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1.1 Nature of the Problem

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

The only questions worth asking are the
unanswerable ones

— John Ciardi Saturday Review-World (1973)

m Lecture 1
m 1.1 Nature of the Problem

In this semester I want us to use the knowledge gained in earlier lectures to analyse a particular problem in
solid state physics, namely the interpretation of nuclear hyperfine structure in a crystalline environment.
The specific system we shall analyse will be the high resolution optical spectrum of a LiYFy : Ho
crystal. Extensive experimental work has been done on this system by M. N. Popova and her associates
in the Institute of Spectroscopy, in the Russian Academy of Sciences, Troitsk, Moscow. The chief papers
containing the data are:-

1. N. I. Agladze and M. N. Popova, Hyperfine Structure in Optical Spectra of LtY Fy : Ho, Sol. St.
Comm. 55 1097-1100(1985)

2. N. 1. Agladze, E. A. Vinogradov and M. N. Popova, Manifestation of quadrupole hyperfine inter-
action and of interlevel interaction in the optical spectrum of the LtY Fy : Ho erystal Sov. Phys.
JETP 64 716-720 (1986)

3. N. L. Agladze etal, Isotope Structure in Optical Spectra of LiY Fy : Ho®>t Phys. Rev. Lett. 66
477-480 (1991)

4. N. I. Adgladze etal, Study of isotope composition in crystals by high resolution spectroscopy of
monoisotope impurity JETP 76 1110-1113 (1993)

5. N. I. Agladze etal, Isotope effects in the lattice structure and vibrational and optical spectra of
6LiTLiy_.Y Fy: Ho crystals JETP 77 1021-1033 (1993)

Holmium occurs in nature as a single stable isotope, £5° Ho, with a groundstate nuclear angular momentum
of I = L. The trivalent ion, Ho?>* substitutes for the Y3+ ion at sites of tetragonal symmetry (S4 point

2
group) in LiY Fy crystals. The Holmium nucleus interacts with the electrons via the nuclear magnetic

dipole and electric quadrupole moments. For a holmium ion in free space the total angular momentum
F'is the vector sum of the nuclear angular momentum I and the electron angular momentum J and is a
conserved quantity. The coupling of the angular momentum is

F=J+1 (1.1)

with
F=J+I1,J4+I-1,...|J—1I (1.2)

and as a result for those states with J > I we obtain (21 + 1) hyperfine sublevels associated with each
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level of the atom with electronic angular momentum J and for states with I > J 2J 4 1 sublevels. Thus
for an electronic state with J = 8 and a nucleus with angular momentum I = % we would expect a
hyperfine pattern for a free ion to be like below

In free space the total angular momentum F is a conserved quantity but the electronic angular momentum
J need not be. For a nucleus with 7 = 0 the electronic angular momentum J remains a conserved quantity
as there i1s then no coupling between the nuclear and electronic moments.

Placing the ion in a crystalline environment changes things considerably. Ignoring the hyperfine inter-
action for the moment, the electronic angular momentum J and its projection M; are no longer good
quantum numbers. The 2J 4 1-fold degeneracy of the free ion levels is lifted and the levels are seen to
split due to the electric fields in the crystalline environment. The number of sub-levels (Stark levels) and
their residual degeneracies are determined from a knowledge of the appropriate SO(3) — G branching
rules where (G is the point group symmetry of the ion site in the crystal, in our case S;. The various
sub-levels can be labelled by the irreducible representations of the group G.

Including the interaction of the nuclear moments with the electronic moments leads to the appearance of
hyperfine structure superimposed on the Stark sub-levels. The quantum numbers F and Mg are no longer
conserved. The multitude of hyperfine sub-levels will have degeneracies appropriate to the irreducible
representations of the group G. If J is an integer and I a half-integer then the irreducible representations
will be appropriate to the spin or double group of G. This further means that selection rules deduced
for transitions between Stark sub-levels neglecting the hyperfine interaction will be different from those
deduced by there inclusion.
The problem we shall tackle in this course will be to understand the experimental data relating to the
observations given in the five papers referenced earlier. We would like to understand the splittings of the
hyperfine structure and the relative intensities of transitions. To that end we will follow a definite plan
of action - solving problems as they arise.
m 1.2 Outline of the proposed plan of action
My approach to the problem will involve the following steps:-

A. The zero-order problem

B. The spectroscopic terms for Ho3+

C. Properties of the Hund’s rule groundstate

D. Calculation of the Stark splittings

E. Calculation of hyperfine interactions

F. Calculation of intensities of transitions
m 1.3 The zero-order problem

Only in very special cases can we write down a Hamiltonian for a system and solve the quantum equations
exactly. Examples of these special cases include one-electron hydrogenic atoms. Note even when we say
7 an exact solution” we really mean an exact solution of a model system. For any real system our solutions
can only be approximate. In some cases the solutions may apply to a system, such as, for example, a
relativistic hydrogen atom with astonishing precision while for a rare earth atom with ~ 60 electrons we
cannot expect to attain anything like the same precision.

For an N —electron atom we may write the Hamiltonian, H, as

2

H :Z[pf_ze +<(ri)(s.1)i]+zi+... (1.3)

s T
i=1 ¢ i»j Y

The first term represents the kinetic energy of the electrons, the second the Coulomb attraction between
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the positively charge nucleus of atomic number Z and the i —¢h electron, the third the spin-orbit coupling,
and the fourth term the Coulomb repulsion between pairs of electrons. The ... are there to remind us
that there may be many other terms such as internal, or external, magnetic or electric fields, hyperfine
interactions coupling the nuclear magnetic or electric quadrupole moments to the electrons, crystal fields
and a multitude of relativistic effects etc. Furthermore, we are assuming, for the moment that the nucleus
is an infinitely massive point object which means that we ignore mass isotope effects and finite nuclear
size effects.

Given the above Hamiltonian we wish to solve the eigenvalue equation
H¥ = BV (1.4)
This deceptively simple equation is incapable of exact solution, or even near exact solution for nearly all
atoms. We seek to solve a simpler problem and then proceed to use perturbation theory.
m 1.4 Central Field approximation

In order to simplify our problem let us assume each electron moves independently of the other electrons
in a spherically averaged central field potential —U(r;)/e with a zero-order Hamiltonian, Hg,

Ho = i [Rat) (15)

with
H’:Z[—Zr—i—U(m)] +Z%+ZC(Ti)(S'1)i+... (1.6)

To proceed we first solve the much simpler central field equation

Ho Wy = Eo¥g (L7)
This equation can be separated using a set of functions ¢(«;) such that
N N
Uy = [Ji(es) and Eo=> eiay) (1.8)
i=1 i=1
leading to equations of the general form
p?
24000 vt = staita) (19)
m
This equation may be separated in spherical coordinates (r, 8, ¢) by writing
Roe(r)Yem, (6,
Y(a) = 2edD) . (8:.9) (1.10)
with the usual definition of the spherical harmonics as
}/,gm[(g, ¢)) = (—1) £ WPZ [(COSH) €Xp £ (111)
with -
m (1_22)7 d2+m[
P (z) = ST Zoi (2 = 1) (1.12)

Whereas the radial function Ry,.(r) depends explicitly upon the central field potential U(r) the angular
part Yom, (0, ¢) is exactly the same as that for a hydrogenic atom. Each electron carries a spin s = %
with spin projection ms = :I:% and hence we should augment the orbital eigenfunctions of Eq.(1-8) with
a two-component spinor x(s,ms) to give a complete spin-orbital eigenfunction

RnZ(T)YZm[ (9, ¢) X

r

() = (s,m5) (1.13)

where now
a = (nfmysmy) (1.14)
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describes a set of five quantum numbers associated with the state of a particular electron in the central
field approximation (for the moment we suspend discussion of the identity of electrons).

m 1.5 Electron Configurations

Note that the one-electron energies £, depend only on the quantum number pair nf and hence the
sequence of quantum numbers

nlfl,nzfz,...,anN (115)

define an electron configuration. Within the central field approximation the states associated with the
same sequence of nf quantum numbers, and hence electron configuration, are degenerate in energy.
Different electron configurations have different energy eigenvalues. As is usual in designating a particular
electron configuration we will normally suppress the quantum numbers associated with closed shells and
will thus often refer to configurations giving just such as are necessary for clarity e.g. 3d” ( the 3d
transition ions) or 4% (the lanthanide ions) with multiple occupation of an orbital being indicated by a
superscript.

m 1.6 Single Configuration Approximation

The lowest energy configuration is the ground configuration. In neutral atoms there are often several
electron configurations competing for lowest energy. Thus in the neutral 3d transition metal atoms the
3dY, 3dN~'4s and 3d"V 2?45 are usually energetically close and strongly interacting. In that case we have
configuration mizing occurring. A similar situation arises in the neutral lanthanides. As the ionisation
of atoms increases the low lying electron configurations tend to become energetically separated from one
another and the lowest states of the ion may be well characterised by those of a single configuration. Thus
the low lying states of the doubly charged transition ions are well characterised by a single 3d™ (N =
1,2,...,10) configuration and those of the triply ionised lanthanides by a single 4fY (N =1,2,...,14).
In much of our work we shall assume a single configuration approximation though, as we shall see later,
there are important phenomena such as intensities of transitions in solid state materials where such an
assumption must abandoned.

B 1.7 Madelung’s rules and the lanthanides

According to Madelung the electron orbitals associated with the ground configuration are filled in order
of increasing n 4 £ and for a given value of n + £ in order of decreasing ¢ as indicated below.

n4/ orbitals nf orbital degeneracy total no. electrons
1 1s 2 2

2 2s 2 4

3 2p, 3s 8 12

4 3p,4s 8 20

5 3d,4p, bs 18 38

6 4d,5p, 6s 18 56

7 4f,5d,6p,7s 32 88

Madelung’s rules give a surprisingly accurate account of the broad features of the chemical periodic table.
The lanthanides cover the elements from Z = 57 to 71 corresponding to the elements

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
La Ce Pr Nd Pm Sm FEu Gd Tb Dy Ho Er Tm Yb Lu

In solid state physics we usually encounter the lanthanides in the trivalent state and compared with the
neutral lanthanide atoms have given up three electrons. Maria Goeppert-Mayer studied the behaviour of
the 4 f—orbitals as a function of atomic number in terms of the Fermi wavefunction approximation and
observed that the 4f—orbitals exhibited a strong contraction with the result that the charge density of
the 4 f—orbitals was concentrated inside the filled 5p®6s? shell. This lanthanide contraction results in the
4 f—orbitals being largely shielded from external fields and hence their interaction with the environment
is significantly reduced compared with that for the transition elements associated with the filling of
d—orbitals. For the trivalent lanthanide ions we are led to the electron configurations 4f with N = 0
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to 14, apart from closed shells, as indicated below

Lanthanide Electron Configuration
Lanthanum 4509
Cerium 451
Praseodymium 4f?
Neodymium 413
Promethium 454
Samarium 4f5
Europium 4f6
Gadolinium 4f7
Terbium 418
Dysprosium 4f°
Holmium 4510
Erbium 411
Thulium 4512
Ytterbium 4f13
Lutecium 4514

NB. The element Promethium has no stable isotopes and 1s a man-made element. Holmium is associated
with the 410 configuration.

m 1.8 Classification of the states of the 4f" configurations

To proceed further it is necessary to determine the possible SL terms associated with a given 4fV
configuration. We first note that an orbital £ has 4¢ + 2 m,m, states and they can be taken as a basis
for spanning the vector irreducible representation {1} of the unitary group in 4¢ 4+ 2 dimensions, i.e.
for the f—orbital the group Ui4. The states of an N —equivalent electron configuration must be totally
antisymmetric and span the representation {IN} of Uypyo. The number of possible SLMg My states for
the configuration ¢V will be just the dimension of the irreducible representation {1V} of Us12. This
number is just the binomial coefficient

4042 40 + 2!

( N )_N!M—I—Q—N! (1.16)
We note that the binomial coefficient is symmetric with respect to N — 4¢ 4+ 2 — N which leads to the
conclusion that the number of SLMgM; states for the configurations N and 412N for N > 20+ 1.
Furthermore, we may show that the SL terms that arise in the configurations ¢V and ¢#+2=N are
identical. Figuratively speaking, this amounts to saying that SL terms associated with NV holes in a shell
of equivalent electrons are the same as for N electrons. Thus the SL terms for the ground configuration
of triply ionised promethium (4f*) and holmium (4f1°) are identical and hence it suffices to enumerate
just the SL terms associated with N =1 to N = 2£+4+ 1. We shall refer to the special case of N =20+ 1
as the half-filled shell and is associated with distinctive properties not shared by the other configurations
of the given shell.

A deeper classification of the states of the f—shell follows by consideration of the subgroup structure of the
group U4 and the branching rules for the decomposition of the antisymmetric irreducible representations
{1V} under restriction to the transformations of these subgroups. The spin and orbital spaces can
be split by considering the subgroup Uys D SUs x SU7; where we regard the spin states as spanning
irreducible representations of the special unitary group SU; and the orbital states as spanning irreducible
representations of the special unitary group SU;. Recall that for a single f—orbital there are two spin
states and seven orbital states.

Algorithms for the various group-subgroup branching rules required have been developed in the references
given below:-

6. B. G. Wybourne, Symmetry Principles in Atomic Spectroscopy, New York: Wiley, (1970)

7. R. C. King, Branching rules for the classical Lie groups using tensor and spinor methods, J.

Phys. A: Math. Gen. 8, 429-449 (1975)
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8. G. R. E. Black, R. C. King and B. G. Wybourne, Kronecker produst for compact semisimple Lie
groups, J. Phys. A: Math. Gen. 16, 1555-1589 (1983)

9. G. R. E. Black and B. G. Wybourne, Branching rules and even-dimensional rotation groups, J.
Phys. A: Math. Gen. 16, 2405-2421 (1983)

and have been implemented in SCHUR. A complete list of the branching rules available in SCHUR 1is
given in Table 1.1 as shown on page 160 of the SCHUR User’s Manual where complete instructions are
given for using SCHUR. The branching rule we want is for U4 = SU; x SU7. We do not find this rule
listed in Table 1.1 but we do see Rule No. 9 for U,,, = U, x U,.

The following sequence of commands in SCHUR will produce the desired
results:
DP>
=gr ul4
Group is U(14)
DP>
=br9,2,7gr1[1"]
Groups are U(2)*U(7)
{4H{1-4} + {31}{21~2} + {2~2}{2"2}
DP>
=-gr2suZsu’
Groups are SU(2) *SU(7)
=std last
DP>
(44174} + {22172} + {0}{2"2)
DP>
Recall that the irreducible representations of U, involve partitions in up to n parts. These irre-
ducible representations remain irreducible upon restriction to SU, except that irreducible representations
involving n parts become equivalent to irreducible representations of SU, involving at most n — 1 parts
such that
{Al,Az,...,An}E{Al—An,Az—/\n,...,O} (117)

Thus under Uy =SU, we have
{2y ={0}, {31}={2}

Furthermore, the irreducible representations of SUs are locally isomorphic to those of SO3 so that
a
fa} ~ [5] (118)

The irreducible representations of SOz are termed tensor irreducible representations if a is even or
spin irreducible representations if a is odd. The angular momentum associated with a SOgs irreducible
representation [S] is just S where S is an integer or half-integer. The entire branching rule for U4
=503 x SU; can be accomplished in SCHUR by writing and running the following function where as
usual input is indicated by an arrow — >
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Table 1.1 The branching rule table.

Rule No.  Group Subgroup

1: U, = 0O,

2 Un =  Spn

3 U, R U,

4: Oy, = S,

5: O, = Sn_|_1

6 : U, = S0;

7 SO, = SO; (n odd)
8: Spn = SO; (n even)
9: Umn = Un xU,

10 : SOm4n = SO, x SO,

11 : SO, = U; x SUy n = 2k
12 : Spn = U; x SUy n = 2k
13 : Spn = SU,; x SOy n = 2k
14 : Sm+tn = S, X Sh

15 : SO, = SU; x SU,

16 : SUm4n = U; x SU,, x SU,
17 : SUp/n = U; x SU,, x SU,
18 : SUm+n/p+q = U X SUm/p X SUn/q
19 Unntpgmagnp = Umpp X Unyq

21 : Oy, = U,

22 : Spn = U, (n even)
23 : SO~ = Gy

24 - SO~ = S0;

25 : Gy = SU;

26 : Gy = S0;

27 . Gs = SO0~7

28 . Fy = S0

29 : FEs = SU; x SUs

30 : FEs = U} x SO

31 FEs = G-

32 E = SUs

33 : Er = U x Es

34 . FEg = Sl

35 : FEs = SO0

36 : FEs = SU,; x Er

37 : FEs = SUs x Fg

38 : SUs7 = Fs

39 : SUss = Fy

40 - SUss = FEj

41 : Omn = O, x0,

42 : Sh = A,
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DP>

->setfnil

->gr ul4

->enter rvl

->dim[rvi]

->br9,2,7grilrvi]

->gr2su2su’?

->std last

—>auto griso3,last

—->stop

DP>

->fni

Group is U(14)

->1"4

Dimension = 1001

Groups are U(2) * U(7)

Groups are  SU(2) * SU(T)

Groups are  S0(3) * SU(T)
[21{174 > + [11{2172 } + [0]1{2"2 }

In this case we have run the decomposition relevant to the f* configuration. The irreducible
representations of SOz give us the spin, S, of the states. Recall that the spin multiplicity 1s 25 + 1. The
irreducible representations of SU7 are associated with the orbital states.

m Exercise
1 Use SCHUR to calculate the decomposition U4 =S03 x SUz for each of the irreducible repre-
sentations {1V} for N =0,1,...,7.

To pursue the classification of the orbital states it is necessary to look further at the subgroups of SU7.
The special unitary group SU; can be restricted to rotations in seven dimensions, that is the subgroup
SO7. We might then think that the classification might be complete if we now restrict SO7; =S50s.
Remarkably there is a group that fits between SO7 and SOs, namely the exceptional group, G'2. This
leads to a richer classification and the orbital states are described by the group chain

SU7 D 507 D Gy D S03 (1.19)

as shown in Tables 1.2 to 1.5 given at the end of these notes.
m Exercises
2. Use SCHUR to verify some of the entries in Tables 1.2 to 1.5.

3. Use SCHUR to construct a function that will give the number of terms associated with a given
J for any fV configuration. Hint: you will need to make use of the command ContractGroups
described on page 134 of the manual.

m 1.9 Hund’s rules and the ground state of Ho3t
Table 1.2 gives the SL terms associated with the configuration f*. Precisely the same SL terms occur in

the f19 configuration. States of total angular momentum J may be found by noting the familar angular
momentum addition rule

J=L+S L+S-1,...,|L-S5| (1.20)
The next problem is to determine the SLJ quantum numbers associated with the ground state of Ho3t.
Here we may use the Hund’s rules as follows:-
1. Select the SI terms associated with the highest spin S. i.e. S = 2 and the terms >SDFGI.

2. From the terms found in 1. select the term of highest L i.e. L = 6 corresponding to 1.
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3. If N <241 choose the smallest value of J while for N > 2/ + 2 choose the largest value of J.
Thus we deduce that the groundstate for the free ion, Ho3t, is

H03+ 4f10 5[8

in agreement with experiment. The five spectroscopic terms
514, 515, 516, 517, 518

form the ground multiplet of Ho®>t and the next problem we must tackle is to calculate the spin-orbit
splitting in the ground multiplet, the subject of our next lecture.
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Table 1.2 LS multiplets of the f¥ (N = 1 to 4) configurations

7t of states Uiq SUZS X SU7L SO7 Gy 25417,
1 {0} {0} x {0} [000] (00) 1g
14 {1} {1} x {1} [100] (10) 2
45 {12} {2} x {1?} [110] (11) 3PH
(10) 3p
{0} x {2} [200] (20) 'DGI
[000] (00) 8
364 {13} {3} x {13} [111] (20) 4DGI
(10) ip
(00) 15
{1} x {21} [210] (21) DFGHKL
(20) ’DGI
(11) ’PH
[100] (10) 2
1001 {14} {4} x {1%} [111] (20) "DGI
(10) S
(00) g
{2} x {211} [211] (30) SPFGHIKM
(21) SDFGHKL
(20) 3DGI
(11) 3PH
(10) 3p
{0} x {22} [220] (22) ISDGHILN
(21) 'DFGHKL
(20) 'DGI
[200] (20) 'DGI
[000] (00) 1g
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Table 1.3 LS multiplets of the f° configuration

7t of states Uia SUZS X SU7L SO~ Gy 25417,

2002 {15} | {5} = {1°} | [110] SpH

SF
‘PFGHIKM
‘DFGHKL
1DGI

‘PH

¥

‘DG

¥

15

)

)
{3} x {213} [211] ;
)
)
)
)
;
) | 2PDFFGHHIIKKLMNO
)
)
)
)
)
)
)
)
)

[111]

PFGHIKM
DFGHKL
’DGI

’PH

F
DFGHIKL
’DGI

’PH

F

(1

(1

(3

(2

(2

(1

(1

(2

(1

(0

{1} x {221} [221] (3
(3

(2

(2

(1

(1

[210] (2
(2

(1

(1

[100]
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Table 1.4 LS multiplets of the f5 configuration

7t of states

Uiy

SUs x SU¥

SO

ZS-I—lL

3003

{1°}

{6} x {1°}
{4} x {217}

{2} x {2217}

{0} x {2%}

[100]
[210]

[111]

[221]

[211]

[110]

[222]

F
SDFGHIKL
SDGI

SPH

SDGI

SE

55
SPDFFGHHIIKKLMNO
SPFGHIKM
SDFGHKL
3DGI

3SpH

3p
SPFGHIKM
SDFGHKL
3DGI

3SpH

3p

3SpH

3p
\SDFGGHIIKLLMNQ
'\PFGHIKM
'DGT

3

1S
'SDGHILN
'\DFGHKL
'DGT

'DGT

1S
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Table 1.5 LS multiplets of the f7 configuration

7t of states Uia SUZS X SU7L SO~ Gy 25417,

3432 {17} {7} x {17} [000] 83
{5} x {21°} [200] SDGI

[110] SPH
6F
‘SDGHILN
‘DFGHKL
‘DGI
‘PFGHIKM
‘DFGHKL
‘DGI
‘PH
i
‘DGI
i

)

)

;
{3} x {2213} [220] ;
)
)
)
)
)
)
)
)
) | 8
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

[211]

[111]

2SDFGGHITKLLMNQ
*PFGHIKM

2DGT

:p

25
*PDFFGHHITIKKLMNO
*PFGHIKM
*DFGHKL

2DGT

:pPH

:p

DFGHIKL

2DGT

:pPH

:p

[221]

[210]

(0
(2
(1
(1
(2
(2
(2
(3
(2
(2
(1
(1
(2
(1
(0
{1} x {231} [222] (4
(3
(2
(1
(0
(3
(3
(2
(2
(1
(1
(2
(2
(1
(1

[100]
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Table 1.8 Total angular momenta for §N1 ;NQ with N; + Ny =4
Ny, Ny S04
0,4 [0] + 2[2] + 2[4] + [5] + [6] + [8]
1,3 [0] 4+ 3[1] + 4[2] + 5[3] + 5[4] + 5[5] + 4[6] + 3[7] + 2[8] + [9] + [10]
2,2 3[0] + 2[1] + 7[2] + 5[3] + 8[4] + 5[5] + 6[6] + 3[7] + 3[8] + [9] + [10]
3,1 21] + 3[2] + 3[3] + 3[4] + 3[5] + 2[6] + [7] + [8]
4,0 [0] + [2] + [4]

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

The scientist does not study nature because it is use-
ful to do so He studies it because he takes plea-
sure In it, and he takes pleasure in it because it is
beautiful

— Henr Poincaré

m Lecture 2
m 2.1 Introduction

In our previous lecture we stated the problem and as a first step established our zero-order Hamiltonian,
gave a group-theoretical account of the states of the f—shell and determined the ground state for the
trivalent holmium ion. Qur next step is to give an account of the free ion levels of Ho3t and specifically
to compute the energies of the levels of the °I multiplet for the 4f'0 configuration. To that end we
primarily need to compute the relevant electrostatic and spin-orbit matrix elements, construct the energy
matrices for the J = 4..8 states of 4f1° and then diagonalise them to obtain the energy eigenvalues. The
corresponding eigenvectors will then allow us to express the eigenfunctions for each level as particular
linear combinations of the zero-order eigenfunctions.

m 2.2 The zero-order state labelling

We have determined the 2%+ multiplets in terms of the group-subgroup chain

Ura D SU3 x {SU7 D SO7 D G2 D SO} (2.1)
This means that a given zero-order basis state in fV could be fully specified by the labelling
|WU«SLJM) (2.2)

Where we have suppressed the U;4 label as been common to the complete set of states of a given fV
configuration. In addition we suppress the SU7 label since as noted earlier specifying, for a given N the
spin S uniquely fixes the corresponding SU7 label. W stands for the partition label [A] of the group SO~
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and U for the partition label (ujuz) of the group Ga. The label « is reserved to distinguish those pairs
of L irreducible representations of SOs that occur twice in the G3 = SOs3 decomposition. The total
angular momentum J is found by addition of the spin S and orbital I angular momenta. Finally, M
is the projection of J on the chosen z—axis. For a free ion, in the absence of external fields, we may

suppress the M quantum number.
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m 2.3 The Coulomb interaction

The two-particle Coulomb interaction

1
He = é? — (2.3)
i<§§:N "ij
commutes with the angular momentum operators $%, L?,J2,J, and hence its matrix elements in the
|SLJM) basis is diagonal in the quantum numbers S, L, J, M and are independent of JM. If the term
2941 occurs in the fV configuration x times then the electrostatic matrix will be of rank x. The
calculation of the matrix elements of H¢ starts with the expansion

1 1
Tij \/rlz + 7“]2 — 217 cosw

ok
= Z k—<+1Pk(cosw) (2.4)
>

where r is the lesser of {r;,r;} and r the greater. The spherical harmonic addition theorem gives

Pr(cosw) = 2k ) Zqu 0i, ¢i)Yeq(05, ¢5)
= (=" (C(_kq)%(cék))j
q
— (k) k)
= (c{" . ¢l (2.6)
where 1
r \?
(k) — *
i) = (2k+ 1) ¥iy(6,9) (2.7)
and &
.
e el o) o
k >

For full details see:-
2.1 G. Racah, Theory of Complex Spectra IV, Phys. Rev. 76, 1352 (1949).
2.2 B. R. Judd, Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill (1963).

The calculation of the matrix elements of H¢ involves the product of purely angular terms and radial
integrals. The latter are commonly termed Slater radial integrals and for equivalent electrons nf

F(k) =€ // k+1 nZ 7°Z an(rj)]z dridrj (29)

The values of k are restricted by the symmetry of the angular matrix elements to the even integers

k =0,2,...,2¢ . To avoid the appearance of fractions it is usual to make the replacements (for the
f—shell)
F® F® 25 [(6)
©oP T 9950 TYT10890 % T 184041 (2.10)
Thence the matrix elements of the Coulomb interaction are of the form:-
foFo+ faFo+ faFs+ f6Fs (2.11)

where the fj are purely angular matrix elements.
m 2.4 The Racah E* Parameters

The terms in Eq.(2.11) take no advantage of the group structure used to classify the states of the f—shell.
Racah suggested that Eq.(2.11) should be transformed in such a way as to yield operators that had well
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defined transformation properties with respect to the groups used in the state classification scheme. In
particular he chose the following linear combinations of the Slater radial integrals:-

E% = Fy— 10F, — 33F, — 286 F%
TOFs + 231F, + 2002F;

E' =
9
g o= 3Pt TFy
B 9
Fy+ 6F, — 91F,
E3:52+634 9Lt (2.12)

with the analogue of Eq.(2.11) becoming
0B+ et Bt + es B + e3FP (2.13)

The angular operators e; & = 0,1,2,3 transformed under SO7; O G2 O SOz as [000](00)0, [000](00)0,
[400](40)0 and [220](22)0 respectively. The eigenvalues of g all evaluated to $N(N — 1) for a given
Y configuration and hence may be ignored if we are only interested in relative term energies. Racah
gave systematic tables of quantities required to calculate the e; making use of the general Wigner-Eckart
theorem.

Edith Reilly has tabulated the necessary matrix elements for the f* configuration. An independent
calculation for all the fVV configurations has been made by Nielson and Koster.

2.3 E. F. Reilly, Phys. Rev. 91, 876 (1953).

2.4 C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p™, d” and f* Configurations,
Cambridge, Mass: The M. I. T. Press (1963).

For the purposes of these lectures the electrostatic matrix elements for the f* configuration have been
entered into a MAPLE procedure to be discussed later.

The Racah approach gives an interesting insight into terms of maximum spin multiplicity in the fV
configurations. The contribution to the electrostatic energy of these terms of e EY + 1 E' is the same,
while that of e5 £? is null. Thus the energy spacings of terms of maximum spin multiplcity are expressible
in terms of just £2. Indeed for these terms

<fN N+LL o] fV N+1L> = 36G/(G)(uyus) — %L(L +1) (2.14)

where
u? + ud + ugus + Sug + duy
12

is the eigenvalue of the Casimir operator for the relevant irreducible representation (ujus) of the excep-

G(Gz)(Uﬂtz) = (215)

tional group Gi2. Throughout these notes we use Racah’s notation (u;us) notation for labelling irreducible
representations of G3. SCHUR uses the labelling (a, b) based upon the SUs subgroup of GG3. The SCHUR
labels are related to the Racah labels by the correspondance

(a,b)SCHURRightarrow(a — b,b)RACAH (216)

m Exercise

2.1 Determine the relative spacings of the terms of maximum multiplicity for the f* configuration
due to the Coulomb interaction.

m 2.5 Spin-orbit interaction matrix elements

The spin-orbit interaction term H;,in the Hamiltonian is of the form

H,, = ZCM(T)(S 0 (2.17)

and commutes with the operators J? and J, and hence is diagonal in J M and independent of M. However,
it does not commute with S? or L? and hence there can be non-zero matrix elements among states with

AS,AL =0, +1 (2.18)
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2.6 Checking the spin-orbit matrices

The spin-orbit interaction matrices for a given J will be of rank equal to the number number of SL terms
yielding that value of J. This means that in f* the matrices for J = 4..8 will be of ranks 19,14,13,7,7
respectively. The matrix elements of H,, may be calculated in the same basis as for H¢ using the group
classified states. These have been calculated by Crozier and Runciman while Nielson and Koster have
given tables of reduced matrix elements from which the spin-orbit matrices may be derived.

2.5 M. H. Crozier and W. A. Runciman, J. Chem. Phys. 35, 1392 (1962);

The methods of calculating the matrix elements of the spin-orbit interaction for the f—shell are well
covered in Judd’s book. As with the Coulomb matrices, the spin-orbit matrices are necessarily symmetric.

m 2.6 Checking the spin-orbit matrices

It is always important to have checking procedures to ensure that matrix elements have been
correctly computed and entered. In the case of the spin-orbit interaction a good check is to diagonalise
the matrix for a given J and see if the resulting eigenvalues are those appropriate to jj—coupling where
the spin-orbit interaction is necessarily diagonal. For a single electron j = £ + s and we have

s 0= %[j(j—i—l)—ﬁ(ﬁ—i—l)—s(s—i— 1] (2.19)

Within a jj—coupled configuration jV the spin-orbit term is multiplied by N. As noted on page 14 the

states of the fV configuration in jj—coupling derive from those of the sub-configurations gNl 7/2N2 where
Ny + Ny = N. The total angular momentum states J for such configurations with N = 4 were given in
Table 1.8. For f% Eq. (2.19) evaluates to —2 and for f7/5 to % and hence the spin-orbit interaction for

any state of the sub-configuration gNl %NQ must be
3
5]\72 —2N (2.20)

For example inspection of Table 1.8 shows that if we have correctly calculated the 7 x 7 spin-orbit
interaction matrix for J = 8 then diagonalisation of the matrix, with the spin-orbit interaction coupling
constant (,¢ = 1 should yield the followin eigenvalues, with multiplicities bracketed,

S8(1), —5(2), —16), 5(1) (2.21)

m 2.7 Ordering of Zero-order States for f*

In setting up the energy matrices it is essential to specify carefully the ordering of the zero-order
basis states for each value of J and to ensure that the matrices for the electrostatic and spin-orbit matrices
follow the same order and that the phase choices for both are compatible. Here we will follow the ordering
used by Crozier and Runciman as given in Table 2.1.

m 2.8 Spin-orbit Interaction in the °I multiplet

Judd (p82) has shown that within a multiplet 2+ L the matrix elements of the spin-orbit interaction
can be written as

A
S-L= §[J(J—|—1)—L(L—|—1)—S(S—|—1)] (2.22)
where X is a constant appropriate to the given multiplet. For a multiplet of maximum multiplicity in a
(N configuration he finds
1
A=tx— 2.2
+ 79 (2.23)

where the 4 sign is taken for N < 2¢ and the — sign for N > 2¢ 4+ 2. Thus for Ho3t we have for the °1

multiplet

J(J+1)
8

and hence if LS—coupling holds in the I multiplet we would expect

J+1
By =By = ——Cy (2.24)

S L=-— —6 (2.23)
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Table 2.1 Ordering of the Zero-order States in f* Configurations

J =4 J=5 J=6 J =1 J =28
[111](20)°D [111](10)°F [111](20)°G [111](20)°1 [111](20)°1
[111](10)°F [111](20)°G [211](11)3H [211](20)31 [211](21)3K
[211](10)3F [211](20)3G [211](21)3H [211](30)31 [211](30)3K
[211](21)3F [211](21)3G [211](30)3H [211](21)3K [211](21)3L
[211](30)3F [211](30)3G [110](11)3H [211](30)3K [220](21) L
[110](10)3F [211](11)3H [111](20)°1 [220](21)*K [220](22)'L
[111](20)°G [211](21)3H [211](20)31 [211](21)3L [211](30)3M
[211](20)3G [211](30)3H [211](30)31
[211](21)3G [110](11)3H [220](20)*1
[211](30)3G [220](21)*H [220](22)1
[220](20)'G [220](22)*H [200](20)*1
[220](21)'G [111](20)°1 [211](21)3K
[220](22)'G [211](20)31 [211](30)3K
[200](20)*G [211](30)31
[211](11)3H
[211](21)3H
[211](30)3H
[110](11)3H
[111](20)°1
Table 2.1 Ordering of the Zero-order States in f* Configurations
and hence
Bi—Brn _ Car (2.25)

J+1 4
which gives us a test of the validity of LS—coupling in the ground multiplet of Ho3*. Rajnak and Krupke
2.6 K. Rajnak and W. F. Krupke, Energy levels of Ho®t in LaClz, J. Chem. Phys. 46, 3532 (1967).

give the average positions of the °I levels in em™1 as

g 108
517 5155
s 8657
515 11219
°1, 13284
Noting Eq.(2.25) we find

S1=51s

e 336

Spa_5]

5 269
51,571,
Aasds 229

The lack of constancy in the second column shows clearly that there is a breakdown of LS—coupling
which we may fully include only by diagonalising the complete combined electrostatic and spin-orbit
matrices.

m 2.9 Intermediate Coupling in Ho>t

The complete construction of the energy matrices may be made into a set of MAPLE procedures
using the electrostatic and spin-orbit matrices calculated, for example, by Reilly, and by Crozier and
Runciman. The sections relevant to the J = 8 states are given in the verbatim printout below:-
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3.1 Introduction

m 2.10 Some MAPLE procedures
m 2.11 Running the MAPLE esof4 File

The MAPLE code is available on a diskette as a single file esof/ and may be read into a MAPLE session
by entering in MAPLE the command read‘eso4‘;. Be sure to use backquotes (‘) and note that all MAPLE
commands end with a semicolon (;). HELP may be brought to the screen by issuing the command Zesof;.
As a starter try to run the two examples given in the HELP file. Use the eigenvectors produced in the

second example to write the ground state of Ho3t as a linear combination of the zero-order states given
in Table 2.1.

m Exercises to be completed for the next lecture

Take the parameters used in Example 2 and compute the energies of the five levels of the ®I multiplet
and their associated eigenvectors. Draw up a table of the calculated energies and the expansion of the
free ion states as linear combinations of the zero order states keeping all expansion coefficients > 0.1.
Leave a column in your table to insert the experimental energies which will be given at the next lecture.
These results will play an important role in the subsequent lectures.
The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

A good scientist is a person with original ideas. A
good engineer is a person who makes a design that
works, and prides himself on doing so with as few
original ideas as possible

— Freeman Dyson, New Yorker Magazine, August

20, 1979, p54

m Lecture 3

m 3.1 Introduction

In this lecture I shall first discuss the results of the intermediate coupling calculation for Ho3t started in
the previous lecture and then start on the question of calculating the effect of the crystal field on the ”free

ion” levels. This will require some review of the properties of angular momentum coupling coefficients
and tensor operators - essential both for the calculation of crystal field and hyperfine perturbations.

m 3.2 Intermediate Coupling in Ho3t

The effect of diagonalizing the energy matrices for the J = 4, .., 8 is to yield a set of energy eigenvalues
and their associated eigenvectors. Thus the eigenstate |E;) associated with the energy eigenvalue E; is
obtained as a linear combination of the zero-order states given in Table 2.1. Thus

|EsM) =" aasrslaSLIM) (3.1)
aSL
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3.1 Introduction

Since the coefficients of the expansion are independent of M we will usually suppress the M quantum
number. The « stands for any other labels required to distinguish states that occur with the same SL.
In the case of our exercise it suffices, when necessary, to give just the G5 irreducible representation label
(u1u2) in Racah’s notation. The normalised expansion coefficients are necessarily between 0 and 1 and
the sum of their squares equal to unity. The square of a given coefficient 1s a measure of the significance
of that particular zero-order state. If a coefficient 1s very close to unity then the state is very close to
LS-coupling and a single zero-order state dominates. We shall choose to limit our attention to those
zero-order states whose coefficients are > 0.1 and thus contribute 1% or more to the eigenfunction. The
relevant expansion coefficients for the five lowest states of Ho®t are given in Table 3.1 along with the
calculated and experimental averaged energy levels for LiY Fy : Ho3t.
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Table 3.1 Energy levels and eigenvectors for the °I multiplet in LiY Fy : Ho3%.

FE.ate Eerpt Eigenvector

0 0 0.9665|°Is) + 0.1189](20)3Ks) — 0.2221](30)3Ks)

5097 5152 0.9853|°I7) — 0.1462|(30)3K7)

8672 8671 0.9772|%I) + 0.1352|(30)3Hs)

11281 11242 0.9549|°I5) — 0.1377|(21)3Hs) + 0.1944](30)3Hs) — 0.1067|(11)3Hs)
13350 13188 0.9495[° L) — 0.1620[(21)3H4) + 0.2247](30)3H4) — 0.1186|(11)3 H4)

BT O =1 00

m 3.3 Tensor operators in general

Consider a simple compact group G having elements g. Let U, denote a unitary, not necessarily irre-
ducible, representation of G on a Hilbert space H. The various unitary representations will be distin-
guished, when necessary, by writing U,(A) or for brevity just as (A). Let [AX > be basis vectors of the
representation (A), where A labels individual basis vectors.

Let the complete set of basis vectors |AX > span the infinite Hilbert space H in which the linear operator
R, (or just R) corresponding to the element g of G is represented by the block-diagonal matrix | <
AXRJIAN > |. An individual matrix element will be designated as < AA|R|A)N >. The effect of the linear
operator R acting on a basis vector |AA > will be to produce a linear combination of those basis vectors
that span the representation (A), that is

RIAN >=)" < AN|RIAX > AN > (3.4)
)\I

The set T(A) of [A] linearly independent operators T(AA) is said to form a tensor operator under the
group G belonging to the representation (A) of G if under the operations of the group it transforms
according to the representation (A) i.e., if

RT(ANR™ =< AN|R|AX > T(AX) (3.5)
A tensor operator T(A) will be said to be irreducible, reducible or equivalent if the group representation
(A) is correspondingly irreducible, reducible or equivalent.
For an infinitesimal transformation in G

R=1+6a"X, (3.6)

where 6a” are the infinitesimal parameters and X, the corresponding infinitesimal operators. Keeping
terms to first order in the 6a?,

[Xo, T(AN)] = Y < AV|X,|AN > T(AX) (3.7)
)\I
and from Eq.(3.5)
Xo AN >= " < AV[X (AN > AN > (3.8)
)\I

m 3.5 Tensor operators for SO3

For the group SO3 the infinitesimal operators are J,, J+ and in an angular momentum basis that
diagonalises J* and J,

JNIM >=M|JM > (3.9a)
Je|IM >=/J(J+1)—MM£1)|JM+1> (3.9b)
which is the SO3 equivalent of Eq.(3.5).
If T(k) is an irreducible tensor operator in SO3z transforming as the irreducible representation D(k) of
SOs it follows from Eq.(3.7) that the (2k +1) components T'(kq) where ¢ = —k, —k+1,..., k— 1,k must
satisfy the commutation relations
[/:, T(kq)] = qT'(kq) (3.10a)
U T(kq)] = V/EGk+ D) — q(g £ DT(k g% 1) (3.100)
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Table 3.1 Energy levels and eigenvectors for the °1 multiplet in LiY Fy : Ho®T.

which we will take as the defining relations for irreducible tensor operators for SO3. The tensor operator

T(k) will be said to be of rank k.

m 3.6 Coupling coefficients
If [A1 A1 > and |A2d2 > are two basis vectors of (A1) and (Ag), respectively, then the reduction of the
Kronecker product is accomplished by the coupling coefficients

< AA 1A A |A1A2; alisA1s >

where
laAizdiz >= > < A AiAsda|Ar Ay adizdin > [Ardr > [Agd; > (3.11)
A1, A2

with a being a multiplicity symbol to distinguish repeated irreducible representations. In the case of SO3
the coupling coefficients are just the usual Clebsch-Gordan coefficients.

The inverse transformation can be written as

Aid > [Aode >= D0 < adipdiaAds >* [AjAs adiphis > (3.12)

a,A12,A12

Since the transformations are unitary, we have the orthogonality relations

Z < OzA12A12|A1A2 >*< A1A2|O/A/12A/12 > = (SQQI(SAHAIH(S)\H)\IH (313&)

A1, A2

Z < A1A2|QA12A12 >*< OZA12/\12|A/1A/2 > = 6>\1>\'16>\2>\'2 (313b)
a,A1,A2

m 3.7 The Wigner-Eckart theorem in general

It is the Wigner-Eckart theorem that makes group theoretical calculations quantitative. Consider a tensor
operator T(AX) acting on a basis state [AaAs >. Then

T(AA)|A2A2 >= Z < OZA1A1|AAA2A2 > |T(A)A2,@A1/\1 > (314)
a, A1,
The matrix elements of T(AX) are given by
< Al/\1|T(A/\)|A2/\2 >= Z < OéAl/\1|A/\A2/\2 >* < Al/\1|T(A)|A2, alki A > (315)
Consider the transformation
laAidy >= > < BA A oA > [BAL N > (3.16)
8
Suppose that X, is an arbitrary infinitesimal operator of the group G and that

laAsdy + 1 >= > < BALA + pladi Ay + i > [BALA + g > (3.17)
B
For t £ 0
X |OzA1/\1 >

aM A +p > = L

| 1 a <A1A1—|—/,L|XN|A1A1 >
=3 < BAMIBAN > [BAA + > (3.18)

B

Comparison with Eq.(3.17) gives
< BALAL+ /$|OéA1/\1 +u >=< BAl/\1|ﬁA1/\1 > (319)

for all u # 0, and hence the coefficients < SA;A1|3A1A; > must be independent of the component A;.
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Making use of Eq.(3.15) gives the Wigner-Eckart theorem as
< A TAN) A2 >= D < alidi[Ade >*< aAy||T(A)][A2 > (3.20)

where we have written < aA;||T(A)[|Az > in the place of < AjA|T(A)|A2; A1 Ay >, since the latter
is independent of A;. The double-barred matrix elements are independent of the weights of A; of the
representations (A;) and are referred to as reduced matriz elements. The entire dependence of the matrix
element on the weights of the bra and ket representations together with the component of the tensor
operator T(A) is encased in the coupling coefficients < aA;A1|AAa2 >*. Inverting Eq.(3.20) gives

< alp||T(A)]JAz >= > < Adaladih|[T(AN)[AzXy > (3.21)
A1, A2

Ultimately the calculation of matrix elements comes down to the evaluation of coupling coefficients and
reduced matrix elements. The Wigner-Eckart theorem may be generalised to apply successively to every
group-subgroup along a chain of nested groups.

m 3.8 Selection rules

The Wigner-Eckart theorem leads directly to selection rules which follow from the requirements for the
vanishing of the coupling coefficients. The coupling coefficient in Eq.(3.20) will vanish unless the weights
of the bra, ket and tensor operator component satisfy the relation

A+d=X) (3.22)
The coupling coefficient will vanish unless the triple Kronecker product
AT xAxA; DO (3.23)

where here 0 is the identity representation of GG. We will write ¢(Aq, A, A2) for the number of times the
identity representation occurs in the triple Kronecker product. This number gives the number of terms
that occur in Eq. (3.20).

m 3.9 The Wigner-Eckart theorem for SO;
The group SOs3 is multiplicity free and the Wigner-Eckart theorem in this case simplifies to just

< CV1j1ml|Tq(k)|0é2j27712 >=Cikiz <[ T®)]aggs > (3.24)

migms
where C’f;;lkgﬁh is the usual Clebsch-Gordan coefficient. In terms of the 3jm—symbol we have

< a131m1|Tq(k)|a232m2 >=(=1)yr™™ (-j;h ¢ 75122) < Oz1j1||T(k)||Oz2j2 > (3.25)

The matrix elements of Tq(k) vanish unless
my = q -+ ms (3.26)
while the reduced matrix element will vanish unless
Ji+je 2k > |j1 — jo (3.27)

m 3.10 The Clebsch-Gordan coefficients

The Clebsch-Gordan coefficient < jimyjama|jijajm > represents the elements of a unitary transfor-
mation that couples the uncoupled states [jimy > |jomz > to produce the coupled states |jijajm >.
le.,
jajm >= Y < jimajoms|jijajm > [jimy > [jams > (3.28)
my,Mm2

Such transformations arise, for example in relating basis states in the |SMg LM > scheme to the coupled
basis states |SLJM > where M = Mg + My,. Thus,

ISLIM >= > < MsMp|SLIM > |SMsLMy, > (3.29)
Ms,ML
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Note that we shall often abbreviate the Clebsch-Gordan coefficient < jimiyjams|jijzjm > to just <
mima|jijajm >. The Clebsch-Gordan coefficients may be expressed precisely as

< mymaljijaim >= 6my4ma,m

y ¢ (2 + D0+ 2 = ) Gr = mo)! (o = mo)! (G +m)! (G = m)!
(L2 +i+ DG+ = 52)0 G —dr+52)! (G +m)! (2 + m2)!

X Z(_l)jl—ml—z (]1+m1—|—z)' (j—|—j2_m1_z)!
z Z'(']_m_z)'(jl_ml_z)'(]Z_]+m1+Z)'

(3.30)

While Clebsch-Gordan coefficients possesses considerable symmetry a more symmetrical object was de-
fined by Wigner and is now commonly known as the 3jm—symbol.

m 3.11 The 3jm—symbol
The 3jm—symbol is related to the Clebsch-Gordan coefficient by
( JiooJ2 s ) = (—1)f1—dz=ms < myms|jijajs — ms > (3.31)
mi My ms (2]3 + 1)

The 3jm—symbol is invariant with respect to an even permutation of its columns while for odd permu-
tations of its columns is multiplied by a phase factor equal to the sum of the arguments in its top row.

( J1 J2 Js ) = (—1)ir+iz+is (j2 v s ) (3.32)

mp MMy M3 ma MMy M3

le.,

Furthermore, changing the sign of all three lower arguments results also in multiplication by a phase
factor equal to the sum of the arguments in its top row. i.e.,

jl j2 j3 — (_1)j1+j2+j3 jl j2 j3 (3 33)
mi Mo M3 —mp —my —m3 .

A 3jm—symbol having all its m quantum numbers zero will be null unless j; + j2 4 j3 is even. Likewise
any 3jm—symbol having two identical columns will vanish unless j; + jo + j3 18 even.

The unitarity property of the Clebsch-Gordan coefficients lead directly to the orthonormality conditions
for the 3jm—symbols

Z (255 + 1) (Tjn1 J2 s ) (Jl Jz U3 ) = Byt Oz, (3.34a)
1

, ms  Mms m) mbh ms
J3,Ms3
v J2 Js i J2 o J4 85,310ms,m!
> 5 )= == (3.34b)
iy mi M ms mip M2 Mg (2]3 + 1)

m 3.12 Computing 3jm—symbols

The 3jm—symbols may be variously expressed starting with the result given for the Clesch-Gordan
formula given in Eq. (3.30). Extensive tables exist such as those of Rotenbrg, Bivins, Metropolis and
Wooten, ” The 3—j and 6—j Symbols” Technology Press, Mass. (1959). The difficulty with implementing
formulas based upon Eq.(3.30) is the summation term which often leads to large intermediate numbers
that overflow. Roothan(private communication 1990) has noted that the 3jm—symbol formula can be
usefully written in the form

a b ¢ _ bte—a cta—f atbtatp btecta ctatB atb—oa—8
(00 0) -y S s e it

a a— z +b_ + -b b+ -
x Y (=1)mrirasit (a p c) <§_Z—z) <b+2—2)

Z

(3.35)

where

1 _f(a+b+c 2a
A(abc) _<b—|—c—a) <c+a_b)(a+b—|—c+1) (3.36)
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The binomial coefficients in Eq. (3.35) are first computed as integers in a Pascal’s triangle and then read
from the table as required and thus the awkward summation may be calculated as a sum of reals which
may be rounded to produce an exact integer. The A terms are rapidly calculated using prime number
arithmetic to produce integers and the resulting symbol outputted as a squared number expressed in
prime number notation with a phase factor. With 32-bit words almost the entire tables of Rotenberg
etal may be rapidly reproduced. With a 64-bit word such as on SUN machines the entire table and much
more can be generated without overflow. Packages such as MapleV the entire calculation can be carried
out using the exact arithmetic routines.

m 3.13 Reduced matrix elements of angular momentum operators

The angular momentum J is a rank 1 tensor operator I with the z— component J, corresponding to
the tensor operator component Jél). Application of the Wigner-Eckart theorem as in Eq.(3.25) gives

j 1

< ozjm|Jél)|o/j'm/ >=(=1))™™ (—m 0

</
;n,) < ajll7 V)’ > (3.37)

However, from the elementary quantum theory of angular momentum we have
< ozjm|JZ|o/j/m/ >= 6aya/6j7j/6mym/m (338)

The matrix element is independent of all other quantum numbers « and diagonal in the angular momen-
tum j. Comparison of Eqs. (3.37) and (3.38) then leads to

< jm|Jél)|jm >=m

A . .
s () <l (7.11)

-m 0

The 3jm—symbol may be explicitly evaluated to give

o (g 3] e
-m 0 m JG+D25+1)
from which we immediately deduce the important reduced matrix element

< IO >= VGG + DEj+ 1) (3.39)

In deriving Eq.(3.39) we have made no assumptions as to the nature of the angular momentum and our
result holds equally well for spin or orbital angular momentum operators.

m 3.14 The 6j—symbol

The 3jm—symbol arose in the problem of coupling two angular momentum states to produce a coupled
state. In the case of coupling three angular momenta, say ji,j2,j3, to produce a total angular mo-
mentum state |jm > different orders of coupling the three angular momenta can be considered. Both
|(§1j2)d12, j3;jm > and |j1, (j2j3)jes; jm > represent distinct coupling procedures. The two coupling
schemes are linked by a unitary transformation such that

1, (Jads)ias; dm >= 3 < (j1ja)irz, daidmlir, (jojs)jas: jm > [(jrjz)jrz, js; jm > (3.40)
J1z2
Acting on both sides with j; shows that the transformation coefficients are independent of m.
The 6j—symbol is defined by the relation

< (J1j2)drz, gzs gmlii, (Jojs)jes; jm >=

(—1)irtiatisti | [(2515 + 1)(2j25 + 1) {3,1 J2 U1 } (3.41)
Js 7 J23

The 6j—symbol may be evaluated by first expressing it as a sum over a triple product of 3jm—symbols
and then using the fact that the 6j—symbol is independent of m to produce a sum involving a single
variable to finally yield

a b c| _
d e f| ™
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VA(abe)A(ae fYA(dbF)A(dec)
X > (=1 (2 + 1)

x[(z—a—=b—c)z—a—e—NHlz—d—b=-NHlz—d—e—c)!
x(a+b+dte—2)(b+cted+f—2)Watect+d+f—2)]" (3.42)
The 6j—symbol vanishes unless the four triangular conditions portrayed below are satisfied.

o 6 -+ O -+ o

(3.43)
o - -- o o --- o
where for example a +b > ¢ > |a — b|.

The 6j—symbol is invariant with respect to any interchange of columns and also with respect to the inter-
change of the upper and lower arguments of any two columns.The 6j—symbols satisfy the orthogonality
condition

, . JsoJ g2l )iz 7 Jie

2519 + 1)(2425 + 1 . . . . . .

]212 (2712 + 1)(2j23 + 1) {11 J2 Jes } {11 J2 b3 }
(3.44)

= 0,051,

Roothan(private communication 1990) has given the computationally convenient form for calculating
6j—symbols

a b ¢
{ d e f}
= /A(abe)A(dbf)A(dec)A(aef)

P z+1 b+ec—a c+a—b a+b—a
XZZ:(_D (Z—a—b—c) (z—a—e—f) (z—d—b—f) (Z—d—e—C)

m 3.15 The 9j—symbol

The 6j—symbol arose in discussing the coupling of three angular momentum. Clearly more complex
nj—symbols will arise for couplings involving more than three angular momentum. The 95—symbol may

be defined as

(3.45)

< (Jij2)irz, (jaja)isa; j1(J13)d1s, (J2ja)joas § >

i J2 Ji2
=V (2124 D232 + 1)(2j13 + 1)(2j2a + 1) js  ja  Jsa (3.46)
J13 Jaa J

The 95j—symbol may be expressed in terms of 6j—symbols as

a b ¢
d e f
g h

sy CO{l s e L 347

The 9j—symbol is left invariant with respect to any even permutation of its rows or columns or a
transposition of rows and columns. Under an odd permutation of rows or columns the symbol is invariant
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but for a phase factor equal to the sum of its arguments. If one argument of the 9j—symbol is zero the
symbol collapses to a single 6j—symbol wviz.

a b c b4-d
—1)btd+i+y
d e fy=6.r6,n (=D {“ Z C} (3.48)
g h 0 (2c+1)(29+1) L€ g

m 3.16 Coupled tensor operators

We have noted the close connection between the transformation properties of tensor operators and angular

momentum states. Consider two tensor operators T and U%2. We can define a coupled tensor operator
X(F1k2iK) yig

XEEE = ST TR < kygikagolkike; KQ > (3.49)
41,92

Explicit evaluation of the Clebsch-Gordan coefficient for the case of K = 0 leads to

_1)k
g = —EU S Cpmagop® 3.50
[ ]0 (2]6‘ T 1) Zq:( ) q —q ( )
The scalar product of two tensor operators is defined as
(TH .Uy = Z(—l)qTq(k)UEkQ) (3.51)
q
It follows from Eqgs.(3.49) and (3.51) that
myonp - _EDY g
[TYUY]) = —(T"" - U"/) (3.52)

(2k+1)

m 3.17 Matrix elements of tensor operators

Henceforth we shall often write simply X rather than XF1#25) for o coupled tensor operator. It
follows immediatedly from the Wigner-Eckart theorem that

< i MXG o150 M >

smf{ J K J .. () || it 1 7
=(-1 M QM < ajrjoJ|| X 15T > (3.53)
Our problem is now to evaluate the reduced matrix element in Eq.(3.53). Basically this is done by an
uncoupling of the bra and ket states and of the tensor operator followed by appropriate recouplings and
summations. For the details I refer you to the books of Judd and of Edmonds.

If T®) and U™ act separately on parts 1 and 2 of a system such as in spin and orbit spaces or on
different particles, or sets of particles, then we obtain the result

< ajijod [|IXFa/ 1350 > =" < aju|[T*))|a” ] >< o jol U0’ >

a”

i J k
x /(27 + DK + 1)(2J' + 1)< jo  j5 ko (3.54)
J J K

We can specialise the above result for K = 0 to obtain the scalar product as
< ajip IM||(TH) - UW) o ji 7 M >
=656 M,(_1)J'{+jz+J ]1 ]é J
’ ’ J2on k
x Y < ap|IT®ja” i) >< o j|[UF|o' 5 > (3.55)

a”
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The action of an operator Tk acting on part 1 of a system can be found by putting k2 = 0 in Eq.(3.54)
to yield

. . 7 /
< aids [T 30" > = 6,y s ETE e F b
1 2 1

% < aji[|[T®)]|o'f) > (3.56)

while the action on part 2 is found by putting k1 = 0 in Eq.(3.54) to yield

Jo J1 )2
x < ajs|| 0Py > (3.57)

. N /
<wmﬂWWW%ET>=%¢PU““““¢@HJWW+U{{ kJ}

A weaker result applicable to both cases where the operators act either on different parts of a system or
indeed the same system may be derived to give

<aJ|XBa' T > = () 2K +1) Y {]f; j‘ 131}

o g
x < aJ||T*) o J7 >< o 07 ||UF)]|a' T > (3.58)

The results given by Eqgs. (3.53) to (3.58) form the basis for all subsequent applications of the theory of

tensor operators.

m 3.18 Spherical harmonics as tensor operators

The spherical harmonics Y34(6, ¢) play a key role in many atomic and crystal field calculations. The
spherical harmonics transform under the action of the generators of SOs just like the angular momentum
states |kg >. Rather than using the spherical harmonics themselves it is usual to use tensor operators

C®) whose 2k + 1 components C’gk) are related to the spherical harmonics as

[ 4 k—q)!
Cgk) =15 i 1qu(9, ¢) = (=1)¢ Ek n Z;' Pl(cos 0) exp iq¢ (3.59)

where the P/(cos ) are the usual Legendré polynomials.

The reduced matrix elements of C*) may be calculated by choosing to evaluate the matrix element of
the component C’ék) in an ¢s—basis between states with m, = 0 as done, for example, by Judd to give

!
< CHONE >= (~1)" (2£+1)(2w+1)<€ ' %) (3.60)

The 3jm—symbol vanishes unless £+ ¢ +k is even. The corresponding result for a jj—basis can be found

by use of Eq. (7.30) followed by Eq. (7.33) to give

.

. 1 ] !
<s£j||(](k>||s£’j’>:(—1)7‘5\/(2j—|—1)(2j’—|—1)(j ]5 ) (3.61)

1
2

=

where necessarily ¢ + ¢ + k is even.
m 3.19 The njsymbol MAPLE file

It is useful to be able to calculate the values of the various 3nj—symbols. This we accomplish in MAPLE
by writing a batch of procedures which I have placed in a file ”njsymbol” which includes necessary HELP
files. These may be used as a basis for calculating quantities that require 3nj—symbols. The relevant
code is given verbatim below:

with(linalg):

BRI R R R R R R R R R R R
#test checks that the triangular condition on the three integers or #
#half-integers a, b, ¢ is satisfied. #
BRI R R R R R R R R R R R
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test:=proc(a,b,c)
local result,resultl,result2;
if (evalb(at+b>=c) and evalb(c>=abs(a-b)))
then result:=true else result:=false;
fi;
end:
H R R R I R R R R
#threej evaluates 3jm-symbols. #
H R R R I R R R R
threej:=proc(j1,j2,j3,m1,m2,m3)
local xmin,xmax,x,fact,sumx,result;
if test(j1,j2,j3) and (mi1+m2+m3 =0) then
phase:=(-1)"(j1-j2-m3);
fact:=sqrt(((j1+j2-j3) !'*(j1-m1) '*(j2-m2) '*(j3+m3) '*(j3-m3)!)/
((G1+j2+33+1) 1% (§3+j1-32) 1% (§3+j2-j1) '*(ji+ml) '*(j2+m2) ') );
xmin:=max(0,j3-j2-m1);
xmax:=min(j3+m3,ji-m1,j3+j2-m1);
sumx:=0;
for x from xmin to xmax do
sumx:=sumx + ((-1)"(j1-mi1-x))*((jl+mi+x)!*(j3+j2-mi-x)!)/
(x'#(j3+m3-x) '*(j1-mi-x) '*(j2-j3+mi+x)!);

od;
result:=simplify(phase*fact*sumx) else result:=0;
fi;
end:
B B B e e B
#ck evaluates the reduced matrix element <a//C~(k)//b> #

B R R R R R R R R R
ck:=proc(a,b,k)
local result;
result:=simplify((-1) a*sqrt((2*a+1)*(2*b+1))*threej(a,k,b,0,0,0));
end:
B R R R R R R R R R
#triad evaluates the triangular portion of the formulae for 6j-symbols #
B R R R R R R R R R
triad:=proc(a,b,c)
local triang;
triang:=sqrt((((atb-c)!*(a-b+c) !*(b+c-a)!)/(atb+c+1i)!));
end:
B R R R R R R R R R
#sixj evaluates a 6j-symbol. #
B R R R R R R R R R

sixj:=proc(a,b,c,d,e,f)
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local trif,sumj,zmin,zmax,z,result;
if (test(a,b,c) and test(d,b,f) and test(d,e,c) and test(a,e,f))
then
trif:=simplify(triad(a,b,c)*triad(a,e,f)*triad(d,b,f)*triad(d,e,c));
zmin:=max(a+tb+c,ate+f,d+b+f,d+etc);
zmax:=min(a+b+d+e,b+cte+f,ctatf+d);
sumj:=0;

for z from zmin to zmax do

sumj:=sumj + (((-1)"z*(z+1)!)

/((z—a-b-c) '*(z—a-e-f) ! *(z-d-b-f) ! *(z-d-e-c) ! * (a+b+d+e—-z) ! * (b+c+te+f-z) !

*(ctatf+d-z)!'));

od;

result:=simplify(trif*sumj) else result:=0;

fi;

end:

B e e g R i R R i
#ninej evaluates a 9j-symbol #

B R R R R R R R R R
ninej:=proc(a,b,c,d,e,f,h,i,j)

local x,xmin,xmax,result;
if (test(a,d,h) and test(i,j,h) and test(b,e,i) and test(d,e,f) and
test(c,f,j) and test(c,a,b))
then

xmax:=min(a+j,i+d,b+£f);

xmin:=max(abs(a-j),abs(i-d),abs(b-1));

result:=0;
for x from xmin to xmax do
result:=result + ((-1)"(2*x))*(2*x + 1)*sixj(a,d,h,i,j,x)*sixj(b,e,i,d,x,f)
*sixj(c,f,j,x,a,b);
od;
result:=simplify(result)
else result:=0;
fi;
end:
B R R R R S
‘help/text/njsymbol ¢ :=TEXT( ‘HELP for njsymbol‘,
‘This package contains procedures for calculating 3jm—, 6j- and 9j-symbols®,
‘in rational form.The result appears as a fraction times square root factors.,
‘The square root factors can be combined into a single square root using the°,
‘the MAPLE command combine('"). The procedures can be used for inclusiomn in °,
‘other MAPLE programmes requiring the use of njsymbols. ¢,

‘The three procedures are as follows:-¢,

¢ ¢
B
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‘threej(ji1,j2,j3,m1,m2,m3):-¢,

¢ ¢
B

This procedure evaluates the value of a 3jm-symbol involving the three,
angular momenta j1, j2, j3 and their projections mil, m2, m3. The arguments®,
are entered as integers or half-integers as appropriate. The triangular‘,
rules are automatically checked and if not satisfied the symbol is‘,

evaluated to 0.°¢,

¢ ¢
B

‘sixj(a,b,c,d,e,f): -,

¢ ¢
B

This procedure evaluates the value of a 6j-symbol involving the six‘,
angular momenta a, b, ¢, d, e, f. The arguments are entered as integers or°,
half-integers as appropriate.The triangular rules are automatically checked®,

and if not satisfied the symbol is evaluated to 0.°,

¢ ¢
B

‘ninej(a,b,c,d,e,f,h,i):-¢,

¢ ¢
B

¢ This procedure evaluates the value of a 9j-symbol involving the nine,

¢ angular momenta a, b, ¢, d, e, f, g, h, i. The arguments are entered as°‘,

¢ integers or half-integers as appropriate. The triangular rules are®,

¢ automatically checked and if not satisfied the symbol is evaluated to O.°,

¢ ¢
B

‘EXAMPLES:-¢,

¢ ¢
B

‘1. threej(3/2,3/2,3,1/2,1/2,-1);°,

¢ ¢
B

2. sixj(3/2,3/2,3,1/2,7/2,2);°¢,

¢ ¢
B

‘3. ninej(3/2,3/2,3,1/2,7/2,3,2,2,2);):
B e e e B e e e e e e e i
m 3.20 Concluding Remarks

We are now at a stage to be able to consider the calculation of the influence of the crystal field of Sy
symmetry on the Ho>t which we take up in the next lecture.



38 4.1 Introduction

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

It does not follow that beauty is experienced only in
the context of great ideas and by great minds. This
1s no more true than that the jobs of creativity are
restricted to a fortunate few. They are accessible
to each one of us provided we are attuned to the
perception of strangeness in the proportion and the
conformity of the parts to one another and to the
whole.

— S. Chandrasekhar, Physics Today, July , 1979,
p30

m Lecture 4
m 4.1 Introduction

In this lecture I want to discuss the effect of the crystal field environment of the Ho3% ion in LiY Fy
crystals. We will first consider give the eigenvectors that result from the free ion calculation for the low
lying members of the ®I multiplet and then consider the point syymetry group Sy (not to be confused
with the symmetric group!) and the qualitative predictions of the effect on the ground multiplet and
then introduce the quantitative calculation of the crystal field effects.

m 4.2 The free ion eigenvectors

The free ion eigenvectors for all members of the ground multiplet of Ho3t may be obtained using the
MAPLE commands given below:-

read‘esof4‘;
A:=mateval(energymatrix(8,20747,6608,28.79,608,0,0,0,-2163));
evalf(Eigenvals(4,V8));

j8:=array(sparse,1..7);

for i from 1 to 7 do j8[i]:=V8[i,1] od;
A:=mateval(energymatrix(7,20747,6608,28.79,608,0,0,0,-2163));
evalf(Eigenvals(4,V7));

j7:=array(sparse,1..7);

for i from 1 to 7 do j7[i]:=V7[i,1] od;
A:=mateval(energymatrix(6,20747,6608,28.79,608,0,0,0,-2163));
evalf(Eigenvals(4,V6));
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j6:=array(sparse,1..13);
for i from 1 to 13 do j6[i]:=V6[i,1] od;
A:=mateval(energymatrix(5,20747,6608,28.79,608,0,0,0,-2163));
evalf(Eigenvals(4,V5));
jb:=array(sparse,1..14);
for i from 1 to 14 do j5[i]:=V5[i,1];0d;
A:=mateval(energymatrix(4,20747,6608,28.79,608,0,0,0,-2163));
evalf(Eigenvals(4,V4));
j4:=array(sparse,1..19);
for i from 1 to 19 do j4[i]:=V4[i,1]; od;
print(j8);
print(j7);
print(j6);
print(j5);
print(j4);
The concluding print statements yield the eigenvectors as:-
1 print(j8);
[ -.9665441654, —-.1188757869, .2221011067, .03257435612, -.01103118111,
-.03326906193, .006512896685 ]
1 print(j7);
[ .9853358400, .03046183244, -.03222569090, .07338324177, —.1461563716,
-.005621307008, -.01919580035 ]
1 print(j6);
[ .03111632461, -.01500275490, .08435166391, -.1351660676, .08192995026,
-.9772280457, —-.04595511259, .04540558570, .00949562729, .01921220624,
.00793919455, -.03324327705, .07702916177 ]
1 print(j5);
[ .07174607879, .002987768121, —.03081364786, -.08131102394, .04553081666,
-.02002957949, .1377250118, —-.1944477670, .1067334993, —.03002479292,
-.0113928741, -.9548891015, —.04740056952, .03933096028 ]
1 print(j4);
[ .003910968075, .01497113905, .006091052124, -.005552323510, .01595987535,
-.005157397553, .003031891189, -.008909474397, -.05163280146,
.02712445094, .01144861646, —.01592152155, -.04752158162, —.02954926223,
-.003176349314, .1620348430, -.2247133842, .1185679116, —.9495184108 ]

Note that the components of the eigenvectors are listed in the same sequence as the zero-order states
listed in Table 2.1. We shall be making use of the above eigenvectors later in the course.

m 4.3 The Point Symmetry Group S,

Ho3t substitutes for the Y31 in LiY F at sites of tetragonal symmetry described by the point group Sy,
not to be confused with the symmetric group on four objects! Since the ionic radii of Ho3t and Y371 are
almost the same there is little, if any, lattice distortion. Extensive information on the group Si is given
in:-
4.1 G.F.Koster, J.O.Dimmock, R.G.Wheeler and H.Statz, Properties of the Thirty-Two Point
Groups, M.I'T. Press (1963).
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The group 54 is a cyclic group isomorphic to C4, consisting of the identity, E, the rotation-reflection
Sy = IC'4_1, a two-fold rotation C5 and the inverse operator 54_1 = IC4. All rotations are taken about
the z—axis. The character table is given below:-

E | E Syt Syt Cy Cy Sa S

Iy 1 1 1 1 1 1 1 1
Iy 1 1 -1 -1 1 1 -1 -1
I's 1 1 1 1 -1 -1 —1 —1
I, 1 1 —1 —1 -1 -1 1 1
I's 1 -1 w —w 1 —1 —w?

I's 1 -1 —w? w? —1 1 w —w?
I~ 1 -1 —w w 1 —1 w? w
I's 1 -1 w? —w? —1 1 —w w?

Table 4.1 The Character Table for the Ss Point Group
with w = exp(%). Note that I'; and I'; are real one-dimensional representations whereas the remaining
representations form complex pairs (I's, T'4), (T's, T's), (I'7, I's) and hence in the absence of magnetic fields
are associated with doubly degenerate states. The last four representations are associated with the double
group of Sy and hence with half-integer angular momentum.
m 4.4 Kronecker Products in S,

The Kronecker products for S; may be easily established from the character table to yield the results
given in Table 4.2 below:-

Table 4.2 Kronecker Products for the Point Group Sy
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4.5 The O3 = S4 Branching rules

m 4.5 The O3 = S; Branching rules

The degeneracies of the states of a given J in a crystal field of S symmetry is determined by the O3 = S,
branching rules where Ogz is the full orthogonal group since the point group S4 includes reflections and
hence improper rotations. The irreducible representations of Oz are labelled with a 4+ or — superscript
to distinguish those irreducible representations that are even under inversion (4) from those that are odd
(-). Thus the results are given in Table 4.3 for integer and half-integer values of J. The decompositions
of the Dy irreducible representations of O3 may be obtained from those of D]TI' by multiplication by
I's. Note that since the spin irreducible representations of S; are all two-dimensional the for half-integer
angular momentum the levels in a crystal with point group symmetry S; must necessarily remain two-fold
degenerate. An external magnetic field 1s required to lift this residual Kramer’s degeneracy.

In the case of Ho®t in LiY Fy the electronic angular momentum J is an integer and the Stark electric
field degeneracies follow from the appropriate O3 = S4 branching rules. Adding the half-integer angular
momentum of the Ho nucleus results in states of total angular momentum F which is half-integer and
hence the degeneracies are always two-fold. The hyperfine interaction will also change selection rules; as
we shall see later.

Df S Dy S

D Iy Dy I

Df Iy + I's + Iy | DT Iy + TI's + T4
Df [y + 2Ty + Ts + Ty | Dy 'y + Ty + Ts + Ty
D [y + 20 + 23 + 21y | Dy 2Ty + Ty + 213 + 2Ty
Dj{ 30 + 2T, + 21’3 + 2I'4 Dy 2 + 31 4+ 2I's + 2I'4
D;’ 30y +2I's 4+ 35 + 314 Dy 2I'y + 3. + 35 + 314
Dgf 30y +41's + 35 + 314 Dy 4Ty 4+ 305 + 313 + 314
D;’ 30y +41's + 45 + 414 D7 4Ty 4+ 30 + 4I's + 41y
Dgr 5I'y +41's +4I's + 41", Dy 4Ty 4+ 50 +4I's + 41y
DY, I's + Is Dy I'7 + Ts

Dy, | Ts +Te+T7+Ts | Dy, | I's+Te+ I7 + I

DY, | Us+Ts+207+20s | D7, | 20s+ 206+ Iz + I's
DY, 25 + 20 + 207 +20s | D7, 205 + 2T + 207 + 2T'g
D, 305+ 306 + 207 +20s | Dy, 205 + 206 + 307 + 30's

DY, | 3Ts+306+307+30s | Dy, | 305+ 306+ 307 + 30
305 + 30 + 477 +4Ts | D7, AT's + 4T + 307 + 3T

13/2 13/2
DII—S/Z 45 + 406 + 407 + 40'g D1_5/2 45 4+ 4T + 47 + 4T
DY, | BUs+5Te +407 +4Ts | Dy, | ATs+40g+ 507 + 50

Dfyj | 5Ts+50+507 +50s | Dy, | 505+ 506 + 507 + 50
D}y | 5Ts+506+607 4605 | Djy, | 605+ 66+ 507 + 50
D3y | 6Ts+60+607+60s | Dy | 605+ 6T+ 67 + 6D

Table 4.3 Branching Rules for O3 = S,
m 4.6 The Dy; Symmetry

The point group D4 contains S; as a subgroup and hence exists as an approzimate symmetry for
describing Ho®t in LiY Fy crystals. Doy is isomorphic to the group D4 and consists of the operations of
D5 and in addition has the operations S4 and 54_1 about one of the two-fold axes of rotation about the
z—axis, as well as two reflections o4 through perpendicular planes containing the axis of S; and which
bisect the angles between the two rotations of Dy about the axes x and y, Cy. The character table,
Kronecker products, and O3 = Dsy4 decompositions are given in Koster etal. We shall refer to these later.

m 4.7 The Crystal Field Expansion
We now must look at the effect of perturbing the ”free ion” Ho3t by a crystal field with point symmetry
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Sa. As usual the crystal field potential is expanded as an infinite series of spherical tensors C’gk) with
associated coefficients Bé“ to give

(r,0,¢) = ZB’“ YO0, 6) (4.1)

In future we will omit the spherical coordinates (r, 9, #). The Hermiticity of the potential forces the axial
expansion coefficients BE to be real whereas the non-axial coefficients (¢ f) may be complex. The infinite
series may be truncated by introducing various degrees of approximation. Between states of the same
parity the triangular selection rules on the reduced matrix elements of C™*) restrict the tensor ranks k
to even integers and between states of opposite parity to odd integers. The values of k may be further
restricted if we assume that the states of interest are limited to a single N —electron configuration ¢V . In
that case not only must k& be an even integer, it is bounded by

20>k>0 (4.2)
Thus for fV configurations we are restricted to the values
k=0,2,4,6 (4.3)

Since the matrix elements of C’éo) are constant over all the states of a configuration the term with & =0
1s usually omitted from consideration.

The possible values of ¢ are restricted by two requirements. The first being simply that k& > |¢| and the
second that the potential be invariant with respect to all the symmetry operations of the relevant point
group. Thus the 5S4 symmetry forces the potential to be invariant with respect to four-fold rotations
about a z—axis and hence restricting ¢ to the values

g =0,+4 (4.4)

The invariance with respect to the symmetry operations of the point group amounts to the requirement
that the potential transform as the identity irreducible representation I'; of the point group (. The
number of independent expansion coefficients Bé“ for a given value of k is just the number of times I'y
occurs in the decomposition O3 = G of the Og irreducible representation D,;" which from Table 4.3 we
find is 1 for £ = 2 and 3 for both ¥ = 4 and ¥ = 6. This may be compared with the higher symmetry
group Dsd where 'y occurs once for k¥ = 2 and twice for each of £ = 4 and & = 6. Thus in Ds4 the crystal
field expansion for the states of fV configurations will be:-

Dog: V = BICY + BACSM + BHCY) + M) + BSCS + BS(C) + 1) (4.5)
The potential 1s Hermitian with the expansion coefficients Bg all real.
The lower symmetry of the point group S, manifests itself in the need for an extra expansion coefficient

for each of the non-axial terms. This can be realised by taking the non-axial terms as complez rather
than real. Thus for 54 the crystal field potential becomes:-

Sa:V = B3CS + BICS + BLCY + BSC + BE,CY) (4.6)

where

k ko Ak

BY, =B, £i4, (4.7)
with Bé“ and AlqC are both real. Thus the S, crystal field is associated with seven independent crystal field
parameters whereas Dsgq has five independent parameters. Note we now say parameters as along with
most work we will treat the expansion coefficients as parameters to be determined from the experimental
data rather than from some ab initio calculation. Before fitting the parameters to data we must calculate

the angular matrix elements of the C’gk) tensor operator components. This we will normally do in the
customary angular momentum basis.
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m 4.8 Calculation of the Matrix elements of C’gk)

It follows from the Wigner-Eckart theorem that the M and ¢ dependence of the matrix elements of C’gk)
is entirely cased in a single 3j—symbol viz.

_ J ko J
ooy = i (b ) walie®ne ) (18)
The selection rules for the 3j—symbol to be non-vanishing force the triad (J, k, J') to satisfy the triangular
condition
J+T > k>|J-J] (4.9a)
and that
M-M =q (4.9b)

The reduced matrix elements in Eq. (4.8) may be evaluated in, an |« SLJ) basis obtained from the earlier
”free ion” calculation using the tensor operator algebra to give

J ko J

(@SLI|CM||o/SL Ty = (1) T/ 2] + )27 + 1) { I s L

}(aSLHC(k)Ha’SL’) (4.10)
Notice that the matrix elements are diagonal in the spin quantum number S'. However, there may be
off-diagonal elements in L and J. The latter leads to so-called J—mizing. For most of our study we shall
neglect J—mixing and assume that the significant matrix elements of interest are diagonal in J. Since
our "free ion” eigenvectors involve non-trivial admixtures of states of different L we shall at times need to
consider matrix elements off-diagonal in L. and more often, in the auxilliary quantum numbers designated
by «. The doubly reduced matrix elements in Eq. (4.10) may be directly taken from the tables of Nielson
and Koster. They give the matrix elements for the unit tensor operators U*) and multiplication by the
reduced matrix elements (f||C(*)||f) gives us the desired matrix elements. Nielson and Koster list the
matrix elements for f4 and to obtain them for f1° we must multiply by —1.

m 4.9 Intermediate Coupling Reduced Matrix Elements

The ”free ion” calculation yields an eigenvector expansion for the state |3.J) (We suppress M quantum
numbers here) of

187) =Y daspslaSLJ) (4.11)
aSL

Remembering that the matrix elements of the crystal field are diagonal in spin S we obtain the reduced
matrix elements of the unit tensor operator, U*), corrected for intermediate coupling as

BINUBNATY =D > aaspsahspy (aSLIUR||o/SL'J) (4.12)
aSL a!'SL!

Let us carry out the calculation for k = 2 for the "free ion” groundstate of Ho3% in detail. From Table
3.1 we have the eigenvector expansion

|3] = 8) = 0.9665|°Is) + 0.1189|(21)*Kg) — 0.2221|(30)3K) (4.13)

From page 74 of the tables of Nielson and Koster and multiplying by —1 to obtain results for f'% we have
the required doubly reduced matrix elements of U(?) as

1
CrT e = + £

(21)°K U(2)||(21)3K):_% 2;_1

(Q1PE (U@ (30°K) = _g 12_3

(30> K || U™)|(30)3K) = =5 22—1 (4.14)

L NB. This is only strictly true if we ignore relativistic effects. See: B. G. Wybourne, Use of Relativistic Wave
Functions in Crystel Field Theory, J. Chem. Phys., 43, 4506-7 (1965).
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The next step is to multiply these matrix elements to produce the singly reduced matrix elements from
Eq. (4.10). This may be readily calculated using our MAPLE package "njsymbol” described in lecture
three and the following extra MAPLE code:-

B R R R R S
#redmatrix is a single reduced matrix element produced from the doubly #
#reduced matrix element rm. #
B R R R R S
read‘esof4‘;
read ‘njsymbol‘;
redmatrix:=proc(S,L1,J1,L2,J2,k,rm)
local result;

result:=combine(simplify((-1)"(S + L2 + J1 + k)*sqrt((2*J1 + 1)*(2%J2 + 1))/
*sixj(J1,k,J2,L2,S,L1)*ck(3,3,k)*rm));

end:
B R R R R S

We finally tabulate our singly reduced matrix elements as a 3 x 3 matrix to give

Sl (21)3Ks  (30)3Ks

5[ _ /9690 0 0
8 150

A= @Ky [ 0 10 2D
(30°Ks \ 0 Nk N

We can input Eq.(4.13) into MAPLE as a column vector,V, and carry out the multiplication AV followed
by the dotproduct of the resultant with V' to finally yield the single number

(BJ = 8||CP||B] = 8) = —0.6024 (4.15a)

which may be compared with the LS—coupling value of

CIs|CP|PIs) = —0.6563 (4.15b)

m Exercises
1. Complete the above calculation for k = 4, 6.
2. Repeat the calculation for the other levels of the °I multiplet.

In the next lecture we will use the results of the above exercises to calculate the crystal field splittings
in the ground multiplet of Ho?t in LiY Fy crystals. We append the necessary doubly reduced matrix
elements required in the exercises.

m 4.10 Additional Reduced Matrix Elements

The following doubly reduced matrix elements have been extracted from the tables of Nielson and Koster.
Remembering that Professors often make mistakes you should check the entries.
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m 4.11 The MAPLE commands for the intermediate coupling calculation
The following is a list of MAPLE commands to calculate the intermediate coupling calculations:-

#Calculation of intermediate coupling matrix elements for J = 8

read‘redmat‘;

#Intermediate coupling eigenvector V
V:=array(1..3);

V[1]:=0.9665;
V[2]:=0.1189;
V[3]:=-0.2221;

#Initialise A matrix
S:=array(sparse,1..3,1..3);
A:=array(symmetric,1..3,1..3);
copyinto(S,A,1,1);

#Evaluate matrix elements of A in the LS-basis for k = 2
Al1,1] :=redmatrix(2,6,8,6,8,2,sqrt(13/66));

A[2,2] :=redmatrix(1,7,8,7,8,2,-sqrt(221/2)/14);
A[2,3] :=redmatrix(1,7,8,7,8,2,-9%sqrt(2/13)/7);
A[3,3]:=redmatrix(1,7,8,7,8,2,-b*sqrt(2/221));
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 4
Al1,1] :=redmatrix(2,6,8,6,8,4,-sqrt(442)/33);

A[2,2] :=redmatrix(1,7,8,7,8,4,-sqrt(1615/26)/462) ;
A[2,3] :=redmatrix(1,7,8,7,8,4,-115*%sqrt(95/26)/231);
A[3,3]:=redmatrix(1,7,8,7,8,4,-2%sqrt(3230/13)/33);
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 6
Al1,1] :=redmatrix(2,6,8,6,8,6,5*sqrt(323/21)/11);
A[2,2] :=redmatrix(1,7,8,7,8,6,-4*sqrt(3230/7)/143);
A[2,3]:=redmatrix(1,7,8,7,8,6,-sqrt(1330)/143);
A[3,3]:=redmatrix(1,7,8,7,8,6,9*%sqrt(190/119)/143);
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#End of J = 8 calculation

#Calculation of intermediate coupling matrix elements for J = 7

read‘redmat‘;
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#Intermediate coupling eigenvector V
V:=array(1..2);

V[1]:=0.9853;
V[2]:=-0.1462;

#Initialise A matrix
S:=array(sparse,1..2,1..2);
A:=array(symmetric,1..2,1..2);
copyinto(S,A,1,1);

#Evaluate matrix elements of A in the LS-basis for k = 2
Al1,1] :=redmatrix(2,6,7,6,7,2,sqrt(13/66));

A[2,2] :=redmatrix(1,7,7,7,7,2,-b*sqrt(2/221));
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 4
Al1,1] :=redmatrix(2,6,7,6,7,4,-sqrt(442)/33);

Al2,2] :=redmatrix(1,7,7,7,7,4,-115*%sqrt(95/26)/231);
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 6
Al1,1] :=redmatrix(2,6,7,6,7,6,5*%sqrt(323/21)/11);
Al2,2] :=redmatrix(1,7,7,7,7,6,-sqrt(1330)/143);
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#End of J = 7 calculation

#Calculation of intermediate coupling matrix elements for J = 6

read‘redmat‘;

#Intermediate coupling eigenvector V
V:=array(1..2);

V[1]:=0.9772;
V[2]:=0.1352;

#Initialise A matrix
S:=array(sparse,1..2,1..2);
A:=array(symmetric,1..2,1..2);
copyinto(S,A,1,1);

#Evaluate matrix elements of A in the LS-basis for k = 2
Al1,1] :=redmatrix(2,6,6,6,6,2,sqrt(13/66));

Al2,2] :=redmatrix(1,7,6,7,6,2,-89*%sqrt(11/182)/30);
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B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 4
Al1,1] :=redmatrix(2,6,6,6,6,4,-sqrt(442)/33);
A[2,2] :=redmatrix(1,5,6,5,6,4,-53*sqrt(1/91)/9);
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 6
Al1,1] :=redmatrix(2,6,6,6,6,6,5*%sqrt(323/21)/11);
A[2,2] :=redmatrix(1,5,6,5,6,6,-sqrt(170/3)/39);
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#End of J = 6 intermediate coupling calculation.

#Calculation of intermediate coupling matrix elements for J = 5

read‘redmat‘;

#Intermediate coupling eigenvector V
V:=array(1..4);

V[1]:=0.9549;
V[2]:=-0.1377;
V[3]:=0.1944;
V[4]:=-0.1067;

#Initialise A matrix
S:=array(sparse,1..4,1..4);
A:=array(symmetric,1..4,1..4);
copyinto(S,A,1,1);

#Evaluate matrix elements of A in the LS-basis for k = 2
Al1,1] :=redmatrix(2,6,5,6,5,2,sqrt(13/66));

A[2,2] :=redmatrix(1,5,5,5,5,2,-sqrt(143/14)/5);
A[2,3] :=redmatrix(1,5,5,5,5,2,-31*sqrt(11/39)/15);
A[2,4] :=redmatrix(1,5,5,5,5,2,-4*sqrt(11)/45);
A[3,3]:=redmatrix(1,5,5,5,5,2,-89*%sqrt(11/182)/30);
A[3,4] :=redmatrix(1,5,5,5,5,2,-29%sqrt(11/42)/15);
Al4,4] :=redmatrix(1,5,5,5,5,2,-sqrt(143/14)/5);
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);
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#Evaluate matrix elements of A in the LS-basis for k = 4
Al1,1] :=redmatrix(2,6,5,6,5,4,-sqrt(442)/33);
A[2,2] :=redmatrix(1,5,5,5,5,4,-11*sqrt(1/91)/86);
A[2,3] :=redmatrix(1,5,5,5,5,4,-19%sqrt(1/68)/86);
A[2,4] :=redmatrix(1,5,5,5,5,4,-5%sqrt(2)/9);
A[3,3]:=redmatrix(1,5,5,5,5,4,-53*sqrt(1/91)/9);
A[3,4] :=redmatrix(1,5,5,5,5,4,2*sqrt(1/21));

Al4,4] :=redmatrix(1,5,5,5,5,4,2*sqrt(13/7)/5);
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 6
Al1,1] :=redmatrix(2,6,5,6,5,6,5*sqrt(323/21)/11);
A[2,2] :=redmatrix(1,5,5,5,5,6,-11*sqrt(17/35)/13);
A[2,3] :=redmatrix(1,5,5,5,5,6,-sqrt(170/3)/39);
A[2,4] :=redmatrix(1,5,5,5,5,6,4*sqrt(34/65)/9);
A[3,3]:=redmatrix(1,5,5,5,5,6,29%sqrt(17/35)/68);
A[3,4] :=redmatrix(1,5,5,5,5,6,-sqrt(119/195)/3);
Al4,4] :=redmatrix(1,5,5,5,5,6,sqrt(17/35));
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#End of J = 5 intermediate coupling calculation

#Calculation of intermediate coupling matrix elements for J = 4

read‘redmat‘;

#Intermediate coupling eigenvector V
V:=array(1..4);

V[1]:=0.9495;
V[2]:=-0.1620;
V[3]:=0.2247;
V[4]:=-0.1186;

#Initialise A matrix
S:=array(sparse,1..4,1..4);
A:=array(symmetric,1..4,1..4);
copyinto(S,A,1,1);

#Evaluate matrix elements of A in the LS-basis for k = 2
Al1,1] :=redmatrix(2,6,4,6,4,2,sqrt(13/66));

A[2,2] :=redmatrix(1,5,4,5,4,2,-sqrt(143/14)/5);
A[2,3] :=redmatrix(1,5,4,5,4,2,-31*sqrt(11/39)/15);
A[2,4] :=redmatrix(1,5,4,5,4,2,-4*sqrt(11)/45);
A[3,3]:=redmatrix(1,5,4,5,4,2,-89*%sqrt(11/182)/30);
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A[3,4] :=redmatrix(1,5,4,5,4,2,-29%sqrt(11/42)/15);
Al4,4] :=redmatrix(1,5,4,5,4,2,-sqrt(143/14)/5);
B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 4
Al1,1] :=redmatrix(2,6,4,6,4,4,-sqrt(442)/33);
A[2,2] :=redmatrix(1,5,4,5,4,4,-11*sqrt(1/91)/86);
A[2,3] :=redmatrix(1,5,4,5,4,4,-19%sqrt(1/68)/86);
A[2,4] :=redmatrix(1,5,4,5,4,4,-5%sqrt(2)/9);
A[3,3]:=redmatrix(1,5,4,5,4,4,-53*sqrt(1/91)/9);
A[3,4] :=redmatrix(1,5,4,5,4,4,2*sqrt(1/21));
Al4,4] :=redmatrix(1,5,4,5,4,4,2*sqrt(13/7)/5);
B:=mateval(A);
print(B);
multiply(B,V);
dotprod(",V);

#Evaluate matrix elements of A in the LS-basis for k = 6
A[1,1] :=redmatrix(2,6,4,6,4,6,5*sqrt(323/21)/11);
A[2,2] :=redmatrix(1,5,4,5,4,6,-11*sqrt(17/35)/13);
A[2,3] :=redmatrix(1,5,4,5,4,6,-sqrt(170/3)/39);
A[2,4] :=redmatrix(1,5,4,5,4,6,4*sqrt(34/65)/9);
A[3,3]:=redmatrix(1,5,4,5,4,6,29%sqrt(17/35)/68);
A[3,4] :=redmatrix(1,5,4,5,4,6,-sqrt(119/195)/3);
A[4,4] :=redmatrix(1,5,4,5,4,6,sqrt(17/35));

B:=mateval(A);

print(B);

multiply(B,V);

dotprod(",V);

The above commands have been added to the diskette of MAPLE code for this lecture course.
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B 4.12 Intermediate Coupling corrected Reduced Matrix Elements

We list in the table below the intermediate coupling corrected matrix elements of the reduced matrix
elements computed by the MAPLE code. The uncorrected matrix elements are in each case given imme-
diately below each corrected matrix element.

Matrix Element k= 2 k= 4 k= 6
CIs|C™1P Is) —-0.6024 | —0.6317 | —1.6039
—0.6563 | —0.6797 | —1.7061
G| C®P I7) —-0.5231 | —0.4112 | —0.2285
—0.5524 | —0.4042 | —0.2399
(Is]|C®|1° Is) —0.4445 | —0.2615 | +0.3000
—0.4775 | —0.2614 | +0.3105
(Is)|C®|1° I) —-0.4643 | —0.2533 | +0.2549
—0.4428 | —0.2437 | +0.2957
Ly |C®P 1) —0.4775 | —0.4139 | —0.7252
—0.4505 | —0.4103 | —0.7679
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5.1 Introduction

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

The creative principle resides in mathematics. In
a certain sense, therefore, I hold it true that pure
thought can grasp reality, as ancients dreamed

— A. FEinstein

Continental people do not seem to be in the least in-
terested to form a physical idea as a basis of theory.
They are quite content to explain everything on a
certain assumption and do not bother their heads
about the real cause of a thing. I must say that the
English point of view is much more physical and
much to be preferred

— E. R. Rutherford
m Lecture 5
m 5.1 Introduction

In the previous lecture we outlined the crystal field expansion for S; symmetry and calculated the
intermediate coupling corrections to give the reduced matrix elements (3.J||C™*)||8.J) tabulated in Table
4.12. We must now use these to develop the calculation of the crystal field perturbation of the Ho3t
" free-ion” levels.

m 5.2 Crystal Field Matrix Elements

We saw in the previous lecture that the crystal field potential for 54 point symmetry acting on f—electrons
can be written as

Si:V = BiCEY + BiC + BLCY) + BLOL (4.6)
where
BY, = BY £iAl (4.7)
and both Bé“ and AlqC are real. In practice we can perform a rotation of the x and y axes about the z—axis
to eliminate the imaginary part of either Bi, or B{,. Most workers choose B, to be real.

Recall the Wigner-Eckart theorem and write

praiepig sy = iy (b T et (4.5)

For the present we shall only consider states within a given J—manifold, i.e. we shall ignore .J—mixing.
The reduced matrix elements can be taken from Table 4.12 to be corrected for intermediate coupling.
Hermiticity conditions allow us to write

(BIMVI[BIM) = (8] — M|V|B] — M) (5.1)
and
(BIM|VIGIM') = (BIM'|V|3TM)" (5.2)

m 5.3 Basis States and Crystal Field Splittings

A state of total angular momentum J is associated with (2J + 1) basis states |JM). In general the
number of crystal field levels will be less than (2J + 1). Thus, for example, we have from Table 4.3 that
a J = 8 level splits in Ss point symmetry as

DF =51y + 475 +4(T's + I'y) (5.3)
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5.4 Example of the Ground Level of Ho>t

Remembering that the two irreducible representations I's and 'y are complex conjugates and hence
remain degenerate in an electric field, we obtain 13 sublevels. This means that in an appropriate basis
that reflects the S4 point symmetry the rank 17crystal field energy matrix will break into a rank 5 matrix
involving 5 I'y states, a rank 4 matrix involving 4 I'y states and two rank 4 matrices associated with the
I's and I'y states.

The off-diagonal crystal field matrix elements will vanish unless

M =M+4 (5.4)

Thus for J = 8 the following |J M) basis states are coupled by the crystal field potential:
u=0:[80),|8+4),[8 F 8) (5.5a)
p==x1:8=+1),|8F3),|8+5),[8F7) (5.5b)
u=2:82),18 — 2),|86)|8 — 6) (5.5¢)

where we have introduced the crystal quantum numbers . It can be readily seen that these correspond
to the Sy point symmetry group labels as

u=0:T,p=x1:T34,u=2:T, (5.6)

It is useful to introduce, for the u = 0, 2 states the symmetric and antisymmetric linear combinations

1

IM)s = (M) £ 1 = M) (5.7)

We then have that
(IMIVIIM") 1y =< JM|V|IM')__, real (5.84)
(JMIV|JM') 41— = (JM'|V|J M)~ |, imaginary (5.8b)

m 5.4 Example of the Ground Level of Ho3t

It is instructive to focus attention on the ®Ig level of Ho®t in a Sy point symmetry environment. Individual
matrix elements, corrected for intermediate coupling may be computed using the following MAPLE code
in the file ”vs4”

H R R R R R
#Calculates crystal field matrix elements for S4-point symmetry with#
#intermediate coupling correction within a given J-manifold. #
H R R R R R
read ‘njsymbol‘;
read‘icrm®;
icO);
vs4:=proc(J,M1,M2,k,q)
local result;
result:=(-1)"(J-M1)*threej(J,k,J,-M1,q,M2)*icrm[9-T,k/2];
end:
crystal:=proc(J,M1,M2)

local result;

result:=simplify(B20*vs4(J,M1,M2,2,0) + B40*vs4(J,M1,M2,4,0) + B60*vs4(J,M1,M2,6,0)

+ (B44 + I*A44)*vs4(J,M1,M2,4,4) + (B44 - I*A44)*vs4(J,M1,M2,4,-4)
+ (B64 + I*A64)*vs4(J,M1,M2,6,4) + (B64 — I*A64)*vs4(J,M1,M2,6,-4));
end:

where the file ”icrm” contains the intermediate coupling reduced matrix elements
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B R R S R R R R R
#Array of intermediate coupling corrected matrix elements for the ground #
#multiplet of Ho"3+. The first index i of the array corresponds to J = 9 - i#
#while the second index j corresponds to k = 2j. #
B R R S R R R R R
ic:=proc()

icrm:=array(1..5,1..3);

icrm[1,1]:=-0.6024;

icrm[1,2]:=-0.6317;

icrm[1,3]:=-1.6039;

icrm[2,1]:=-0.5231;

icrm[2,2]:=-0.4112;

icrm[2,3]:=-0.2285;

icrm[3,1]:=-0.4445;

icrm[3,2]:=-0.2615;

icrm[3,3]:=0.3000;

icrm[4,1]:=-0.4643;

icrm[4,2]:=-0.2533;

icrm[4,3]:=0.2549;

icrm[5,1]:=-0.4775;

icrm[5,2]:=-0.4139;

icrm[5,3]:=-0.7252;

print();

end:

H R R R R R R R

The complete crystal field matrices for 4 = 0,1,2 are computed using the MAPLE files ”crystal.8”,
7crystal.u81” and ”crystal.u82” given below:

B L e L oo oo o o o
#Calculation of crystal field matrix for the mu=0 states. Digits set at#
#5 for five figure accuracy. #
B L e L oo oo o o o
read‘vs4‘;

Digits:=5;

S:=array(sparse,1..5,1..5);

S[1,1]:=crystal(8,0,0);

S[1,2]:=evalf((crystal(8,0,4) + crystal(8,0,-4))/sqrt(2));
S[1,4]:=evalf((crystal(8,0,4) - crystal(8,0,-4))/sqrt(2));
s[2,1]:=s[1,2];

S[2,2]:=evalf((crystal(8,4,4) + crystal(8,-4,-4))/2);
S[2,3]:=evalf((crystal(8,4,8) + crystal(8,-4,-8))/2);
S[2,5]:=evalf((crystal(8,4,8) - crystal(8,-4,-8))/2);

s[3,2]:=s[2,3];

S[3,3]:=evalf((crystal(8,8,8) + crystal(8,-8,-8))/2);
S[3,4]:=evalf((crystal(8,8,4) - crystal(8,-8,-4))/2);

+
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S[4,1]1:=-S[1,4];

S[4,3]:=-S[3,4];

S[4,4]:=5[2,2];

s[4,5]:=5[3,2];

S[5,2]:=-S[2,5];

S[5,4]:=5[2,3];

s[5,5]1:=5[3,3];

print(S);

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS

#Calculation of crystal field matrix for the mu=1 states. Digits set at#

#5 for five figure accuracy. #

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS

read‘vs4‘;

Digits:=5;

C:=array(sparse,1..4,1..4);

C[1,1]:=crystal(8,1,1);

C[1,2]:=crystal(8,1,-3);

C[1,3]:=crystal(8,1,5);

C[2,1]:=evalc(conjugate(C[1,2]1));

C[2,2] :=crystal(8,-3,-3);

C[2,4] :=crystal(8,-3,-7);

C[3,1]:=evalc(conjugate(C[1,3]1));

C[3,3]:=crystal(8,5,5);

C[4,2] :=evalc(conjugate(C[2,4]));

C[4,4] :=crystal(8,-7,-7);

print(C);

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS

#Calculation of crystal field matrix for the mu=2 states. Digits set at#

#5 for five figure accuracy. #

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS

read‘vs4‘;

Digits:=5;

B:=array(sparse,1..4,1..4);

B[1,1]:=evalf((crystal(8,2,2)+crystal(8,2,-2)
+crystal(8,-2,2)+crystal(8,-2,-2))/2);

B[1,2]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);

B[1,3]:=evalf((crystal(8,2,2)-crystal(8,2,-2)
+crystal(8,-2,2)-crystal(8,-2,-2))/2);

B[1,4]:=evalf((crystal(8,2,6)-crystal(8,-2,-6))/2);

B[2,1]:=B[1,2];

B[2,2]:=evalf((crystal(8,6,6)+crystal(8,-6,-6))/2);

B[2,3]:=evalf((crystal(8,6,2)-crystal(8,-6,-2))/2);

B[2,4]:=0;
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B[3,1]:=-B[1,3];
B[3,2]:=-B[2,3];
B[3,3]:=evalf((crystal(8,2,2)-crystal(8,2,-2)
-crystal(8,-2,2)+crystal(8,-2,-2))/2);
B[3,4]:=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);
B[4,1]:=-B[1,4];
B[4,2]:=0;
B[4,3]:=B[3,4];
B[4,4]:=B[2,2];
print(B);

Running the above files leads to the crystal field matrices

|80) [84) 4 |88)+ |84) |88) -
+.073435B2 | —.10224B} 0 +.10224i A’ 0
(80| —.058492B% | +.059290B¢ — 059290 Af
+.12642B¢
— 10224 B +.024478B2 | —.016569B% | 0 +.016569i A%
L(84] | +.059290B5 | +.038994B! | —.14415B§ +.14415i AS
— 1348588
0 —016569B% | —.12240B2 —.016569i4% | 0
+(88] — 1441588 —.084486B% | —.14415iA$
— 10956 BS
—10224i A% 0 +.016569iA% | +.024478B2 | —.016569B%
_(84] | 4.059290iA§ +.14415i AS +.038994B4 | —.14415BS
— 1348588
0 —.016569i4% | 0 —016569B% | —.12240B2
_(88] — 14415 AS — 1441588 — 084486 B¢
— 10956 BS

Table 5.1 Crystal field matrix for the g = 0 states.
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81)+ 8=3) 85) - 8= 1)
+.070377 B3 —.079194 B} —.061444 B} 0
(81] —.050370B¢ —.079194i A} +.061444i A%
+.089551 B¢ +.11483 B} —.053452B5
+.114837 A§ +.053452i A§
—.079194 B} +.045897 B3 0 —.032086 B3
(8 — 3 +.11483 B} +.0048744 B3 —. 176798
+.079194i A% —.097976 BS —.032086i A%
—.11483i A§ —. 176791 A§
—.061444 B3 0 —.0030598 B2 0
(85] —.053452B5 +.063366 B;
—.061444i A% —.068476 B§
—.053452i A§
0 —.032086 B} 0 —.076496 B2
(8 =17 —.17679B] +.021122B¢
+.032086:1 A% +.17803B§
+.176791 A§
Table 5.2 Crystal field matrix for the g = 1 states.
82) 86)+ 82) 86) -
+.061196 B2 —.047594 B} +.081566i A% 0475941 A%
—.027622B¢ —.13802B5 —.14192i A§ +.13802i A5
+(82] —.0021070B§
—.081566 B3
+.14192 B¢
—.047594 B3 —.036720B3 —.047594i A} 0
—.13802B5 +.063366 B] —.13802i A§
+(86] +.082174B§
—.081566i A% 0475941 A% 061196 B2 —.047594 B
+.141924 A§ +.138024 A§ —.027622B3 —.138028]
_{(82] —.0021070B§
+.081566 B}
—.14192B5
—.047594i A% 0 —.047594 B3 —.036720B3
—.13802i A§ —.13802B] +.063366 B]
_{(86] +.082174B§

Table 5.3 Crystal field matrix for the p = 2 states.
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m 5.5 Dy; and S; Point Group Symmetry

The above matrices are Hermitian as required. It will be noted that with our choice of basis the imaginary
elements occur as off-diagonal block matrices and indeed putting A3, AS = 0 reduces the matrices to block
diagonal form. Thus the rank 5 matrix for g = 0 splits into two submatrices of rank 3 and 2 and the
rank 4 matrix for g = 2 splits into two identical matrices of rank 2. The matrix for g = £1 remains
irreducible. This can be understood by recalling that the crystal field potential for Dag4, Eq.(4.7), involves
only real parameters and putting the imaginary parameters of the S potenital to zero leads to the higher
symmetry of Doy symmetry. For a J = 8 level we have the O3 = Dy4 decomposition

DF = 30y + 20y + 213 + 214 + 415 (5.9)

Furthermore, under Dsg = S4 we have the compatibility table:

Doy ry I I's ry Is Is I
Sy ry ry Iy Iy I's+1T4 I's + T I'7+7Ts

Table 5.4 Doy @ S4 Group Compatibility table

In the case of the y = 0 matrix putting the imaginary part to zero leaves a rank 3 matrix involving
3 symmetric basis states whereas the rank 2 matrix involves 2 antisymmetric basis states. Under Day
symmetry the 3 symmetric states transform as I'; states while the 2 antisymmetric states transform as
I's states. The effect of including the imaginary terms is to lead to a coupling of the five basis states to
yield states transforming under Sy as I'y. This is consistent with S4 being a lower symmetry than Dsq.

Inspection of Eq.(5.9) and of Table 5.4 suggests that the number of crystal field levels in Sy and Dag
for J = 8 is in each case 13. In practice the g = 2 levels are two-fold degenerate in Dag whereas for
Sy the p = 2 levels are non-degenerate, the degeneracy being lifted by the imaginary term. This is seen
experimentally with the g = 2 levels occurring at energies (in em™1)

pw=0:7, 23, 289, 315
Here we have two pairs of levels and their comparatively small splittings 1s a measure of the strength of
the imaginary term.

Our next problem is to deduce a set of crystal field parameters that is consistent with the observed crystal
field levels - the subject of our next lecture.

m Exercises
5.1 Construct the crystal field matrices for the J =4, 5, 6, 7 levels of the ground multiplet of Ho3+
in LiY Fy.
5.2 Consider how you could determine the parameters of the crystal fields to optimise the description
of the experimental levels.




59 6.1 Introduction

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

Where in the Schrgdinger equation do you put the
joy of being alive?

— E. P. Wigner

The most important thing accomplished by the dis-
covery of the radiation background in 1965 was to
force all of us to take seriously the idea that there
was an early universe

— Steven Weinberg, The First Three Minutles

m Lecture 6
m 6.1 Introduction

In the last lecture we showed how to include the crystal field potential and to construct the relevant
crystal field matrices suitably corrected for intermediate coupling. In this lecture we diagonalise the
matrices and make a comparison with experimental data. We shall find that while the splitting of the
ground level (J = 8) the higher members of the multiplet show significant deviations from experiment,
especially for the J = 5 and J = 4. We illustrate how the situation can be improved by allowing the
crystal field to couple the adjacent J levels, so-called J—mixing. Finally we view the eigenvectors of the
low-lying states and consider the Zeeman matrix elements for the two lowest states. We should then be
ready to consider the final perturbation coming from the nuclear hyperfine interaction.

m 6.2 Construction of the Crystal Field Matrix Elements

The key to the calculation is our Maple file ”vs4” which calculates individual matrix elements diagonal
in J but with correction for intermediate coupling using the coefficients stored in the file 7icrm”:-

H R R R R R
#Calculates crystal field matrix elements for S4-point symmetry with#
#intermediate coupling correction within a given J-manifold. #
H R R R R R
read ‘njsymbol‘;
read‘icrm®;
icO);
vs4:=proc(J,M1,M2,k,q)
local result;
result:=(-1)"(J-M1)*threej(J,k,J,-M1,q,M2)*icrm[9-T,k/2];
end:
crystal:=proc(J,M1,M2)
local result;
result:=simplify(B20*vs4(J,M1,M2,2,0) + B40*vs4(J,M1,M2,4,0)
+ B60*vs4(J,M1,M2,6,0) + (B44 + IxA44)*vs4(J,M1,M2,4,4)
+ (B44 - I*A44)*vs4(J,M1,M2,4,-4) + (B64 + IxA64)*vs4(J,M1,M2,6,4)
+ (B64 - I*A64)*vs4(J,M1,M2,6,-4));
end:

The individual crystal field matrices are then computed using the crystal field parameters defined in the
Maple file ”crystal.par”. As an initial estimate we take those deduced in
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6.1 N.Karayianus, D. E. Wortman and H. P. Jenssen, Analysis of the optical spectrum of Ho3t in
LiY Fy, J. Phys. Chem. Solids, 37, 675-662 (1976).

who made a least-squares fit to the experimental data known at that time and found (in em=1)
BZ =410, B = —615, By = —27.9, B} = 819, Bf = 677, A = +£32.8 (6.1)

More complete experimental data is given in Table IX in

6.2 N. 1. Agladze, M. N. Popova, M. A. Koreiba, B. Z. Malkin and V. R. Pekurovskii, Isotope effects
in the lattice structure and vibrational and optical spectra of SLi, " Li1_,Y Fy : Ho crystals, JETP
77, 1021-1033 (1993).

The relevant crystal field matrices are contained in the Maple files crystal.J where J is the integer
value of the angular momentum of the level. We print below the file ”crystal.8”

Digits:=5:

read‘vs4‘:

read‘crystal.par‘:

BHABGRHGHB R B G R B R B G R BRERBRE BB R B R VG RG R G RHR B R VG R ERERE R G RG BB R BRBERBRE R B R B RBEHE RS
#Crystal field matrix for J = 8 with $\mu = 0%. #
BHABGRHGHB R B G R B R B G R BRERBRE BB R B R VG RG R G RHR B R VG R ERERE R G RG BB R BRBERBRE R B R B RBEHE RS
crystal.par();

crystal80:=proc()

S80:=array(sparse,1..5,1..5);

S80[1,1] :=Eadd8+crystal(8,0,0);

$80[1,2] :=evalf((crystal(8,0,4) + crystal(8,0,-4))/sqrt(2));

$80[1,4] :=evalf((crystal(8,0,4) - crystal(8,0,-4))/sqrt(2));
S80[2,1]:=5880[1,2];

$80[2,2] :=evalf(Eadds+(crystal(8,4,4) + crystal(8,-4,-4))/2);

$80[2,3] :=evalf((crystal(8,4,8) + crystal(8,-4,-8))/2);

$80[2,5] :=evalf((crystal(8,4,8) - crystal(8,-4,-8))/2);

S$80[3,2]:=580[2,3];

$80[3,3] :=evalf(Eadds+(crystal(8,8,8) + crystal(8,-8,-8))/2);

$80[3,4] :=evalf((crystal(8,8,4) - crystal(8,-8,-4))/2);

S80[4,1]:=-S80[1,4];

S80[4,3]:=-S80[3,4];

S80[4,4]:=580[2,2];

S80[4,5]:=580[3,2];

S$80[5,2]:=-S80[2,5];

S80[5,4]:=580[2,3];

S80[5,5]:=580[3,3];

print();

end:

crystaldo();

print(‘Eigenvalues for J=8 with mu=0°);

evalf(Eigenvals(S80,V80));

print(‘Eigenvectors for J = 8 with mu=0);

print (V80);

BHABGRHGHB R B G R B R B G R BRERBRE BB R B R VG RG R G RHR B R VG R ERERE R G RG BB R BRBERBRE R B R B RBEHE RS
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#Crystal field matrix for J = 8 with $\mu = 1$. #
BHABGRHGHB R B G R B R B G R BRERBRE BB R B R VG RG R G RHR B R VG R ERERE R G RG BB R BRBERBRE R B R B RBEHE RS
crystal8l:=proc()

S81:=array(sparse,1..4,1..4);

S81[1,1] :=Eadd8+crystal(8,1,1);

S81[1,2] :=crystal(8,1,-3);

S81[1,3]:=crystal(8,1,5);

S81[2,1] :=evalc(conjugate(S81[1,2]));

S81[2,2] :=Eadd8+crystal(8,-3,-3);

S81[2,4] :=crystal(8,-3,-7);

S81[3,1] :=evalc(conjugate(S81[1,3]));

S81[3,3] :=Eadd8+crystal(8,5,5);

S81[4,2] :=evalc(conjugate(S81[2,4]));

S81[4,4] :=Eadd8+crystal(8,-7,-7);

end:

crystals8i();

print(‘Eigenvalues for J=8 with mu=1°);

evalf(Eigenvals(S81,V81));

print(‘Eigenvectors for J = 8 with mu=1¢);

print(V81);
B e e e e e e
#Crystal field matrix for J = 8 with $\mu = 2%. #

BHABGRHGHB R B G R B R B G R BRERBRE BB R B R VG RG R G RHR B R VG R ERERE R G RG BB R BRBERBRE R B R B RBEHE RS
crystal82:=proc()

S82:=array(sparse,1..4,1..4);

S82[1,1] :=evalf (Eadd8+(crystal(8,2,2)+crystal(8,2,-2)+crystal(8,-2,2)
+crystal(8,-2,-2))/2);

$82[1,2] :=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);

S82[1,3] :=evalf((crystal(8,2,2)-crystal(8,2,-2)+crystal(8,-2,2)
—-crystal(8,-2,-2))/2);

$82[1,4] :=evalf((crystal(8,2,6)-crystal(8,-2,-6))/2);
s82[2,1]:=882[1,2];

$82[2,2] :=evalf (Eadd8+(crystal(8,6,6)+crystal(8,-6,-6))/2);

$82[2,3] :=evalf((crystal(8,6,2)-crystal(8,-6,-2))/2);

s82[2,4] :=0;

$82[3,1]:=-882[1,3];

$82[3,2]:=-882[2,3];

S82[3,3] :=evalf (Eadd8+(crystal(8,2,2)-crystal(8,2,-2)-crystal(8,-2,2)
+crystal(8,-2,-2))/2);

$82[3,4] :=evalf((crystal(8,2,6)+crystal(8,-2,-6))/2);

S$82[4,1]:=-882[1,4];

sg2[4,2]:=0;

S$82[4,3]:=582[3,4];
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S$82[4,4]:=582[2,2];

print();

end:

crystalsd2();

print(‘Eigenvalues for J=8 with mu=2°);

evalf(Eigenvals(S82,V82));

print(‘Eigenvectors for J = 8 with mu=2);

print (V82);

B e e e e e e i
B 6.3 Calculation of Crystal Field Sublevels

Running the Maple files ”crystal.J” using the parameters given in Eq. (6.1) and setting the FaddJ
parameters so as to make the lowest crystal field level zero we obtain the results given in Table 6.1.

Inspection of Table 6.1 shows that the agreement between the experimental and calculated values is very
good for the J = 8 and gets progressively worse as we move to higher levels. The levels for J = 5 and
J = 4 are particularly distorted. Several sublevels for J = 5 are calculated as too high whereas for J =4
the corresponding sublevels are too low. This suggests that the J = 4 and J = 5 states need to interact
in such a way as to repel sublevels. This would be the case if there was J—mixing by the crystal field
potential.
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Table 6.1 Comparison of Experimental and Calculated Stark Levels

J 7 Expt Calc
8 1 0 0
(Oem=1) 2 7 7
2 23 26
0 48 46
0 56 52
1 72 76
0 217 219
1 270 272
0 276 275
2 283 281
0 290 290
1 303 304
2 315 321
7 2 0 0
(5152em=1 1 3.4 6
0 10.5 18
2 11.0 11
1 324 32
0 53.8 47
1 75.5 82
2 80.3 89
2 138.7 141
1 140.6 145
0 140.8 147
6 2 0 0
(8671lem™1) 0 2.4 9
1 9.4 11
1 15.0 15
2 16.8 22
0 26.5 21
2 31.1 35
0 98.1 100
1 112.8 111
2 125.7 121
5 1 0 0
(11242em=1) 0 5.6 1
1 8.4 16
2 12.4 1
0 14.0 7
0 59.4 92
1 88.4 103
2 94.4 149
4 0 0 0
(13188em™=1) 1 81.5 76
2 133.0 136
0 152.6 127
2 162.7 150
1 219 208
0 351.5 342
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m 6.4 J—Mixing by the Crystal Field Potential

As a partial example of the effects of J—mixing let us consider the matrix elements that couple the J =4
states to those of J = 5. Here we must choose Eadd4 and Eaddb to include the free ion energies which
we will however take as the experimental mean energies given in Table 6.1. We must also compute the
matrix elements of the crystal field potential between the J = 4 and J = 5 states for each value of p.
This may be done in Maple by generalising the file ”vs4” to the file ”vsdg” given below

H R R R R R
#Calculates crystal field matrix elements for S4-point symmetry with#
#intermediate coupling correction between two J-manifolds. #
H R R R R R
read ‘njsymbol‘;
vs4g:=proc(J1,k,J2,M1,q,M2)
local result;
result:=(-1)"(J1-M1)*threej(J1,k,J2,-M1,q,M2)*icjmix[k/2];
end:
crystalg:=proc(J1,J2,M1,M2)
local result;
result:=simplify(B20*vs4g(J1,2,J2,M1,0,M2) + B40*vs4g(J1,4,J2,M1,0,M2)
+ B60*vs4g(J1,6,J2,M1,0,M2) + (B44 + I*A44)*vsdg(J1,4,J2,M1,4,M2)
+ (B44 - I*A44)*vs4g(J1,4,J2,M1,-4,M2) + (B64 + I*A64)*vs4g(J1,6,J2,M1,4,M2)
+ (B64 - I*A64)*vsdg(J1,6,J2,M1,-4,M2));
end:
H R R R I R R R R

and then use our Maple files ”j45.mu” where mu is the integer p of the crystal quantum number.
The case of ”7j45.0” is given below

HH R R R R R R R R R
#Crystal field matrix for mu = 0 states of J =4 and 5 combined. #
HH R R R R R R R R R
read‘vs4‘;
read‘icjm;
read‘vsdg‘;

read‘crystal.par‘;

Digits:=5;
w##HdS RSt H RS H RS R RS R R R R R R R R R
#Crystal field matrix for J=4 with $\mu = 0$%. #

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS
crystal40:=proc()

crystal.par();

S40:=array(sparse,1..3,1..3);

S40[1,1] :=Eadd4+crystal(4,0,0);

S40[1,2] :=evalf((crystal(4,0,4) + crystal(4,0,-4))/sqrt(2));

S40[1,3] :=evalf((crystal(4,0,4) - crystal(4,0,-4))/sqrt(2));

S40[2,1] :=evalc(conjugate(S40[1,2]));

$40[2,2] :=Eadd4+evalf((crystal(4,4,4) + crystal(4,-4,-4))/2);
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$40[2,3] :=evalf((crystal(4,4,4) - crystal(4,-4,-4))/2);
S40[3,1] :=evalc(conjugate(S40[1,3]));

S40[3,2] :=evalc(conjugate(S40[2,3]));
S40[3,3]:=540[2,2];

end:
B e e e e e e B e B e e
#Crystal field matrix for J=5 with $\mu = 0$%. #

BHARBRBGHGRHG R G R B G R ERERFRERBE R R VG RG R G R HR B R VG R GRERE R B R G R B R HR RS R B RGRBRG RS
crystalb50:=proc()

crystal.par();

S50:=array(sparse,1..3,1..3);

S50[1,1] :=Eadd5+crystal(5,0,0);

$50[1,2] :=evalf((crystal(5,0,4) + crystal(5,0,-4))/sqrt(2));
$50[1,3] :=evalf((crystal(5,0,4) - crystal(5,0,-4))/sqrt(2));
S50[2,1] :=evalc(conjugate(S50[1,2]));

$50[2,2] :=evalf (Eadd5+(crystal(5,4,4) + crystal(5,-4,-4))/2);
$50[2,3] :=evalf((crystal(5,4,4) - crystal(5,-4,-4))/2);
S50[3,1] :=evalc(conjugate(S50[1,3]));

S50[3,2] :=evalc(conjugate(S50[2,3]));

S50[3,3]:=5850[2,2];

end:
B L i
#Matrix elements coupling J=4 to J=5 for mu=0. #

B L e L oo oo o o o
crystal45:=proc()

crystal.par();

icj(O);

jmix:=array[1..3];

jmix:=jmix45();

S45:=array(sparse,1..6,1..6);

S45[1,4] :=crystalg(4,5,0,0);

S45[1,5] :=evalf((crystalg(4,5,0,4)+crystalg(4,5,0,-4))/sqrt(2));
S45[1,6] :=evalf((crystalg(4,5,0,4)-crystalg(4,5,0,-4))/sqrt(2));
S45[2,4] :=evalf((crystalg(4,5,4,0)+crystalg(4,5,-4,0))/sqrt(2));
S45[2,5] :=evalf((crystalg(4,5,4,4)+crystalg(4,5,-4,-4))/2);
S45[2,6] :=evalf((crystalg(4,5,4,4)-crystalg(4,5,-4,-4))/2);
S45[3,4] :=evalf((crystalg(4,5,4,0)-crystalg(4,5,-4,0))/sqrt(2));
S45[3,5] :=evalf((crystalg(4,5,4,4)-crystalg(4,5,-4,-4))/2);
S45[3,6] :=evalf((crystalg(4,5,4,4)+crystalg(4,5,-4,-4))/2);
S45[4,1] :=evalc(conjugate(S45[1,4]1));

S45[5,1] :=evalc(conjugate(S45[1,5]));

S45[6,1] :=evalc(conjugate(S45[1,6]));

S45[4,2] :=evalc(conjugate(S45[2,4]));
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S45[5,2] :=evalc(conjugate(S45[2,5]));

S45[6,2] :=evalc(conjugate(S45[2,6]));

S45[4,3] :=evalc(conjugate(S45[3,4]));

S45[5,3] :=evalc(conjugate(S45[3,5]));

S45[6,3] :=evalc(conjugate(S45[3,6]));

end:

Ecalc:=proc()

A0:=array(sparse,1..6,1..6);

crystal4o();

crystalds();

crystalso();

copyinto(S45,40,1,1);

copyinto(S40,40,1,1);

copyinto(S50,40,4,4);

print(‘Crystal Field Energy Matrix for mu = O for J = 4 and 5 combined‘);
print (A0);

end:

Ecalc();

print(‘Eigenvalues for mu = O for J = 4 and 5 combined‘);
evalf(Eigenvals(A0,V0));

print(‘Eigenvectors for mu = 0 for J = 4 and 5 combined‘);
print (VO);

Running the above file leads to the following crystal field energy matrix for the g = 0 states with J =4
and 5. The introduction of J—mixing has produced the additional matrix elements coupling the two
rank 3 matrices for the states with J =4 and 5. In particular note the rather large coupling between the
[44)_ and |50) states.

40) )y M- 50) ), [4)-
(40| 13402. —166.13  5.6261¢ 0 —1.2351: —48.192
+(44] | —166.13 13317. 0 8.64571 0 —24.530
_(44| —5.6261z 0 13317. 202.99 —24.530 0
(50] 0 —8.6457:  202.99 11331. —17.549 —.830702
+(54| 1.2351¢ 0 —24.530 —17.549 11249. 0
_(54| —48.192 —24.530 0 830702 0 11249.

Diagonalisation of the complex Hermitian energy matrix yields the six eigenvalues as
[13530.,13187.,13337.,11312.,11246., 11242

and the eigenvectors

FEigenvalue 13530 13187 13337 11312 11246 11242

|40) 79449 60677 .0031973 —.00019  .02341 .00077
|44} + —.60689  .79386 .03535 .00397 01388 .00156
|44)— —.01907¢ .03024: —.99419¢ —.10132¢ —.00176: —.00843:
|50) .00062; —.00037: —.10147¢ .97399:  .00528: 202931
|54} + .00063: 0 012407  —.20264: —.05059: 977632
|54} _ —.01018 —.02523 —.00114 —.01559  .99835 .05524

Notice that the eigenvectors indicate that there is significant J—mixing for the eigenvalues 13337, 11312
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and 11246. Furthermore, whereas without J—mixing the relative separations of the J = 4 states were
0, 127, 342 with J—mixing they have become 0, 150, 343 comparing more favourably with the relative
experimental separations of 0, 152.65, 351.5 - a substantial improvement. Likewise for the J = 4 states
without J—mixing the relative separations were 0, 6, 92, with J—mixing they became 0, 4, 66 comparing
favourably with the experimental values of 0, 8.4, 53.8. Some additional improvement could be expected
by extending the J—mixing calculation to include the J = 6 states and by fine tuning the parameters.

m 6.5 Quenching of Angular Momentum

In carrying out the above calculations we made use of symmetric and antisymmetric combinations of
angular momentum |J M) states. This resulted in combining states |JM) and |J — M) in equal parts and
hence to form states whose angular momentum was ”quenched”. Inspection of the eigenvectors shows
that indeed many of the states do occur with quenched angular momentum which has ramifications for
their magnetic behaviour and, as we shall see later, consequences for the magnetic nuclear hyperfine
structure.

m 6.6 The Groundstate of LiY Fy : Ho°T

We may summarise our information on the groundstate of LiY Fy : Ho3t in terms of the following
eigenvalues and eigenvectors calculated using the Maple file ”crystal.8”
Eigenvalues and eigenvectors for J =8 with =0

Figenvalue 45.9 218.6 290.1 51.6 274.6
|80) 17575 87070 —.45932 0 0
|84} + 73385 .19446 64932 —.032543 .030424
|88} + 65532 —.45164 —.60543 —.00140 —.00151
|84)_ —.032737 —.008687 —.02897: —.72989: .68215H¢
|88) _ —.001356:  .000931¢ 00125z  —.68280¢ —.730564

Eigenvalues and eigenvectors for J =8 with p =1

Figenvalue 271.5 303.4 76.5 0

|81) 81810 + .000461¢ .26792 — .000112¢ 50101 + .07371e —.05078 — .000084¢
|8 — 3) —.20867 + .061042 .72162— 211297  .015696 — .00222¢ .D9736 — 173824
|85) —.49134 — .01021z —.13187 — .002627  .84838 + .14242¢ —.034439 — .000761
|8 —7) 19423 — 0652537 —.55716 + .18742¢ .057251 — .010321¢  .74017 — .24759¢

Eigenvalues and eigenvectors for J =8 with p =2

Figenvalue 320.7 280.7 26.3 7.0
|82} + 84454 —.062284 52961 —.048188
|86} + —.52791 .06899 84164  —.08921
|82) _ 066724 .78857:  .04192¢  .610002
|86) —.05992: —.60792¢ .09559¢  .78589:

Notice that angular momentum is completely quenched for the yu = 0, 2 states but not for the p = +1
states.

m 6.7 The Diagonal Zeeman Matrix Elements for Atoms

Consider a magnetic field B, directed along the z—axis and a set of states |« SLJM > associated with a
spectroscopic term 291 L. The presence of the magnetic field adds to the Hamiltonian a term

Hmag =—B,p. = BzﬂO[Lz + gsSz] (62)

where g =2 2.0023. In terms of tensor operators

we need to evaluate the matrix elements of the operator Lél) +¢s S(()l). Consider first the diagonal matrix
elements

< aSLIM|LSY + ¢.SSV|aSLIM >
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Application of the Wigner-Eckart theorem, Eq.(3.25), gives
< aSLIM|LSY + ¢SSV |aSLIM >
=(=1)/M (_‘5\4 (1) A‘Z) < aSLI||LY + g, 8D )|aSLT >

M
= < aSLI||LY + g, 8M||aSLT > (6.3)
VI +1D)(2] +1)
Use of Eq.(3.56) gives

< aSLJT|gs SV aSLT >

— gu(—1)STEHIH (27 4 1) {g, B g,} < 0S5V |as >
(6.4a)
Use of Eq.(3.57) gives
< aSLJ||LD||aSLT >
= (—)SHHH (2] 4 1) {i . i} < al LMoL >
(6.4b)

The reduced matrix elements follow from Eq.(3.40) and the 6j—symbols may be evaluated explicitly using
FEq.(3.42). Combining terms we finally obtain

< aSLIM|HpmaglaSLIM >= B.puoMg(SLJ) (6.5)

where

JUJ+ D) —-L(L+ 1)+ S(S+1)
2J(J+1)

is the so-called Landé g—factor. Eq.(6.5) shows that for a weak magnetic field with states of different .J

well separated the magnetic field will produce splittings linearly dependent on the M quantum number.

This is the so-called weak field Zeeman effect.

Fora J = % level we obtain the pattern

g(SLT) =1+ (g, — 1) (6.6)

[T
S

gpobB,

[N

1

7
Note that we have not only determined the number of sublevels (two) but also the magnitude of
splitting. For a J = 1 level we obtain the pattern

My

1
1

J=1 0
!

-1

In this case we obtain three sublevels. In general we obtain (2J + 1) sublevels. For a system
having an odd number of electrons we obtain an even number of sublevels while for an even number of
electrons we obtain an odd number of sublevels.

m 6.8 Off-diagonal Zeeman Matrix Elements for Atoms

For a magnetic field in the z—direction the M —quantum number remains a good quantum number. This
is because we have preserved SO» symmetry. However, H,,,, does not preserve SOz symmetry - we
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have chosen a particular direction in 3—space. The total angular momentum .J is no longer a good
quantum number. There exist matrix elements of Hy,q, coupling states with AJ = £1. We first note
that J, = L, + S, and hence L, +¢,5, = J, + (gs — 1)S,. But the matrix elements of J, are diagonal in
J and hence to calculate the off-diagonal matrix elements we need only calculate the off-diagonal matrix
element of S, as follows:

< aSLIM|S\aSLT + 1M >

= (—1)M (_‘5\4 (1) J;;l) < aSLI|ISD||aSLT +1 >

Explicit evaluation of the 3j—symbol gives

RERED

__2¢(J+M+1)(J—M+1)
B (27 +1)(2J +2)

Evaluation of the reduced matrix element in Eq.(6.8) using Eq.(3.40) gives
< aSLI||SM||aSLT +1 >

= (=D /(2 + 1)(27 + 3) {

J 1 J+41

s 1 g }<S||S<1>||S>

S H LTS+ T A=)+ 1+ L= S)(S—J+1L)
- 47 +1)

Combining Eqs. (6.8) and (6.9) in Eq.(6.7) finally yields
< aSLIM|HpaglaSLI + 1M >
= B.pio(gs — VT F DE = 31%)

(SH+L+J+DS+I+1-L)J+1+L—S)(S—J+1L)
. AT+ 1227 + )27 + 3)

(6.10)

B 6.9 Zeeman Effect in Crystals
In a crystal it is useful to consider states constructed in a |JM) basis. For the moment we will restrict

our attention to the case of the magnetic field B, being parallel to the z—axis of the crystal. A state
|eeJ ) with crystal quantum number g may be expanded as a linear combination of |aJ M) states as

o) = 3 at gyl 1) (6.11)
M

The expansion coefficients a’ ;,, are just the eigenvector components obtained from the crystal field
matrix diagonalization.

In D3y point group symmetry the angular momentum operator L, + 25, transforms as the 'y repre-
sentation and since I'y x I'y; = 'y we can conclude that for Dsy symmetry there can be no diagonal
Zeeman matrix elements for 'y states of Dsg. The situation is different for S4 point group symmetry as
then L, 4+ 25, transforms under S; as I'; leading us to conclude that non-zero diagonal Zeeman matrix
elements are possible for all values of p. However, we must also consider time reversal!

Note that for the symmetric and antisymmetric linear combinations |J M)y we have

L (JM|L, 425 |JM)s =0, +(JM|L, +25.|JM)z = Mg (6.12)
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The expectation value of L, + 25, for the two lowest levels for J = 8 may be readily calculated using the
Maple file ”gcrystal” for the lowest =1 and u = 1 levels as given below

B e i R i R S i A R i 2

#Calculation of the Zeeman matrix element for the lowest $\mu = 1$ level#

#of $J = 8% for $LiYF_4:Ho {3+7}. #
B e i R i R S i A R i 2
with(linalg):

g811:= proc()

local A,V811,gm,result;
V81l:=array(1..4);
gm:=array(sparse,1..4,1..4);
V811[1]:=-0.5078 - 0.00008%I;
V811[2]:=0.59736 - 0.17382%I;
V811[3]:=-0.034439 — 0.00076%I;
V811[4]:=0.74017 - 0.24759%I;

gm[1,1]:=1;

gm[2,2] :=-3;
gn[3,3]:=5;
gm[4,4]:=-7;
A:=multiply(gm,V811);
print(4);

result:=dotprod(4,V811)*g;
print(‘Zeeman diagonal matrix element for the lowest J = 8 level with mu = 1°);
print(result);
end:
g811();
HBHARBRHAHGRBRR B R B G R BV G R FR G R B G R R VG RG R G R HRFRBERGRGRERHRGRBGHE VSR FRERBER R RS
#Calculation of the Zeeman matrix element for the lowest $\mu = 2§ level#
#of $J = 8% for $LiYF_4:Ho {3+}. #
HBHARBRHAHGRBRR B R B G R BV G R FR G R B G R R VG RG R G R HRFRBERGRGRERHRGRBGHE VSR FRERBER R RS
g822:= proc()

local A,V822,gm,result;
V822:=array(1..4);
gm:=array(sparse,1..4,1..4);
v822[1]:=-0.048188;
v822[2] :=-0.08921;
V822[3]:=0.61000%I;
V822[4]:= 0.78589%1I;

gm[1,3]:=2;
gnl2,4]:=6;
gn[3,1]:=2;
gn[4,2]:=6;

multiply(gm,V822);
result:=dotprod(",V822)*g;
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print(‘Zeeman diagonal matrix element for the lowest J = 8 level with mu = 2¢);
print(result);

end:

g8220);

Recall that in lecture 3.1 we found the ”free ion” Ho?t ground state had a Landé g—factor, corrected
for intermediate coupling, of

g = 1.2416
Running the file ”gcrystal” leads to the matrix element for the lowest y = 41 level, the ground state of
F6.408
and for the first excited state, with g = 2, of
0

in units of the Bohr magneton pg. Time-reversal invariance gaurantees that the matrix elements
(Te] Jo [Ty} = (T2| J:|T2) = 0

Note that in Sy only those levels with g = 41 will exhibit a Zeeman splitting. This gives an experimental
method of distinguishing p = +1 levels from levels with ¢ =0, 2.

m 6.10 Electric dipole and Magnetic dipole selection rules

Electric dipole transitions involve the matrix elements of z for polarization parallel to the z—axis
(m—polarization) and for polarization perpendicular to the z—axis (c—polarization) matrix elements of
z +iy. For Sy z transforms as the ['s representation and = 4 ¢y as I's, ['4 leading to the electric dipole

selection rules
Ed TI'y Ty T's T4

I'y - T o 0

I's T - o 0 (6.13)
I's c o - 7 ’
Iy c o T -

For magnetic dipole transitions we need the matrix elements of J, for o—polarization and J, +¢J, for
m—polarization. For Sy J, transforms as I'y and J, £¢J, as I's, Gammay leading to the magnetic dipole

selection rules
Md T, Ty Ts Iy

I'y c - T 7

I's - o T 7 (6.14)
I's T T 0 — ’
Iy T T -

The experimental study of the polarization of transitions gives a further tool for determining the symmetry
of the observed levels. Note that the electric dipole transitions are forced electric dipole transitions as
they nominally occur between states of the same parity. The crystal field potential expansion possesses
odd rank terms that can mix states of opposite parity. Furthermore, the crystal field can mix states of
different J and L lifting the AJ, AL = 0, %1 of the free ion while spin-orbit interaction can lead to a
breakdown of the spin selection rule AS = 0. Magnetic dipole transitions are allowed between states of
the same parity. In the free ion in pure LS—coupling we have the magnetic dipole selection rules

AS, AL=0, AJ=0, +1 (6.15)

Again these selection rules can be broken by spin-orbit interaction and crystal field selection rules. Nev-
ertheless, the selection rules of Eq. (6.13) and (6.14) are, in the absence of other interactions, rigorous.
An interaction which can break those selection rules is the nuclear hyperfine interaction that can weakly
mix close-by crystal field levels. Nuclear hyperfine interaction will be the subject of our next lecture.

m Exercise

6.1 Extend Eq. (6.13) and (6.14) to include states transforming as T'; where ¢ = 5,...,8.
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6.2 Extend the calculation of the intermediate coupling corrections for the reduced matrix elements
(BINCENBI) k=2, 4,6
for J =4, 5 and J'.
6.3 Complete the J—mixing calculation for the complete set of states with 4 =0 and J =4, 5, 6.
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The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

I have carried out researches which will halt many
savants in theirs
— Evariste Galois —1830
I hope we still have some bright twelve-year olds who
are interested in science. We must be careful not
to discourage our twelve-year-olds by making them
waste the best years of their lives on preparing for
examinations
— Freeman J. Dyson, Infinite in all Directions Pen-
guin 1989
m Lecture 7
m 7.1 Introduction

We now come, at last to our central subject - analysis of hyperfine structure in crystal fields. '%°Ho
is distinguished from the other rare earths by possessing a large nuclear magnetic dipole and electric
quadrupole moment. Having a nuclear spin I = % which couples to the electron angular momentum
leads in the atom to the appearance in its atomic spectrum hyperfine patterns of up to 8 closely place
lines. The treatment in crystalline environments is somewhat different as the electric field splittings are
very much greater than the hyperfine splittings. This means that while basis states for the free atom are
well described by the quantum numbers IJF'M such a scheme is wholly inappropriate in a crystal. The
appropriate basis then involves the quantum numbers JJ,II,. The existance of spin-orbit coupling must
also be considered. In this lecture we first indicate how to calculate the matrix elements of the hyperfine
interaction in a JJ,II, basis and correct them for the effects of intermediate coupling. Much of todays
lecture originates from
7.1 B. G. Wybourne, Nuclear Moments and Intermediate Coupling, J. Chem. Phys. 37, 1807-1811
(1962).
Details of the relevant tensor operator formalism can be found in the notes of Lecture 3 and in
7.2 B.R. Judd, Tensor Operator Techniques in Atomic Spectroscopy, New York: McGraw-Hill (1962).
7.3 L.Armstrong, Jr. Theory of the Hyperfine Structure of Free Atoms New York: Wiley-Interscience
(1971).
B 7.2 Matrix elements of the Magnetic Dipole Hyperfine Interaction
Let us define

ac = 244 (me /My )gr (1) (7.1)

where pp is the Bohr magneton, g7 the nuclear g factor and (r=3) the average inverse-cube radius of the
electron orbital £. Further, let

H,, (i) = [l = VIO(sDxC™)Y]
= asl; — V10X (7.2)
with
Y =3 1,0 (7.3)
i=1

where the sum is over a group of equivalent electrons in the configuration 7.

The interaction of a nuclear magnetic moment with the orbital and spin moments of n electrons can be
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written in the above tensor operator notation as
Hy = ag(HD 1) (7.4)

In the JIFM scheme the matrix elements of the nuclear magnetic hyperfine operator H,,, diagonal in
J, may be evaluated as

(aJITFMla,(H® - 1D) |/ JTF M) (7.5)
= ay (1) { s } (| Ol Ty 10 1) (7.6)
K

(aJ||HD||a" ) (7.7)

—a
‘2T + (2] + 1)
where
K=FF+1)-JJ+1)-I(I+1) (7.8)
m Exercises
7.1 Use the work done in Lecture 3 to derive Eqs (7.5) to (7.7).

7.2 Obtain the corresponding results for the matrix elements that are non-diagonal in J.

Our principal problem now is to evaluate the matrix element in Eq. (7.7). Let us enlarge our state
description to |«SLJ) and allow for matrix elements non-diagonal in «SL. Then noting that

S = [ (7.9)
i=1

we can show, as done earlier for the Zeeman effect, that
~ A{aSLJ||ILD||a’S'L"T)
VI DT+ 1)

where ¢ is the usual Landé g—factor for the electronic state. The correction for intermediate coupling
follows exactly as in Lecture 6. We simply replace g by its intermediate coupling value.

= 00,005,500, 11(2 — g) (7.10)

The second part of the matrix elements of H(1) requires the evaluation of the operator

VIO(@SLI|| 2 (s @)D/ S L)

S=- 7.11
VIT+1)(27 +1) (71
This may be evaluated using the results of Lecture 3 to give
S 51
2 1
S = (=D 20+1) SR DY LIUCTA 01D SRR (aSL||VED||o/S' L") (7.12)
0 0 0 J(J+1) 7 J 1

where the last matrix element involves the double tensor V(12) that acts in the spin and orbital spaces
and whose one-electron reduced matrix elements satisfy

()10 = @ (7.13)

We shall consider these matrix elements later.

The magnetic hyperfine-structure constant A, as normally defined, is given by
A=w[l+ 8] (7.14)
m Exercises

7.3 Fill out the derivations of Eqgs. (7.10) and (7.12).
7.4 Generalise Eqgs. (7.10) and (7.12) to give the matrix elements that are non-diagonal in J.
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m 7.3 Nuclear magnetic hyperfine matrix elements in the JJ,II, scheme

In the J.J,II, scheme the diagonal elements are given by
(«SLIJ L | Hp|o'S'L' T T IL) = J, 1A (7.15)

whereas the off-diagonal matrix elements are given by
1 L
(«SLIJIL | Hm|o'S'L' T T, £ 111, F1) = §A[(J FL)JEL+ DO xLYIFI1,+ 1) (7.16)

m Exercise

7.5 Sketch derivations of Eqgs. (7.15) and (7.16).

B 7.4 Nuclear electric quadrupole hyperfine interactions

The '%°Ho nucleus is highly deformed and possesses an electric quadrupole moment (). The matrix
elements in the JIF M scheme are given by

(aSLJIFM|Y (CF - QP)|o'S' L' JIF M)
i=1

oy (AEE D) - I+ 1)JI( +1) 8J(2J — 1)
= >< 20(21 — 1)J (2] — 1) ) (27 +3) (2] + (2T + 1)

(=120 +1) (g g g) (aSLI||UP||' S L' T )b s (7.17)
SK(IK+ 1) —I(IT+1)J(J+1)
=bX 4 Nl
e ( 20(21 — 1)J (27 — 1) ) (7.18)
where
be = e2Q(r™3) (7.19)
The electric quadrupole hyperfine constant B, as normally defined, is given by
B=bXy (7.20)
The matrix elements of the unit tensor U(2) may be evaluated by first noting that
@SLIU@ 'S T) = (—1)S '+ (2] 4+ 1) {i 7 ?} (SLIU@|a'SL)  (7.21)

The doubly reduced matrix elements are listed by Nielson and Koster.

Note that the matrix elements of the electric-quadrupole interaction are, unlike for the magnetic-dipole
interaction, diagonal in spin. Furthermore, the matrix elements of the electric-quadrupole interaction for
the f19 configuration are opposite in sign to those for f* while the matrix elements of the magnetic-dipole
interaction have the same sign for both configurations.

In the JJ,I1, scheme the matrix elements of the electric- quadrupole interaction are given by

(aSLJJIL| S (CF - Q@) |a/SL T J. £ ¢,11. F q)

i=1

e (T2 L 2 1
== <_Jz q JziQ)( 2 <_Iz q Iz:FQ)
(

be Xy [(20 4 D)1+ 1)(21 +3)(2J + 1)(J + 1)(2] + 3)
4 12 = 1)J(2J — 1)

(7.22)

where ¢ i1s limited to the values 0, £1, +2. In all cases the matrix elements in the JJ,II, scheme are
diagonal in M = J, + I,.
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m 7.5 The matrix elements of V(12

Various tables of the matrix elements of V(12 exist in the literature and of varying reliability. Most of
the matrix elements of V(!2) may be obtained from the matrix elements of U/(?) tabulated by Nielson and

Koster by making use of the identity
(E”“avlSlLHV(lz)HE”“avlSiL’)
(€7 vy Sy L|| U @m0 vty So L)

(%(%—I—l—vl) 0 1(20+1—uv) )
1
— (_1)v1+v26(v2,v;)+1+(nb—na+v2—v1)/2 252 +1 5(2£ +1- na) 0 _5(2£ +1- na)
Vo4 %(2“1—@2) 1 320+1—vh)
(204 1—np) 0 —5(2041—ny)

with n, fip. Thus we find that

V30

AT LIV ALy = S22

311U L)

(FAaueL||v O praei)ueL’y = —%m<f53[111]U4L||U<2>||f55[211]U’4L’>

and
4 3 (12))) 4 By _ @ 5 4 (2))) ¢5 !
(FARVUPLIV D AR L) = = (P00 LU 521U L)
leading directly to the results given as a matrix below
v °1) 1(20)%H) [(30)°H) [(21)°K)  |(30)°K)
(5I| _ /715 1942 11 __ /105 V1785
44 162 12 42 21
((21)3H| 1942 53003 /286 —4/130 —10V/221
162 702 1170 195 273
((30)3H| _1 /286 —17+/3003 —10+/1365 /23205
12 1170 2340 273 546
((21)3K —/105 —4V/130 —10/1365 20/663 46+/39
42 195 273 273 273
<(30)3[, V1785 —10v/221 /23205 46+/39 113663
21 273 546 273 4641

B 7.6 Matrix elements of the spin part of the magnetic-hyperfine operator

With the matrix elements of the double tensor V(12 established in Eq. (7.27) it is a simple matter to
complete the calculation of the matrix elements of the spin part of the magnetic hyperfine interaction

given in Eq. (7.11) using the Maple code of the file "mhfs” given below

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

B e e g R i R R i

#Programme to calculate the spin part of the magnetic hyperfine structure.#

#Uses Eq.(7.12) and V is the reduced matrix element of the double tensor. #

##t#HHS Rt RSHRS SRS S S R R R R R R R R R

read ‘njsymbol‘;
S:=proc(S1,L1,52,12,7,V)

local result;

result:=7*threej(3,3,2,0,0,0)*sqrt((30*(2*J + 1))/(J*(J + 1)))

*ninej(S1,82,1,L1,12,2,7,7,1)%V;

end:

B T e e e B e e e e e e e
Running the above code for J = 7 and J = 8 gives the relevant results given in Eqgs. (7.28) and (7.29).

4208 1) |(30)3K7)
O ( 1 19\1/4119 )
<(30)3[{7 19\1/4119 %

(7.28)
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608 °Is) [(21)°Rs [(30)Ks)

(°Is] I _

(21°Ks| | -2 —§ -2 (7.29)
(BoPKs| \ 3t -2 i

m 7.7 Intermediate Coupling Corrections for the spin part

Using the eigenvectors for J = 8 and J = 7 states given in Table 3.1 leads to the intermediate coupling
results for the lowest two members of the ®7 multiplet

1 1
G5 [m0:5700] SCIr) = 5[-3.2369] (7.30)

where the first part of the result i1s given as a fraction and the second part is the intermediate coupling
correction factor. The latter factor would be unity for pure LS—coupling. Notice that the intermediate
coupling corrections for the spin part of the interaction can be quite large even for relatively small
departures from LS—coupling. However, in general the spin part is very much smaller than the orbital
part.

S(sfg) =

m 7.8 Intermediate Coupling Corrections for the orbital part

Again, using the eigenvectors for the .J = 8 and J = 7 states given in Table 3.1 leads to theintermediate
coupling results for the two lowest members of the °T multiplet as

3 23
4 28
The corrections for small departures from LS—coupling make for quite small corrections compared with
those for the spin part of the magnetic hyperfine interaction.

L(CIg) = 2[1.0082], L(°I7) = ==[0.9964] (7.31)

m 7.9 Total Intermediate Coupling Corrections for Magnetic-Dipole HFS

The total intermediate coupling correction for the magnetic-dipole hyperfine structure comes from com-
bining Eqs. (7.10) and (7.12) to to form total magnetic hyperfine interaction matrices and then trans-
forming them to diagonal form with the appropriate intermediate coupling eigenvectors to yield

£+ 8] Is) = %[0.9735], £+ 8)CT) = %[0.9591] (7.32)

Here we see again that the total effect is quite small and comes primarily from the factor (2 — g).
m 7.10 Intermediate Coupling Corrections for Electric-Quadrupole HFS

The intermediate coupling correction for the electric-quadrupole hyperfine interaction is exactly the same
for the crystal field potential term with & = 2 and hence the factors are the same as found in column 2

of Table 4.12.
m 7.11 Concluding Remarks

We now have all the results necessary to discuss the hyperfine structure in the two lowest levels of the 51
multiplet. In the next lecture we shall discuss first some of the qualitative aspects of hyperfine structure
in crystal field and then commence the calculations specific to LiY Fy : Ho®t crystals.
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The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

The universe is infinite in all directions, not only
above us in the large but also below us in the small.
If we start from the human scale of existence and
explore the content of the universe further and fur-
ther, we finally arrive, both in the large and in the
small, at misty distances where first our senses and
then even our concepts fail us.

—Emil Wiechert, Konigsberg, 1896

m Lecture 8
m 8.1 Introduction

Today I propose to first make some qualitative remarks about hyperfine structure in crystals and then to
commence some detailed calculations towards obtaining an understanding of the hyperfine structure in
the two lowest levels of the ground multiplet of Ho3t in the crystal field produced at the substitutional
site in single crystals of LY Fl.

m 8.2 The Experimental Data

Most of the experimental data we shall be drawing upon comes from the references given in Lecture 1.
Some of the relevant data is collected together in Table 8.1 below

J Ee Ec Ewhfse EwhfsC <Jz>e <Jz>c <gz>e <gz>c

8 0 0 —0.147 —5.2 —5.09 13.0 12.6

7 3.4 6.0 0.082 2.75 2.47 6.49 5.8
32.4 32 —0.131 —4.39 —4.87 10.36 11.5
75.5 82 —0.08 —2.74 —2.81 6.48 6.6
140.6 145 1.22 2.9

Table 8.1 Comparison of Experimental and Calculated Levels for I'ss

The experimental quantities are subscripted by an e and calculated quantities by a c¢. Eyy, is the mean
spacing of the hyperfine levels in units of em=!. (g,) is the magnetic splitting factor for the level.

m 8.3 General features of Magnetic-Dipole HFS in Crystals

The inclusion of the crystal field produces Stark splittings that may be labelled by the ordinary irreducible
representations of the point group S4. The irreducible representations I';, I's are one-dimensional and
distinct whereas the I's, 'y are complex conjugates and in the absence of external magnetic fields occur as
degenerate pairs, often designated as 34 levels. The various states in the crystal fields can be conveniently
described in a |.JJ,) basis with the states involving various linear combinations of these basis states. The
matrix elements

(C1]J(T1), (T2l J.|Ta), ([1]J:]T2) =0 (8.1)

The diagonal matrix elements of the magnetic-dipole hyperfine interaction involve (cf. Eq. (7.15)) are
proportional to those of the operator J,I, and hence must vanish within and between states involving
the I'y and I's states and thus these states cannot exhibit first-order magnetic hyperfine structure. There
is no such restriction for the I'sy states and thus only those states can directly exhibit magnetic hyperfine
structure. The first order magnetic hyperfine structure for the I'sy states will consist of 27 4+ 1 = 8
equispaced levels each two-fold degenerate which is consistent with the fact that the spin irreducible
representations of the double group S, are all two-dimensional. A typical I'ss level schematically as
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+7/2
+5/2
+3/2
+1/2
F1/2
F3/2
F5/2
- FI/2
Schematic magnetic hyperfine splitting for a I'sq

The off-diagonal matrix elements of the magnetic-dipole hyperfine interaction, Eq. (7.16), couple states
differing in J, by one unit and hence can couple the I'; and I'; states to the I'sy4 states in second-order.
This can lead to the appearance of second-order hyperfine levels in the I'y and 'y states. In that case
their levels will not exhibit equispacing. This property helps in distinguishing ['s4 states from the '}, T's
states.

In the absence of hyperfine interaction the crystal field levels exhibit the precise symmetries of the ordinary
irreducible representations of S4. However, since in Holmium the nuclear spin I = % is half-integer the
hyperfine levels must be classified with respect to the spin irreducible representations of S;. This means
that the crystal field quantum numbers p can be mixed by the hyperfine interaction and cease to be good

quantum numbers breaking down the usual selection rules.
m 8.4 Electric-Quadrupole HFS in Crystals

The electric-quadrupole hyperfine interaction in crystals is weaker than that of the magnetic-dipole
interaction but still needs to be considered. The matrix elements were given in Eq. (7.22 ). The diagonal
elements arise for ¢ = 0 and may be specialised to

[3J2—J(J+ D][312 — I(I +1)]

n @) oa'SL! —
(@SLJJIL|Y (C - Q)|a/SLJJIL) = b X, @ — )@l 1)

i=1

(8.2)

Thus the electric-quadrupole hyperfine interaction, in first-order, differs markedly from that of the
magnetic-dipole hyperfine interaction producing sublevels that are quadratic, rather than linear, in J,.
This produces a complication making it difficult to distinguish non-linear second-order magnetic hyperfine
structure from first-order electric-quadrupole hyperfine structure.

m 8.5 Eigenvectors for J =7 States

The eigenvectors for the J = 8 level of the ground multiplet were given in Lecture 6 §6.6. For our

calculations we will also need the eigenvalues and eigenvectors for the states associated with the J =7

level of the ground multiplet. These can be found by running the Maple file ”crystal.7” to give
Eigenvalues and eigenvectors for J =7 with =0

Figenvalue 147 18 47
[70) .8806 —.47396 0
[74) + —.47396 —.88056 —.00192
[74)_ .000917 .001687I —1.00007

Eigenvalues and eigenvectors for J =7 with p =1

Figenvalue 145 82 6 32

[71) .83546 34796 42302 .04504

|7 —3) —.44200 — .007031 .63594 4+ 0.010131 .28974 + .005001  .56219 + .008891
|75) —.29616 — .003401 —.26367 — .003031 .84100+ .010791 —.36807 — .004187

|7—7) A3779— 001731 —.63623 4 .007981 17245 — .001931 .73915 — .009361
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Eigenvalues and eigenvectors for J =7 with p =2

Figenvalue 81 0 141 11
[72) + —.84982 —.52688 .01064 —.00362
|76} + D2687 —.84972 .00329 .00972
[72)_ .009581  .005931 946391 —.322631
|76)_ 005401 —.008731 —.322611 —.94649]

m 8.6 Calculation of (J,) for J =8 and J =7

The expectation values of J, may be calculated in precisely the same manner as used to calculate the
Zeeman matrix element on page 70 of Lecture 6. Continuing in that way we obtain the entries given in
the seventh column of Table 8.1.

The detailed calculation is shown in the following Maple session for J = 7:
L:=array(sparse,1..4,1..4);
L := array(sparse, 1 .. 4, 1 .. 4, [1)

L[1,1]:=1;

L[1, 1] := 1
L[2,2]:=-3;

L[2, 2] := -3
L[3,3]:=5;

L[3, 3] :=5
L[4,4]:=-7;

L[4, 4] := -7

vi:=array(1..4);
vl := array(1 .. 4, [1)
for i from 1 to 4 do v1[il:=V71[1,1i] od;

-5
vi[1] := .83546 - .25724%10 I
-5
vi[2] := .34796 + .51083*10 I
vi[3] := .42302 + .00057401I
-5

vi[4] := .045039 - .19382%10 I

dotprod(multiply(L,v1),vl);
-7
1.2153 + .21206%*10 I
v2:=array(1..4);
v2 := array(1 .. 4, [1)
for i from 1 to 4 do v2[i]l:=V71[2,1i] od;

v2[1] := - .44200 - .0070321 I
v2[2] := .63594 + .010129 I
v2[3] := .28974 + .0050042 I

v2[4] := .56219 + .0088915 I
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dotprod(multiply(L,v2),v2);
-6
- 2.8112 - .75042%10 I
v3:=array(1..4);
v3 := array(1 .. 4, [1)
for i from 1 to 4 do v3[i]:=V71[3,1i] od;

v3[1] := - .29616 - .0034002 I
v3[2] := - .26367 - .0030331 I
v3[3] := .84100 + .010799 I

v3[4] := - .36807 - .0041872 I

dotprod(multiply(L,v3),v3);
-6
2.4676 + .18910%10 I
vd:=array(1..4);
v4 := array(1 .. 4, [1)
for i from 1 to 4 do v4[il:=V71[4,1i] od;

v4[1] := .13779 - .0017311 I
v4[2] := - .63623 + .0079844 I
v4[3] := .17245 - .0019314 I
v4[4] := .73915 - .0093621 I

dotprod(multiply(L,v4),v4);
-6
- 4.8719 - .45345%10 I

The matrix L is diagonal with elements J, and the column vector vk is the eigenvector associated
with the k—th eigenvalue. The eigenvector arrays V71 were generated by first running the Maple file
7crystal.7”. The imaginary part of the resultant in each case is rounded to zero to give the final values
of (J).

m 8.7 Calculation of the Magnetic Splitting Factors (g,)
The magnetic splitting factors {g.) may be readily calculated by noting that

(9:) = 2{(J:)grc (8.3)
where grc is the intermediate coupling corrected ”free ion” Landé g—factor, in our case
gs = 1.242, g7 = 1.177 (8.4)

Use of these values in Eq. (8.3) together with the calculated values of {J,) give the entries in column 9
of Table 8.1.

m 8.8 The Magnetic Hyperfine Structure Constant A
The magnetic hyperfine structure constant was defined in Eq. (7.14) as

A= alL+ 8 (7.14)

It follows from Eq. (7.15) that in a crystal the average spacing between successive hyperfine levels, Ej ¢,
will be
Enps = {(J)A (8.5)

This means that if the hyperfine structure is purely magnetic-dipole in character and if there is no
hyperfine interaction with other Stark levels the hyperfine pattern should consist of eight equally spaced
sublevels. Departures from this equality indicates either second-order magnetic dipole effects and/or
electric-quadrupole interactions. As noted earlier, the I'sqy Stark levels can show first-order magnetic-
dipole splittings whereas the 'y, I's Stark levels can only show second-order magnetic-dipole hyperfine
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structure which in general will be smaller than that shown for I'ss levels and cannot be expected to
exhibit equally spaced sublevels. This gives a practical way for distinguishing I's4 levels from 'y, T's
levels.

m 8.9 Selection Rules and Hyperfine Structure

We discussed the selection rules for electric dipole and magnetic dipole transitions involving the Stark
levels that transformed as the ordinary irreducible representations of the point group Si. However, the
situation 1s changed by the presence of the hyperfine interaction. The nuclear spin of Ho is half-integer
while the electronic angular momentum is integer leading to a net angular momentum in the free ion that
is necessarily half-integer. As a result the Stark levels in the presence of the hyperfine interaction will
involve states belonging to the double group of S4. The additional irreducible representations I'; 2 =
5,...,8 are one-dimensional but occur as complex pairs. For electric-dipole transitions the o—polarization
transitions involve the matrix elements of z whichs transforms as the I's irreducible representation while
for m—polarization transitions x & iy transform as the I's, ['y irreducible representations of 54 leading to
the electric-dipole selection rules for the relevant irreducible representations as

Ed Ts Ts I'z Ty

I's - 0 T O
I's c - o 7
I~ T o - 0
I's c T o -

Likewise, for magnetic-dipole transitions we have

Md Ts Ts I'z Ty

I's c T - 7
I's T o T —
I~ - T o 7
I's T - 7T 0

Taking into account the degeneracy of the pairs I'sg, I'7g we see that some of the transitions will occur
in pure 71— or o— polarization with the rest as om—polarization as shown below

Ed Tz TI'rs

I's6 o o

I'7zs \ o7 o

M.d Ts TI'rg

I's6 o T

I'7s T o
which gives a way of sometimes distinguishing the different symmetries by polarization measurements.
Within the ground ®I multiplet we expect the transitions within and between the sublevels for J = 7,8 to

exhibit both magnetic dipole and forced electric dipole transitions whereas for transitions from sublevels
of J = 8 to levels with AJ > 2 should exhibit only electric dipole transitions.

m 8.10 First-Order Magnetic Hyperfine Structure

and

As noted earlier non-zero first-order magnetic hyperfine structure is only possible for I'ss levels in Sy
point symmetry. The first part of the calculation is to diagonalize the crystal field matrices to produce
eigenvalues and eigenvectors of the form (in the absence of J—mixing)

JJT,L) = ayr,s.|JJ.1) (8.6)

J:

where the ayr,s, are the compler eigenvector components which are independent of the nuclear spin
projection I, and the nuclear spin I is assumed to be fixed. The first-order magnetic hyperfine matrix
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elements are then

(JUp L HmaglJ T, LY = > aip g asr,0.(J 1L [HinaglJ J.IL.)
J.
= b, 1y, A(T) L (8.6)

where (J,) is the expectation value of J,.
m 8.11 Second-Order Magnetic Hyperfine Structure

The magnetic hyperfine structure constant A for the ground state is ~ 2.79 x 1072e¢m ™! which is a typical
value for Ho and thus the splittings are ~ 0.15¢cm™'. When Stark levels are very close in the crystal field
calculation we can anticipate that second-order magnetic hyperfine interactions will couple the I'ss states
to those of I'y, I's. This can lead to the latter levels showing hyperfine structure and to the hyperfine
structure patterns of the I's4 levels becoming distorted. Inspection of Table 6.1 would suggest that the
three top crystal field levels for for °I; would be prime candidates for exhibiting such a perturbation.
Likewise for the third and fourth crystal field levels. To calculate these effects we need to compute matrix
elements that are non-diagonal in J, and I, such that J, + I, = J, + I, to give

(JTp L HmaglJ T I F1) = > at y p.ar, s.210.51(] L 1L Hmag|J J. £ 111 F 1) (8.7)
J.

with the matrix element in the J.J, 11, basis being computed using Eq. (7.16). This calculation will be
the subject of the next lecture.



83

9.1 Introduction

The Application of Symmetry Concepts
to
Physical Problems II (contd)
Analysis of Hyperfine structure in Crystals

B. G. Wybourne

It is hard for me to believe, as some have tried to
maintain, that such superb theories could have arisen
merely by some random natural selection of ideas
leaving only the good ones as survivors. The good
ones are simply much too good to be survivors of
ideas that have arisen in that random way. There
must, instead, be some deep underlying reason for
the accord between mathematics and physics

—R. G. Penrose, The Emperor’s New Mind 1990

m Lecture 9
m 9.1 Introduction

This is the last lecture in this course and I would like to conclude with a detailed example of the magnetic
hyperfine interaction mixing two adjacent crystal field levels to show how the first-order equal spacing hfs
pattern becomes distorted by second-order effects and how crystal field levels that show no first-order hfs
can acquire hfs patterns. This exercise will also give us insight into intensity and selection rule changes.
Finally I shall remark on directions for future studies of hyperfine structure in crystal field environments.

m 9.2 The Particular Example, Two levels of °I;

As a very specific example I shall consider the two highest crystal field levels of the °I; member of the
groundstate multiplet. The top level is a non-degenerate T'y level (or equivalently, a g = 0 level) at
5293.1em™! and the next to top level is a two-fold degenerate I'sq level (or equivalently, a u = 41 level)
at 5292.9cm~'. Thus these two levels are separated by 0.2¢m~' and can be expected to perturb one
another. The question is "By how much?”.

m 9.3 The First-order Calculation

The first step in our calculation is to establish the first-order hfs splitting for the I'sy level. To do
that we need an estimate of the hfs constant A for the ®I7 term. This is essentially deducible from the
experimental data given in Table 8.1. The crystal field level at 5184.66cm=1 (140.6em ="t in Table 8.1)
has a mean hyperfine spacing of —0.131em~! and a measured expectation value of (J,) = —4.39¢m=!
leading via Eq. 8.5 to

Aegpt(PI7) = 0.0275em ™! (9.1)

There does not seem to be data available for the I's4 level of interest, but having computed, in Table 8.1,
(J;) for the level we can deduce that the mean first order spacing is

Ehps. = 1.22A4 = 0.0335em™" (9.2)

which is at the borderline of the Moscow groups resolution and explains why they do not report a value
for this level. Nevertheless, we expect at this order to have an unresolved hfs pattern of eight lines and
hence of a width of 0.23¢m ™! which can be expected to be larger than the linewidth of the I'; level which
has no first-order hfs. The result of our first order calculation maybe portrayed in Fig. 9.1.

Notice that there are a total of 16 states associated with the I's4 level and 8 with the 'y level as expected
for a nuclear spin of I = 7/2, the doubling in the T's4 coming from the fact that T's4 is two-fold degenerate
before coupling with the nuclear angular momentum. To proceed further we must consider the crystal
field eigenvectors for the two relevant Stark levels.
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Fig. 9.1. Schematic of the first-order hfs splittings

m 9.4 Crystal Field Eigenvectors

The second-order magnetic hyperfine calculation proceeds via Eq. (8.7). The eigenvectors are given on
p78. However to a good approximation we may discard the imaginary coefficients for the two relevant
eigenvectors and write

|l = 0) = 0.8806|70) — 0.474074) 1 (9.3a)
| = 1) = 0.8355|71) — 0.4420|7 — 3) — 0.2962|75) + 0.1378|7 — 7) (9.3b)

Inspection of Eq. (8.6) shows that there are no non-zero off-diagonal matrix elements involving the |[7—7)
state.

m 9.5 The Off-Diagonal Matrix Elements
Noting Eq. (8.6) and making explicit use of the eigenvectors given above we have
(p=0LHplp =11, 1)
= 0.8806 x 0.8355(701,|Hpm |71, — 1)
+(0.4740 x 0.4420(7 — 41, |H |7 — 31, — 1) + 0.2962 x 0.4740(74 1, |H |751, — 1)/\/5 (9.4a)
and
(p=1LHplp =01, +1)
= 0.8806 x 0.8355(711,|H |70, + 1)
+(0.4740 x 0.4420(7 — 3L, |H |7 — 41, + 1) + 0.2962 x 0.4740(75 1, |H |41, + 1))/\/5 (9.4b)
The above is readily evaluated using the Maple file "hfs.cry” given below
B e e e e e B e e e e e

#This programme is for calculating the crystal field transformed magnetic #

#hyperfine matrix elements for the specific case given in lecture 9. #
#hfsup calculates the matrix element <mu=1 I_z/H/mu=0 I_z + 1> while hfsdo#
#calculates the matrix element <mu=0 I_z/H/mu=1 I_z - 1>. #

B R R R R R R R R R R R R R R

B R R R R R R R R R
#Programme to calculate the off-diagonal magnetic hyperfine matrix elements#
#as in Eq. (7.17) of the lecture notes. Ou for increasing J_z and 0d for #
#decreasing J_z. #
B R R R R R R R R R
Ou:=proc(J,Jz,I,Iz)

local result;

result:=combine(simplify(sqrt((J-Jz)*(J+Jz+1)*(I+Iz)*(I-Iz+1))
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/(2%sqrt(2))))*4;
end:
0d:=proc(J,Jz,I,Iz)
local result;
result:=combine(simplify(sqrt((J+Jz)*(J-Jz+1)*(I-Iz)*(I+Iz+1))
/(2%sqrt(2))))*4;
end:
Digits:=5:
hfsup:=proc(Iz)
local result;
result:=evalf (0.8806%0.8355%0d(7,1,7/2,1z) + (0.4734%0.4420%0d(7,-3,7/2,Iz)
+ 0.2962%0.4740%04(7,5,7/2,1z))/sqrt(2));
end:
hfsdo:=proc(Iz)
local result;
result:=evalf(0.8806*0.8355%0u(7,0,7/2,Iz) + (0.4734%0.4420%0u(7,-4,7/2,1z)
+ 0.2062%0.4740%0u(7,4,7/2,1z))/sqrt(2));
end:
BHARBRBGHBRBG R B R BGRBRGRFRGRBE R R VG RG R G R BB B R BERGRGRE BB R G R BGHG R G RHR G R R GR GRS RS
Note that if the eigenvectors are real then it follows from Eq. (8.6) and (9.4) that for fixed J

(u=0,LHnlp=1L-1)={(pu=1L—-1Hnlp=0,L) (9.5a)
(=1L Hnlp=0,L+1)={(u=0—-L|Hnlp=1,-1,—1) (9.5b)
Furthermore, the matrix elements will be zero unless
p+ L =p +1I, (9.6)
This is the crystal field analogue of the free ion restriction that
L+ L =J +1I (9.7)
There are also the restrictions that
Ap=0, +1, AL =0, 1, A(p+1,)=0 (9.8)

These various restrictions allow us to treat the case of Stark levels interacting via the magnetic hyperfine
interaction without the need to construct large matrices or to resort to perturbation procedures.

m 9.6 Some Group Theory
Our problem involves coupling the I = 7/2 angular momentum of the nucleus to the T'ss and T'; Stark
levels. This will lead to pairs of irreducible representations that are complex conjugates and hence

degenerate. We shall designate these as T'sg and T'zg. For I = 7/2 we obtain in Sy symmetry the
decomposition

[7/2] = 2056 + 2175 (9.9)

Noting the Kronecker products
I'34 x (2F56 + 2F7g) =456 + 4I'7g (9.10a)
I'y x (2F56 + 2F7g) =256 + 2078 (9.10b)

I's x (2F56 + 2F7g) =256 + 2078 (9.106)



86

9.7 Some HFS Matrices

which is consistent with the I'sy Stark levels producing eight two-fold degenerate sub-levels and the I'y
and I's Stark levels each producing four two-fold degenerate sub-levels. This gives yet another method
for distinguishing I'ss4 Stark levels from those of I'y and I's Stark levels.

m 9.7 Some HFS Matrices

For the particular example we are pursuing the eigenvectors have been chosen as real and hence
the hfs matrices are symmetric. There is one matrix for each value of m = p + I, with the matrices
with £m yielding the same eigenvalues and hence to calculate the hfs patterns it suffices to consider just
the matrices associated with positive values of m. For the case under consideration this means three
rank three matrices m = 1/2, 3/2, 5/2, a rank two matrix m = 7/2 and a rank one m = 9/2. These
matrices can be expressed in terms of two parameters, A the energy separation of the two Stark levels
and the magnetic hyperfine structure constant A. The matrices may be readily constructed using the
Maple programme ”hfs.cry” to give the matrices as

m=1/2 |0,1/2) |1,-1/2) |[-1,3/2)  m=3/2 0,3/2) |1,1/2) |-1,5/2)

(0,1/2] A 14.1664  13.716A (0,3/2] A 137164  12.2684

(1,—-1/2| [ 14.1664 —0.6104 0 (1,1/2] [ 13.7164 0.6104 0

(—1,3/2] \ 13.716A 0 —1.830A (—1,5/2] \ 122684 0 ~3.050A
m=5/2 10,5/2) [1,3/2) [-1,7/2)

m=7/2 10,7/2) |1,5/2)

0,5/2 A 12.2684  9.3697A m=9/2 [1,7/2)
§1 3?2} 12.2684 1.8304 0 {0,7/2] A 936974 (1,7/2] (4.2704)
<_’1 7/2) \ 9.36974 0 49704 (1,5/2] \9.3697TA 3.0504 ’

Notice that in this case the off-diagonal hyperfine interaction matrix elements are significantly larger than
those on the diagonal. This is partly associated with the expectation value (J,) being of the order of
unity. Unfortunately this hfs pattern has not been established experimentally, it probably being beyond
the resolution currently available.

m 9.8 Diagonalization of the HFS Matrices and Mixing

It is instructive to diagonalise the matrices for several values of A the Stark level separation. In
the first case we consider a value of A = 10em™! to obtain the following results

Value chosen for Delta = 10
Value chosen for the Magnetic hfs constant 4 = .0275

Energy matrix for m = 1/2

10 .38956 .37718
.389566 -.016775 0
.37718 0 -.050325

Eigenvalues for m = 1/2
[ -.070064, -.026497, 10.032 ]
Eigenvectors for m = 1/2
.048787 -.022727 .99863
-.35842 .93280 .03874
-.93239 -.35976 .03738
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Energy matrix for m = 3/2

10 .37718 .33737
.37718 .016775 0
.33737 0 -.08387

Eigenvalues for m = 3/2
[ -.096699, .0043920, 10.025 ]
Eigenvectors for m = 3/2
-.037817 .033135 .99872

.12638 -.99138 .03764

.99137 .12664 .03333

Energy matrix for m = 5/2
10 .33737 .26767
.33737 .05033 0
.26767 0 -.11743

Eigenvalues for m = 5/2
[ -.12446, .040016, 10.019 ]
Eigenvectors for m = 5/2
-.027151 .03247 .99917
.052261 -.99807  .03385
.99832  .05313 .02542
Energy matrix for m = 7/2
10 .25767
.25767 .08388
Eigenvalues for m = 7/2
[ .0774, 10.007 1]
Eigenvectors for m = 7/2
.026959  -.99967
-.99967 -.02596
Eigenvalue for m = 9/2
[ .11743 1]
Eigenvector for m = 9/2
1

Notice that even with a Stark level separation there are small admixtures of the y = 0 and pg = +1
states. The p = 0 level has acquired a small splitting into four sublevels (total width 0.025¢m=! but
quite beyond current resolution possibilities.

Let us now repeat the exercise but this time with the separation of the two Stark levels of lem™! to give
the results now as

Value chosen for Delta = 1
Value chosen for the Magnetic hfs constant 4 = .0275
Energy matrix for m = 1/2
1 .38958 .37718
.38956 -.01678 0
.37718 0 -.05033
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Eigenvalues for m = 1/2
[ -.26638, -.03310, 1.2326 ]

Eigenvectors for m = 1/2

.39272 .030852 .91918
-.61293 -.73630 .28662
-.68563 .67597 .27028

Energy matrix for m = 3/2

1 .37718 .33737
.37718 .01678 0
.33737 0 -.083876

Eigenvalues for m = 3/2
[ -.24562, -.029050, 1.2078
Eigenvectors for m = 3/2
-.36718 .09685 .92503
.52781 -.797256 .29295
.76587 .59587 .24160

Energy matrix for m = 5/2

1 .33737 .25787
.33737 .05033 0
.25787 0 -.11743

Eigenvalues for m = 5/2
[ -.20489, -.017401, 1.1552
Eigenvectors for m = 5/2
.29588 -.175561 .93895
-.39111 .87457 .28669
-.87150 -.45209 .19012
Energy matrix for m = 7/2
1 .25767
.25767 .08388
Eigenvalues for m = 7/2
[ .0o164, 1.0675 ]
Eigenvectors for m = 7/2
.25341 -.96738
-.96738 -.25341
Eigenvalue for m = 9/2
[ .11743 1]
Eigenvector for m = 9/2
1

Notice that modest mixing of the g = 0 and p = £1 has occurred and that the total width of the sublevels
of the ;1 = 0 has increased to 0.165¢m ™! but the sublevel spacing is still beyond current resolution.

Finally we give the case for a Stark level spacing of of just 0.2em™!
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Value chosen for Delta = .2
Value chosen for the Magnetic hfs constant 4 = .0275

Energy matrix for m = 1/2

.2 .38956 .37718
.38956 -.01678 0
.37718 0 -.05033

Eigenvalues for m = 1/2
[ -.47151, -.03378, .63835 ]
Eigenvectors for m = 1/2
.62798 .03094 .77768
—-.53795 -.70485 .46251
-.56240 .70881 .42596

Energy matrix for m = 3/2

.2 .37718 .33737
.37718 .01678 0
.33737 0 -.08388

Eigenvalues for m = 3/2
[ -.43654, -.03689, .60624 ]
Eigenvectors for m = 3/2
.61928 .09903 .77881
-.51529 -.69717 .49831
-.59241 .70990 .38072

Energy matrix for m = 5/2

.2 .33737 .25787
.33737 .05033 0
.25787 0 -.11743

Eigenvalues for m = 5/2
[ -.35684, -.04622, .53599 ]
Eigenvectors for m = 5/2
.59290  .19501 .78131
-.49124 -.68122 .54280
-.63806  .70562 .30811
Energy matrix for m = 7/2
.2 .25767
.25767 .08388
Eigenvalues for m = 7/2
[ -.12221, .40605 ]
Eigenvectors for m = 7/2
.62453 -.78099
-.78099 -.62453
Eigenvalue for m = 9/2
[ .11743 1]

Eigenvector for m = 9/2
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1

Now there is considerable mixing of the two Stark levels as indicated by the size of the eigenvector
components. Only the m = 9/2 sublevel remains uncontaminated.

m 9.9 Concluding remarks on HFS

The above exercise allows us to reach several conclusions regarding magnetic hyperfine structure in
crystals. It is apparent that if the relevant Stark levels are well separated, say > 10cm ™! then a first-order
calculation suffices but for closely spaced Stark levels it is imperative to include the off-diagonal matrix
elements of the magnetic hyperfine interaction and these will lead to mixing and considerable distortion
of the first-order hyperfine patterns. Simple calculation of the quantity {J,)(2 — g¢;.) A suffices to indicate,
to a good approximation, the width of a hyperfine pattern and to establish its resolvability. Note we
have as yet made no inclusion of electric-quadrupole hyperfine interaction and we should remember that
165 7o does possess an electric-quadrupole moment.

m 9.10 A Strategy for HFS Calculations

Throughout this course my emphasis has been on getting results by as simple and direct approach as
possible. An improved strategy would be to do a complete ”free ion” 4 Crystal Field calculation so as to
give a complete account of .J—mixing and intermediate coupling and then to use the resulting eigenvectors
to calculate the hyperfine matrix elements as above. Note that we have not given the relevant formulae
for the case of J—mixing but these follow trivially using the results of Lecture 3. Another problem
untouched here is the ab initio calculation of the hyperfine structure constant A using the measured
nuclear magnetic moment (directly measured by atomic beams rather than indirectly from analysis of
hyperfine structure) and then a model for (r=3). We have also ignored the effects of relativity. These
will changed the values of the radial integrals for (r=3) and lead to additional angular dependent terms.
These corrections are likely to be small compared with approximations already made.

m Appendix
Attached below is the Maple code used to calculate the diagonalisation results given above.

with(linalg):

read ‘hfs.cry‘:

D:=.2:

4:=0.0275:

Digits:=5:

mi:=proc()
local r1,S,resultl;
S:=array(sparse,1..3,1..3);
ri:=array(symmetric,1..3,1..3);
ri:=copyinto(S,r1,1,1);
ri[1,1]:=D;
ri[1,2]:=hfsdo(1/2);
r1[1,3]:=hfsup(1/2);
r1[2,2]:=1.22%(~.5)*A;
r1[3,3]:=1.22%(—1.5)*A;
resultl:=ri;
end:

m3:=proc()
local r3,S,result3;
S:=array(sparse,1..3,1..3);
r3:=array(symmetric,1..3,1..3);

copyinto(S,r3,1,1);
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r3[1,1]:=D;
r3[1,2]:=hfsdo(3/2);
r3[1,3]:=hfsup(3/2);
r3[2,2]:=1.22%( .5)*A;
r3[3,3]:=1.22%(-2.5)%A;

result3:=r3;

end:

m5:=proc()
local rb5,S,results;
S:=array(sparse,1..3,1..3);
r5:=array(symmetric,1..3,1..3);
copyinto(S,r5,1,1);
r5[1,1]:=D;
r5[1,2]:=hfsdo(5/2);
r5[1,3] :=hfsup(5/2);
r5[2,2]:=1.22%(1.5)*A;
r5[3,3]:=1.22%(~3.5)%A;
resultb:=r5;
end:

m7:=proc()
local r7,S,result7;
S:=array(sparse,1..2,1..2);
r7:=array(symmetric,1..2,1..2);
copyinto(S,r7,1,1);
r7[1,1]:=D;
r7[1,2]:=hfsdo(7/2);
r7[2,2]:=1.22%(2.5)*A;

result7:=xr7;

end:

m9:=proc()
local result9;
result9:=1.22%3 .5%4;

end:
print(‘Value chosen for Delta = ¢,D);
print(‘Value chosen for the Magnetic hfs constant A = ‘,h);
el:=mi1():

print(‘Energy matrix for m = 1/2¢);
print(el);

print(‘Eigenvalues for m = 1/2¢);
evalf(Eigenvals(el,V1));
print(‘Eigenvectors for m = 1/2°);
print(V1);

e3:=m3():
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print(‘Energy matrix for m = 3/2¢);
print(e3);
print(‘Eigenvalues for m = 3/2¢);
evalf(Eigenvals(e3,V3));
print(‘Eigenvectors for m = 3/2°);
print (V3);
eb:=m5():
print(‘Energy matrix for m = 5/2¢);
print(e5);
print(‘Eigenvalues for m = 5/2¢);
evalf(Eigenvals(e5,V5));
print(‘Eigenvectors for m = 5/2°);
print (V5);
e7:=m7():
print(‘Energy matrix for m = 7/2¢);
print(e7);
print(‘Eigenvalues for m = 7/2¢);
evalf(Eigenvals(e7,V7));
print(‘Eigenvectors for m = 7/2°);
print (V7);
e9:=m9():
print(‘Eigenvalue for m = 9/2°);
print(e9);
print(‘Eigenvector for m = 9/2¢);
print(‘1¢);

m The Groundstate of [iY Fyy : Ho®T

As a final calculation we give the groundstate eigenvalues and eigenvectors for of LiY F, : Ho?t with no
attempt to optimise the parameters. It will be noted that in this case there is very little mixing of the
Stark crystal field levels.

Value chosen for Delta = , 6.85
Value chosen for the Magnetic hfs constant A = , .0279

Energy matrix for m = 1/2

6.85 .027014 - .17167 I .026156 + .16622
.027014 - .17167 I .075609 0
.026156 + .16622 I 0 .22683

Eigenvalues for m = 1/2
[ 6.8417 , .079724, .23103 ]
Eigenvectors for m = 1/2
.99933 .02390 + .0073 I .01255 - .02295 I
.00399 - .02535 I .13155 - .99183 1 - .02297 - .01798 I
.00395 + .02511 I .00429 - .02817 I .79818 + .60334 I
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Energy matrix for m = 3/2

6.85 .026156 - .16622 I .023394 + .14867 I
.026156 - .16622 I -.075609 0
.023394 + .14867 I 0 .37805
Eigenvalues for m = 3/2
[ 6.84290 , - .071742 , .38141 ]
Eigenvectors for m = 3/2
.99943 - .0001 I - .02304 - .00727 I .01121 - .02065 I
.00378 - .0240 I - .14686 + .99003 I - .00687 - .00529 I
.00362 + .0230 I - .00123 + .00797 I .79639 + .60602 I
Energy matrix for m = 5/2
6.85 .023394 - .14867 I .017869 + .11355 I
.02339 - .14867 1 —-.22683 0
.01787 + .11355 I 0 .52928
Eigenvalues for m = 5/2
[ 6.8450, - .22377, .53125 ]
Eigenvectors for m = 5/2
.99960 - .00016 I - .02018 - .00660 I .00874 - .01606 I
.00330 - .02101 I - .15873 + .98803 I - .00291 - .00224 I
.00283 + .01797 1 - .00052 + .00320 I .79456 + .60805 I
Energy matrix for m = 7/2
6.85 .017869 - .11355 I
.017869 - .11355 I -.37805
Eigenvalues for m = 7/2
[ 6.8483, - .37630 ]
Eigenvectors for m = 7/2
.99988 - .00008 I .00489 - .01514 I
.00247 - .01571 I - .98817 - .15566 I
Eigenvalue for m = 9/2
-.52926
Eigenvector for m = 9/2
1
FINIS

Tomorrow is not an extrapolation of today



