestructure which in general will be smaller than that shown for �34 levels and cannot be expected toexhibit equally spaced sublevels. This gives a practical way for distinguishing �34 levels from �1; �2levels.8.9 Selection Rules and Hyper�ne StructureWe discussed the selection rules for electric dipole and magnetic dipole transitions involving the Starklevels that transformed as the ordinary irreducible representations of the point group S4. However, thesituation is changed by the presence of the hyper�ne interaction. The nuclear spin of Ho is half-integerwhile the electronic angular momentum is integer leading to a net angular momentum in the free ion thatis necessarily half-integer. As a result the Stark levels in the presence of the hyper�ne interaction willinvolve states belonging to the double group of S4. The additional irreducible representations �i i =5; : : : ; 8 are one-dimensional but occur as complex pairs. For electric-dipole transitions the ��polarizationtransitions involve the matrix elements of z whichs transforms as the �2 irreducible representation whilefor ��polarization transitions x� iy transform as the �3; �4 irreducible representations of S4 leading tothe electric-dipole selection rules for the relevant irreducible representations as0BB@E:d �5 �6 �7 �8�5 � � � ��6 � � � ��7 � � � ��8 � � � � 1CCALikewise, for magnetic-dipole transitions we have0BB@M:d �5 �6 �7 �8�5 � � � ��6 � � � ��7 � � � ��8 � � � � 1CCATaking into account the degeneracy of the pairs �56; �78 we see that some of the transitions will occurin pure �� or �� polarization with the rest as ���polarization as shown below�E:d �56 �78�56 � ���78 �� � �and �M:d �56 �78�56 �� ��78 � �� �which gives a way of sometimes distinguishing the di�erent symmetries by polarization measurements.Within the ground 5I multiplet we expect the transitions within and between the sublevels for J = 7; 8 toexhibit both magnetic dipole and forced electric dipole transitions whereas for transitions from sublevelsof J = 8 to levels with �J � 2 should exhibit only electric dipole transitions.8.10 First-Order Magnetic Hyper�ne StructureAs noted earlier non-zero �rst-order magnetic hyper�ne structure is only possible for �34 levels in S4point symmetry. The �rst part of the calculation is to diagonalize the crystal �eld matrices to produceeigenvalues and eigenvectors of the form (in the absence of J�mixing)jJ��Izi =XJz aJ��Jz jJJzIzi (8:6)where the aJ��Jz are the complex eigenvector components which are independent of the nuclear spinprojection Iz and the nuclear spin I is assumed to be �xed. The �rst-order magnetic hyper�ne matrix



82 8.11 Second-Order Magnetic Hyper�ne Structureelements are then hJ��IzjHmag jJ��Izi =XJz a�J��JzaJ��Jz hJJzIIz jHmagjJJzIIzi= ��� ;�34AhJziIz (8:6)where hJzi is the expectation value of Jz.8.11 Second-Order Magnetic Hyper�ne StructureThe magnetic hyper�ne structure constant A for the ground state is � 2:79�10�2cm�1 which is a typicalvalue for Ho and thus the splittings are � 0:15cm�1. When Stark levels are very close in the crystal �eldcalculation we can anticipate that second-order magnetic hyper�ne interactions will couple the �34 statesto those of �1; �2. This can lead to the latter levels showing hyper�ne structure and to the hyper�nestructure patterns of the �34 levels becoming distorted. Inspection of Table 6.1 would suggest that thethree top crystal �eld levels for for 5I7 would be prime candidates for exhibiting such a perturbation.Likewise for the third and fourth crystal �eld levels. To calculate these e�ects we need to compute matrixelements that are non-diagonal in Jz and Iz such that Jz + Iz = J 0z + I 0z to givehJ��Iz jHmagjJ��0Iz � 1i =XJz a���JzIza��0Jz�1Iz�1hJJzIIz jHmagjJJz � 1IIz � 1i (8:7)with the matrix element in the JJzIIz basis being computed using Eq. (7.16). This calculation will bethe subject of the next lecture.



83 9.1 Introduction The Application of Symmetry ConceptstoPhysical Problems II (contd)Analysis of Hyper�ne structure in CrystalsB. G. WybourneIt is hard for me to believe, as some have tried tomaintain, that such superb theories could have arisenmerely by some random natural selection of ideasleaving only the good ones as survivors. The goodones are simply much too good to be survivors ofideas that have arisen in that random way. Theremust, instead, be some deep underlying reason forthe accord between mathematics and physics|R. G. Penrose, The Emperor's New Mind 1990Lecture 99.1 IntroductionThis is the last lecture in this course and I would like to conclude with a detailed example of the magnetichyper�ne interaction mixing two adjacent crystal �eld levels to show how the �rst-order equal spacing hfspattern becomes distorted by second-order e�ects and how crystal �eld levels that show no �rst-order hfscan acquire hfs patterns. This exercise will also give us insight into intensity and selection rule changes.Finally I shall remark on directions for future studies of hyper�ne structure in crystal �eld environments.9.2 The Particular Example, Two levels of 5I7As a very speci�c example I shall consider the two highest crystal �eld levels of the 5I7 member of thegroundstate multiplet. The top level is a non-degenerate �1 level (or equivalently, a � = 0 level) at5293:1cm�1 and the next to top level is a two-fold degenerate �34 level (or equivalently, a � = �1 level)at 5292:9cm�1. Thus these two levels are separated by 0:2cm�1 and can be expected to perturb oneanother. The question is "By how much?".9.3 The First-order CalculationThe �rst step in our calculation is to establish the �rst-order hfs splitting for the �34 level. To dothat we need an estimate of the hfs constant A for the 5I7 term. This is essentially deducible from theexperimental data given in Table 8.1. The crystal �eld level at 5184:66cm�1 (140:6cm�1 in Table 8.1)has a mean hyper�ne spacing of �0:131cm�1 and a measured expectation value of hJzi = �4:39cm�1leading via Eq. 8.5 to Aexpt(5I7) = 0:0275cm�1 (9:1)There does not seem to be data available for the �34 level of interest, but having computed, in Table 8.1,hJzi for the level we can deduce that the mean �rst order spacing isEhfsc = 1:22A = 0:0335cm�1 (9:2)which is at the borderline of the Moscow groups resolution and explains why they do not report a valuefor this level. Nevertheless, we expect at this order to have an unresolved hfs pattern of eight lines andhence of a width of 0:23cm�1 which can be expected to be larger than the linewidth of the �1 level whichhas no �rst-order hfs. The result of our �rst order calculation maybe portrayed in Fig. 9.1.Notice that there are a total of 16 states associated with the �34 level and 8 with the �1 level as expectedfor a nuclear spin of I = 7=2, the doubling in the �34 coming from the fact that �34 is two-fold degeneratebefore coupling with the nuclear angular momentum. To proceed further we must consider the crystal�eld eigenvectors for the two relevant Stark levels.



84 9.4 Crystal Field Eigenvectors�1 �1=2 : : :� 7=2�7=2�5=2�3=2�34 �1=2�1=2�3=2�5=2�7=2Fig. 9.1. Schematic of the �rst-order hfs splittings9.4 Crystal Field EigenvectorsThe second-order magnetic hyper�ne calculation proceeds via Eq. (8.7). The eigenvectors are given onp78. However to a good approximation we may discard the imaginary coe�cients for the two relevanteigenvectors and writej� = 0i = 0:8806j70i� 0:4740j74i+ (9:3a)j� = 1i = 0:8355j71i� 0:4420j7� 3i � 0:2962j75i+ 0:1378j7� 7i (9:3b)Inspection of Eq. (8.6) shows that there are no non-zero o�-diagonal matrix elements involving the j7�7istate.9.5 The O�-Diagonal Matrix ElementsNoting Eq. (8.6) and making explicit use of the eigenvectors given above we haveh� = 0IzjHmj� = 1Iz � 1i= 0:8806� 0:8355h70IzjHmj71Iz � 1i+ (0:4740� 0:4420h7� 4IzjHmj7� 3Iz � 1i+ 0:2962� 0:4740h74IzjHmj75Iz � 1i=p2 (9:4a)and h� = 1IzjHmj� = 0Iz + 1i= 0:8806� 0:8355h71IzjHmj70Iz + 1i+ (0:4740� 0:4420h7� 3IzjHmj7� 4Iz + 1i+ 0:2962� 0:4740h75IzjHmj74Iz + 1i)=p2 (9:4b)The above is readily evaluated using the Maple �le "hfs.cry" given below############################################################################This programme is for calculating the crystal field transformed magnetic ##hyperfine matrix elements for the specific case given in lecture 9. ##hfsup calculates the matrix element <mu=1 I_z/H/mu=0 I_z + 1> while hfsdo##calculates the matrix element <mu=0 I_z/H/mu=1 I_z - 1>. #########################################################################################################################################################Programme to calculate the off-diagonal magnetic hyperfine matrix elements##as in Eq. (7.17) of the lecture notes. Ou for increasing J_z and Od for ##decreasing J_z. #############################################################################Ou:=proc(J,Jz,I,Iz)local result;result:=combine(simplify(sqrt((J-Jz)*(J+Jz+1)*(I+Iz)*(I-Iz+1))



85 9.6 Some Group Theory/(2*sqrt(2))))*A;end:Od:=proc(J,Jz,I,Iz)local result;result:=combine(simplify(sqrt((J+Jz)*(J-Jz+1)*(I-Iz)*(I+Iz+1))/(2*sqrt(2))))*A;end:Digits:=5:hfsup:=proc(Iz)local result;result:=evalf(0.8806*0.8355*Od(7,1,7/2,Iz) + (0.4734*0.4420*Od(7,-3,7/2,Iz)+ 0.2962*0.4740*Od(7,5,7/2,Iz))/sqrt(2));end:hfsdo:=proc(Iz)local result;result:=evalf(0.8806*0.8355*Ou(7,0,7/2,Iz) + (0.4734*0.4420*Ou(7,-4,7/2,Iz)+ 0.2962*0.4740*Ou(7,4,7/2,Iz))/sqrt(2));end:##########################################################################Note that if the eigenvectors are real then it follows from Eq. (8.6) and (9.4) that for �xed Jh� = 0; IzjHmj� = 1; Iz � 1i = h� = 1; Iz � 1jHmj� = 0; Izi (9:5a)h� = 1; IzjHmj� = 0; Iz + 1i = h� = 0;�IzjHmj� = 1;�Iz � 1i (9:5b)Furthermore, the matrix elements will be zero unless�+ Iz = �0 + I 0z (9:6)This is the crystal �eld analogue of the free ion restriction thatJz + Iz = J 0z + I0z (9:7)There are also the restrictions that�� = 0; �1; �Iz = 0; �1; �(�+ Iz) = 0 (9:8)These various restrictions allow us to treat the case of Stark levels interacting via the magnetic hyper�neinteraction without the need to construct large matrices or to resort to perturbation procedures.9.6 Some Group TheoryOur problem involves coupling the I = 7=2 angular momentum of the nucleus to the �34 and �1 Starklevels. This will lead to pairs of irreducible representations that are complex conjugates and hencedegenerate. We shall designate these as �56 and �78. For I = 7=2 we obtain in S4 symmetry thedecomposition [7=2]) 2�56 + 2�78 (9:9)Noting the Kronecker products �34 � (2�56 + 2�78) = 4�56 + 4�78 (9:10a)�1 � (2�56 + 2�78) = 2�56 + 2�78 (9:10b)�2 � (2�56 + 2�78) = 2�56 + 2�78 (9:10c)



86 9.7 Some HFS Matriceswhich is consistent with the �34 Stark levels producing eight two-fold degenerate sub-levels and the �1and �2 Stark levels each producing four two-fold degenerate sub-levels. This gives yet another methodfor distinguishing �34 Stark levels from those of �1 and �2 Stark levels.9.7 Some HFS MatricesFor the particular example we are pursuing the eigenvectors have been chosen as real and hencethe hfs matrices are symmetric. There is one matrix for each value of m = � + Iz with the matriceswith �m yielding the same eigenvalues and hence to calculate the hfs patterns it su�ces to consider justthe matrices associated with positive values of m. For the case under consideration this means threerank three matrices m = 1=2; 3=2; 5=2, a rank two matrix m = 7=2 and a rank one m = 9=2. Thesematrices can be expressed in terms of two parameters, � the energy separation of the two Stark levelsand the magnetic hyper�ne structure constant A. The matrices may be readily constructed using theMaple programme "hfs.cry" to give the matrices as0@m = 1=2 j0; 1=2i j1;�1=2i j � 1; 3=2ih0; 1=2j � 14:166A 13:716Ah1;�1=2j 14:166A �0:610A 0h�1; 3=2j 13:716A 0 �1:830A 1A 0@m = 3=2 j0; 3=2i j1; 1=2i j � 1; 5=2ih0; 3=2j � 13:716A 12:268Ah1; 1=2j 13:716A 0:610A 0h�1; 5=2j 12:268A 0 �3:050A 1A0@m = 5=2 j0; 5=2i j1; 3=2i j � 1; 7=2ih0; 5=2j � 12:268A 9:3697Ah1; 3=2j 12:268A 1:830A 0h�1; 7=2j 9:3697A 0 �4:270A 1A �m = 7=2 j0; 7=2i j1; 5=2ih0; 7=2j � 9:3697Ah1; 5=2j 9:3697A 3:050A � �m = 9=2 j1; 7=2ih1; 7=2j 4:270A �Notice that in this case the o�-diagonal hyper�ne interaction matrix elements are signi�cantly larger thanthose on the diagonal. This is partly associated with the expectation value hJzi being of the order ofunity. Unfortunately this hfs pattern has not been established experimentally, it probably being beyondthe resolution currently available.9.8 Diagonalization of the HFS Matrices and MixingIt is instructive to diagonalise the matrices for several values of �, the Stark level separation. Inthe �rst case we consider a value of � = 10cm�1 to obtain the following resultsValue chosen for Delta = 10Value chosen for the Magnetic hfs constant A = .0275Energy matrix for m = 1/210 .38956 .37718.38956 -.016775 0.37718 0 -.050325Eigenvalues for m = 1/2[ -.070064, -.026497, 10.032 ]Eigenvectors for m = 1/2.048787 -.022727 .99863-.35842 .93280 .03874-.93239 -.35976 .03736



87 9.8 Diagonalization of the HFS Matrices and MixingEnergy matrix for m = 3/210 .37718 .33737.37718 .016775 0.33737 0 -.08387Eigenvalues for m = 3/2[ -.096699, .0043920, 10.025 ]Eigenvectors for m = 3/2-.037817 .033135 .99872.12538 -.99138 .03764.99137 .12664 .03333Energy matrix for m = 5/210 .33737 .25767.33737 .05033 0.25767 0 -.11743Eigenvalues for m = 5/2[ -.12446, .040016, 10.019 ]Eigenvectors for m = 5/2-.027151 .03247 .99917.052261 -.99807 .03385.99832 .05313 .02542Energy matrix for m = 7/210 .25767.25767 .08388Eigenvalues for m = 7/2[ .0774, 10.007 ]Eigenvectors for m = 7/2.025959 -.99967-.99967 -.02596Eigenvalue for m = 9/2[ .11743 ]Eigenvector for m = 9/21Notice that even with a Stark level separation there are small admixtures of the � = 0 and � = �1states. The � = 0 level has acquired a small splitting into four sublevels (total width 0:025cm�1 butquite beyond current resolution possibilities.Let us now repeat the exercise but this time with the separation of the two Stark levels of 1cm�1 to givethe results now as Value chosen for Delta = 1Value chosen for the Magnetic hfs constant A = .0275Energy matrix for m = 1/21 .38956 .37718.38956 -.01678 0.37718 0 -.05033



88 9.8 Diagonalization of the HFS Matrices and MixingEigenvalues for m = 1/2[ -.26638, -.03310, 1.2326 ]Eigenvectors for m = 1/2.39272 .030852 .91918-.61293 -.73630 .28662-.68563 .67597 .27028Energy matrix for m = 3/21 .37718 .33737.37718 .01678 0.33737 0 -.083876Eigenvalues for m = 3/2[ -.24562, -.029050, 1.2078 ]Eigenvectors for m = 3/2-.36718 .09685 .92503.52781 -.79725 .29295.76587 .59587 .24160Energy matrix for m = 5/21 .33737 .25767.33737 .05033 0.25767 0 -.11743Eigenvalues for m = 5/2[ -.20489, -.017401, 1.1552 ]Eigenvectors for m = 5/2.29588 -.17551 .93895-.39111 .87457 .28669-.87150 -.45209 .19012Energy matrix for m = 7/21 .25767.25767 .08388Eigenvalues for m = 7/2[ .0164, 1.0675 ]Eigenvectors for m = 7/2.25341 -.96738-.96738 -.25341Eigenvalue for m = 9/2[ .11743 ]Eigenvector for m = 9/21Notice that modest mixing of the � = 0 and � = �1 has occurred and that the total width of the sublevelsof the � = 0 has increased to 0:165cm�1 but the sublevel spacing is still beyond current resolution.Finally we give the case for a Stark level spacing of of just 0:2cm�1



89 9.8 Diagonalization of the HFS Matrices and MixingValue chosen for Delta = .2Value chosen for the Magnetic hfs constant A = .0275Energy matrix for m = 1/2.2 .38956 .37718.38956 -.01678 0.37718 0 -.05033Eigenvalues for m = 1/2[ -.47151, -.03378, .63835 ]Eigenvectors for m = 1/2.62798 .03094 .77768-.53795 -.70485 .46251-.56240 .70881 .42596Energy matrix for m = 3/2.2 .37718 .33737.37718 .01678 0.33737 0 -.08388Eigenvalues for m = 3/2[ -.43654, -.03689, .60624 ]Eigenvectors for m = 3/2.61928 .09903 .77881-.51529 -.69717 .49831-.59241 .70990 .38072Energy matrix for m = 5/2.2 .33737 .25767.33737 .05033 0.25767 0 -.11743Eigenvalues for m = 5/2[ -.35684, -.04622, .53599 ]Eigenvectors for m = 5/2.59290 .19501 .78131-.49124 -.68122 .54280-.63806 .70562 .30811Energy matrix for m = 7/2.2 .25767.25767 .08388Eigenvalues for m = 7/2[ -.12221, .40605 ]Eigenvectors for m = 7/2.62453 -.78099-.78099 -.62453Eigenvalue for m = 9/2[ .11743 ]Eigenvector for m = 9/2



90 9.9 Concluding remarks on HFS 1Now there is considerable mixing of the two Stark levels as indicated by the size of the eigenvectorcomponents. Only the m = 9=2 sublevel remains uncontaminated.9.9 Concluding remarks on HFSThe above exercise allows us to reach several conclusions regarding magnetic hyper�ne structure incrystals. It is apparent that if the relevant Stark levels are well separated, say > 10cm�1 then a �rst-ordercalculation su�ces but for closely spaced Stark levels it is imperative to include the o�-diagonal matrixelements of the magnetic hyper�ne interaction and these will lead to mixing and considerable distortionof the �rst-order hyper�ne patterns. Simple calculation of the quantity hJzi(2�gic)A su�ces to indicate,to a good approximation, the width of a hyper�ne pattern and to establish its resolvability. Note wehave as yet made no inclusion of electric-quadrupole hyper�ne interaction and we should remember that165Ho does possess an electric-quadrupole moment.9.10 A Strategy for HFS CalculationsThroughout this course my emphasis has been on getting results by as simple and direct approach aspossible. An improved strategy would be to do a complete "free ion" + Crystal Field calculation so as togive a complete account of J�mixing and intermediate coupling and then to use the resulting eigenvectorsto calculate the hyper�ne matrix elements as above. Note that we have not given the relevant formulaefor the case of J�mixing but these follow trivially using the results of Lecture 3. Another problemuntouched here is the ab initio calculation of the hyper�ne structure constant A using the measurednuclear magnetic moment (directly measured by atomic beams rather than indirectly from analysis ofhyper�ne structure) and then a model for hr�3i. We have also ignored the e�ects of relativity. Thesewill changed the values of the radial integrals for hr�3i and lead to additional angular dependent terms.These corrections are likely to be small compared with approximations already made.AppendixAttached below is the Maple code used to calculate the diagonalisation results given above.with(linalg):read`hfs.cry`:D:=.2:A:=0.0275:Digits:=5:m1:=proc()local r1,S,result1;S:=array(sparse,1..3,1..3);r1:=array(symmetric,1..3,1..3);r1:=copyinto(S,r1,1,1);r1[1,1]:=D;r1[1,2]:=hfsdo(1/2);r1[1,3]:=hfsup(1/2);r1[2,2]:=1.22*(-.5)*A;r1[3,3]:=1.22*(-1.5)*A;result1:=r1;end:m3:=proc()local r3,S,result3;S:=array(sparse,1..3,1..3);r3:=array(symmetric,1..3,1..3);copyinto(S,r3,1,1);



91 Appendix r3[1,1]:=D;r3[1,2]:=hfsdo(3/2);r3[1,3]:=hfsup(3/2);r3[2,2]:=1.22*(.5)*A;r3[3,3]:=1.22*(-2.5)*A;result3:=r3;end:m5:=proc()local r5,S,result5;S:=array(sparse,1..3,1..3);r5:=array(symmetric,1..3,1..3);copyinto(S,r5,1,1);r5[1,1]:=D;r5[1,2]:=hfsdo(5/2);r5[1,3]:=hfsup(5/2);r5[2,2]:=1.22*(1.5)*A;r5[3,3]:=1.22*(-3.5)*A;result5:=r5;end:m7:=proc()local r7,S,result7;S:=array(sparse,1..2,1..2);r7:=array(symmetric,1..2,1..2);copyinto(S,r7,1,1);r7[1,1]:=D;r7[1,2]:=hfsdo(7/2);r7[2,2]:=1.22*(2.5)*A;result7:=r7;end:m9:=proc()local result9;result9:=1.22*3.5*A;end:print(`Value chosen for Delta = `,D);print(`Value chosen for the Magnetic hfs constant A = `,A);e1:=m1():print(`Energy matrix for m = 1/2`);print(e1);print(`Eigenvalues for m = 1/2`);evalf(Eigenvals(e1,V1));print(`Eigenvectors for m = 1/2`);print(V1);e3:=m3():



92 Appendixprint(`Energy matrix for m = 3/2`);print(e3);print(`Eigenvalues for m = 3/2`);evalf(Eigenvals(e3,V3));print(`Eigenvectors for m = 3/2`);print(V3);e5:=m5():print(`Energy matrix for m = 5/2`);print(e5);print(`Eigenvalues for m = 5/2`);evalf(Eigenvals(e5,V5));print(`Eigenvectors for m = 5/2`);print(V5);e7:=m7():print(`Energy matrix for m = 7/2`);print(e7);print(`Eigenvalues for m = 7/2`);evalf(Eigenvals(e7,V7));print(`Eigenvectors for m = 7/2`);print(V7);e9:=m9():print(`Eigenvalue for m = 9/2`);print(e9);print(`Eigenvector for m = 9/2`);print(`1`);The Groundstate of liY F4 : Ho3+As a �nal calculation we give the groundstate eigenvalues and eigenvectors for of LiY F4 : Ho3+ with noattempt to optimise the parameters. It will be noted that in this case there is very little mixing of theStark crystal �eld levels. Value chosen for Delta = , 6.85Value chosen for the Magnetic hfs constant A = , .0279Energy matrix for m = 1/26.85 .027014 - .17167 I .026156 + .16622.027014 - .17167 I .075609 0.026156 + .16622 I 0 .22683Eigenvalues for m = 1/2[ 6.8417 , .079724, .23103 ]Eigenvectors for m = 1/2.99933 .02390 + .0073 I .01255 - .02295 I.00399 - .02535 I .13155 - .99183 I - .02297 - .01798 I.00395 + .02511 I .00429 - .02817 I .79818 + .60334 I



93 The Groundstate of liY F4 : Ho3+ Energy matrix for m = 3/26.85 .026156 - .16622 I .023394 + .14867 I.026156 - .16622 I -.075609 0.023394 + .14867 I 0 .37805Eigenvalues for m = 3/2[ 6.8429 , - .071742 , .38141 ]Eigenvectors for m = 3/2.99943 - .0001 I - .02304 - .00727 I .01121 - .02065 I.00378 - .0240 I - .14686 + .99003 I - .00687 - .00529 I.00362 + .0230 I - .00123 + .00797 I .79639 + .60602 IEnergy matrix for m = 5/26.85 .023394 - .14867 I .017869 + .11355 I.02339 - .14867 I -.22683 0.01787 + .11355 I 0 .52926Eigenvalues for m = 5/2[ 6.8450, - .22377, .53125 ]Eigenvectors for m = 5/2.99960 - .00016 I - .02018 - .00660 I .00874 - .01606 I.00330 - .02101 I - .15873 + .98803 I - .00291 - .00224 I.00283 + .01797 I - .00052 + .00320 I .79456 + .60805 IEnergy matrix for m = 7/26.85 .017869 - .11355 I.017869 - .11355 I -.37805Eigenvalues for m = 7/2[ 6.8483, - .37630 ]Eigenvectors for m = 7/2.99988 - .00008 I .00489 - .01514 I.00247 - .01571 I - .98817 - .15566 IEigenvalue for m = 9/2-.52926Eigenvector for m = 9/21FINISTomorrow is not an extrapolation of today


